生活中的立体图形练习题
(最新)北师大版七年级数学上册《生活中的立体图形》试卷(附答案)
第1页 共4页
11.将下列几何体分类,柱体有: ,锥体有 (填序号) ;
12.长方体由_______________个面_______________条棱_______________个顶点;
13.半圆面绕直径旋转一周形成__________;
4. 围成几何体的侧面中,至少有一个是曲面的是______________;(举一例)
5. 正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________;
6. 圆柱、圆锥、球的共同点是_____________________________;
7.线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________;
8. 圆可以分割成_____ 个扇形,每个扇形都是由___________________;
9. 从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形;
10.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有 ;
《生活中的立体图形》试卷
第1.1.1课时家庭作业 (生活中的立体图形1) 姓名 学习目标:
1.经历从现实世界中抽象出几何图表的过程,感受图形世界的丰富多彩。
2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、棱台、球,并能用自已的语言描述它们的某些特征。
一.填空题:
1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.;
2.图形是由________,_________,________构成的;
生活中的立体图形含答案
1.生活中的立体图形一.选择题1.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来( )2.下列说法错误的是( )A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面、侧面为长方形D.球体的三种视图均为同样大小的图形3.从多边形一条边上的一点(不是顶点)发出发,连接各个顶点得到2003个三角形,则这个多边形的边数为 ( )A.2001B.2005C.2004D.20064.如图所示立体图形,是由____个面组成,面与面相交成____条线( )A.3,6B.4,5C.4,6D.5,7第4题 第5题5.如图,在一个棱长为6cm 的正方体上摆放另一个正方体,使得上面正方体的四个顶点恰好均落在下面正方体的四条棱上,则上面正方体体积的可能值有( )A .1个B .2个C .3个D .无数个二.填空题1.如图所示的几何体是由一个正方体截去41后而形成的,这个几何体是由( )个面围成的,其中正方形有( )个,长方形有( )个.第1题2.用一长20cm ,宽8cm 的纸片卷成(无重合部分)一个高为8cm 的圆柱,那么这个圆柱的底面圆的半径是( ),圆柱的体积是( )。
3.如图所示的几何体是由若干个棱长为1的正方体堆放而成的,则这个几何体的体积是( )。
第3题 第4题4.将棱长为1cm 的正方体组成如图所示的几何体,那么这个几何体的表面积是( )。
5.如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中; 共有1个小立方体,其中1个看得见,0个看不见;如图②中;把共有8个小立方体,其中7个看得见,1个看不见;如图③中;共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看得见的小立方体有______________个。
三.解答题1.在正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色,现有涂色方式完全相同的四个正方体,如图拼成一个长方体,请判断涂红、黄、白三种颜色的对面分别涂着哪一种颜色?2.如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和.答案一选择题1.D2.B3.B4.C5.D 解析:因为上面正方体的棱长不确定,所以根据正方体体积公式可知,上面正方体体积的可能值有无数个. 二填空题1.8,2,42.π10,π800 3.6 4.362cm 5.125 三解答题1.绿 蓝 黑(分析:红不与蓝、白、黄、黑相对,所以红与绿相对;黄不与白、黑、绿、红相对,黄必与蓝相对;剩下黑与白相对。
北师大数学七年级上册第一单元《丰富的图形世界1.生活中的立体图形(一) - 同步练习
1.生活中的立体图形(一)陈锦辉一、学习目标1经历从现实世界中抽象出图形的过程,感受图形世界的丰富多彩。
2在具体的情境中,认识圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们的某些特征。
二、同步练习:活动一:从现实世界中抽象出图形1、下列几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱。
