材料力学性能测试实验报告

合集下载

材料力学性能测试实验报告

材料力学性能测试实验报告

材料基本力学性能试验—拉伸和弯曲一、实验原理拉伸实验原理拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。

对于均匀横截面样品的拉伸过程,如图1所示,图1金属试样拉伸示意图则样品中的应力为其中A为样品横截面的面积。

应变定义为其中△l是试样拉伸变形的长度。

典型的金属拉伸实验曲线见图2所示。

图3金属拉伸的四个阶段典型的金属拉伸曲线分为四个阶段,分别如图3(a)-(d)所示。

直线部分的斜率E就是杨氏模量、σs点是屈服点。

金属拉伸达到屈服点后,开始出现颈缩现象,接着产生强化后最终断裂。

弯曲实验原理可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实验结果测定材料弯曲力学性能。

为方便分析,样品的横截面一般为圆形或矩形。

三点弯曲的示意图如图4所示。

图4三点弯曲试验示意图据材料力学,弹性范围内三点弯曲情况下C点的总挠度和力F之间的关系是其中I为试样截面的惯性矩,E为杨氏模量。

弯曲弹性模量的测定将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲,对于矩形截面的试样,具体符号及弯曲示意如图5所示。

对试样施加相当于σpb0.01。

(或σrb0.01)的10%以下的预弯应力F。

并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。

记录弯曲力的增量DF和相应挠度的增量Df,则弯曲弹性模量为对于矩形横截面试样,横截面的惯性矩I为其中b、h分别是试样横截面的宽度和高度。

也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。

宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。

在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图6所示。

然后利用式(4)计算弯曲弹性模量。

二、试样要求1.拉伸实验对厚、薄板材,一般采用矩形试样,其宽度根据产品厚度(通常为0.10-25mm),采用10,12.5,15,20,25和30mm六种比例试样,尽可能采用lo =5.65(F)0.5的短比例试样。

实验报告材料力学性能测试

实验报告材料力学性能测试

实验报告材料力学性能测试实验目的:通过对不同材料的力学性能进行测试,评估其机械强度以及抗压、抗拉等能力,为材料选择和应用提供依据。

实验方法:1. 准备样本:选取不同材料的标准样本(例如金属、塑料、玻璃等),保证样本尺寸一致。

2. 强度测试:使用万能材料试验机对样本进行拉伸和压缩测试,记录其最大拉力和最大压力值。

3. 杨氏模数测试:利用杨氏模量试验机对样本进行弯曲试验,测得样本的弯曲刚度和屈服强度。

4. 硬度测试:使用洛氏硬度计等硬度测试仪器对样本进行硬度测试,得到相应硬度值。

实验结果:根据实验方法进行测试,得到以下结果:1. 强度测试结果:金属样本的最大拉力为100N,最大压力为200N;塑料样本的最大拉力为80N,最大压力为150N;玻璃样本的最大拉力为90N,最大压力为180N。

2. 杨氏模数测试结果:金属样本的弯曲刚度为500N/mm,屈服强度为400N/mm;塑料样本的弯曲刚度为300N/mm,屈服强度为200N/mm;玻璃样本的弯曲刚度为400N/mm,屈服强度为300N/mm。

3. 硬度测试结果:金属样本的洛氏硬度为80;塑料样本的洛氏硬度为60;玻璃样本的洛氏硬度为70。

实验讨论:从实验结果可以看出,金属样本在强度、刚度和硬度方面表现出较高的数值,具有较好的机械性能。

塑料样本在各项测试指标中表现适中,而玻璃样本在拉伸和硬度方面较弱。

这些结果与我们对材料性质的常识相符。

实验结论:根据实验结果,我们可以得出以下结论:1. 对于需要具备高机械强度和刚度的应用场景,金属材料是一个较好的选择。

2. 对于一些耐腐蚀性、电绝缘性等特殊要求的应用,塑料材料是一个适宜的选择。

3. 玻璃材料在某些特定场景下可以作为透明、坚固的材料选用,但其机械性能相对较弱,需谨慎选择使用。

实验改进:1. 增加样本数量:为了提高实验的可靠性和准确性,可以增加样本数量以扩大样本数据集。

2. 引入其他测试方法:除了上述提及的测试方法,可以引入其他力学性能测试方法,如拉伸变形率、材料疲劳寿命等指标,以更全面地评估材料性能。

材料力学性能实验报告

材料力学性能实验报告

大连理工大学实验报告学院(系):材料科学与工程学院专业:材料成型及控制工程班级:材0701姓名:学号:组:___指导教师签字:成绩:实验一金属拉伸实验Metal Tensile Test一、实验目的Experiment Objective1、掌握金属拉伸性能指标屈服点σS,抗拉强度σb,延伸率δ和断面收缩率φ的测定方法。

2、掌握金属材料屈服强度σ0.2的测定方法。

3、了解碳钢拉伸曲线的含碳量与其强度、塑性间的关系。

4、简单了解万能实验拉伸机的构造及使用方法。

二、实验概述Experiment Summary金属拉伸实验是检验金属材料力学性能普遍采用的极为重要的方法之一,是用来检测金属材料的强度和塑性指标的。

此种方法就是将具有一定尺寸和形状的金属光滑试样夹持在拉力实验机上,温度、应力状态和加载速率确定的条件下,对试样逐渐施加拉伸载荷,直至把试样拉断为止。

通过拉伸实验可以解释金属材料在静载荷作用下常见的三种失效形式,即过量弹性变形,塑性变形和断裂。

在实验过程中,试样发生屈服和条件屈服时,以及试样所能承受的最大载荷除以试样的原始横截面积,求的该材料的屈服点σS,屈服强度σ0.2和强度极限σb。

用试样断后的标距增长量及断处横截面积的缩减量,分别除以试样的原始标距长度,及试样的原始横截面积,求得该材料的延伸率δ和断面收缩率φ。

三、实验用设备The Equipment of Experiment拉力实验的主要设备为拉力实验机和测量试样尺寸用的游标卡尺,拉力实验机主要有机械式和液压式两种,该实验所用设备原东德WPM—30T液压式万能材料实验机。

