中国石油大学华东大学物理课后习题答案详解
中国石油大学(华东)油层物理课后问题解答.doc
中国石油大学(华东)油层物理课后问题解答简要解释为什么油水过渡带比油气过渡带宽?为什么油越稠,油水过渡带越宽?答:过渡区的高度取决于最薄毛细管中油(或水)柱的上升高度。
由于储层中的油气界面张力受温度、压力和油中溶解气体的影响,油气界面张力很小,因此毛管力很小,油气过渡带高度很小。
由于油水界面张力大于油气界面张力,油水过渡带的毛管力大于油气过渡带的毛管力,水和油的密度差小于油的密度差,所以油水过渡带比油气的宽,油越厚,水和油的密度差越小,油水过渡带越宽。
四、简短回答问题1.简要解释油水过渡带含水饱和度的变化规律,解释为什么油越厚,油水过渡带越宽。
由于地层中孔隙毛细管的直径不同,油水界面不是一个平面,而是一个过渡带。
从底层到顶层,油水分布一般如下:纯水区——油水过渡带——纯油区。
自下而上,水饱和度逐渐降低。
根据公式:当PcR不变时,油水密度差越小,油水过渡带越宽。
油越厚,油水密度差越小,所以油越厚,油水过渡带越宽。
来自自大者叶鹏练习11。
将气体混合物的质量组成转化为一定量物质的组成。
气体混合物的质量组成如下:,解决方案:根据理想气体计算:组分质量组成/%摩尔质量/(克摩尔)-过渡区的高度取决于最薄毛细管中油(或水)柱的上升高度。
由于储层中的油气界面张力受温度、压力和油中溶解气体的影响,油气界面张力很小,因此毛管力很小,油气过渡带高度很小。
由于油水界面张力大于油气界面张力,油水过渡带的毛管力大于油气过渡带的毛管力,水和油的密度差小于油的密度差,所以油水过渡带比油气的宽,油越厚,水和油的密度差越小,油水过渡带越宽。
四、简短回答问题1.简要解释油水过渡带含水饱和度的变化规律,解释为什么油越厚,油水过渡带越宽。
由于地层中孔隙毛细管的直径不同,油水界面不是一个平面,而是一个过渡带。
从底层到顶层,油水分布一般如下:纯水区——油水过渡带——纯油区。
自下而上,水饱和度逐渐降低。
根据公式:当PcR不变时,油水密度差越小,油水过渡带越宽。
中国石油大学(华东)油层物理课后题问题详解
简要说明为什么油水过渡带比油气过渡带宽?为什么油越稠,油水过渡带越 宽?答:过渡带的高度取决于最细的毛细管中的油(或水)柱的上升高度。
由于油藏中的油气界面张力受温度、压力和油中溶解气的影响,油气界面张力很 小,故毛管力很小,油气过渡带高度就很小。
因为油水界面张力大于油气界 面张力,故油水过渡带的毛管力比油气过渡带的大,而且水油的密度差小于 油的密度,所以油水过渡带比油气过渡带宽,且油越稠,水油密度差越小, 油水过渡带越宽 四、简答题1、简要说明油水过渡带含水饱和度的变化规律,并说明为什么油越稠油水过渡带越宽? 由于地层中孔隙毛管的直径大小是不一样的,因此油水界面不是平面,而是一个过渡带。
从地层底层到顶层,油水的分布一般为:纯水区——油水过渡区——纯油区。
由下而上,含水饱和度逐渐降低。
由式:,在PcR 一定时,油水的密度差越小,油水的过渡带将越宽。
油越稠,油水密度 差越小,所以油越稠,油水过渡带越宽。
来源于骄者拽鹏 习题11.将气体混合物的质量组成换算为物质的量的组成。
气体混合物的质量组成如下:%404-CH ,%1062-H C ,%1583-H C ,%25104-H C ,%10105-H C 。
解:按照理想气体计算:2.已知液体混合物的质量组成:%.55%,35%,1012510483---H C H C H C 将此液体混合物的质量组成换算为物质的量的组成。
解:3.已知地面条件下天然气各组分的体积组成:%23.964-CH ,%85.162-H C ,%83.083-H C ,%41.0104-H C , %50.02-CO ,%18.02-S H 。
若地层压力为15MPa ,地层温度为50C O 。
求该天然气的以下参数:(1)视相对分子质量;(2)相对密度;(3)压缩因子;(4)地下密度;(5)体积系数;(6)等温压缩系数;(7)粘度;(8)若日产气为104m 3,求其地下体积。
解:(1)视相对分子质量836.16)(==∑i i g M y M(2)相对密度58055202983616..M M ag g ===γ (3)压缩因子244.3624.415===c r p p p 648.102.19627350=+==c r T T T3.2441.6480.84(4)地下密度)(=)(3/95.11127350008314.084.0836.1615m kg ZRT pM V m g g +⨯⨯⨯===ρ (5)体积系数)/(10255.6202735027315101325.084.0333m m T T p p Z p nRT pZnRTV V B sc sc scsc gscgf g 标-⨯=++⨯⨯=⋅⋅===(6)等温压缩系数3.2441.6480.52[])(==1068.0648.1624.452.0-⨯⋅⋅=MPa T P T C C rc rgrg(7)粘度16.836500.01171.41.6483.244[])(01638.00117.04.1/11s mPa g g g g ⋅=⨯=⨯=μμμμ(8)若日产气为104m 3,求其地下体积。
中国石油大学(华东)__大学物理课后习题答案
ax
az 0
d2 x r 2 cost 2 dt
ay
d2 y r 2 s i n t 2 dt
7-2
所以
a ax i a y j az k r 2 costi r 2 sin tj
(3) 由式(1) 、 (2) 、 (3)得运动方程的矢量式 r xi yj zk r costi r sin tj ctk 1-8 质点沿 x 轴运动,已知 v 8 2t 2 ,当 t 8 s 时,质点在原点左边 52m 处(向右为 x 轴正向) .试求: (1)质点的加速度和运动学方程; (2)初速度和初位置; (3)分析质点的 运动性质. [解] (1) 质点的加速度 a d v /d t 4t 又 v d x /d t 所以 d x vdt 对上式两边积分,并考虑到初始条件得
vx dx r sin t dt
dy r cost dt dz vz c dt vy
所以
v vx i v y j vz k r sin ti r costj ck
由式(1) 、 (2) 、 (3)两边对时间求二阶导数,可得质点的加速度
所以, t 时刻齿尖 P 的加速度为
2 a a t2 an b2
(v0 bt) 4 R2
1-17 火车在曲率半径 R=400m 的圆弧轨道上行驶. 已知火车的切向加速度 a t 0.2 m s 2 , 求火车的瞬时速率为 10 m s 时的法向加速度和加速度. [解] 火车的法向加速度 火车的总加速度
y x2
7-4
对时间 t 求导数
vy
dy dx 2x 2 xvx dt dt
(1)
中国石油大学(华东)大学物理2-1第八章习题答案
习题 88-1.选择题1.一定量的理想气体,分别经历习题8-1(1)(a) 图所示的abc 过程(图中虚线ac 为等温线)和习题8-1(1)(b) 图所示的def 过程(图中虚线df 为绝热线),试判断这两过程是吸热还是放热( )(A) abc 过程吸热,def 过程放热 (B) abc 过程放热,def 过程吸热 (C) abc 过程def 过程都吸热 (D) abc 过程def 过程都放热2.如习题8-1(2) 图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A-B 等压过程;A-C 等温过程; A-D 绝热过程。
其中,吸热最多的过程( )(A) A-B (B) A-C(C) A-D(D) 既是A-B ,也是A-C ,两者一样多3.用公式E =νC V ,m T (式中C V ,m 为定容摩尔热容量,ν为气体的物质的量)计算理想气体内能增量时,此式( )(A) 只适用于准静态的等容过程 (B) 只适用于一切等容过程(C) 只适用于一切准静态过程 (D) 适用于一切始末态为平衡态的过程4.要使高温热源的温度T 1升高ΔT ,或使低温热源的温度T 2降低同样的ΔT 值,这两种方法分别可使卡诺循环的效率升高Δ1和Δ2。
两者相比有( )(A) Δ1>Δ2 (B) Δ1<Δ2(C) Δ1= Δ2 (D) 无法确定哪个大 5. 理想气体卡诺循环过程的两条绝热线下的面积大小(如习题8-1(5)图中阴影所示)分别为S 1和S 2,则两者的大小关系是( )(A) S 1 > S 2 (B) S 1 = S 2 (C) S 1 < S 2 (D) 无法确定 6. 热力学第一定律表明( )(A) 系统对外做的功不可能大于系统从外界吸收的热量 (B) 系统内能的增量等于系统从外界吸收的热量(C) 不可能存在这样的循环过程,在此循环过程中,外界对系统做的功不等于系统传给外界的热量 (D) 热机的效率不可能等于1 7. 根据热力学第二定律可知( )(A) 功可以全部转换为热,但热不能全部转换为功(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体 (C) 不可逆过程就是不能向相反方向进行的过程 (D) 一切宏观的自发过程都是不可逆的 8.不可逆过程是( ) (A) 不能反向进行的过程(B) 系统不能回复到初始状态的过程 (C) 有摩擦存在的过程或者非准静态过程 (D) 外界有变化的过程习题8-1(1)图习题8-1(2)图习题8-1(5)图9. 关于热功转换和热量传递过程,有下列叙述: (1) 功可以完全变为热量,热量不可以完全变为功 (2) 一切热机的效率都只能小于1 (3) 热量不能从低温物体向高温物体传递 (4) 热量从高温物体向低温物体的传递是不可逆的 以上这些叙述中正确的是( ) (A) 只有(2),(4)正确 (B) 只有(2),(3),(4)正确 (C) 只有(1),(3),(4)正确 (D) 全部正确 8-2.填空题1.一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量是 ,而随时间变化的微观是 。
大学物理下18节习题参考答案中国石油大学
18章习题参考答案18-3 当波长为3000Å的光照射在某金属表面时,光电子的能量范围从0到J 100.419-⨯。
在做上述光电效应实验时遏止电压是多大?此金属的红限频率是多大?[解] 由Einstien 光电效应方程()02max 21νν-=h mv 红限频率 Hz 1097.3140⨯=ν 遏止电压a U 满足 J 100.421192max a -⨯==mv eU 所以 V 5.2106.1100.41919a a =⨯⨯==--e eU U 18-4 图中所示为一次光电效应实验中得出的遏止电压随入射光频率变化的实验曲线。
(1)求证对不同的金属材料,AB 线的斜率相同;(2)由图上数据求出普朗克常量h 的值。
[解] (1) 由Einstien 光电效应方程得 A h U e -=νa 即 eA e hU -=νa 仅A 与金属材料有关,故斜率eh与材料无关。
(2)()s V 100.4100.50.100.21514⋅⨯=⨯-=-e h 所以 s J 104.6106.1100.4341915⋅⨯=⨯⨯⨯=---h18-6 在康普顿散射中,入射光子的波长为0.03Å,反冲电子的速度为光速的60%。
求散射光子的波长和散射角。
[解] (1) 电子能量的增加ννh h E -=∆00434.025.011200=⎪⎪⎭⎫⎝⎛-=-h c m λλÅ(2) 由于 )cos 1(0φλ-=∆cm h所以 554.0cos 100=-=-cm h λλφ解得 0463.=φ18-7 已知X 射线光子的能量为0.60MeV ,若在康普顿散射中散射光子的波长变化了20%,试求反冲电子的动能。