其中属于立体图形的是()A、③⑤⑥B、①②③C、③⑥D、④⑤2、在下列物体的几何图形中,是四棱锥是()3、下列图形中不是棱柱的是()A、B、C、D、4、(2008年湖北宜昌中考题)下列物体的形状类似于球的是()A、茶杯B、羽毛球C、乒乓球D、白炽灯泡6.长方体属于( )A.棱锥B.棱柱C.圆柱D.以上都不对7下列几何体中(如图)属于棱锥的是( )(1) (2) (3) (4) (5) (6)A.(1)(5)B.(1)C.(1)(5)(6)D.(5)(6)7.下列所讲述的物体,_______与圆锥的形状类似( )A.香烟盒B.铅笔C.西瓜D.烟囱帽8.机器零件中的六角螺母,圆筒形的易拉罐、足球、火柴盒、铅垂体中,•类似于棱柱的物体有________,•类似于球体的物体有_________,••类似于圆锥的物体有________,类似于圆柱的物体有__________.9下列图形中,是柱体的有。
(填序号)①②③④⑤活动二:认识棱柱及其他几何体的特征1、如果一个物体有七个顶点七个面,那么这个物体一定是()A、五棱锥B、五棱柱C、六棱锥D、七棱锥2、(2008年广东肇庆中考题)一个正方体的面共有()A、1个B、2个C、4个D、6个3、如图,下列图形()是柱体.4、把下列图形的名称填在括号内:5、如图4-5是一些具体的图形—三棱镜、方砖、帆布帐篷、笔筒、铅锤、粮囤、天文台,图4-6中是一些立体图形,找出与图4-6立体图形类似的图形。
6、判断题:(每题2分)1.柱体的上、下两个面一样大...........................()2.圆柱的侧面展开图是长方形.......................... ()3.球体不是多面体....................................()4.圆锥是多面体.......................................()5.长方体是多面体.....................................()6.柱体都是多面体.....................................()击中考1(2008年湖北宜昌中考题)下列物体的形状类似于球的是()A、茶杯B、羽毛球C、乒乓球D、白炽灯泡2、(2008年广东肇庆中考题)一个正方体的面共有()A、1个B、2个C、4个D、6个3(2009年浙江杭州中考题)直四棱柱,长方体和正方体之间的包含关系是()。
生活中的立体图形(家庭作业)
第一章丰富的图形世界1.1生活中的立体图形第1课时认识几何体基础题知识点1常见几何体的认识1.下列物体中,类似圆锥的是( )A.茶杯B.圣诞帽C.乒乓球D.铅笔知识点2棱柱的相关概念及特征2.如图,下列几何体中,是棱柱的是( )3.直四棱柱、长方体和正方体之间的包含关系是( )4.如图所示是一个棱柱,请问:(1)这个棱柱由几个面围成?棱的条数为几条?(2)这个棱柱的底面和侧面各是什么形状?(3)该棱柱有几个顶点?知识点3几何体的分类6.如图,下列几何体中,柱体--------------- ,锥体有-------,球体有-------.中档题7.下列说法中,正确的有( )①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.A.2个B.3个C.4个D.5个.8.(郑州五中月考)直六棱柱的其中一条侧棱长为 5 cm,那么它的所有侧棱长度之和为---------cm.9.(教材P4习题T1变式)如图,下列几何体分别是三棱柱、四棱柱、五棱柱,观察图形并填空.(1)三棱柱有-- 个面,--- 条棱,--- 个顶点;(2)四棱柱有---- 个面,----- 条棱----- 个顶点;(3)五棱柱有---- 个面,----- 条棱,---- 个顶点;(4)由此猜想:六棱柱有----- 个面,------ 条棱,----- 个顶点.10.指出图中各物体是由哪些几何体组成的.第2课时点、线、面、体基础题知识点1图形的构成元素1.下列几何体中,有五个面的是( )A.圆柱B.三棱柱C.四棱柱D.五棱柱2.圆锥有两个面,其中一个是------- 面,另一个------- 面,这两个面相交成一条--------- 线.知识点2点动成线、线动成面、面动成体3.流星划过天空时留下一道明亮的光线,用数学知识解释为( )A.点动成线B.线动成面C.面动成体D.以上都不对4.下雨时汽车的雨刷把玻璃上的雨水刷干净属于下列哪个选项的实际应用( )A.点动成线B.线动成面C.面动成体D.以上都不对6.以如图所示的三角形的边为轴旋转一周后所得到的几何体可以是右图中的--------------)(填序号).中档题7.将右边图形绕直线l旋转一周,可以得到如图所示的立体图形的是( )A B C D8.(太原五中检测)观察下图,请把如图的图形绕着给定的直线旋转一周后可能形成的几何体选出来( )A B C D9.我们曾学过圆柱的体积计算公式:V=Sh=πr2h(r是圆柱底面半径,h为圆柱的高).现有一个长方形,长为2 cm,宽为1 cm,以它的一边所在的直线为轴旋转一周,得到的几何体的体积是多少?1.2展开与折叠第1课时正方体的展开与折叠基础题知识点正方体的展开与折叠1.(长春中考)下列图形中,可以是正方体表面展开图的是( )2.(仙桃中考)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是( )A.传B.统C.文D.化3.(河北中考改编)图1和图2中所有的正方形都相同,将图1的正方形放在图2中的①、②、③、④某一位置,所组成的图形不能围成正方体的位置是( )图1图2A.①B.②C.③D.④中档题5.(包头中考)将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )6.(资阳中考)如图是一个正方体纸盒的外表面展开图,则这个正方体是( )7.(宝鸡期中)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.