液压式万能实验机是最常用的一种实验机。

它不仅能作拉伸试验,而且可进行压缩、剪切及弯曲实验。

(一)加载部分The Part of Applied load这是对试样施加载荷的机构,它利用一定的动力和传动装置迫使试样产生变形,使试样受到力或能量的作用。

其加载方式是液压式的。

在机座上装有两根立柱,其上端有大横梁和工作油缸。

材料力学性能测试实验报告

材料力学性能测试实验报告

材料力学性能测试实验报告为了评估材料的力学性能,本实验使用了拉力试验和硬度试验两种常见的力学性能测试方法。

本实验分为三个部分:拉力试验、硬度试验和数据分析。

通过这些试验和分析,我们可以了解材料的延展性、强度和硬度等性能,对材料的机械性质有一个全面的了解。

实验一:拉力试验拉力试验是常见的力学性能测试方法之一,用来评估材料的延展性和强度。

在拉力试验中,我们使用了一个万能材料试验机,将试样夹紧在两个夹具之间,然后施加拉力,直到试样断裂。

试验过程中我们记录了试验机施加的力和试样的伸长量,并绘制了应力-应变曲线。

实验二:硬度试验硬度试验是另一种常见的力学性能测试方法,用来评估材料的硬度。

我们使用了洛氏硬度试验机进行试验。

在实验中,将一个试验头按压在试样表面,然后测量试验头压入试样的深度,来衡量材料的硬度。

我们测得了三个不同位置的硬度,并计算了平均值。

数据分析:根据拉力试验得到的应力-应变曲线,我们可以得到材料的屈服强度、断裂强度和延伸率等参数。

屈服强度是指材料开始塑性变形的应变值,断裂强度是指材料破裂时的最大应变值,延伸率是指试样在断裂前的伸长程度。

根据硬度试验得到的硬度数值,我们可以了解材料的硬度。

结论:本实验通过拉力试验和硬度试验对材料的力学性能进行了评估。

根据拉力试验得到的应力-应变曲线,我们确定了材料的屈服强度、断裂强度和延伸率等参数。

根据硬度试验的结果,我们了解了材料的硬度。

这些数据可以帮助我们判断材料在不同应力下的性能表现,从而对材料的选用和设计提供依据。

总结:本实验通过拉力试验和硬度试验对材料的力学性能进行了评估,并通过应力-应变曲线和硬度数值来分析材料的性能。

通过这些试验和分析,我们对材料的延展性、强度和硬度等性能有了全面的了解。

这些结果对于材料的选用和设计具有重要意义,可以提高材料的应用性能和可靠性。

材料力学实验报告报告

材料力学实验报告报告

材料力学实验报告报告一、实验目的本实验旨在通过测量不同材料的力学性能参数,了解材料的力学性质,以及分析不同材料的力学性能差异。

二、实验原理1.弹性模量:弹性模量是评价材料抗弯刚性的一个重要指标,可以通过测量材料的拉伸和压缩位移来确定。

拉伸试验时,通过加载材料,测量应力和应变的关系,然后通过斜率求出弹性模量。

2.屈服强度:材料的屈服强度是指材料在拉伸过程中开始出现塑性变形时的抗拉强度,也是一个重要的力学性能参数,通过拉伸试验中的负荷-变形曲线求得。

3.断裂强度:材料的断裂强度是指在材料断裂前能承受的最大负荷,通过拉伸试验中的负荷-变形曲线求得。

三、实验设备与试样准备1.实验设备:拉伸试验机、压缩试验机、材料硬度测试仪等。

2.试样准备:选取不同的材料(如钢材、铝材、铜材等)制作成相同形状、尺寸的试样。

四、实验步骤1.弹性模量测定:(1)将试样固定在拉伸试验机上,设定初始载荷并开始加载。

(2)根据试验机上的位移计和负荷计,测量不同应力水平下的应变,并记录数据。

(3)通过绘制应力-应变曲线,根据直线部分的斜率求得材料的弹性模量。

2.屈服强度测定:(1)将试样固定在拉伸试验机上,设定初始载荷并开始加载。

(2)根据试验机上的压力计和位移计,测量不同载荷下的变形,并记录数据。

(3)通过绘制负荷-变形曲线,找到试样开始出现塑性变形的点,根据载荷计的读数求得材料的屈服强度。

3.断裂强度测定:(1)将试样固定在拉伸试验机上,设定初始载荷并开始加载。

(2)根据试验机上的压力计和位移计,测量试样在拉伸过程中的载荷和位移,并记录数据。

(3)通过绘制负荷-变形曲线,找到试样断裂前的最大负荷,并记录。

五、实验结果与讨论根据实验测量的数据,可以得到不同材料的力学性能参数,如弹性模量、屈服强度和断裂强度。

通过对比不同材料的实验结果,可以得出以下结论:1.钢材的弹性模量较大,机械性能优异。

2.铝材的屈服强度较低,耐腐蚀性能较好。

3.铜材的断裂强度较高,适用于承受较大载荷的工程应用。

国家开放大学《材料科学》金属材料的力学性能实验报告

国家开放大学《材料科学》金属材料的力学性能实验报告

国家开放大学《材料科学》金属材料的力学性能实验报告实验目的1. 掌握金属材料力学性能的基本测试方法。

2. 了解材料在不同温度和加载速度下的力学性能变化。

3. 分析实验结果,探讨材料力学性能与微观结构的关系。

实验原理金属材料的力学性能主要包括抗拉强度、抗压强度、弹性模量等。

本实验通过拉伸试验、压缩试验和硬度试验等方法,测试材料在不同温度和加载速度下的力学性能,分析材料微观结构对其力学性能的影响。

实验材料与设备1. 实验材料:低碳钢、不锈钢、铜等。

2. 实验设备:万能材料试验机、高温炉、硬度计等。

实验方法与步骤1. 拉伸试验:a. 按照国家标准制备试样。

b. 将试样装入万能材料试验机。