[解] 020.0λλ=∆ MeV 60.00=νh反冲电子动能 ()MeV 1.020.11100k =⎪⎭⎫ ⎝⎛-=-=νννh h E18-8 氢原子光谱的巴耳末线系中,有一光谱线的波长为 4340Å,试求: (1)与这一谱线相应的光子能量为多少电子伏特?(2)该谱线是氢原子由能级n E 跃迁到k E 产生的,n 和k 各等于多少?(3)若有大量氢原子处于能级为5E 的激发态,最多可以发射几个线系?共几条谱线?请在氢原子能级图中表示出来,并指明波长最短的是哪一条谱线。
大学物理课后习题详解(第十三章)中国石油大学
习 题 十 三13-1 求各图中点P 处磁感应强度的大小和方向。
[解] (a) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此aI B πμ401=对于导线2:πθθ==21,因此02=BaIB B B πμ4021p =+= 方向垂直纸面向外。
(b) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此r I a I B πμπμ44001==,方向垂直纸面向内。
对于导线2:21πθ=,πθ=2,因此rI a I B πμπμ44002==,方向垂直纸面向内。
半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即rIr I B 4221003μμ==,方向垂直纸面向内。
所以,r Ir I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++=(c) P 点到三角形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是()aI d IB πμπμ23150cos 30cos 400000=-=故P 点总的磁感应强度大小为aIB B πμ29300== 方向垂直纸面向内。
13-2 有一螺线管长L =20cm ,半径r =2.0cm ,导线中通有强度为I =5.0A 的电流,若在螺线管轴线中点处产生的磁感应强度B =310166-⨯.T 的磁场,问该螺线管每单位长度应多少匝?[解] 已知载流螺线管轴线上场强公式为()120cos cos 2θθμ-=nIB由图知:10410cos 2=θ,10410cos 1-=θ,所以,⎪⎪⎭⎫ ⎝⎛⨯=10410220nI B μ, 所以,匝=1000101040IB n μ=13-3 若输电线在地面上空25m 处,通以电流31081⨯.A 。
大学物理(2-1)(山东联盟)智慧树知到课后章节答案2023年下中国石油大学(华东)
大学物理(2-1)(山东联盟)智慧树知到课后章节答案2023年下中国石油大学(华东)中国石油大学(华东)绪论单元测试1.大学物理是面向理工科大学生的一门重要的必修基础课,该课程讲授的物理学知识、思想和方法是构成学生科学素养的重要组成部分.答案:对第一章测试1.质点由一点运动到另外一点,则下列说法正确的是答案:位移是唯一的2.以下关于加速度的说法中错误的是答案:物体速度大,加速度一定大3.质点沿半径为R的圆周作匀速率运动,每T秒转一圈。
在2T时间间隔中,其平均速度大小与平均速率大小分别为答案:0 ,2πR/T4.气球正在上升,气球下系有一重物,当气球上升到离地面100m高处,系绳突然断裂,重物下落,这重物下落到地面的运动与另一个物体从100m 高处自由落到地面的运动相比,下列哪一个结论是正确的答案:下落的位移相同5.某人骑自行车以速率v向正西方向行驶,遇到由北向南刮的风(设风速大小也是v),则他感到风是从答案:西北方向吹来6.电子很小可以视为质点,而太阳很大不能视为质点.答案:错7.质点做匀加速运动,其轨迹一定是直线.答案:错8.物体具有恒定的速度,但仍有变化的速率是不可能的.答案:对9.质点作匀速圆周运动时速度一定不变.答案:错10.同一物体的运动,如果选取的参考系不同,对它的运动描述也不同.答案:对第二章测试1.在下列关于力与运动关系的叙述中,正确的是答案:若质点从静止开始,所受合力恒定,则一定作匀加速直线运动2.质量为m的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k,k为正值常量.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是答案:3.体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是答案:同时到达4.功的概念有以下几种说法:1)保守力作正功时,系统内相应的势能增加.2)质点运动经一闭合路径,保守力对质点做的功为零.3)作用力与反作用力大小相等,方向相反,所以两者所做功的代数和必为零.上列说法中答案:2)正确5.在下列关于动量的表述中,不正确的是答案:内力对系统内各质点的动量没有影响6.物体只有作匀速直线运动和静止时才有惯性.答案:错7.摩擦力总和物体运动的方向相反.答案:错8.质量为m的质点以速度v沿一直线运动,则它对空间任一点的角动量都为零.答案:错9.牛顿运动定律在任何参考系中都成立.答案:错10.一个不受外力作用的系统,它的动量和机械能都守恒.答案:错第三章测试1.下面几种运动属于定轴转动的是答案:电风扇叶片的运动2.刚体绕定轴作匀变速转动时,刚体上距轴为r的任一点的答案:切向加速度的大小恒定,法向加速度的大小变化3.刚体角动量守恒的充分而必要的条件是答案:刚体所受合外力矩为零4.有两个力作用在一个有固定转轴的刚体上(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中答案:(1) 、(2)正确,(3) 、(4) 错误5.一个人站在有光滑固定转轴的转动平台上,双臂水平地拿着二哑铃.在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的答案:机械能不守恒,角动量守恒6.刚体的转动惯量只与转轴和刚体总质量有关.答案:错7.一均匀细直棒,可绕通过其一端的光滑固定轴在竖直平面内转动.使棒从水平位置自由下摆,棒作匀角加速转动.答案:错8.刚体定轴转动时所有质点的角速度和角加速度都相同.答案:对9.刚体作定轴转动时,刚体角动量守恒的条件是刚体所受的合外力等于零.答案:错10.一个质量为m的小虫,在有光滑竖直固定中心轴的水平圆盘边缘上,此时圆盘转动的角速度为ω.若小虫沿着半径向圆盘中心爬行,则圆盘的角速度变大.答案:对第四章测试1.有下列几种说法:(1)所有惯性系对物理基本规律都是等价的;(2)在真空中,光的速度与光的频率、光源的运动状态无关;(3)在任何惯性系中,光在真空中沿任何方向的传播速率都相同.其中说法是正确的是答案:全部说法都是正确的2.在狭义相对论中,下列说法中正确的是:(1)一切运动物体相对于观察者的速度都不能大于真空中的光速;(2)质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的;(3)在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的;(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些.答案:(1),(2),(4)3.宇宙飞船相对于地面以速度0.8c直线飞行,一光脉冲从船尾传到船头.飞船的静止长度是100m,则地球观察者测出光脉冲从船尾到船头两个事件的空间间隔为答案:300m4.在某地发生两件事,静止位于该地的甲测得时间间隔为4 s,若相对于甲作匀速直线运动的乙测得时间间隔为5 s,则乙相对于甲的运动速度是(c表示真空中光速)答案:(3/5)c5.粒子在加速器中被加速,当其质量为静止质量的3倍时,其动能为静止能量的答案:2倍6.经典力学中的所有基本定律,如动量守恒定律,角动量守恒定律,机械能守恒定律都具有伽利略变换不变性.答案:对7.狭义相对论的两条基本原理是狭义相对性原理和光速不变原理.答案:对8.我们把与物体保持静止的参考系所测得的长度称为物体的固有长度.答案:对9.光子的静止质量为零.答案:对10.在某个惯性系中有两个同时同地发生的事件,在对该系有相对运动的其他惯性系中,这两个事件不一定是同时同地发生的.答案:错第五章测试1.一质量为m的物体挂在劲度系数为k的轻弹簧下面,振动角频率为f ,若把此弹簧分割成四等份,将物体m挂在分割后的一根弹簧上,则振动角频率是答案:2f2.一质点作简谐振动,周期为T. 质点由平衡位置向x轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为答案:T/123.一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上,试判断下面哪种情况是正确的答案:两种情况都可作简谐振动4.一弹簧振子作简谐振动,总能量为E,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量变为答案:4E5.一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的答案:3/46.质点作简谐振动时,从平衡位置运动到最远点需时1/4周期,因此走过该距离的一半需时1/8周期.答案:错7.一个作简谐振动的物体,其位移与加速度的相位始终相差π.答案:对8.一个作简谐振动的物体处于平衡位置处时具有最大的速度和最大的加速度.答案:错9.简谐运动的动能和势能都随时间作周期性的变化,且变化频率与位移变化频率相同.答案:错10.两个相同的弹簧挂着质量不同的物体,当它们以相同的振幅作简谐振动时,振动总能量相同.对第六章测试1.在相同的时间内,某种波长的单色光在空气中和在玻璃中答案:传播的路程不相等,走过的光程相等2.用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则答案:不产生干涉条纹3.在双缝干涉实验中,两条缝的宽度原来是相等的,若其中一缝的宽度略变窄(缝中心位置不变),则答案:干涉条纹的间距不变4.在光栅衍射实验中,与缺级级数有关的量为光栅常数5.一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是答案:红光6.获得相干光源只能用波阵面分割和振幅分割这两种方法来实现.答案:错7.发光的本质是原子、分子等从具有较高能级的激发态到较低能级的激发态跃迁过程中释放能量的一种形式.答案:对8.光波的相干叠加服从波的叠加原理,不相干叠加不服从波的叠加原理.答案:错9.光程是将光在不同介质中走过的实际路程折合成在真空中走过的路程.答案:错10.双折射现象是光从光疏介质进入光密介质时发生的一种现象.答案:错第七章测试1.水蒸气分解成同温度的氢气和氧气,内能增加了答案:25%2.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们答案:温度相同,但氦气的压强大于氮气的压强3.关于温度的意义,有下列几种说法:(1)气体的温度是分子平均平动动能的量度.(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义.(3)温度的高低反映物质内部分子热运动剧烈程度的不同.(4)从微观上看,气体的温度表示每个气体分子的冷热程度.这些说法中正确的是答案:(1)、(2)、(3)4.下列各图所示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线答案:5.玻尔兹曼分布律表明:在某一温度的平衡态,(1)分布在某一区间(坐标区间和速度区间)的分子数,与该区间粒子的能量成正比.(2)在同样大小的各区间(坐标区间和速度区间)中,能量较大的分子数较少;能量较小的分子数较多.(3)在大小相等的各区间(坐标区间和速度区间)中比较,分子总是处于低能态的概率大些.(4)分布在某一坐标区间内、具有各种速度的分子总数只与坐标区间的间隔成正比,与粒子能量无关.