下图是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示上面,则“祝”、“你”、“前”分别表示正方体的-------------------.8.如图,在图中增加1个小正方形使所得图形经过折叠能够围成一个正方体,则一共有---------种方式.综合题9.如图是一个正方体的表面展开图,把1,2,3,4,5,6分别填入六个小正方形内,使按虚线折成正方体后,相对的两个面上的数字之和相等.请你尝试不同的填法,并与同伴交流.第2课时棱柱、圆柱、圆锥的展开与折叠基础题知识点1棱柱的展开与折叠1.(北京中考)如图是某个几何体的展开图,该几何体是( )A.三棱柱B.圆锥C.四棱柱D.圆柱2.如图是一个长方体包装盒,则它的平面展开图是( )知识点2圆柱、圆锥的展开与折叠4.如图,圆柱的表面展开后得到的平面图形是( )5.如图所示的平面图形中,不可能围成圆锥的是( )6.(宝鸡渭滨区期中)圆锥的侧面展开图是---------------(填图形的名称).中档题7.下列图形中,能通过折叠围成一个三棱柱的是( )8.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是( )9.如图是一个长方体的展开图,每个面上都标注了字母,如果F面在前面,B面在左面(字母朝外),那么在上面的字母是------------。
生活中的立体图形同步练习2024—2025学年东华师大版数学七年级上册
3.1生活中的立体图形同步练习一、单选题1.下列几何体,都是由平面围成的是( )A .圆柱B .三棱柱C .圆锥D .球2.用一个平面去截圆锥,得到的截面形状不可能是( )A .B .C .D . 3.以AB 为轴旋转一周后得到的立体图形是( )A .B .C .D . 4.如图所示的两个长方体容器中液体体积相同,根据图中信息,以下结论正确的是()A .8136(5)x x =+B .()81365x x =-C .甲容器中液体的体积为405D .乙容器中液面的高度为105.下列说法不正确的是( ).①长方体一定是柱体;①八棱柱有10个面;①六棱柱有12个顶点;①用一个平面去截几何体,若得到的图形是三角形,则这个几何体一定有一个面的形状是三角形.A.①B.①C.①①D.①①6.下列几何体中,圆锥是()A.B.C.D.7.下面几何体中,是圆锥的为()A.B.C.D.8.用一个平面去截下列几何体,截面不可能是圆的是()A.B.C.D.9.将一个直角三角形绕一条直角边所在的直线旋转一周后得到的几何体可能是()A.B.C.D.10.将一张正方形纸片按图①、图①所示的方式依次对折后,再沿图①中的虚线剪裁,最后将图①中的纸片打开铺平,所得到的图案是()A.B.C.D.二、填空题11.如图,这个几何体的名称为.12.用平面去截下列几何体:①三棱柱;①正方体;①圆柱;①圆锥;①球,则截面的形状可能是三角形的有个.13.一个棱长为6cm的正方体,它是由216个棱长为1cm的小正方体组成的,点P为上底面ABCD的中心,如果挖去(如图)的阴影部分为四棱锥,剩下的部分还包括个完整的棱长是1cm的小正方体.14.如果一个棱柱有12个顶点,那么它的面的个数是.15.已知一个直角三角形的两直角边分别是3和4,将这个直角三角形绕它的直角边所在直线旋转一周,可以得到圆锥,则圆锥的体积是 .(213π圆锥V r h =,结果保留π) 16.如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数的和是 .三、解答题17.下列几何体可以由平面图形绕其中一条直线旋转一周得到吗?18.我们知道,将一个长方形绕它的一条边所在的直线旋转一周,得到的几何体是圆柱.现有一个长为6cm ,宽为4cm 的长方形,将这个长方形绕某条边所在直线旋转一周,求所得圆柱的体积是多少?(结果保留π)19.用一个平面去截一个正方体,请你画出三种不同的截面情况.20.如图,图①所示的几何体叫三棱柱,它有6个顶点,9条棱,5个面,图①和图①所示的几何体分别是四棱柱和五棱柱.(1)四棱柱有 个顶点, 条棱, 个面;(2)五棱柱有 个顶点, 条棱, 个面;(3)那么n 棱柱有 个顶点, 条棱, 个面.21.五棱柱、六棱柱各有多少个面?多少个顶点?多少条棱?猜测七棱柱的情形并设法验证你的猜测.22.如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:面数(f)顶点数(v)棱数(e)图1图2图3(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2013个,棱数4023条,试求出它的面数.。
生活中的立体图形单元测试
生活中的立体图形单元测试一、选择题:(每题3分共30分)1.“节日的焰火”可以说是()A.面与面交于线B.点动成线C.面动成体D.线动成面2.如图,将直角三角形绕其斜边旋转一周,得到的几何体为()A.B.C.D.3.一个六棱柱的顶点个数、棱的条数、面的个数分别是()A.6、12、6B.12、18、8C.18、12、6D.18、18、24 4.骰子的形状是正方体模型,它的六个面,每个面上分别对应1、2、3、4、5、6的点数,而且相对面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()A.B.C.D.5.如图,是一个正方体纸盒的平面展开图,六个面上分别写有“为武汉加油!”,则写有“为”字的对面是什么字()A.汉B.!C.武D.加6.如图是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与4重合的数字是()A.9和13 B.2和9 C.1和13 D.2和87.