c. 以不同的加载速度和温度进行拉伸试验。

d. 记录应力-应变曲线,计算抗拉强度、弹性模量等参数。

2. 压缩试验:a. 按照国家标准制备试样。

b. 将试样装入万能材料试验机。

c. 以不同的加载速度和温度进行压缩试验。

d. 记录应力-应变曲线,计算抗压强度等参数。

3. 硬度试验:a. 按照国家标准制备试样。

b. 使用硬度计在不同温度下进行硬度测试。

c. 记录硬度值,计算硬度系数。

实验结果与分析1. 拉伸试验结果:- 低碳钢:抗拉强度约为400 MPa,弹性模量约为200 GPa。

- 不锈钢:抗拉强度约为500 MPa,弹性模量约为180 GPa。

- 铜:抗拉强度约为200 MPa,弹性模量约为110 GPa。

2. 压缩试验结果:- 低碳钢:抗压强度约为500 MPa。

- 不锈钢:抗压强度约为600 MPa。

- 铜:抗压强度约为300 MPa。

3. 硬度试验结果:- 低碳钢:硬度系数约为0.2。

- 不锈钢:硬度系数约为0.15。

- 铜:硬度系数约为0.1。

结论1. 金属材料的力学性能受微观结构影响显著。

2. 随着温度的升高,材料力学性能降低。

3. 加载速度对材料力学性能有一定影响,加载速度越高,材料力学性能越差。

建议1. 进一步研究材料微观结构与力学性能的关系,为材料设计提供理论依据。

力学测试实验报告

力学测试实验报告

本次实验旨在通过力学测试,了解材料的力学性能,包括弹性模量、强度、硬度等,为后续工程设计提供理论依据。

二、实验原理力学测试是研究材料力学性能的一种方法,主要包括拉伸测试、压缩测试、弯曲测试等。

本实验采用拉伸测试方法,通过测量材料在拉伸过程中的应力-应变关系,计算材料的弹性模量、强度、硬度等参数。

三、实验仪器与材料1. 实验仪器:万能试验机、电子天平、游标卡尺、拉伸试验夹具、数据采集系统等。

2. 实验材料:某种金属材料。

四、实验步骤1. 准备工作:将实验材料加工成标准试样,测量试样尺寸,记录数据。

2. 设置万能试验机:根据试样尺寸和材料特性,设置拉伸速度、加载力等参数。

3. 安装试样:将试样安装在万能试验机上,确保试样与夹具接触良好。

4. 开始拉伸实验:启动万能试验机,使试样在拉伸过程中受到均匀的拉伸力。

5. 数据采集:在实验过程中,实时采集应力-应变数据,并记录。

6. 实验结束:当试样断裂时,停止拉伸实验。

7. 数据处理:将采集到的应力-应变数据输入计算机,进行数据处理和分析。

五、实验结果与分析1. 弹性模量:根据应力-应变曲线,计算弹性模量E。

实验结果为E =2.1×10^5 MPa。

2. 强度:根据应力-应变曲线,确定最大应力值,即为强度。

实验结果为σb = 580 MPa。

3. 硬度:采用布氏硬度法测试材料的硬度。

实验结果为HB = 240。

通过本次力学测试实验,得到了某种金属材料的弹性模量、强度和硬度等参数。

实验结果表明,该材料具有良好的力学性能,可适用于工程应用。

七、实验注意事项1. 实验过程中,注意安全,防止试样断裂造成伤害。

2. 在实验操作过程中,确保试样与夹具接触良好,避免出现夹具滑移现象。

3. 数据采集过程中,注意观察应力-应变曲线,及时记录关键数据。

4. 实验结束后,对实验数据进行处理和分析,确保实验结果的准确性。

八、实验总结本次力学测试实验,使我们对材料的力学性能有了更深入的了解。

金属材料力学性能测试与分析实验报告

金属材料力学性能测试与分析实验报告

金属材料力学性能测试与分析实验报告摘要:本实验旨在通过对金属材料的力学性能进行测试和分析,以探究其力学行为和性能。

在本实验中,我们选取了一种常见的金属材料进行测试,并使用了相关的测试方法和设备,包括拉伸试验、硬度测试和冲击试验。

通过对实验结果的分析与比较,我们探讨了该金属材料的力学性能表现以及对其应用的影响。

实验结果显示,该金属材料表现出高强度、良好的塑性和韧性,适用于各种工程应用。

1. 引言金属材料是广泛应用于工程领域的重要材料,其力学性能直接关系到其在工程中的可靠性和安全性。

因此,了解金属材料的力学性能是进行工程设计和材料选择的基础。

本实验旨在通过力学性能测试来了解金属材料的力学特性和表现,以提供工程实践的依据。

2. 实验方法和设备2.1 材料样品选择选取了某种常见的金属材料作为研究对象,样品形状和尺寸符合标准要求。

2.2 拉伸试验使用拉伸试验机进行拉伸试验,按照标准规范进行测试,记录载荷-位移曲线,计算材料的弹性模量、屈服强度、抗拉强度和断后延伸率等指标。

2.3 硬度测试使用硬度计对材料进行硬度测试,选择适当的测试方法,如布氏硬度或洛氏硬度,记录测试结果并计算平均硬度值。

2.4 冲击试验利用冲击试验机对材料进行冲击试验,记录冲击能量和冲击韧性等指标。

3. 实验结果与分析3.1 拉伸试验拉伸试验结果显示,该金属材料在加载过程中呈现明显的弹性阶段、塑性阶段和断裂阶段。

载荷-位移曲线呈现出典型的应力-应变曲线特征。

根据试验数据计算得到的材料力学性能指标如下:- 弹性模量:XXX GPa- 屈服强度:XXX MPa- 抗拉强度:XXX MPa- 断后延伸率:XXX %3.2 硬度测试通过硬度测试,我们得到了该金属材料的平均硬度值为XXX。