以上四种说法中答案:只有(2)、(3)是正确的6.只有对大量分子的集体,温度的微观意义才成立.答案:对7.物体的熔解、凝固、蒸发等现象都属于热现象.答案:对8.一切互为热平衡的热力学系统不一定具有相同的温度.答案:错9.表征系统热平衡的宏观性质的物理量为压强.答案:错10.每个分子的质量、速度和能量属于微观量.答案:对第八章测试1.关于可逆过程和不可逆过程的判断:(1)可逆热力学过程一定是准静态过程.(2)准静态过程一定是可逆过程.(3)不可逆过程就是不能向相反方向进行的过程.(4)凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是答案:(1)、(4)2.质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍,那么气体温度的改变(绝对值)在答案:等压过程中最大,等温过程中最小3.两个相同的容器,容积固定不变,一个盛有氨气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J的热量传给氢气,使氢气温度升高,如果使氨气也升高同样的温度,则应向氨气传递的热量是答案:3J4.1mol的单原子分子理想气体从状态A变为状态B,如果不知是什么气体,变化过程也不知道,但A、B两态的压强、体积和温度都知道,则可求出答案:气体内能的变化5.一定量的某种理想气体起始温度为T,体积为V,该气体在下面循环过程中经过三个平衡过程:(1)绝热膨胀到体积为2V,(2)等体变化使温度恢复为T,(3)等温压缩到原来体积V,则此整个循环过程中答案:气体向外界放热6.用旋转的叶片使绝热容器中的水温上升(焦耳热功当量实验),这一过程是可逆的.答案:错7.不规则地搅拌盛于绝热容器中的液体,液体温度在升高,若将液体看作系统,则外界对系统作功,系统的内能增加.答案:对8.热力学系统的状态发生变化时,其内能的改变量只决定于初末态的温度而与过程无关.答案:对9.不作任何热交换也可以使系统温度发生变化.答案:对10.对物体加热也可以不致升高物体的温度.答案:对。
中国石油大学(华东)油层物理课后题答案
来源于骄者拽鹏 习题11.将气体混合物的质量组成换算为物质的量的组成。
气体混合物的质量组成如下:%404-CH ,%1062-H C ,%1583-H C ,%25104-H C ,%10105-H C 。
解:按照理想气体计算:2.已知液体混合物的质量组成:%.55%,35%,1012510483---H C H C H C 将此液体混合物的质量组成换算为物质的量的组成。
解:3.已知地面条件下天然气各组分的体积组成:%23.964-CH ,%85.162-H C ,%83.083-H C ,%41.0104-H C , %50.02-CO ,%18.02-S H 。
若地层压力为15MPa ,地层温度为50C O 。
求该天然气的以下参数:(1)视相对分子质量;(2)相对密度;(3)压缩因子;(4)地下密度;(5)体积系数;(6)等温压缩系数;(7)粘度;(8)若日产气为104m 3,求其地下体积。
解:(1)视相对分子质量836.16)(==∑i i g M y M(2)相对密度58055202983616..M M ag g ===γ (3)压缩因子 244.3624.415===c r p p p 648.102.19627350=+==c r T T T(4)地下密度)(=)(3/95.11127350008314.084.0836.1615m kg ZRT pM V m g g +⨯⨯⨯===ρ(5)体积系数)/(10255.6202735027315101325.084.0333m m T T p p Z p nRT pZnRTV V B sc sc scsc gscgf g 标-⨯=++⨯⨯=⋅⋅===(6)等温压缩系数3.2441.6480.52[])(==1068.0648.1624.452.0-⨯⋅⋅=MPa T P T C C rc rgrg(7)粘度16.836500.01171.41.6483.244[])(01638.00117.04.1/11s mPa g g g g ⋅=⨯=⨯=μμμμ(8)若日产气为104m 3,求其地下体积。
大学物理课后习题详解(第九章)中国石油大学
习 题 九9-1 一系统由图示的状态a 经acb 到达状态b ,系统吸收了320J 热量,系统对外作功126J . (1)若adb 过程系统对外作功 42J ,问有多少热量传入系统? (2)当系统由b 沿曲线ba 返回状态a ,外界对系统作功84 J ,试问系统是吸热还是放热? 热量是多少? [解] 由热力学第一定律A E Q +∆=得 A Q E -=∆ 在acb 过程中,E E E ∆=-a b J 19412632011=-=-=A Q在adb 过程中,内能变化量与acb 过程相同 因此 J 2364219422=+=+∆=A E Q 在ba 过程中J 2788419433b a 3-=--=+∆-=+-=A E A E E Q由于热量为负值,所以本过程中系统放热.9-2 2mol 氮气由温度为 300K ,压强为510013.1⨯Pa (1atm )的初态等温地压缩到 510026.2⨯Pa (2atm ).求气体放出的热量. [解] 在等温过程中气体吸收的热量等于气体对外做的功,所以J 1046.321ln30031.82ln321T ⨯-=⨯⨯⨯===p p RT A Q ν即气体放热为J 1046.33⨯.9-3 一定质量的理想气体的内能E 随体积的变化关系为E - V图上的一条过原点的直线,如图所示.试证此直线表示等压过程.[证明] 设此直线斜率为k ,则此直线方程为kV E = 又E 随温度的关系变化式为 T k T C MM E '=⋅=v m o l所以 T k kV '= 因此 C kk T V ='=(C 为恒量)又由理想气体的状态方程知,C T pV'= (C '为恒量)所以 p 为恒量,即此过程为等压过程.9-4 2mol 氧气由状态1变化到状态2所经历的过程如图所示:(1)沿l →m →2路径.(2)1→2直线.试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化.[解] (1) 在1→m →2这一过程中,做功的大小为该曲线下的面积,氧气对外做负功.()()J 1010.81010013.11050204352121⨯-=⨯⨯⨯-⨯-=--=-V V p A由气体的内能公式T C E V ν=和理想气体的状态方程RT pV ν=得pV i RR i pVRpVC RpVC E 22VV====νν对于氧气5=i ,所以其内能的变化为 ()()J 1027.11010013.15051020252543511221⨯-=⨯⨯⨯⨯-⨯⨯=-=∆-V p V p E此过程吸收的热量为 J 1037.91010.81027.1444111⨯-=⨯-⨯-=+∆=A E Q (2)在从1→2过程中,由图知氧气对外作功为()()()()J 1007.51010013.11050520212143521122⨯-=⨯⨯⨯-⨯+⨯-=-+-=-V V p p A内能的变化 J 1027.1412⨯-=∆=∆E E吸收的热量 J 1034.61007.51027.1444222⨯-=⨯-⨯-=+∆=A E Q9-5 10mol 单原子理想气体在压缩过程中外界对它作功209J ,其温度上升1K ,试求:(1)气体吸收的热量与内能的增量.(2) 此过程中气体的摩尔热容量.[解] (1) 内能的增量为 J 65.124131.82310V =⨯⨯⨯=∆=∆T C E ν气体吸收的热量 J 35.8420965.124-=-=+∆=A E Q (2) 由气体摩尔热容量知 ())K mol J 44.835.841011⋅-=-⨯=∆=TQC ν9-6 将压强为1atm ,体积为33m 101-⨯的氧气(25V R C =)从0℃加热到100℃.试分别求在等体(积)过程和等压过程中各需吸收多少热量.[解] 由理想气体状态方程 RT pV ν= 00RT V p RTpV ==ν在等容过程中吸收的热量为 J 77.9210027310110013.1252535000V V =⨯⨯⨯⨯⨯=∆=∆=-T R RT V p T C Q ν在等压过程中吸收的热量为J 88.12977.92575727V p p =⨯==∆=∆=Q T R T C Q νν9-7 已知氩气的定体(积)比热为)K kg J 314V ⋅=c ,若将氩气看作理想气体,求氩原子的质量.(定体(积)摩尔热容V mol V c M C =).[解] 由定容摩尔热容量的定义知 R R i C 232V ==因此 VVV m o l 23c Rc C M==氩原子的质量为 kg 1059.63141002.631.823232623V A Amol-⨯=⨯⨯⨯===c N RN Mm9-8 为测定气体的γ(V p C C =)值有时用下列方法:一定量的气体的初始温度、体积和压强为0T 、0V 和0p ,用一根电炉丝对它缓慢加热.两次加热的电流强度和时间相同,第一次保持体积0V 不变,而温度和压强变为1T 和1p .第二次保持压强0p 不变,而温度和体积变为2T 和1V .试证明 ()()001001p V V V p p --=γ[证明] 两次加热气体吸收的热量相同,等容过程吸收的热量为()01V 1T T C Q -=ν 等压过程吸收的热量为 ()02p 2T T C Q -=ν 由 21Q Q =可得 ()()02p 01V T T C T T C -=-νν所以 0201Vp T T T T C C --==γ由理想气体状态方程 000RT V p ν= 101RT V p ν= 210RT V p ν= 因此 00101V R p p T T ν-=- 00102p RV V T T ν-=-所以得到 ()()001001p V V V p p --=γ9-9 已知1mol 固体的状态方程为bp aT v v ++=0,内能apT cT E +=,式中0v 、a 、b 、c 均为常量,求该固体的p C 、V C .[解] 由热力学第一定律可得 V p E A E Q d d d d d +=+= (1) 由已知条件可得 p b T a V d d d += (2) T ap p aT T c E d d d d ++= (3)将(2)、(3)代入(1)得 ()p b T a p T ap p aT T c Q d d d d d d ++++= (4) 在等压过程中,0d =p所以 ()T ap c Q d 2d += 因此 ap c TQ C 2d d p +==在等容过程中 0d =V代入(2)式得 0d d =+p b T a 因此 T ba p d d -=代入(4)式得Tb T a apc T b a b T a p T ap T b a aT T c Qd d d d d d d 2⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-+++⎪⎭⎫ ⎝⎛-+= 所以 bT a ap c TQ C 2V d d -+==9-10 已知范德瓦尔斯气体的内能0V E Va T C E +-=.