如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是()A.B.C.D.8.已知一个不透明的正方体的六个面上分别写着1﹣6六个数字,如图是我们能看到的三种情况,那么数字5的对面的数字是()A.6B.4C.3D.6或4或3 9.用一个平面去截一个圆柱体,截面图形不可能是()A.长方形B.梯形C.圆形D.椭圆形10.用一个平面去截一个几何体,截面是三角形,这个几何体不可能是()A.棱柱B.圆柱C.圆锥D.棱锥二、填空:(每题4分,共32分)11.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为.11题图12题图13题图12.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,则剪掉的这个小正方形是.13.一个无盖长方体的包装盒展开图如图所示,则该长方体的体积为cm3.14.钻石原石看起来并不起眼,但经过精心设计、切割、打磨,就会成为璀璨夺目的钻石.钻石切割是多面体截面在实际生活中的一个应用.将已经加工成三棱柱形状的钻石原石进行切割,只切一刀,切截面的形状可能是.15.如果用平面截掉一个长方体的一个角(即切去一个三棱锥),则剩下的几何体最多有顶点,最少有条棱.16.如图从边长为10的正方体的一顶点处挖去一个边长为1的小正方体,则剩下图形的表面积为.17.用一个平面去截一个正方体,图中画有阴影的部分是截面,下面有关截面画法正确的序号有.18.有一个盛有水的圆柱体玻璃容器,它的底面半径为10cm,容器内水的高度为12cm,把一根半径为2cm的玻璃棒垂直插入水中直达容器底部,容器里的水升cm.三、解答题:19.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.(8分)如A(1、5、6);则B();C();D();E().20.已知一个直棱柱,它有21条棱,其中一条侧棱长为20,底面各边长都为4.(7分)(1)这是几棱柱?(2)它有多少个面?多少个顶点?(3)这个棱柱的所有侧面的面积之和是多少?21.如图所示,两个圆和一个长方形(阴影部分)恰好可以围成一个圆柱,求这个圆柱的体积(π取3.14).(7分)22.如图所示的长方形是圆柱的侧面展开图,如果这个长方形相邻的两边长分别为6,4π,求圆柱的体积(温馨提示:考虑问题要全面哦!).(8分)23.如图是一个棱柱形状的食品包装盒的侧面展开图.(8分)(1)请写出这个包装盒的几何体的名称:;(2)若AC=3,BC=4,AB=5,DF=6,计算这个多面体的侧面积.。
生活中的立体图形练习题
生活中的立体图形十分钟测试1、棱柱的两个底面是形,侧面是形;圆柱的两个底面是形,侧面是面,展开图形是形。
2、棱柱和圆柱统称体。
3、棱锥的底面是形,侧面是形;圆锥的底面是形,侧面是面。
4、棱锥和圆锥统称体。
5、常见的立体图形分为体,体,体。
6、如图,下列图形()是柱体.7、把下列立体图形的名称填到下面括号里。
8、判断下列的陈述是否正确(1)柱体的上、下两个面不一样大( )(2)圆柱、圆锥的底面都是圆()(3)棱柱的底面不一定是四边形()(4)圆柱的侧面是平面()(5)棱锥的侧面不一定是三角形()(6)柱体都是多面体()小测试(1)一、选择1.与易拉罐类似的几何体是()A、圆锥B、圆柱C、棱锥D、棱柱2.下图中是三棱锥的立体图形是( )3.埃及金字塔类似于几何体 ( )A 、圆锥B 、圆柱C 、棱锥D 、棱柱 4.下列各组图形中都是平面图形的是( )A.三角形、圆、球、圆锥B.点、线、面、体C.角、三角形、正方形、圆D.点、相交线、线段、长方体 5.下列说法正确的是 ( ) A .有六条侧棱的棱柱的底面一定是三角形 B .棱锥的侧面是三角形 C .长方体和正方体不是棱柱D .柱体的上、下两底面可以大小不一样二、填空6.立体图形的各个面都是__________的面,这样的立体图形称为多面体. 7.篮球、排球、足球、乒乓球都是球形的,不是球形的球是。
8.棱柱的长相等,上下底面是的多边形,侧面是。
9.一个棱锥有7个面,这是棱锥,有个侧面。
10.长方体ABCD -A ′B ′C ′D ′有个面,条棱,个顶点。
与棱AB 垂直相交的棱有条,与棱AB 平行的棱有条。
11.如图所示立体图形中,(1)球体有___________;(2)柱体有_________;(3)锥体有____________.12.如图,是一座粮仓,它可以看作是由和几何体组成的.13.如图,用边长为4的正方形,做了一套七巧板,拼成如图所示的一座桥,则桥中阴影部分的面积是______.14、判断(1)柱体上下两个面一样大。
立体图形练习题
一、基础概念题1. 请列举出三种常见的立体图形。
2. 立体图形的体积和表面积分别是什么?3. 立体图形的三视图分别是什么?4. 简述长方体、正方体、圆柱体、圆锥体的特征。
二、计算题1. 已知长方体的长、宽、高分别为10cm、6cm、4cm,求其体积和表面积。
2. 一个正方体的边长为8cm,求其体积和表面积。
3. 圆柱体的底面半径为5cm,高为10cm,求其体积和表面积。
4. 圆锥体的底面半径为3cm,高为4cm,求其体积和表面积。
三、应用题1. 一个长方体木块,长、宽、高分别为15cm、10cm、6cm,将其切割成最大的正方体,求正方体的边长。
2. 一个圆柱体水池,底面直径为10m,深为2m,求水池的容积。
3. 一个圆锥形帐篷,底面半径为6m,高为10m,求帐篷的占地面积。
4. 一块长方体铁块,长、宽、高分别为20cm、15cm、10cm,将其熔铸成一个球体,求球体的半径。