硬度是材料抵抗局部塑性变形和耐刮削能力的指标,较高的硬度值表示该金属材料具有较好的耐磨性和抗刮削性能。

3.3 冲击试验冲击试验结果显示,该金属材料在受到冲击负荷时具有较高的韧性和抗冲击性能。

材料的力学性能实验报告

材料的力学性能实验报告

材料的力学性能实验报告材料的力学性能实验报告1. 引言材料的力学性能是衡量材料质量和可靠性的重要指标之一。

通过力学性能实验,可以对材料的强度、硬度、韧性等进行评估,从而为材料的选择和应用提供科学依据。

本实验旨在通过一系列实验方法和测试手段,对某种材料的力学性能进行全面分析和评价。

2. 实验目的本实验的主要目的是:- 测定材料的拉伸强度和屈服强度;- 测定材料的硬度和韧性;- 分析材料的断裂特性和疲劳性能。

3. 实验方法3.1 拉伸实验通过拉伸实验,可以测定材料在受力下的变形和破坏行为。

首先,从样品中制备出一定尺寸的试样,然后将试样放置在拉伸试验机上,施加逐渐增加的拉力,记录拉伸过程中的应力和应变数据,最终得到拉伸强度和屈服强度等指标。

3.2 硬度实验硬度是材料抵抗外界压力的能力,也是材料的一种重要力学性能指标。

硬度实验常用的方法有布氏硬度、维氏硬度和洛氏硬度等。

通过在材料表面施加一定的压力,然后测量压痕的大小或深度,可以得到材料的硬度值。

3.3 韧性实验韧性是材料在受力下发生塑性变形和吸收能量的能力。

韧性实验主要通过冲击试验来评估材料的韧性。

在冲击试验中,将标准试样固定在冲击机上,然后施加冲击力,观察试样的破裂形态和吸能能力,从而得到材料的韧性指标。

3.4 断裂特性分析通过断裂特性分析,可以了解材料在破坏过程中的断裂形态和机制。

常用的断裂特性分析方法有金相显微镜观察、扫描电镜观察和断口形貌分析等。

通过对破坏试样进行断口观察和形貌分析,可以揭示材料的断裂行为和破坏机制。

3.5 疲劳性能测试疲劳性能是材料在交变载荷下的抗疲劳破坏能力。

疲劳性能测试常用的方法有拉伸疲劳试验和弯曲疲劳试验等。

通过施加交变载荷,观察材料在不同循环次数下的变形和破坏情况,可以评估材料的疲劳寿命和抗疲劳性能。

4. 实验结果与分析通过上述实验方法和测试手段,得到了某种材料的力学性能数据。

在拉伸实验中,测得该材料的拉伸强度为XXX,屈服强度为XXX。

材料实验报告样板范文

材料实验报告样板范文

实验名称:XXX材料的力学性能测试实验日期:2023年X月X日实验地点:材料力学实验室实验者:XXX一、实验目的1. 了解XXX材料的基本力学性能。

2. 掌握XXX材料力学性能测试的方法和原理。

3. 分析XXX材料在不同加载条件下的力学行为。

二、实验原理XXX材料的力学性能主要包括抗拉强度、抗压强度、弹性模量、泊松比等。

本实验通过拉伸和压缩试验,测定XXX材料的上述力学性能。

三、实验仪器与材料1. 实验仪器:- 电子万能试验机- 切割机- 精密天平- 秒表- 标准拉伸试样- 标准压缩试样2. 实验材料:- XXX材料四、实验步骤1. 样品制备:将XXX材料切割成标准拉伸试样和标准压缩试样,试样尺寸应符合国家标准。

2. 样品预处理:对试样进行表面处理,去除氧化层、油污等,确保试样表面光滑。

3. 试验前准备:将试样安装在电子万能试验机上,调整试验机夹具,确保试样固定牢固。

4. 拉伸试验:- 设置试验机加载速度,一般为5mm/min。

- 启动试验机,记录试样断裂时的最大载荷和断裂位置。

- 测量试样原始长度和断裂后的长度,计算拉伸强度和伸长率。

5. 压缩试验:- 设置试验机加载速度,一般为1mm/min。

- 启动试验机,记录试样破坏时的最大载荷和破坏位置。

- 测量试样原始高度和破坏后的高度,计算抗压强度和抗压弹性模量。

6. 数据整理与分析:将实验数据整理成表格,并绘制相应的曲线。

五、实验结果与分析1. 拉伸试验结果:- 抗拉强度:XXX MPa- 伸长率:XXX%- 断裂位置:XXX2. 压缩试验结果:- 抗压强度:XXX MPa- 抗压弹性模量:XXX MPa- 破坏位置:XXX分析:根据实验结果,XXX材料的抗拉强度较高,伸长率较大,具有良好的延展性。

在压缩试验中,抗压强度较高,抗压弹性模量较大,表明材料具有良好的抗压性能。

六、实验结论1. XXX材料具有较高的抗拉强度和抗压强度,具有良好的力学性能。

西安交通大学材料力学性能试验报告——断裂韧性

西安交通大学材料力学性能试验报告——断裂韧性

材料力学性能实验报告姓名: 班级: 学号: 成绩:
K的测定
实验名称实验六断裂韧性
1C
实验目的了解金属材料平面应变断裂韧性测试的一般原理和方法。

实验设备 1.CSS-88100万能材料试验机;
2.工具读数显微镜一台;
3.位移测量器;
4.千分尺一把;
5.三点弯曲试样40Cr和20#钢试样各两个。

试样示意图
图1 三点弯曲试样
由于三向应力的存在,使得裂纹扩展区域的位错运动困难,受到更大的摩擦力,从而塑性变差,更易发生脆断。

附录一:
断裂韧性试验中断口照片:
附录二:
%根据试验的数据画P-V 曲线的matlab 程序
%在运行程序之前, 需要将数据导入到matlab 中: “File ”|“Import Data ” (a)试样01的断口图 (b)试样02的断口图
图7 40Cr800℃淬火+100℃回火断口图
(a)试样412的断口图 (b)试样415的断口图
图8 20#退火态试样的断口图
图3 40Cr800℃+100℃回火试样01的P-V 曲线
0.5
1.5
2.5
4
变形/mm
力/N
图4 40Cr800℃+100℃回火试样02的P-V 曲线
4
变形/mm
力/N
变形/mm
力/N
图5 20#钢退火态试样412的P-V 曲线
变形/mm 力/N
图6 20#钢退火态试样415的P-V 曲线。

材料力学实验报告及答案

材料力学实验报告及答案

一、实验目的1. 了解材料力学实验的基本原理和方法;2. 掌握拉伸实验、压缩实验和扭转实验的基本操作;3. 通过实验,测定材料的力学性能指标,如强度、刚度、塑性等;4. 分析实验数据,比较不同材料的力学特性。

二、实验设备1. 拉伸实验:电子万能试验机、游标卡尺、标距尺、拉伸试样;2. 压缩实验:电子万能试验机、游标卡尺、压缩试样;3. 扭转实验:扭转试验机、游标卡尺、扭转试样。

三、实验内容及步骤1. 拉伸实验(1)选取低碳钢和铸铁两种材料,分别制备拉伸试样,试样规格为d10mm×l100mm;(2)将试样安装在电子万能试验机上,调整试验机夹具,使试样与试验机轴线平行;(3)开启试验机,以10mm/min的速度进行拉伸试验,记录最大载荷Fmax、屈服载荷Fs、断后伸长率δs和断面收缩率ψ;(4)绘制拉伸曲线,分析材料的力学特性。

2. 压缩实验(1)选取铸铁材料,制备压缩试样,试样规格为d20mm×l100mm;(2)将试样安装在电子万能试验机上,调整试验机夹具,使试样与试验机轴线平行;(3)开启试验机,以1mm/min的速度进行压缩试验,记录最大载荷Fmax、屈服载荷Fs和压缩变形量ΔL;(4)绘制压缩曲线,分析材料的力学特性。

3. 扭转实验(1)选取低碳钢材料,制备扭转试样,试样规格为d10mm×l100mm;(2)将试样安装在扭转试验机上,调整试验机夹具,使试样与试验机轴线平行;(3)开启试验机,以10r/min的速度进行扭转试验,记录最大载荷Fmax、屈服载荷Fs和扭转角θ;(4)绘制扭转曲线,分析材料的力学特性。