其中V C 、a 、0E 为常数,试证明其绝热过程方程为()常数=-VC R b V T[证明] 范德瓦尔斯气体的状态方程为 ()RT b V V a p =-⎪⎭⎫⎝⎛+2 (1) 又由已知条件可得 V Va T C E d d d 2V += (2)绝热过程 0d =Q ,由热力学第一定律得 V p A E d d d -=-= (3) 由(2)、(3)式可得 V p V Va T C d d d 2V -=+ (4)由 (1)式可得 2Va bV RT p --=(5)将(5)代入(4)式有 V bV RT V Va V Va T C d d d d 22V --=+整理得 V bV T RTC d 1d V --=积分得()常数=-+b V T RC ln ln V即 ()常数=-RCVT b V这就是范德瓦尔斯气体的绝热过程方程.9-11 如图所示是氮气循环过程,求:(1)一次循环气体对外作的功;(2)循环效率. [解] (1) 一次循环过程气体对外作功的大小为闭合曲线所包围的面积,由图知,其包围的面积为1()()1412V V p p S --= ()()J 100.2101015510335⨯=⨯⨯-⨯-=-该循环对外作功为正,所以 J 100.23⨯=A(2) 该循环过程中,从1→2,2→3为吸收热量过程 1→2为等容过程,吸收热量为()()112212V 125V p V p T T C Q -=-=ν()J 1025.110101511025335⨯=⨯⨯⨯-⨯⨯=-2→3为等压过程,吸收热量为 ()()223323p 227V p V p T T C Q -=-=ν()J 104.1101011051027435⨯=⨯⨯⨯-⨯⨯=-因此吸收的总热量为 J 10525.1421⨯=+=Q Q Q 该循环的效率为 %1.13%10010525.1100.243=⨯⨯⨯==Q A η9-12 一理想气体的循环过程如图所示,其中ca 为绝热过程,点 a 的状态参量为()11,V T ,点b 的状态参量为()22,V T ,理想气体的热容比为γ,求(1)气体在ab 、bc 过程中与外界是否有热交换? 数量是多少?(2)点c 的状态参量;(3)循环的效率.[解] (1) ab 过程是等温过程,系统吸收热量为121T lnV V RT A Q ν==因12V V >,故该过程是吸热过程.bc 过程是等容过程,系统吸收热量为 ()2c V V T T C Q -=ν 因 c T <2T ,故该过程是放热过程. (2) 从图上可看到 2c V V =又 ac 为绝热过程,故根据绝热方程 112111c1c T VV T VV T --⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=γγ又有 γγ11c c V p V p =得到 121211121211c -⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=γγγννV V V RT V RT V V V V p p(3) ()()[]()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⋅-=--=--=-=--12121V 12111212V 121C 2V TV ln 11ln1ln11V V V V RC V V RT T V V T C V V RT T T C Q Q γγννη9-13 图中闭合曲线为一理想气体的循环过程曲线,其中ab 、cd 为绝热线,bc 为等体(积)线,da 为等压线,试证明其效率为bc ad T T T T ---=γη1式中a T 、b T 、c T 、d T 分别为a 、b 、c 、d 各状态的温度,V p C C =γ.[证明] da 为放热过程,其放出的热量为()a d p 2T T C Q -=νbc 为吸热过程,其吸收的热量为 ()b c V 1T T C Q -=ν 所以其效率为 ()()bc ad b c V a d p 12111T T T T T T C T T C Q Q ---=---=-=γννη9-14 如图所示,AB 、DC 为绝热线,COA 是等温线. 已知系统在COA 过程中放热J 100,OAB 的面积是J 30,ODC 的面积为 J 70,试问在BOD 过程中系统是吸热还是放热?热量是多少?[解] 因COA 是等温线,COA 过程中J 100CA CA -==Q A 又因AB 、DC 为绝热线,AB AB A E -=∆ DC DC A E -=∆ OAB 过程系统作负功,ODC 过程系统作正功,整个循环过程系统作功 3070CA DC BD AB -=+++A A A ABOD 过程中系统吸热A C BD DC AB BD BD 140140E E E E E E A Q -+=∆+∆+∆+=∆+=由于COA 是等温过程,过程中系统内能变化为零,即 0A C =-E E 因此BOD 过程中系统吸热 J 140=Q9-15 一制冷机进行如图所示的循环过程,其中ab 、cd 分别是温度为1T 、2T 的等温线,bc 、da 为等压过程,设工作物质为理想气体.证明这制冷机制冷系数为:12121ln22p p i T T T ++-=ω[证明] ab 为等温过程,吸收热量为12111lnp p RT A Q ν==cd 为等温过程,其放出的热量大小为12222lnp p RT A Q ν==bc 为等压过程,吸收的热量为 ()12p 3T T C Q -=ν da 为等压过程,放出的热量大小为 ()12p 4T T C Q -=ν所以致冷系数 ()()12121314231ln22p p i T T T Q Q Q Q Q Q Q Q Q AQ ++-=+-++=-==吸放吸吸ω9-16 mol 1单原子理想气体,初态压强为1p ,体积为1V ,经等温膨胀使体积增加一倍,然后保持压强不变,使其压缩到原来的体积,最后保持体积不变,使其回到初态. (1)试在V p -图上画出过程曲线;(2)求在整个过程中内能的改变,系统对外作的净功、从外界吸收的净热量以及循环效率.[解] (1) 过程曲线(2) 系统经过循环又回到初态,所以其内能改变量0=∆E a →b 为等温过程,系统对外作正功2ln ln11121V p V V RT A ==νa2p 1p 2V 1V OVb →c 为等压过程,系统对外作负功,其数值大小为()()122111222V V V V p V V p A -=-=过程中总功 ()1112211112119.02ln V p V V V V p V p A A A =--=-=系统从外界吸收的净热量 1119.0V p A Q == a →b 过程吸热为 2ln 1111V p A Q ==c →a 过程中吸收的热量为 ()c a V 2T T C Q -=ν()V p V V V p p V p p 112111121432323=⎪⎪⎭⎫ ⎝⎛-=-=所以 %2.13432ln 19.011111121=+=+=V p V p V p Q Q A η9-17 一可逆卡诺热机低温热源的温度为27℃,热机效率为 40%,它的高温热源的温度是多少? 今欲将热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加多少度?[解] 可逆卡诺循环的效率为121T T -=η所以 K 5004.01300121=-=-=ηT T若 %50='η,则 K 6005.01300121=-='-='ηT T所以 K 10050060011=-=-'=∆T T T9-18 有一卡诺热机,用29kg 空气为工作物质,高温热源和低温热源的温度分别为C 27o 和C 73-o ,求此热机的效率.若在等温膨胀过程中工作物质的体积增大到2.718倍,则此热机每一循环所作的功是多少?[解] 此热机的效率为 %3.333002001112=-=-=T T η在等温膨胀过程中,吸收的热量为J 1049.2718.2ln 30031.8291029ln631211⨯=⨯⨯⨯⨯==V V RT Q ν又 1Q A =η所以 J 103.81049.231561⨯=⨯⨯==Q A η9-19 在高温热源为127℃、低温热源为27℃之间工作的卡诺热机,一次循环对外作净功为8000J ,今维持低温热源温度不变,提高高温热源的温度,使其一次循环对外做功10000J ,若两次循环该热机都工作在相同的两条绝热线之间,试求: (1)后一卡诺循环的效率.(2)后一卡诺循环的高温热源的温度.[解] (1) 设前一卡诺循环从高温热源吸收热量为1Q ,则有11Q A =η又 414003001112=-=-=T T η所以 J 320004800011=⨯==ηA Q 后一卡诺循环从高温热源吸收热量为J 34000800010000320001211=-+=-+='A A Q Q所以第二个卡诺循环的效率为 %4.29%100340001000012=⨯='='Q A η(2) 第二个卡诺循环的高温热源温度为 K 425294.01300121=-='-='ηT T9-20 一台家用冰箱,放在气温为300K 的房间内,做一盘C 13-o 的冰需从冷冻室取走J 1009.25⨯的热量.设冰箱为理想卡诺制冷机. (1)求做一盘冰所需要的功;(2)若此冰箱能以s J 1009.22⨯的速率取走热量,求所要求的电功率是多少瓦? (3)做一盘冰需时若干?[解] (1) 致冷系数为 2122T T T A Q -==ω因此 ()()J 1022.32602603001009.2452212⨯=-⨯⨯=-=T T T Q A(2) 取走制一盘冰的热量所需要的时间为 s 101009.21009.2325=⨯⨯=t所以电功率为 W 2.32101022.334=⨯==tA P(3) 做一盘冰所需要的时间为 s 103.9-21 绝热容器中间有一无摩擦、绝热的可动活塞,如图所示,活塞两侧各有mol ν的理想气体,5.1=γ,其初态均为0p 、0V 、0T .现将一通电线圈置入左侧气体中,对气体缓慢加热,左侧气体吸热膨胀推动活塞向右移,使右侧气体压强增加为0375.3p ,求; (1)左侧气体作了多少功?(2)右侧气体的终态温度是多少?(3)左侧气体的终态温度是多少? (4)左侧气体吸收了多少热量?[解] (1) 右侧气体所发生的过程为绝热过程.它对外所做的功的负值就是左侧气体所作的功.所以左侧气体作功为 12200---='-=γV p V p A A又对右侧气体: γγγ202200375.3V p V p V p == 因此 γ102375.3V V =所以 000000122001375.3375.31V p V p V p V p V p A =--=---=γγγ(2) 对右侧气体,由绝热方程知 ()γγγγ----=210010375.3T p T p得到 00325.1375.3T T T ===(3) 左侧气体末态体积为 γ1002001375.32V V V V V V -=-+=得到 00000010011125.525.212375.3375.312375.3T T T V p V V p RV p T =⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫⎝⎛-==γν(4) 左侧气体吸收热量()()0000V 01V 1125.5V p T T C A T T C A E Q +-=+-=+∆=νν由 000RT V p ν= 知 RV p T ν000=又由 5.1VV Vp =+==C R C C C γ, 得到 R C 2V =所以 00000015.925.42V p V p RV p R Q =+⨯⨯⨯=νν9-22 如图所示,在刚性绝热容器中有一可无摩擦移动而且不漏气的导热隔板,将容器分为A 、B 两部分,各盛有1mol 的He 气和2O 气.初态He 、2O 的温度各为K 300A =T ,K 600B =T ;压强均为atm 1.求:(1)整个系统达到平衡时的温度T 、压强p (氧气可视为刚性理想气体); (2)He气和2O 气各自熵的变化,系统的熵变.[解] (1) 因中间是导热隔板,过程中两部分气体热量变化和作功的数值都相等,所以内能变化量的数值也相等,且由于初温度不同而末温度相同所以一正一负.