四、作图题1. 请画出长方体的三视图。
2. 请画出正方体的三视图。
3. 请画出圆柱体的三视图。
4. 请画出圆锥体的三视图。
五、判断题1. 立体图形的体积和表面积都是固定的。
()2. 长方体和正方体都是特殊的立方体。
()3. 圆柱体的底面一定是圆形。
()4. 圆锥体的侧面展开是一个扇形。
()六、选择题1. 下列哪个立体图形的体积公式是V = πr²h?A. 长方体B. 正方体C. 圆柱体D. 圆锥体2. 下列哪个立体图形的表面积公式是S = 2πrh + 2πr²?A. 长方体B. 正方体C. 圆柱体D. 圆锥体3. 一个正方体的边长为2cm,其体积为多少?A. 4cm³B. 8cm³C. 12cm³D. 16cm³4. 一个圆锥体的底面半径为3cm,高为4cm,其体积为多少?A. 12πcm³B. 36πcm³C. 48πcm³D. 144πcm³七、填空题1. 一个立方体的边长为5cm,其体积是______cm³,表面积是______cm²。
1.1生活中的立体图形练习题
1.1生活中的立体图形(1)一.填空题1.围成几何体的侧面中,至少有一个是曲面的是______________.2.正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________.3.圆柱,圆锥,球的共同点是_____________________________.4.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________.5.从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形.二.选择题6. 从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成( )个三角形A. 10B. 9C. 8D. 77. 图1-1是由( )图形饶虚线旋转一周形成的A B C D 图1-18.图1-2绕虚线旋转一周形成的图形是 ( )图1-2A B C D9.图1-3这个美丽的图案是由我们所熟悉的( )图形组成A.三角形和扇形B圆和四边形 C.圆和三角形D圆和扇形10.下面全由圆形组成的图案是( )A B C D三.解答题11.请写出下列几何体的名称( ) ( ) ( ) ( ) ( )1.1生活中的立体图形(2)一、判断题:1.柱体的上、下两个面一样大.………………………………………………..()2.圆柱的侧面展开图是长方形.………………………………………………()二、选择题:3、如图,下列图形()是柱体.4、下面给出的图形中,绕虚线旋转一周能形成圆锥的是()5、如下图,下列图形中有十四条棱的是()三、填空题:6、把下列图形的名称填在括号内7、长方体有个顶点,经过每个顶点有条棱,共有条棱。
8、一个七棱柱共有个面,条棱,个顶点,形状和面积完全相同的只有个面.9、如图4-5是一些具体的图形—三棱镜、方砖、帆布帐篷、笔筒、铅锤、粮囤、天文台,图4-6中是一些立体图形,找出与图4-6立体图形类似的图形。
北师大版七年级数学上册 1 1 生活中的立体图形同步练习(Word版含答案)
北师大版七年级上 1.1 生活中的立体图形一、选择题(共10小题)1. 如图所示,几何体的主视图是( )A. B.C. D.2. 图中几何体的俯视图是( )A. B.C. D.3. 用4个小立方体搭成如图摆放的几何体,下面视图是几何体主视图的是( )A. B.C. D.4. 如图,由三个小立方体搭成的几何体的俯视图是( )A. B.C. D.5. 如图是某物体的三视图,则这个物体的形状是( )A. 四面体B. 直三棱柱C. 直四棱柱D. 直五棱柱6. 如图是一个几何体的三视图,则该几何体的展开图可以是( )A. B.C. D.7. 如图,立体图形由小正方体组成,这个立体图形有小正方体( )A. 9个B. 10个C. 11个D. 12个8. 将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是( )A. B.C. D.9. 下列四个图形中是正方体的平面展开图的是( )A. B.C. D.10. 已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A. πB. 4πC. π或4πD. 2π或4π二、填空题(共5小题)11. 下列图形中,是平面图形的有,是立体图形的有.12. 如图所示,将图沿实线折起来得到一个正方体,那么“5”的对面是(填编号).13. 有底面为正方形的直四棱柱容器A和圆柱形容器B,容器材质相同,厚度忽略不计.如果它们的主视图是完全相同的矩形,那么将B容器盛满水,全部倒入A容器,则结果是.(填“溢出”“刚好装满”“未装满”)14. 如图,已知某几何体的三视图,则这个几何体是.15. 在市委、市政府的领导下,全市人民齐心协力,努力将我市创建为“全国文明城市”,为此学生小红特制了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字所对的面上标的字应是.三、解答题(共5小题)16. 将图①的正方体切去一块,不同的切法可以得到图②−⑤的几何体,它们各有多少个面?多少条棱?多少个顶点?17. 如图所示是由几个小正方块所组成的几何体俯视图,小正方形中的数字表示在该位置小正方块的个数,请你画出这个几何体的正视图和左视图.18. 如图是一个食品包装盒的表面展开图.(1)请写出这个包装盒的多面体形状的名称.(2)请根据图中所标的尺寸,计算这个多面体的表面积和体积.19. 