四、实验数据及处理1. 拉伸实验数据:材料:低碳钢Fmax (N):3000Fs (N):1000δs (%):30ψ (%):20材料:铸铁Fmax (N):2000Fs (N):800δs (%):20ψ (%):152. 压缩实验数据:材料:铸铁Fmax (N):1500Fs (N):600ΔL (mm):23. 扭转实验数据:材料:低碳钢Fmax (N):1000Fs (N):400θ (°):30五、实验结果分析1. 拉伸实验结果分析:低碳钢和铸铁的拉伸曲线如图1所示。

材料的力学性能实验报告

材料的力学性能实验报告

材料的力学性能实验报告
《材料的力学性能实验报告》
在材料科学领域,力学性能实验报告是评估材料质量和可靠性的重要工具。


过对材料的力学性能进行实验,可以了解材料在受力情况下的表现,从而为工
程设计和材料选择提供依据。

本文将介绍一份力学性能实验报告的内容和意义。

首先,力学性能实验报告通常包括材料的拉伸性能、压缩性能、弯曲性能和硬
度等指标的测试结果。

这些测试可以通过拉伸试验机、压缩试验机和弯曲试验
机等设备进行。

通过这些测试,可以得到材料的抗拉强度、屈服强度、断裂伸
长率、压缩强度、弹性模量等重要参数,这些参数对材料的性能评价至关重要。

其次,力学性能实验报告还可以评估材料的疲劳性能和冲击性能。

疲劳性能是
材料在交变载荷作用下的抗疲劳能力,而冲击性能则是材料在受冲击载荷作用
下的抗冲击能力。

这些性能对于材料在实际工程中的使用寿命和安全性具有重
要影响,因此也需要进行实验评定。

最后,力学性能实验报告的意义在于为工程设计和材料选择提供科学依据。


过对材料的力学性能进行实验,可以了解材料的强度、刚度、韧性等重要参数,从而为工程设计提供可靠的材料数据。

同时,对于材料选择来说,力学性能实
验报告也可以帮助工程师和设计师选择合适的材料,以满足工程的要求。

综上所述,力学性能实验报告是评估材料质量和可靠性的重要工具,通过对材
料的力学性能进行实验,可以为工程设计和材料选择提供科学依据,从而保证
工程的安全性和可靠性。

因此,力学性能实验报告的编制和评定是材料科学领
域的重要工作,也是工程实践中不可或缺的一环。

实验报告材料力学性能的实验测定

实验报告材料力学性能的实验测定

实验报告材料力学性能的实验测定实验报告:材料力学性能的实验测定实验目的:本实验旨在通过测定材料的力学性能,了解材料的强度、韧性和硬度等参数,对材料的使用和选择提供参考。

实验装置与材料:1. 断裂强度实验装置:包括万能试验机、夹具、应变计等。

2. 硬度测试仪:如洛氏硬度计、维氏硬度计等。

3. 材料样品:本实验选取了两种常见金属材料,分别为铝合金和钢材。

实验步骤:1. 断裂强度实验:a) 准备样品:将铝合金和钢材分别切割成标准大小的试样。

b) 安装夹具:将试样放置于夹具上,确保夹具夹持牢固。

c) 调节测试参数:根据试样材料的特点,选择合适的测试速度和负荷范围。

d) 开始测试:采用万能试验机施加负荷,记录加载过程中的负荷-位移曲线。

e) 分析结果:根据负荷-位移曲线,计算出试样的断裂强度。

2. 硬度测试:a) 准备样品:将铝合金和钢材制备成标准尺寸的试样。

b) 放置试样:将试样安装在硬度测试仪的固定台上。

c) 施加负荷:根据试样材料硬度的预估值,选择合适的负荷和持续时间。

d) 测量硬度:移除试样后,通过观察试样的硬度缺口或使用显微镜观察硬度尺,确定硬度值。

实验结果与数据分析:1. 断裂强度实验结果:a) 对比分析:将铝合金和钢材的断裂强度进行对比,评估材料的强度差异。

b) 强度参数计算:根据实验数据,计算出材料的屈服强度、抗拉强度和延伸率等参数。

c) 结果解释:根据实验结果,对两种材料的强度差异进行解释。

2. 硬度测试结果:a) 硬度数值:记录并对比铝合金和钢材的硬度数值,评估材料的硬度特性。

b) 结果解释:根据硬度测试结果,解释两种材料在硬度方面的不同。

实验讨论与结论:1. 断裂强度对比:通过对铝合金和钢材的断裂强度数据分析,发现钢材的断裂强度明显高于铝合金,说明钢材在承受外力时更为坚固。

2. 强度参数分析:根据计算得到的屈服强度、抗拉强度和延伸率等参数,可以进一步了解到两种材料的力学性能差异。

3. 硬度对比与解释:通过对铝合金和钢材硬度测试结果的对比和解释,可以评估两种材料在抗划伤和抗磨损性能方面的差异。

力学试验测试实验报告(3篇)

力学试验测试实验报告(3篇)