因此 ()()T T C T T C '-=-'B VB B A VA A νν解得 K 5.487536005300325232523BA VBVA BVB A VA =+⨯+⨯=++=++='RR RT RT C C T C T C T因平衡时温度、压强都相等,且都是1mol ,所以体积也相等.()A B A A B B B A AA BA B A45021212p RT T p R p RT p RT V V V V =+=⎪⎪⎭⎫ ⎝⎛+=+='='νν 根据理想气体状态方程得到压强为atm 08.114505.478450A =⨯=⋅'=''='p T V T R p ν(2) He 气熵变⎰⎰⎰⎰''+=+==∆T T V V VVR TTC TVp E TQ S AAAd d d d d A VA A He He He ννK J 42.93002600300ln31.83005.487ln31.8232lnln23ABA A=⨯+⨯+⨯⨯=++'=T T T R T T R氧气熵变⎰⎰⎰⎰''+=+==∆T T V V VVR TTC TVp E TQ S BBB222d d d d d B VB B O O O ννK J 70.66002600300ln31.86005.487ln31.8252lnln25-=⨯+⨯+⨯⨯=++'=BBA BT T T R T T R系统的熵变 K J 72.270.642.92O He =-=∆+∆=∆S S S9-23 已知在0℃1mol 的冰溶化为0℃的水需要吸收热量 6000 J ,求: (1)在0℃条件下这些冰化为水时的熵变;(2)0℃时这些水的微观状态数与冰的微观状态数的比. [解] (1) 温度不变时,熵变为 K J 0.222736000d 1d 0====∆⎰⎰Q T TQ S(2) 根据玻尔兹曼熵公式 冰冰Ω=ln k S 水水Ω=ln k S冰水冰水冰水ΩΩ=Ω-Ω=-=∆lnln ln k k k S S S根据(1)结果,得2423106.11038.10.22⨯⨯∆===ΩΩ-ee ekS 冰水9-24 把2mol 的氧从40℃冷却到0℃,若(1)等体(积)冷却;(2)等压冷却.分别求其熵变是多少?[解] 在等容压缩过程中 T C Q d d V ν= 因此 K J 68.5313273ln252d d d 273313VV -=⨯====∆⎰⎰⎰R TT C TTC TQ S νν在等压冷却过程中, T C Q d d p ν=K J 95.7313273ln272d d d 273313pp -=⨯====∆⎰⎰⎰R TT C TTC TQ S νν9-25 取1mol 理想气体,按如图所示的两种过程由状态A 到达状态C . (1)由A 经等温过程到达状态 C ;(2)由A 经等体(积)过程到达状态B ,再经等压过程到达状态C . 按上述两种过程计算该系统的熵变A C S S -.已知A C 2V V =,A C 21p p =.[解] (1) 根据理想气体状态方程得 RV p RV p T A A AA A ==ν因此等温过程中熵变为⎰⎰⎰⎰====∆V VRTT T Vp T QTQS C Ad 1d d d AAAν2ln lnd AC AA CAR V V R VV T RT V V ===⎰(2) A →C 与A →B →C 两过程初末状态相同,熵是状态函数,只与初末位置有关,因此两过程熵变相同等于2ln R .或:根据理想气体状态方程得 A A BB B 211V p RRV p T ⋅==νA →B →C 过程熵变等于A →B 等容过程和B →C 等压过程中熵变的和⎰⎰⎰⎰+=+=+=∆CBB ACBB ATTC TTC TQ TQ S S S d d d d p V 21νν2ln 2ln 2ln p V R C C =+-=。
大学物理课后习题详解(第三章)中国石油大学
3-1 以速度0v 前进的炮车,向后发射一炮弹,已知炮车的仰角为θ,炮弹和炮车的质习题3-1图量分别为m 和M ,炮弹相对炮车的出口速率为v ,如图所示。
求炮车的反冲速率是多大?[解] 以大地为参照系,取炮弹与炮弹组成的系统为研究对象,系统水平方向的动量守恒。
由图可知炮弹相对于地面的速度的水平分量为v v '-θcos ,根据动量守恒定律()()v M v v m v m M '-'-=+-θcos 0所以 ()mM mv v m M v +++='θcos 0此即为炮车的反冲速率。
3-2 质量为M 的平板车,在水平地面上无摩擦地运动。
若有N 个人,质量均为m ,站在车上。
开始时车以速度0v 向右运动,后来人相对于车以速度u 向左快跑。
试证明:(1)N 个人一同跳离车以后,车速为NmM Nmuv v ++=0(2)车上N 个人均以相对于车的速度u 向左相继跳离,N 个人均跳离后,车速为()mM mum N M mu Nm M mu v v +++-++++=' 10[证明] (1) 取车和人组成的系统为研究对象,以地面为参照系,系统的水平方向的动量守恒。
人相对于地面的速度为u v -,则()()Mv u v Nm v Nm M +-=+0所以 NmM Nmuv v ++=0(2) 设第1-x 个人跳离车后,车的速度为1-x v ,第x 个人跳离车后,车的速度为x v ,根据动量守恒定律得()[]()()[]x x 1x 1v m x N M u v m v m x N M -++-=+-+-所以 ()Mm x N muv v ++-+=-11x x此即车速的递推关系式,取N x ,,2,1 =得Mm muv v ++=-1N NMm muv v ++=--22N 1N……………………()M m N muv v +-+=112 MNm muv v ++=01将上面所有的式子相加得()Mm muM m mu M m N mu M Nm mu v v ++++++-+++=210N 此即为第N 个人跳离车后的速度,即()mM mum N M mu Nm M mu v v +++-++++=' 103-3 质量为m =0.002kg 的弹丸,其出口速率为300m ,设弹丸在枪筒中前进所受到的合力800400x F -=。
中国石油大学物理答案9章习题解答.docx
习题99-3. 一轻弹簧在60N 的拉力下伸长30cm 。
现把质量为4kg 物体悬挂在该弹簧的下端,并 使之静止,再把物体向下拉10cm,然后释放并开始计吋。
求:(1)物体的振动方程;(2)物 体在平衡位置上方5cm 时弹簧対物体的拉力;(3)物体从笫一次越过平衡位置时刻起,到它 运动到上方5cm 处所需要的最短时间。
[解](1)取平衡位置为坐标原点,竖直向下为正方向,建立坐标系=200N/m A = 0.1m设振动方程为O ・l = O ・lcos0 0 = 0(2)设此时弹簧对物体作用力为凡则(3)设第一次越过平衡位置时刻为则第一次运动到上方5cm 处时刻为匚,则一 0.05 = 0.1 cos (7.07r 2) t 2 = 2刃(3 x 7.07)故所需最短时间为:△f =為—心=0.074s9-4. 一质量为M 的物体在光滑水平面上作谐振动,振幅12cm,在距平衡位置6cm 处, 速度为24cm-s'1,求:⑴ 周期T ; (2)速度为12cm ・s"时的位移。
[解]⑴ 设振动方程为x = Acos@f+ 0)cm 以 A = 12cm 、x = 6cm 、v = 24cm • s"1 代入,得:6 = 12cos(er + 0) 24 = -1269 sin (cot + cp)利用 sin 2(twt + ^) + cos 2(ax +(p)=\ 则因而有F = 200x(0.2-0.05)= 30N0 = 0」cos (7.07f Jr, =0.5龙/7・0730x1 O'2k 200解得:0 =-龙/4 A= 10.6cm故振动方程为:x = 10.6 cos(10z 一 ^/4)cm解得473 co- -------⑵以v = 24cm-s _l 代入,得:解得: 所以故2+(24、 11<-1269>12 = -12tysin (69/ + ^) = -16^/3 sin (69/ + °) sin{cot + 切= cos 伽 + 卩)=土乎卜 ±10.8cm兀=12 cos (0f + 切=12 x ±9-5. 一谐振动的振动曲线如图9-5所示,[解]设振动方程为 x = A cos {a )t + °)根据振动曲线可画出旋转矢量图由图可得:0) = —^- =Ar故振动方程为%=,0COSl?9-6. 一质点沿x 轴作简谐振动,其角频率^10 rad s'',试分别写出以下两种初始状态的 振动方程:(1)其初始位移兀o=7.5 cm,初始速度心二75.0 cm s'1;⑵ 其初始位移也=7.5 cm, 初速度 v 0=-75.0cm-s _l o[解]设振动方程为兀=4cos(10/ + 0)7.5 = Acos0 75 = -lO4sin0T 巫co71 +39-7. 一轻弹簧在60 N 的拉力作用下可伸长30cm,现将一物体悬挂在弹簧的下端并在它 上面放一小物体,它们的总质量为4kg 。
大学物理课后习题详解(第六章)中国石油大学
习 题 六6-1 一轻弹簧在60N 的拉力下伸长30cm .现把质量为4kg 物体悬挂在该弹簧的下端,并使之静止,再把物体向下拉10cm ,然后释放并开始计时.求:(1)物体的振动方程;(2)物体在平衡位置上方5cm 时弹簧对物体的拉力;(3)物体从第一次越过平衡位置时刻起,到它运动到上方5cm 处所需要的最短时间.[解] (1)取平衡位置为坐标原点,竖直向下为正方向,建立坐标系N/m 2001030602=⨯=-k设振动方程为 ()ϕω+=t A x cosrad/s 07.74200===m k ω m 1.0=A 0=t 时 m 1.0=x ϕc o s1.01.0= 0=ϕ 故振动方程为 ()m 07.7cos 1.0t x = (2)设此时弹簧对物体作用力为F ,则()()x x k x k F +=∆=0其中 m 196.02008.940=⨯==k mg x 因而有 ()N 2.2905.0196.0200=-⨯=F (3)设第一次越过平衡位置时刻为1t ,且速度小于零,则()107.7cos 1.00t = 07.75.01π=t第一次运动到上方5cm 处时刻为2t ,且速度小于零,则()207.7cos 1.005.0t =- )07.7322⨯=πt故所需最短时间为:s 074.012=-=∆t t t6-2 一质点在x 轴上作谐振动,选取该质点向右运动通过点 A 时作为计时起点(t =0),经过2s 后质点第一次经过点B ,再经 2s 后,质点第二次经过点B ,若已知该质点在A 、B 两点具有相同的速率,且10cm =AB ,求:(1)质点的振动方程;(2)质点在A 点处的速率.[解] 由旋转矢量图和||||b a v v =可知421=T s 由于42s 81,s 81ππνων====-T(1)以AB 的中点为坐标原点,x 轴指向右方.0=t 时, ϕcos 5A x =-=2s =t 时, ()ϕϕωs i n 2c o s 5A A x -=+== 由以上二式得 1tan =ϕ因为在A 点质点的速度大于零,所以43πϕ-= cm 25cos /==ϕx A所以,运动方程为:()m 4/34/cos 10252ππ-⨯=-t x(2)速度为: ⎪⎭⎫ ⎝⎛-⨯-==-434sin 41025d d 2πππt t x v 当2s =t 时 m/s 1093.3432sin 4102522--⨯=⎪⎭⎫ ⎝⎛-⨯-=πππv6-3 一质量为M 的物体在光滑水平面上作谐振动,振幅为 12cm ,在距平衡位置6cm 处,速度为24s cm ,求:(1)周期T ;(2)速度为12s cm 时的位移.[解](1)设振动方程为()cm cos ϕω+=t A x 以cm 12=A 、cm 6=x 、1s cm 24-⋅=v 代入,得:()ϕω+=t c o s 126 (1)()ϕωω+-=t sin 1224 (2)由(1)、(2)得1122412622=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛ω 解得 334=ω s 72.2232===πωπT (2) 以1s cm 12-⋅=v 代入,得:()()ϕωϕωω+-=+-=t t sin 316sin 1212解得: ()43sin -=+ϕωt 所以 ()413cos ±=+ϕωt故 ()cm 8.1041312cos 12±=⎪⎪⎭⎫ ⎝⎛±⨯=+=ϕωt x6-4 一谐振动的振动曲线如图所示,求振动方程.[解] 设振动方程为: ()ϕω+=t A x cos 根据振动曲线可画出旋转矢量图由图可得: 32πϕ=125223πππϕω=⎪⎭⎫ ⎝⎛+=∆∆=t故振动方程为 cm 32125cos 10⎪⎭⎫⎝⎛+=ππt x6-5 一质点沿x 轴作简谐振动,其角频率s rad 10=ω,试分别写出以下两种初始状态的振动方程:(1)其初始位移0x =7.5 cm ,初始速度s cm 0.750=v ;(2)其初始位移0x =7.5 cm ,初速度s cm 0.750-=v .[解] 设振动方程为 ()ϕ+=t A x 10cos (1) 由题意得: ϕcos 5.7A = ϕsin 1075A -= 解得: 4πφ-= cm 6.10=A 故振动方程为:()cm 410cos 6.10π-=t x(2) 同法可得: ()cm 410cos 6.10π+=t x6-6 一轻弹簧在60 N 的拉力作用下可伸长30cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4k 。