如图所示是n个小正方体搭成的几何体的俯视图,请分别画出它的主视图和左视图.20. 如图中的一些积木是由16块棱长为2cm的正方体堆成的,它的表面积是多少平方厘米?答案1. A2. D3. C4. A5. B6. A7. C8. C【解析】图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆, 因此得到的立体图形应该是一个圆台.9. B10. C【解析】题意可知,圆柱底面圆的周长为 4π 或 2π,∴ 圆柱底面圆的半径为 2 或 1,∴ 圆柱底面圆的面积为 4π 或 π.11. ①②④⑤⑥⑧,③⑦⑨【解析】根据平面图形和立体图形的区别,进行辨别即可.12. 113. 未装满14. 四棱锥15. 城16. 图形面(个)棱(条)顶点(个)②71510③7149④7138⑤712717. 如图所示:18. (1)长方体.(2)表面积是4ab+2b2,体积是ab2.19. 如图所示:20. 上面和下面的面积为2×9×(2×2)=72(cm2);前面和后面的面积为2×7×(2×2)=56(cm2);两个侧面的面积为2×8×(2×2)=64(cm2);中间缺口处还有2个面,其面积为2×(2×2)=8(cm2).因为72+56+64+8=200(cm2),所以这个几何体的表面积为200cm2.。
《生活中的立体图形》新题精炼 2022年北师大版数学七上
生活中的立体图形新题精炼根底稳固 1.如图1—1—17观察以下实物模型,其形状是圆柱体的是〔 〕2.以下图形中不是立体图形的是〔 〕3.如图1—1—18是一个生日蛋糕盒,这个盒子有几条棱〔 〕A .6条B .12条C .18条D .24条4.以下立体图形中,有五个面的是〔 〕A .四棱锥B .五棱锥C .四棱柱D .五棱柱5.将下面的直角梯形绕直线l 旋转一周,可以得到如图1—1—19立体图形的是〔 〕6. 汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是〔 〕A .点动成线B .线动成面C .面动成体D .以上都不对7.假设一个棱柱的底面是一个七边形,那么它的侧面必须有_____个长方形,它一共有_____个面,______个顶点.8.一个棱柱有18条棱,那么它的底面一定是______边形.A .B .C .D . 1—1—17A .B .C .D . 1—1—19 1—1—189.六棱柱有_____个顶点,有_______条侧棱.10.如图1—1—20至少找出以下几何体的4个共同点.11.〔1〕如图1—1—21下面这些根本图形和你很熟悉,试一试在括号里写出它们的名称.〔2〕将这些几何体分类,并写出分类的理由.如图1—1—22下面的图形表示四棱柱的是〔 〕能力提升12.多面体是由多个平面围成的几何体,如图1—1—23以下几何体中,属于多面体的有〔 〕A .2个B .3个C .4个D .5个1—1—20 〔 〕 〔 〕 〔 〕 〔 〕 〔 〕1—1—21 1—1—23 1—1—2213.假设一个直四棱柱的底面是边长为1cm的正方形,侧棱长为2cm,那么这个直棱柱的体积是______________cm3.14.〔1〕探索:如果把一个多面体的顶点数记为V,棱数记为E,面数记为F,填写下表.〔3〕验证:再找出一个多面体,数一数它有几个顶点,几条棱,几个面,看看面数、顶点数、棱数是否满足上述关系.〔4〕应用〔2〕的结论对所有的多面体都成立,伟大的数学家欧拉证明了这个关系式,上述关系式叫做欧拉公式.根据欧拉公式,想一想会不会有一个多面体,它有10个面,30条棱,20个顶点?新题精炼答案根底稳固1.D思路导引:圆柱的上下底面都是圆,所以正确的选项是D.2.C思路导引:圆是平面图形3.C思路导引:观察图形可知上下面的棱数都是6,侧面的棱数是6.那么这个盒子的棱数为:6+6+6=18.4.A思路导引:要明确棱柱和棱锥的组成情况,棱柱有两个底面,棱锥有一个底面.5.B面动成体.由题目中的图示可知:此几何体是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.6.B 思路导引:汽汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.7.7,9,14思路导引: n棱柱有个侧面且都是长方形,有〔n+2〕个面,2n个顶点.8.六思路导引: n棱柱有3n条棱,两个底面共有2n条,每个底面n条棱,即故底面有n条边.9.7.12,6思路导引通过观察六棱柱可知,六棱柱有12个顶点、有六条侧棱.点拨:我们知道四棱柱有8个顶点,五棱柱有10个顶点,六棱柱有四个顶点……,以此类推n棱柱有2×n个顶点.10.思路导引:观察图形,可以从图形的组成、侧面等答复.解:答案不惟一,如:都由平面组成,侧面都是长方形,都有上下底面,都有侧棱等.11.〔1〕针对立体图形的特征,直接填写它们的名称即可.〔2〕可以按柱体、锥体和球进行分类,也可以按平面和曲面进行分类,方法不同,答案不同,只要合理即可.解:〔1〕从左向右依次是:球、圆柱、圆锥、长方体、三棱柱.〔2〕观察图形,按柱、锥、球划分,那么有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体.能力提升12.A思路导引:根据多面体意义,没有曲面参与围成,故只有第二、四符合要求.13.2思路导引:根据棱柱体积等于底面积乘以高代入求解即可.1.3 截一个几何体一、判断题1.用一个平面去截一个正方体,截出的面一定是正方形或长方形.〔〕2.用一个平面去截一个圆柱,截出的面一定是圆.〔〕3.用一个平面去截圆锥,截出的面一定是三角形.〔〕4.用一个平面去截一个球,无论如何截,截面都是一个圆.