第1篇一、实验目的1. 了解力学试验的基本原理和方法。

2. 掌握拉伸试验、压缩试验、弯曲试验等力学试验的操作技能。

3. 培养学生严谨的实验态度和良好的实验习惯。

二、实验原理力学试验是研究材料力学性能的重要手段。

本实验主要研究材料的拉伸、压缩和弯曲性能。

通过测量材料在受力过程中的应力、应变等参数,可以了解材料的力学特性。

1. 拉伸试验:测量材料在拉伸过程中断裂时的最大应力,称为抗拉强度。

2. 压缩试验:测量材料在压缩过程中断裂时的最大应力,称为抗压强度。

3. 弯曲试验:测量材料在弯曲过程中断裂时的最大应力,称为抗弯强度。

三、实验仪器与材料1. 实验仪器:万能试验机、拉伸试验机、压缩试验机、弯曲试验机、测量仪器等。

2. 实验材料:钢棒、铜棒、铝棒等。

四、实验步骤1. 拉伸试验:(1)将材料固定在拉伸试验机上,调整夹具,使材料与试验机轴线平行。

(2)打开试验机,使材料缓慢拉伸,直到断裂。

(3)记录断裂时的最大应力值。

2. 压缩试验:(1)将材料固定在压缩试验机上,调整夹具,使材料与试验机轴线平行。

(2)打开试验机,使材料缓慢压缩,直到断裂。

(3)记录断裂时的最大应力值。

3. 弯曲试验:(1)将材料固定在弯曲试验机上,调整夹具,使材料与试验机轴线平行。

(2)打开试验机,使材料缓慢弯曲,直到断裂。

(3)记录断裂时的最大应力值。

五、实验数据与结果分析1. 拉伸试验:(1)材料:钢棒,直径为10mm,长度为100mm。

(2)实验数据:最大应力值为600MPa。

(3)结果分析:钢棒在拉伸试验中表现出良好的抗拉性能。

2. 压缩试验:(1)材料:铜棒,直径为10mm,长度为100mm。

(2)实验数据:最大应力值为200MPa。

(3)结果分析:铜棒在压缩试验中表现出较好的抗压性能。

3. 弯曲试验:(1)材料:铝棒,直径为10mm,长度为100mm。

(2)实验数据:最大应力值为150MPa。

(3)结果分析:铝棒在弯曲试验中表现出较好的抗弯性能。

力学性能测试实验报告

力学性能测试实验报告

力学性能测试实验报告力学性能测试实验报告摘要:本实验旨在通过力学性能测试,评估材料的力学特性。

实验采用了拉伸试验和冲击试验两种方法,通过分析材料的应力-应变曲线和冲击能量吸收能力,得出材料的强度、韧性和脆性等性能指标。

实验结果表明,材料具有较高的强度和韧性,能够满足实际应用需求。

1. 引言力学性能是评估材料质量和可靠性的重要指标。

在工程领域中,对材料的强度、韧性和脆性等性能要求较高。

因此,通过力学性能测试,能够全面了解材料的力学特性,为工程设计和材料选择提供科学依据。

2. 实验方法2.1 拉伸试验拉伸试验是一种常用的力学性能测试方法,用于评估材料的强度和韧性。

实验中,我们使用了万能试验机进行拉伸试验。

首先,将材料样品固定在试验机上,然后施加逐渐增大的拉力,记录材料的应力和应变数据。

最终,根据应力-应变曲线,可以得出材料的弹性模量、屈服强度和断裂强度等性能指标。

2.2 冲击试验冲击试验是评估材料抗冲击能力的重要方法。

实验中,我们选择了冲击试验机进行测试。

首先,将材料样品固定在冲击试验机上,然后通过释放重物,使其自由落下,冲击样品。

记录样品在冲击过程中的吸能能力,得出材料的冲击韧性和能量吸收能力。

3. 实验结果与分析3.1 拉伸试验结果通过拉伸试验,我们得到了材料的应力-应变曲线。

根据曲线的形状和特征,我们可以得出材料的力学性能。

实验结果显示,材料具有较高的弹性模量和屈服强度,表明材料具有良好的刚性和强度。

同时,曲线的延展性较好,没有明显的断裂点,表明材料具有良好的韧性。

3.2 冲击试验结果冲击试验结果显示,材料在冲击过程中能够吸收较大的能量,具有较高的冲击韧性。

这意味着材料在受到冲击时,能够有效地减缓冲击力的传递,降低事故和损坏的风险。

4. 结论通过力学性能测试实验,我们得出了材料的力学特性。

实验结果表明,材料具有较高的强度、韧性和冲击能量吸收能力,能够满足实际应用需求。

这为工程设计和材料选择提供了重要的参考依据。

西安交通大学材料力学性能实验报告一

西安交通大学材料力学性能实验报告一
拉伸试验数据表
材料
So
(mm2)
Su
(mm2)
Lo
(mm)
Lu
(mm)
Fel
(N)
Fm
(N)
A
(%)
Z
(%)
ReL
(MPa)
Rp
(MPa)
Rm
(MPa)
Al
62.91
57.55
50
57.38
31575
14.76
8.52
371.26
501.91

72.534643
33398
40.52
Fp=23.375KN ,故Rp=Fp/So=371.26Mpa
20#低碳钢:
实验测得平均原始直径为do=9.61mm,故So=3.14*(do/2)²=72.53mm²
颈缩后断口直径为du=5.91mm,故Su=3.14*(du/2)²=27.43mm²
∴Z=(So-Su)/So*100%=62.18%
固溶强化—纯金属变为合金;
形变强化—表面形变强化,喷丸;
沉淀强化和弥散强化—奥氏体沉淀不锈钢冷却加工后强度提高;
晶界和亚晶强化—细化晶粒提高强度。
为什么材料的塑性要以延伸率和断面收缩率这两个指标来度量?它们在工程上有什么实际意义?
答:因为材料在拉伸过程中延伸率反映了材料的均匀变形能力而断面收缩率反映了材料的局部变形能力。一个试样的静拉伸断裂主要由颈缩前的均匀变形和颈缩后的局部变形组成的。因此延伸率和断面收缩率这两个指标能在工程上很好的反应材料的塑性。
Lo=50mm,Lu=70.26mm得出A= (Lu-Lo)/Lo=40.52%
由图1可知,
Fel=(20.952+28.333)/2=24.643

材料力学性能实验报告

材料力学性能实验报告

实验报告(一)院系:机械与材料工程学院课程名称:材料力学性能日期:实验报告(一)院系:机械与材料工程学院课程名称:材料力学性能日期:企业安全生产费用提取和使用管理办法(全文)关于印发《企业安全生产费用提取和使用管理办法》的通知财企〔2012〕16号各省、自治区、直辖市、计划单列市财政厅(局)、安全生产监督管理局,新疆生产建设兵团财务局、安全生产监督管理局,有关中央管理企业:为了建立企业安全生产投入长效机制,加强安全生产费用管理,保障企业安全生产资金投入,维护企业、职工以及社会公共利益,根据《中华人民共和国安全生产法》等有关法律法规和国务院有关决定,财政部、国家安全生产监督管理总局联合制定了《企业安全生产费用提取和使用管理办法》。

现印发给你们,请遵照执行。

附件:企业安全生产费用提取和使用管理办法财政部安全监管总局二○一二年二月十四日附件:企业安全生产费用提取和使用管理办法第一章总则第一条为了建立企业安全生产投入长效机制,加强安全生产费用管理,保障企业安全生产资金投入,维护企业、职工以及社会公共利益,依据《中华人民共和国安全生产法》等有关法律法规和《国务院关于加强安全生产工作的决定》(国发〔2004〕2号)和《国务院关于进一步加强企业安全生产工作的通知》(国发〔2010〕23号),制定本办法。

第二条在中华人民共和国境内直接从事煤炭生产、非煤矿山开采、建设工程施工、危险品生产与储存、交通运输、烟花爆竹生产、冶金、机械制造、武器装备研制生产与试验(含民用航空及核燃料)的企业以及其他经济组织(以下简称企业)适用本办法。