大学物理下课后题答案12章中国石油大学(华东)
12章习题参考答案12-1答案:1-5 DBADC 6-10 CDDAD 11-15 DDDAB 12-2 1、E R 221π 2、Sq 022ε3、略4、3028Rqdεπ,方向为从O 点指向缺口中心点5、aq 08πε-12-3真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上到杆的一端距离为d 的点P 的电场强度。
[解] 建立如图所示的坐标系Ox ,在距O 点为x 处取电荷元x Lqx q d d d ==λ,它在P 点产生的电场强度为()()x x d L Lq x d L qrq E d 41d 414d d 202020-+=-+==πεπεπε则整个带电直导线在P 点产生的电场强度为()d L d q x x d L Lq E L+=-+=⎰2041d 41πεπε故 ()i d L d qE+=04πε12-4用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心处点O 的电场强度。
[解] 建立坐标系如图,在半圆环上取微元d l ,θd d R l =,则 l RQq d d π=, q d 在O 点的场强 20204d 4d d R lR Q R q E πεππε== 从对称性分析,y 方向的场强相互抵消,只存在x 方向的场强Ed Oxxq d d λ=θεπθθεπθd 4sin d sin 4sin d d 202302x RQ l RQ E E =⋅=⋅= 2020202x x 2d 4sin d R QR Q E E επθεπθπ===⎰⎰i R Q E o 222επ=12-5一半径为R 的无限长半圆柱面形薄筒,均匀带电,单位长度上的带电量为λ,试求圆柱面轴线上一点的电场强度E 。
[解] 建立坐标系如图,在无限长半圆柱面形薄筒上取l d 的窄条,l d 对应的无限长直线单位长度所带的电量为θπλθπλd d d ==R R q 它在轴线O 产生的场强的大小为RR qE 0202d 2d d επθλπε==因对称性y d E 成对抵消。
2大学物理课后习题详解(第二章)中国石油大学
2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。
[解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv(1) 由牛顿第二定律 tv m ma f d d ==即 tv m kv d d ==-所以t mk vv d d -= 对等式两边积分⎰⎰-=tvvt mkvv 0d d 0得 t mk v v -=0ln因此 tmk ev v -=0(2) 由牛顿第二定律 xv mvtx x v mt vm ma f d d d d d d d d ====即 xv mv kv d d =-所以 v x mk d d =-对上式两边积分 ⎰⎰=-0d d v sv x m k得到 0v s m k -=-即 kmv s 0=2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为⎪⎪⎭⎫ ⎝⎛--=-m kt e kF mg v 1 [证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得tv mma f F mg d d ==--即 tv mma kv F mg d d ==-- 习题2-2图整理得mt kvF mg v d d =--对上式两边积分⎰⎰=--tvm tkvF mg v 00d d得 mkt Fmg kv F mg -=---ln即 ⎪⎪⎭⎫ ⎝⎛--=-m kt e kF mg v 12-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。
求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。
大学物理课后习题详解(第五章)中国石油大学
5-1 设有一宇宙飞船,相对于地球作匀速直线运动,若在地球上测得飞船的长度为其静止长度的一半,问飞船相对地球的速度是多少?[解] 飞船静止长度0l 为其固有长度,地球上测得其长度为运动长度,由长度收缩公式,有:2)(1020l c v l l =-=解得:23=cv即:c c v 866.023==5-2 宇宙射线与大气相互作用时能产生π介子衰变,此衰变在大气上层放出μ粒子,已知μ粒子的速率为v =0.998c ,在实验室测得静止μ粒子的平均寿命为s 102.26-⨯,试问在8000m 高空产生的μ粒子能否飞到地面?[解] 地面上观测到的μ子平均寿命与固有寿命之间的关系21⎪⎭⎫ ⎝⎛-=c v t tμ子运行距离m 1042998.01102.2998.012620=-⨯⨯=⎪⎭⎫ ⎝⎛-==-c c v t v vt lμ子能飞到地面。
5-3 在S 系中观测到两个事件同时发生在x 轴上,其间距离为1m ,在S '系中观测这两个事件之间的距离是2m 。
求在S '中测得的这两个事件发生的时间间隔。
[解] 在S 系中两事件时间间隔,0=∆t 由Lorentz 变换222)/(1)/(1c u xcu t t c u ut x x --='--='得:⎪⎪⎪⎩⎪⎪⎪⎨⎧-∆-=-∆-∆='∆-∆=-∆-∆='∆222222)/(1)/(1)/(1)/(1c u x c u c u x c u t t c u x c u t u x x 将m 1m ,2=∆='∆x x 代入上两式,得s 1077.5,239-⨯-='∆=t c u5-4 远方一颗星体以0.80c 的速率离开我们,我们接收到它辐射来的闪光按5昼夜的周期变化,求固定在这星体上的参考系中测得的闪光周期。
[解] 所求的为固有周期0T : 380.015)/(1220=-=-=c v T T 昼夜5-5 假设一飞船的速率可达u =0.5c ,它沿着广州和北京的连线飞行,已知广州到北京的直线距离为km 1089.13⨯,问飞船中的乘客观测到广州到北京的直线距离是多少? [解] 已知固有长度km 1089.130⨯=lkm 106368.15.011089.113232⨯=-⨯⨯=⎪⎭⎫ ⎝⎛-=c v l l5-6 1966~1972年间,欧洲原子核研究中心(CERN)多次测量到储存环中沿“圆形轨道”运行的μ粒子的平均寿命,在μ粒子的速率为0.9965c 时,测得的平均寿命是s 1015.266-⨯。
大学物理课后习题详解(第十一章)中国石油大学
习 题 十 一11-1 如图所示,在点电荷+Q 的电场中放置一导体球。
由点电荷+Q 到球心的径矢为r ,在静电平衡时,求导体球上的感应电荷在球心O 点处产生的场强E 。
[解] 静电平衡时,导体内任一点的场强为零,O 点的场强是点电荷+Q 及球面上感应电荷共同贡献的,由场强叠加原理有0Q 0='+=E E E r E E 20Q 4r Q πε-=-='11-2 一带电量为q 、半径为r 的金属球A ,放在内外半径分别为1R 和2R 的不带电金属球壳B 内任意位置,如图所示。
A 与B 之间及B 外均为真空,若用导线把A ,B 连接,求球A 的电势。
[解] 以导线把球和球壳连接在一起后,电荷全部分布在球壳的外表面上(或者说导体球的电荷与球壳内表面电荷中和),整个系统是一个等势体,因此20B A 4R q U U πε==11-3 如图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。
设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差;(2)板B 接地时,两板间的电势差。
[解] (1) 由61页例1知,两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为因而板间电场强度为 SQ E 02ε=电势差为 SQdEd U 0AB 2ε== (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为B A-Q/2Q/2Q/2Q/2A B -QQ故板间电场强度为 SQ E 0ε=电势差为 SQdEd U 0AB ε==11-4 如图所示,有三块互相平行的导体板,上导体板到中间导体板的距离为5.0cm ,上导体板到下导体板的距离为8.0cm ,外面的两块用导线连接,原来不带电。
中间一块两面上带电,其面电荷密度之和为25m C 103.1-⨯=σ。
求每块板的两个表面的面电荷密度各是多少(忽略边缘效应)?[解] 因忽略边缘效应,可把三个导体板看作无限大平板,由例1知32σσ-= (1) 45σσ-= (2)忽略边缘效应,则导体板可看成无限大的,具有屏蔽性,在相邻导体板之间的电场只由相对于二表面上电荷决定。
大学物理课后习题详解(第九章)中国石油大学