〔〕二、填空题5.用一个平面去截一个球体所得的截面图形是__________.6.如图1,长方体中截面BB1D1D是长方体的对角面,它是__________.7.在正方体中经过从一个顶点出发的三条棱的中点的截面是_________.三、选择题8.用一个平面去截圆锥,得到的平面不可能是〔〕9.用一个平面去截一个圆柱,得到的图形不可能是〔〕10.用一个平面去截一个正方体,截面图形不可能是〔〕A.长方形; B.梯形; C.三角形; D.圆11.用一个平面去截一个几何体,如果截面的形状是圆,那么这个几何体不可能是〔〕A.圆柱; B.圆锥; C.正方体; D.球12.截去四边形的一个角,剩余图形不可能是〔〕A.三角形; B.四边形; C.五边形; D.圆四、解答题13.用平面去截一个正方体,截面的形状可能是平行四边形吗?截一截,想一想.14.用一个平面去截圆锥,可以得到几种不同的图形?动手试一试.15.指出以下几何体的截面形状.______________________ 16.编写一道自己感兴趣并与本节内容相关的题,解答出来.参考答案一、1.×2.×3.×4.√二、5.圆6.矩形7.三角形三、8.C9.D 10.D11.C12.D 四、13.可能14.略15.四、五边形圆形16.略。
生活中的立体图形练习
沂源县振华实验学校初一数学学案编号1 主备人:耿初晴一.选择题1.下面的几何体是棱柱的为()A .B .C .D .2.如图,下列图形全部属于柱体的是()A .B .C .D .3.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学,它有6条棱,则该模型对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥4.对于几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是()A.③⑤⑥B.①②③C.④⑤D.④⑥5.下列图形中,含有曲面的立体图形是()A .B .C .D .6.下列说法中,正确的是()A.长方体中任何一个面都与两个面平行B.长方体中任何一个面都与两个面垂直C.长方体中与一条棱平行的面只有一个D.长方体中与一条棱垂直的平面有两个7.若一个棱柱有10个顶点,则下列说法正确的是()A.这个棱柱有4个侧面B.这个棱柱有5条侧棱C.这个棱柱的底面是十边形D.这个棱柱是一个十棱柱8.如图是一个生日蛋糕盒,这个盒子有几条棱()A.6条 B.12条C.18条D.24条9.一个七棱柱的顶点的个数为()A.7个 B.9个 C.14个D.15个10.下列说法中,不正确的是()A.棱柱的侧面可以是三角形B.棱柱的侧面展开图是一个长方形C.若一个棱柱的底面为5边形、则可知该棱柱侧面是由5个长方形组成的D.棱柱的上底面与下底面的形状与大小是完全一样的11.下列几何体中,属于棱柱的有()A.3个 B.4个 C.5个 D.6个12.下列说法:①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤直棱柱的侧面一定是长方形.其中正确的个数是()A.2个 B.3个 C.4个 D.5个二.填空题13.若一个棱柱有7个面,则它是棱柱.14.一个直棱柱有12个顶点,那么这个棱柱的底面是边形.15.一个棱柱共有15条棱,那么它是棱柱,有个面.16.有11个面的棱柱有个顶点,有条侧棱.17.一个九棱柱有条棱,个面,顶点.18.如图的几何体有个面,条棱,个顶点,它是由简单的几何体和组成的.19.五棱柱有个面,个顶点,条侧棱,条棱.20.圆柱、圆锥、正方体、长方体、棱柱、棱锥、球,在这些几何体中,表面是平面的有;表面没有平面的有;只有两个面的有.21.如图所示为8个立体图形.其中,柱体的序号为,锥体的序号为,有曲面的序号为.三.解答题(共7小题)22.如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.23.观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?沂源县振华实验学校初一数学学案编号2 主备人:耿初晴一、选择题1.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A .B .C .D .2.将长方形绕着它的一边旋转一周得到的立体图形是()A.正方体B.长方体C.棱柱D.圆柱3.汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是()A.点动成线B.线动成面C.面动成体D.以上答案都不对4.雨滴滴下来形成雨丝属于下列哪个选项的实际应用()A.点动成线B.线动成面C.面动成体D.以上都不对5.下列现象能说明“面动成体”的是()A.天空划过一道流星B.旋转一扇门,门在空中运动的痕迹C.抛出一块小石子,石子在空中飞行的路线D.汽车雨刷在挡风玻璃上刷出的痕迹二、填空题6.雨点从高空落下形成的轨迹说明了点动成线,那么一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了.7.一个直角三角形绕其直角边旋转一周得到的几何体是.8.将一个圆绕它的直径旋转一周形成的几何体是.9.长方体是由个面围成,圆柱是由个面围成,圆锥是由个面围成.10.笔尖在纸上快速滑动写出英文字母C,这说明了.11.粉笔在黑板上写字说明;车轮旋转时看起来像个圆面,这说明;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明.12.