第三条本办法所称安全生产费用(以下简称安全费用)是指企业按照规定标准提取在成本中列支,专门用于完善和改进企业或者项目安全生产条件的资金。

安全费用按照“企业提取、政府监管、确保需要、规范使用”的原则进行管理。

第四条本办法下列用语的含义是:煤炭生产是指煤炭资源开采作业有关活动。

非煤矿山开采是指石油和天然气、煤层气(地面开采)、金属矿、非金属矿及其他矿产资源的勘探作业和生产、选矿、闭坑及尾矿库运行、闭库等有关活动。

材料的性能实验报告

材料的性能实验报告

实验名称:材料性能测试实验日期:2023年4月10日实验地点:材料科学与工程学院实验室实验人员:张三、李四、王五一、实验目的1. 了解材料的力学性能、热性能、化学性能等基本性能。

2. 掌握材料的性能测试方法及设备操作。

3. 分析不同材料的性能差异,为材料选择和设计提供依据。

二、实验材料与设备1. 实验材料:碳钢、铝合金、塑料、橡胶等。

2. 实验设备:万能材料试验机、热分析仪、化学分析仪器等。

三、实验方法与步骤1. 力学性能测试(1)将实验材料分别切割成标准尺寸的试样。

(2)将试样安装在万能材料试验机上。

(3)按照实验要求进行拉伸、压缩、弯曲等力学性能测试。

(4)记录实验数据,分析材料力学性能。

2. 热性能测试(1)将实验材料分别切割成标准尺寸的试样。

(2)将试样安装在热分析仪上。

(3)按照实验要求进行升温、降温等热性能测试。

(4)记录实验数据,分析材料热性能。

3. 化学性能测试(1)将实验材料分别切割成标准尺寸的试样。

(2)将试样放置在化学分析仪器中。

(3)按照实验要求进行化学性能测试。

(4)记录实验数据,分析材料化学性能。

四、实验结果与分析1. 力学性能测试结果与分析(1)碳钢:抗拉强度为500MPa,屈服强度为450MPa,延伸率为20%。

(2)铝合金:抗拉强度为280MPa,屈服强度为250MPa,延伸率为12%。

(3)塑料:抗拉强度为60MPa,屈服强度为40MPa,延伸率为5%。

(4)橡胶:抗拉强度为30MPa,屈服强度为20MPa,延伸率为10%。

从实验结果可以看出,碳钢具有较好的力学性能,适用于承受较大载荷的结构件;铝合金具有良好的力学性能和轻量化特点,适用于航空、航天等领域;塑料和橡胶的力学性能较差,适用于软质结构件。

2. 热性能测试结果与分析(1)碳钢:熔点为1500℃,热膨胀系数为10×10^-6/℃。

(2)铝合金:熔点为600℃,热膨胀系数为23×10^-6/℃。

土木实验报告广工

土木实验报告广工

实验名称:土木工程材料力学性能测试实验地点:广东工业大学土木工程实验中心实验时间:2023年3月15日一、实验目的1. 了解土木工程材料的力学性能指标及其测试方法。

2. 掌握常用土木工程材料的力学性能测试仪器和操作方法。

3. 通过实验,验证材料的力学性能是否符合设计要求。

二、实验原理本实验主要测试土木工程材料的抗压强度、抗拉强度、抗折强度等力学性能。

实验原理如下:1. 抗压强度:在材料受到轴向压力时,材料承受的最大压力与截面积的比值称为抗压强度。

2. 抗拉强度:在材料受到轴向拉伸时,材料承受的最大拉力与截面积的比值称为抗拉强度。

3. 抗折强度:在材料受到弯曲时,材料承受的最大弯矩与截面积的比值称为抗折强度。

三、实验仪器与材料1. 实验仪器:万能试验机、游标卡尺、量角器、砂纸等。

2. 实验材料:混凝土试件、钢筋试件、木材试件等。

四、实验步骤1. 准备工作:将实验材料按照要求加工成标准尺寸的试件,并编号。

2. 测试抗压强度:将试件放入万能试验机的夹具中,调整试验机的加载速度,待试件破坏后读取最大压力值。

3. 测试抗拉强度:将试件放入万能试验机的夹具中,调整试验机的加载速度,待试件破坏后读取最大拉力值。

4. 测试抗折强度:将试件放入万能试验机的夹具中,调整试验机的加载速度,待试件破坏后读取最大弯矩值。

5. 记录实验数据:将实验数据填入实验记录表。

五、实验结果与分析1. 抗压强度实验结果:混凝土试件的抗压强度为30.5MPa,钢筋试件的抗压强度为540MPa,木材试件的抗压强度为10.2MPa。

2. 抗拉强度实验结果:混凝土试件的抗拉强度为3.2MPa,钢筋试件的抗拉强度为550MPa,木材试件的抗拉强度为1.8MPa。

3. 抗折强度实验结果:混凝土试件的抗折强度为5.1MPa,钢筋试件的抗折强度为400MPa,木材试件的抗折强度为1.2MPa。

通过实验结果分析,可以得出以下结论:1. 混凝土、钢筋和木材在抗压强度、抗拉强度和抗折强度方面具有明显的差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学性能测试实验
报告
标准化管理部编码-[99968T-6889628-J68568-1689N]
材料基本力学性能试验—拉伸和弯曲一、实验原理
拉伸实验原理
拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉
至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。

对于均匀横截面样品的拉伸过程,如图 1 所示,
图 1 金属试样拉伸示意图
则样品中的应力为
其中A 为样品横截面的面积。

应变定义为
其中△l 是试样拉伸变形的长度。

典型的金属拉伸实验曲线见图 2 所示。

图3 金属拉伸的四个阶段
典型的金属拉伸曲线分为四个阶段,分别如图 3(a)-(d)所示。

直线部分的斜率E 就是杨氏模量、σs 点是屈服点。

金属拉伸达到屈服点后,开始出现颈缩
现象,接着产生强化后最终断裂。

弯曲实验原理
可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实
验结果测定材料弯曲力学性能。

为方便分析,样品的横截面一般为圆形或矩形。

三点弯曲的示意图如图 4 所示。

图4 三点弯曲试验示意图
据材料力学,弹性范围内三点弯曲情况下C 点的总挠度和力F 之间的关系是
其中I 为试样截面的惯性矩,E 为杨氏模量。

弯曲弹性模量的测定
将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲,
对于矩形截面的试样,具体符号及弯曲示意如图 5 所示。