习 题 九9-1 一系统由图示的状态a 经acb 到达状态b ,系统吸收了320J 热量,系统对外作功126J . (1)若adb 过程系统对外作功 42J ,问有多少热量传入系统? (2)当系统由b 沿曲线ba 返回状态a ,外界对系统作功84 J ,试问系统是吸热还是放热? 热量是多少? [解] 由热力学第一定律A E Q +∆=得 A Q E -=∆ 在acb 过程中,E E E ∆=-a b J 19412632011=-=-=A Q在adb 过程中,内能变化量与acb 过程相同 因此 J 2364219422=+=+∆=A E Q 在ba 过程中J 2788419433b a 3-=--=+∆-=+-=A E A E E Q由于热量为负值,所以本过程中系统放热.9-2 2mol 氮气由温度为 300K ,压强为510013.1⨯Pa (1atm )的初态等温地压缩到 510026.2⨯Pa (2atm ).求气体放出的热量. [解] 在等温过程中气体吸收的热量等于气体对外做的功,所以J 1046.321ln30031.82ln321T ⨯-=⨯⨯⨯===p p RT A Q ν即气体放热为J 1046.33⨯.9-3 一定质量的理想气体的内能E 随体积的变化关系为E - V图上的一条过原点的直线,如图所示.试证此直线表示等压过程.[证明] 设此直线斜率为k ,则此直线方程为kV E = 又E 随温度的关系变化式为 T k T C MM E '=⋅=v m o l所以 T k kV '= 因此 C kk T V ='=(C 为恒量)又由理想气体的状态方程知,C T pV'= (C '为恒量)所以 p 为恒量,即此过程为等压过程.9-4 2mol 氧气由状态1变化到状态2所经历的过程如图所示:(1)沿l →m →2路径.(2)1→2直线.试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化.[解] (1) 在1→m →2这一过程中,做功的大小为该曲线下的面积,氧气对外做负功.()()J 1010.81010013.11050204352121⨯-=⨯⨯⨯-⨯-=--=-V V p A由气体的内能公式T C E V ν=和理想气体的状态方程RT pV ν=得pV i RR i pVRpVC RpVC E 22VV====νν对于氧气5=i ,所以其内能的变化为 ()()J 1027.11010013.15051020252543511221⨯-=⨯⨯⨯⨯-⨯⨯=-=∆-V p V p E此过程吸收的热量为 J 1037.91010.81027.1444111⨯-=⨯-⨯-=+∆=A E Q (2)在从1→2过程中,由图知氧气对外作功为()()()()J 1007.51010013.11050520212143521122⨯-=⨯⨯⨯-⨯+⨯-=-+-=-V V p p A内能的变化 J 1027.1412⨯-=∆=∆E E吸收的热量 J 1034.61007.51027.1444222⨯-=⨯-⨯-=+∆=A E Q9-5 10mol 单原子理想气体在压缩过程中外界对它作功209J ,其温度上升1K ,试求:(1)气体吸收的热量与内能的增量.(2) 此过程中气体的摩尔热容量.[解] (1) 内能的增量为 J 65.124131.82310V =⨯⨯⨯=∆=∆T C E ν气体吸收的热量 J 35.8420965.124-=-=+∆=A E Q (2) 由气体摩尔热容量知 ())K mol J 44.835.841011⋅-=-⨯=∆=TQC ν9-6 将压强为1atm ,体积为33m 101-⨯的氧气(25V R C =)从0℃加热到100℃.试分别求在等体(积)过程和等压过程中各需吸收多少热量.[解] 由理想气体状态方程 RT pV ν= 00RT V p RTpV ==ν在等容过程中吸收的热量为 J 77.9210027310110013.1252535000V V =⨯⨯⨯⨯⨯=∆=∆=-T R RT V p T C Q ν在等压过程中吸收的热量为J 88.12977.92575727V p p =⨯==∆=∆=Q T R T C Q νν9-7 已知氩气的定体(积)比热为)K kg J 314V ⋅=c ,若将氩气看作理想气体,求氩原子的质量.(定体(积)摩尔热容V mol V c M C =).[解] 由定容摩尔热容量的定义知 R R i C 232V ==因此 VVV m o l 23c Rc C M==氩原子的质量为 kg 1059.63141002.631.823232623V A Amol-⨯=⨯⨯⨯===c N RN Mm9-8 为测定气体的γ(V p C C =)值有时用下列方法:一定量的气体的初始温度、体积和压强为0T 、0V 和0p ,用一根电炉丝对它缓慢加热.两次加热的电流强度和时间相同,第一次保持体积0V 不变,而温度和压强变为1T 和1p .第二次保持压强0p 不变,而温度和体积变为2T 和1V .试证明 ()()001001p V V V p p --=γ[证明] 两次加热气体吸收的热量相同,等容过程吸收的热量为()01V 1T T C Q -=ν 等压过程吸收的热量为 ()02p 2T T C Q -=ν 由 21Q Q =可得 ()()02p 01V T T C T T C -=-νν所以 0201Vp T T T T C C --==γ由理想气体状态方程 000RT V p ν= 101RT V p ν= 210RT V p ν= 因此 00101V R p p T T ν-=- 00102p RV V T T ν-=-所以得到 ()()001001p V V V p p --=γ9-9 已知1mol 固体的状态方程为bp aT v v ++=0,内能apT cT E +=,式中0v 、a 、b 、c 均为常量,求该固体的p C 、V C .[解] 由热力学第一定律可得 V p E A E Q d d d d d +=+= (1) 由已知条件可得 p b T a V d d d += (2) T ap p aT T c E d d d d ++= (3)将(2)、(3)代入(1)得 ()p b T a p T ap p aT T c Q d d d d d d ++++= (4) 在等压过程中,0d =p所以 ()T ap c Q d 2d += 因此 ap c TQ C 2d d p +==在等容过程中 0d =V代入(2)式得 0d d =+p b T a 因此 T ba p d d -=代入(4)式得Tb T a apc T b a b T a p T ap T b a aT T c Qd d d d d d d 2⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-+++⎪⎭⎫ ⎝⎛-+= 所以 bT a ap c TQ C 2V d d -+==9-10 已知范德瓦尔斯气体的内能0V E Va T C E +-=.其中V C 、a 、0E 为常数,试证明其绝热过程方程为()常数=-VC R b V T[证明] 范德瓦尔斯气体的状态方程为 ()RT b V V a p =-⎪⎭⎫⎝⎛+2 (1) 又由已知条件可得 V Va T C E d d d 2V += (2)绝热过程 0d =Q ,由热力学第一定律得 V p A E d d d -=-= (3) 由(2)、(3)式可得 V p V Va T C d d d 2V -=+ (4)由 (1)式可得 2Va bV RT p --=(5)将(5)代入(4)式有 V bV RT V Va V Va T C d d d d 22V --=+整理得 V bV T RTC d 1d V --=积分得()常数=-+b V T RC ln ln V即 ()常数=-RCVT b V这就是范德瓦尔斯气体的绝热过程方程.9-11 如图所示是氮气循环过程,求:(1)一次循环气体对外作的功;(2)循环效率. [解] (1) 一次循环过程气体对外作功的大小为闭合曲线所包围的面积,由图知,其包围的面积为1()()1412V V p p S --= ()()J 100.2101015510335⨯=⨯⨯-⨯-=-该循环对外作功为正,所以 J 100.23⨯=A(2) 该循环过程中,从1→2,2→3为吸收热量过程 1→2为等容过程,吸收热量为()()112212V 125V p V p T T C Q -=-=ν()J 1025.110101511025335⨯=⨯⨯⨯-⨯⨯=-2→3为等压过程,吸收热量为 ()()223323p 227V p V p T T C Q -=-=ν()J 104.1101011051027435⨯=⨯⨯⨯-⨯⨯=-因此吸收的总热量为 J 10525.1421⨯=+=Q Q Q 该循环的效率为 %1.13%10010525.1100.243=⨯⨯⨯==Q A η9-12 一理想气体的循环过程如图所示,其中ca 为绝热过程,点 a 的状态参量为()11,V T ,点b 的状态参量为()22,V T ,理想气体的热容比为γ,求(1)气体在ab 、bc 过程中与外界是否有热交换? 数量是多少?(2)点c 的状态参量;(3)循环的效率.[解] (1) ab 过程是等温过程,系统吸收热量为121T lnV V RT A Q ν==因12V V >,故该过程是吸热过程.bc 过程是等容过程,系统吸收热量为 ()2c V V T T C Q -=ν 因 c T <2T ,故该过程是放热过程. (2) 从图上可看到 2c V V =又 ac 为绝热过程,故根据绝热方程 112111c1c T VV T VV T --⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=γγ又有 γγ11c c V p V p =得到 121211121211c -⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=γγγννV V V RT V RT V V V V p p(3) ()()[]()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⋅-=--=--=-=--12121V 12111212V 121C 2V TV ln 11ln1ln11V V V V RC V V RT T V V T C V V RT T T C Q Q γγννη9-13 图中闭合曲线为一理想气体的循环过程曲线,其中ab 、cd 为绝热线,bc 为等体(积)线,da 为等压线,试证明其效率为bc ad T T T T ---=γη1式中a T 、b T 、c T 、d T 分别为a 、b 、c 、d 各状态的温度,V p C C =γ.[证明] da 为放热过程,其放出的热量为()a d p 2T T C Q -=νbc 为吸热过程,其吸收的热量为 ()b c V 1T T C Q -=ν 所以其效率为 ()()bc ad b c V a d p 12111T T T T T T C T T C Q Q ---=---=-=γννη9-14 如图所示,AB 、DC 为绝热线,COA 是等温线. 已知系统在COA 过程中放热J 100,OAB 的面积是J 30,ODC 的面积为 J 70,试问在BOD 过程中系统是吸热还是放热?热量是多少?[解] 因COA 是等温线,COA 过程中J 100CA CA -==Q A 又因AB 、DC 为绝热线,AB AB A E -=∆ DC DC A E -=∆ OAB 过程系统作负功,ODC 过程系统作正功,整个循环过程系统作功 3070CA DC BD AB -=+++A A A ABOD 过程中系统吸热A C BD DC AB BD BD 140140E E E E E E A Q -+=∆+∆+∆+=∆+=由于COA 是等温过程,过程中系统内能变化为零,即 0A C =-E E 因此BOD 过程中系统吸热 J 140=Q9-15 一制冷机进行如图所示的循环过程,其中ab 、cd 分别是温度为1T 、2T 的等温线,bc 、da 为等压过程,设工作物质为理想气体.证明这制冷机制冷系数为:12121ln22p p i T T T ++-=ω[证明] ab 为等温过程,吸收热量为12111lnp p RT A Q ν==cd 为等温过程,其放出的热量大小为12222lnp p RT A Q ν==bc 为等压过程,吸收的热量为 ()12p 3T T C Q -=ν da 为等压过程,放出的热量大小为 ()12p 4T T C Q -=ν所以致冷系数 ()()12121314231ln22p p i T T T Q Q Q Q Q Q Q Q Q AQ ++-=+-++=-==吸放吸吸ω9-16 mol 1单原子理想气体,初态压强为1p ,体积为1V ,经等温膨胀使体积增加一倍,然后保持压强不变,使其压缩到原来的体积,最后保持体积不变,使其回到初态. (1)试在V p -图上画出过程曲线;(2)求在整个过程中内能的改变,系统对外作的净功、从外界吸收的净热量以及循环效率.[解] (1) 过程曲线(2) 系统经过循环又回到初态,所以其内能改变量0=∆E a →b 为等温过程,系统对外作正功2ln ln11121V p V V RT A ==νa2p 1p 2V 1V OVb →c 为等压过程,系统对外作负功,其数值大小为()()122111222V V V V p V V p A -=-=过程中总功 ()1112211112119.02ln V p V V V V p V p A A A =--=-=系统从外界吸收的净热量 1119.0V p A Q == a →b 过程吸热为 2ln 1111V p A Q ==c →a 过程中吸收的热量为 ()c a V 2T T C Q -=ν()V p V V V p p V p p 112111121432323=⎪⎪⎭⎫ ⎝⎛-=-=所以 %2.13432ln 19.011111121=+=+=V p V p V p Q Q A η9-17 一可逆卡诺热机低温热源的温度为27℃,热机效率为 40%,它的高温热源的温度是多少? 今欲将热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加多少度?[解] 可逆卡诺循环的效率为121T T -=η所以 K 5004.01300121=-=-=ηT T若 %50='η,则 K 6005.01300121=-='-='ηT T所以 K 10050060011=-=-'=∆T T T9-18 有一卡诺热机,用29kg 空气为工作物质,高温热源和低温热源的温度分别为C 27o 和C 73-o ,求此热机的效率.若在等温膨胀过程中工作物质的体积增大到2.718倍,则此热机每一循环所作的功是多少?[解] 此热机的效率为 %3.333002001112=-=-=T T η在等温膨胀过程中,吸收的热量为J 1049.2718.2ln 30031.8291029ln631211⨯=⨯⨯⨯⨯==V V RT Q ν又 1Q A =η所以 J 103.81049.231561⨯=⨯⨯==Q A η9-19 在高温热源为127℃、低温热源为27℃之间工作的卡诺热机,一次循环对外作净功为8000J ,今维持低温热源温度不变,提高高温热源的温度,使其一次循环对外做功10000J ,若两次循环该热机都工作在相同的两条绝热线之间,试求: (1)后一卡诺循环的效率.(2)后一卡诺循环的高温热源的温度.[解] (1) 设前一卡诺循环从高温热源吸收热量为1Q ,则有11Q A =η又 414003001112=-=-=T T η所以 J 320004800011=⨯==ηA Q 后一卡诺循环从高温热源吸收热量为J 34000800010000320001211=-+=-+='A A Q Q所以第二个卡诺循环的效率为 %4.29%100340001000012=⨯='='Q A η(2) 第二个卡诺循环的高温热源温度为 K 425294.01300121=-='-='ηT T9-20 一台家用冰箱,放在气温为300K 的房间内,做一盘C 13-o 的冰需从冷冻室取走J 1009.25⨯的热量.设冰箱为理想卡诺制冷机. (1)求做一盘冰所需要的功;(2)若此冰箱能以s J 1009.22⨯的速率取走热量,求所要求的电功率是多少瓦? (3)做一盘冰需时若干?[解] (1) 致冷系数为 2122T T T A Q -==ω因此 ()()J 1022.32602603001009.2452212⨯=-⨯⨯=-=T T T Q A(2) 取走制一盘冰的热量所需要的时间为 s 101009.21009.2325=⨯⨯=t所以电功率为 W 2.32101022.334=⨯==tA P(3) 做一盘冰所需要的时间为 s 103.9-21 绝热容器中间有一无摩擦、绝热的可动活塞,如图所示,活塞两侧各有mol ν的理想气体,5.1=γ,其初态均为0p 、0V 、0T .现将一通电线圈置入左侧气体中,对气体缓慢加热,左侧气体吸热膨胀推动活塞向右移,使右侧气体压强增加为0375.3p ,求; (1)左侧气体作了多少功?(2)右侧气体的终态温度是多少?(3)左侧气体的终态温度是多少? (4)左侧气体吸收了多少热量?[解] (1) 右侧气体所发生的过程为绝热过程.它对外所做的功的负值就是左侧气体所作的功.所以左侧气体作功为 12200---='-=γV p V p A A又对右侧气体: γγγ202200375.3V p V p V p == 因此 γ102375.3V V =所以 000000122001375.3375.31V p V p V p V p V p A =--=---=γγγ(2) 对右侧气体,由绝热方程知 ()γγγγ----=210010375.3T p T p得到 00325.1375.3T T T ===(3) 左侧气体末态体积为 γ1002001375.32V V V V V V -=-+=得到 00000010011125.525.212375.3375.312375.3T T T V p V V p RV p T =⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫⎝⎛-==γν(4) 左侧气体吸收热量()()0000V 01V 1125.5V p T T C A T T C A E Q +-=+-=+∆=νν由 000RT V p ν= 知 RV p T ν000=又由 5.1VV Vp =+==C R C C C γ, 得到 R C 2V =所以 00000015.925.42V p V p RV p R Q =+⨯⨯⨯=νν9-22 如图所示,在刚性绝热容器中有一可无摩擦移动而且不漏气的导热隔板,将容器分为A 、B 两部分,各盛有1mol 的He 气和2O 气.初态He 、2O 的温度各为K 300A =T ,K 600B =T ;压强均为atm 1.求:(1)整个系统达到平衡时的温度T 、压强p (氧气可视为刚性理想气体); (2)He气和2O 气各自熵的变化,系统的熵变.[解] (1) 因中间是导热隔板,过程中两部分气体热量变化和作功的数值都相等,所以内能变化量的数值也相等,且由于初温度不同而末温度相同所以一正一负.因此 ()()T T C T T C '-=-'B VB B A VA A νν解得 K 5.487536005300325232523BA VBVA BVB A VA =+⨯+⨯=++=++='RR RT RT C C T C T C T因平衡时温度、压强都相等,且都是1mol ,所以体积也相等.()A B A A B B B A AA BA B A45021212p RT T p R p RT p RT V V V V =+=⎪⎪⎭⎫ ⎝⎛+=+='='νν 根据理想气体状态方程得到压强为atm 08.114505.478450A =⨯=⋅'=''='p T V T R p ν(2) He 气熵变⎰⎰⎰⎰''+=+==∆T T V V VVR TTC TVp E TQ S AAAd d d d d A VA A He He He ννK J 42.93002600300ln31.83005.487ln31.8232lnln23ABA A=⨯+⨯+⨯⨯=++'=T T T R T T R氧气熵变⎰⎰⎰⎰''+=+==∆T T V V VVR TTC TVp E TQ S BBB222d d d d d B VB B O O O ννK J 70.66002600300ln31.86005.487ln31.8252lnln25-=⨯+⨯+⨯⨯=++'=BBA BT T T R T T R系统的熵变 K J 72.270.642.92O He =-=∆+∆=∆S S S9-23 已知在0℃1mol 的冰溶化为0℃的水需要吸收热量 6000 J ,求: (1)在0℃条件下这些冰化为水时的熵变;(2)0℃时这些水的微观状态数与冰的微观状态数的比. [解] (1) 温度不变时,熵变为 K J 0.222736000d 1d 0====∆⎰⎰Q T TQ S(2) 根据玻尔兹曼熵公式 冰冰Ω=ln k S 水水Ω=ln k S冰水冰水冰水ΩΩ=Ω-Ω=-=∆lnln ln k k k S S S根据(1)结果,得2423106.11038.10.22⨯⨯∆===ΩΩ-ee ekS 冰水9-24 把2mol 的氧从40℃冷却到0℃,若(1)等体(积)冷却;(2)等压冷却.分别求其熵变是多少?[解] 在等容压缩过程中 T C Q d d V ν= 因此 K J 68.5313273ln252d d d 273313VV -=⨯====∆⎰⎰⎰R TT C TTC TQ S νν在等压冷却过程中, T C Q d d p ν=K J 95.7313273ln272d d d 273313pp -=⨯====∆⎰⎰⎰R TT C TTC TQ S νν9-25 取1mol 理想气体,按如图所示的两种过程由状态A 到达状态C . (1)由A 经等温过程到达状态 C ;(2)由A 经等体(积)过程到达状态B ,再经等压过程到达状态C . 按上述两种过程计算该系统的熵变A C S S -.已知A C 2V V =,A C 21p p =.[解] (1) 根据理想气体状态方程得 RV p RV p T A A AA A ==ν因此等温过程中熵变为⎰⎰⎰⎰====∆V VRTT T Vp T QTQS C Ad 1d d d AAAν2ln lnd AC AA CAR V V R VV T RT V V ===⎰(2) A →C 与A →B →C 两过程初末状态相同,熵是状态函数,只与初末位置有关,因此两过程熵变相同等于2ln R .或:根据理想气体状态方程得 A A BB B 211V p RRV p T ⋅==νA →B →C 过程熵变等于A →B 等容过程和B →C 等压过程中熵变的和⎰⎰⎰⎰+=+=+=∆CBB ACBB ATTC TTC TQ TQ S S S d d d d p V 21νν2ln 2ln 2ln p V R C C =+-=。
中国石油大学(华东)工程流体力学答案4
c1
a1 + b1 − 3c1 = 0 a1 = −1 µ 1 ⇒ −a1 − 1 = 0 ⇒ b1 = −1 ⇒ π 1 = = ρUD Re c +1 = 0 c = −1 1 1
M 0 L0T 0 = LT −1 π 2 = U a Db ρ c l ⇒
解:1)v = 4Q 4 × 0.05 = = 2.83m / s π D 2 3.14 × 0.152 vD 2.83 × 0.15 Re = = = 42441 > 2000, 紊流 ν 10 × 10−6
4-17
Re1 < 105 , 可用布拉修斯公式
λ=
0.3164 = 0.022(水力光滑区) 4 Re l v2 103 2.832 hf 1 = λ =λ = 60m, D 2g D 19.6 ∆p = γ h f = 4.7 ×105 Pa
Q=
M
ρ
=
108 ×1000 = 0.04m3 / s 750 × 3600
v = 4Q / π d 2 = 4 × 0.04 /(3.14 × 0.22 ) = 1.27 m / s
Re = vd = 1.27 × 0.2 = 63500 > 2000 4 ×10−6
ν
Re < 105
4-20
0.1atm
选l,v,ρ为基本物理量,有两个π 项:
1
第一章 流体及主要物理性质
f ( R, ρ , l , v, g ) = 0
π 1 = l a vb ρ c g
1 1 1
1 0 0 0 −1 −3 −2 M L T = [ L] LT ML LT a1 + b1 − 3c1 + 1 = 0 a1 = 1 lg 1 π1 = 2 = ⇒ −b1 − 2 = 0 ⇒ b1 = −2 ⇒ v Fr c =0 c = 0 1 1