对试样施加相当于σpb0.01。

(或σrb0.01)的10%以下的预弯应力F。

并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。

记录弯曲力的增量DF 和相应挠度的增量Df ,则弯曲弹性模量为
对于矩形横截面试样,横截面的惯性矩I 为
其中b、h 分别是试样横截面的宽度和高度。

也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。

宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。

在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图 6 所示。

然后利用式(4)计算弯曲弹性模量。

二、试样要求
1.拉伸实验
对厚、薄板材,一般采用矩形试样,其宽度根据产品厚度(通常为0.10-25mm),采用
10,12.5,15,20,25和30mm六种比例试样,尽可能采用l
o =5.65(F
)0.5的短比例试样。


样厚度一般应为原轧制厚度,但在特殊情况下也允许采用四面机加工的试样。

通常试样宽度与厚度之比不大于4:1或8:1,对铝镁材则一般可采用较小宽度。

对厚度小于0.5mm的薄板(带),亦可采用定标距试样。

试样各部分允许机加工偏差及侧边加工粗糙度应符合图 10和表 1的规定。

图 10 金属拉伸标准板材试样
表 1 金属拉伸标准板材试样尺寸要求
2) 实验样品评定
(1)出现下列情况之一者,试验结果无效。

a. 试样断在机械刻划的标记上或标距外,造成性能不合格。

b. 操作不当。

c. 试验记录有误或设备发生故障影响试验结果。

(2) 实验后试样出现两个或两个以上的缩颈以及显示出肉眼可见的冶金缺陷(例
如分层、气泡、夹渣、缩孔等),应在试验记录和报告中注明。

2.弯曲实验
1) 试样尺寸要求
2) 试样制备和尺寸测量
矩形横截面试样应在跨距的两端和中间处分别测量其高度和宽度。

计算弯曲
弹性模量时,取用三处高度测量值的算术平均值和三处宽度测量值的算术平均
值。

计算弯曲应力时,取用中间处测量的高度和宽度。

对于薄板试样,高度测量
值超过其平均值2%的试样不应用于试验。

3) 实验样品评定
(1)弯曲实验后,按有关标准规定检查试样弯曲外表面,进行结果评定。

(2)检查试样弯曲外表面,测试规范进行评定,若无裂纹、裂缝或裂断,则评
定试样合格,测试有效。

三.结果与分析
1.拉伸试验
钢板尺寸:宽度b=31.26mm,厚度h=1.16mm,标距L=260mm。

拉力机记录的是不同载荷F下的形变△L的大小,根据公式
计算出每一时刻的应力-应变数据,作图如下:
图1是一定负荷范围内不锈钢板的拉伸应力--应变曲线。

根据变化趋势,将曲线分为三个阶段:OA段,位移在增大,而负荷几乎等于0,是试样由松弛而夹紧的阶段,真正的拉伸形变过程自A点开始。

AB段,随着拉应力的增加,形变也逐渐增大,形变与外力大小呈正比,符合Hook定律,试样处于弹性变形阶段。

BC段,继续施加较小的外力就可以产生较大的形变,此时,钢材除弹性变形外,还发生了塑性形变,其中塑性变形在卸载后不再恢复,试样处于弹塑性阶段。

试想如果继续增加负荷,钢材将发生屈服及至应变强化(图中未体现)。

杨氏模量的计算:
根据弹性阶段应力与应变呈线性关系σ=E·ε知,直线段的斜率即为钢材的弹性模量,在AB段直线上取两点,见图中所标,则
E=(136.7846-52.3784)/(1.0118-0.6326)×100 = 22259MPa = 22.26GPa 2.弯曲试验
钢板尺寸:宽度b=26.63mm,厚度h=1.03mm,跨距L=240mm。

⑴无卸载试验
根据试验机记录的荷载-位移数值,作弯曲力-挠度曲线图如下:
弯曲模量的计算:
根据公式
以及I=1/12bh3,求得Eb=1079GPa
其中,△F/△f=斜率=(31.1535-12.1779)/(3.3717-1.2828)*1000=9084Nm
(2)有卸载的情况
同一钢板在加载又卸载的过程中,弯曲力-挠度曲线变化见图3。

图3说明,随着加载负荷的增大,钢板弯曲变形程度也逐渐增大,在外加负荷增大到50N左右时,停止加力,并逐渐卸载,所得曲线与原曲线并不重合,表现出一定的滞回特性,说明所施加的最大应力已经大于钢材的弹性极限,钢材的变形包括弹性和塑性两部分,其中的塑性变形在卸载后不再恢复(从图上看是1.46mm残余形变)。

滞回曲线所包含的面积反映了钢板吸收耗散能量的大小。

四.误差分析
本实验可能存在的误差有:
1.夹持试样时,由于目测不可能使试样正好处于与夹具垂直的方向,拉应力方向与试样
中轴线方向偏离。

2.弯曲试验中,应把试样放在支座上,使两端露出部分的长度相等。

3.试样尺寸人为测量过程可能引入的读数误差,即试样测量尺寸与实际尺寸的差别,导
致理论结果计算的误差。

4.试样本身是否具有代表性,有无缺陷,试样的形状,拉伸速率,以及试验温度等。

5.所使用力学试验机的量程。

若试样拉断时只需要很小的力,而拉力机的最大入口力却
很大,测量的精确性将大大下降。

两者需匹配。

五.思考题
三点弯曲与四点弯曲的区别?
三点弯曲强度:将试样放在一定距离的两支座上,在两支座中心点上加试验力,直至折断时的最大弯曲应力。

3 FL
σb3=———
2 bh2
四点弯曲强度:将试样放在一定距离的两支座上,往两支座中心左右等距离的两点上加试验力,直到折断时的最大弯曲应力。

3 F(L-l)
σb4=————
2 bh2
式中:σb3——三点弯曲强度,MPa;σb4——四点弯曲强度,MPa;
F——试样断裂时的最大试验力,N;L——试样支座间的距离,mm;
l——压头间的距离,mm;
由公式可以看出,三点弯曲实际上是四点弯曲的一个特例,当压头间距I=0时,σb4=σb3,四点变为三点。

对于同一试样,四点弯曲强度等于三点弯曲强度,但四点弯曲实验中材料所能承受的最大荷载要大于三点弯曲实验。

四点弯曲:
载荷简图
B
剪力图
B
弯矩图
三点弯曲:
载荷简图
剪力图
弯矩图
考虑到剪力大小,危险截面应分别在两个受力点处,不在梁中点。

相关文档
最新文档