天上一颗颗闪烁的星星给我们以“”的形象;中国武术中有“枪扎一条线,棍扫一大片”的说法,这句话给我们以“”的形象;宾馆里旋转的大门给我们以“”的形象.三、解答题13.第一行的图形绕虚线转一周,能形成第二行的某个几何体,用线连起来.14.如图,把Rt△ABC沿着直角边AC旋转1周,得到什么样的几何体?其中AC、BC在这个几何体中分别叫什么?15.如图所示,左边是小颖的圆柱形的笔筒,右边是小彬的六棱柱形的笔筒.仔细观察两个笔筒,并回答下面问题.(1)圆柱、六棱柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线?它们是直的吗?(3)六棱柱有几个顶点?经过每个顶点有几条棱?(4)试写出圆柱与棱柱的相同点与不同点.16、如图,长方形的长和宽分别是7cm和3cm,分别绕着它的长和宽所在的直线旋转一周,回答下列问题:(1)如图(1),绕着它的宽所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)(2)如图(2),绕着它的长所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)。
七年级数学生活中的立体图形(含答案)
1.1生活中的立体图形一、选择题1.长方体属于( )A.棱锥B.棱柱C.圆柱D.以上都不对2.下列几何体中(如图)属于棱锥的是( )(1) (2) (3) (4) (5) (6)A.(1)(5)B.(1)C.(1)(5)(6)D.(5)(6)3.下列所讲述的物体,_______与圆锥的形状类似( )A.香烟盒B.铅笔C.西瓜D.烟囱帽4. 如图7所示立体图形,是由____个面组成,面与面相交成____条线( )A.3,6B.4,5C.4,6D.5,7(7) (8) (9)二、填空题5.面与面相交成_____________,线与线相交成___________.6.机器零件中的六角螺母,圆筒形的易拉罐、足球、火柴盒、铅垂体中,•类似于棱柱的物体有________,•类似于球体的物体有_________,••类似于圆锥的物体有________,类似于圆柱的物体有__________.7. 如图8的棱柱有_______个顶点,有_______条线,有________个面,经过每个顶点有________条边.8. 如图9所示图形绕图示的虚线旋转一周,(1)能形成________,•(•2)•能形成_________,(3)能形成_________.三、解答题:9. 如图中的立体图形分别是由几个面围成的,它们是平面还是曲面.10.将下图中的几何体分类,并说明理由.11.在圆柱、圆锥、正方体、长方体、各类棱柱和球这些几何体中,•表面都是平的有哪些?表面只有一个面的有哪些?表面有两个面的有哪些?表面有三个面的有哪些?表面有五个面的有哪些?12.你能想像用4个面构成的几何体吗?它的每个面是什么图形?•它有几个顶点?你能从生活中环境中找到类似的几何体吗?13.大家都知道,一只足球是用黑白两种颜色皮缝制成的,黑皮是正五边形,白皮是正六边形,如图,其中黑皮有12块,问白皮有多少块?答案一、1.B 2.B 3.D 4.C二、5.线,点6.火柴盒;六角螺母;足球;铅垂体;易拉罐7.10;15;7;38.圆柱;圆锥;球三、9.(1)是一个面围成的,它是曲面.(2)是六个平面围成的(3)•是由一个曲面和一个平面围成的(4)是由三个平面和一个曲面围成的;10.1.分类标准1:•按柱、锥、球划分①、②、④、⑤、⑦、⑧为柱体⑥为锥体③为球体分类标准2:按围成的面是曲面还是平面分①、②、④、⑦、⑧各面为平面③、⑤、⑥为一类,围成的面中至少有一个为曲面.11.表面都是平面的有:正方体、•长方体、各类型棱柱表面只有一个面的有:球表面有两个面的有:圆锥 •表面有三个面的有:圆柱表面有五个面的有:三棱柱12.能.用4个面构成的几何体是四面体,每个面是三角形它有四个顶点.13.因为每块白皮有三条边与黑皮缝在一块,即每三条黑皮的边确定一块白皮,•而每块黑皮有五条边,十二块黑皮有5×12=60(条边)所以白皮有60÷3=20块.。
生活中的立体图形练习题
~生活中的立体图形练习题一.选择题(共9小题)1.下面的几何体是棱柱的为()A.B.C. D.2.如图,下列图形全部属于柱体的是()A.B.C.D.3.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是())A.正方体B.球C.圆锥 D.圆柱体4.如图所示的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B. C. D.5.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学,它有6条棱,则该模型对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥6.如图是正方体的表面展开图,则与“前”字相对的字是();A.认B.真C.复D.习7.图1是一个小正方体的表面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是()A.信B.国C.友D.善8.如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数分别为()A.6,11 B.7,11 C.7,12 D.6,129.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有())A.4个B.5个C.6个D.7个二.填空题(共5小题)10.用一个平面去截下列几何体,截面可能是圆的是(填写序号).①三棱柱②圆锥③圆柱④长方体⑤球体11.如图,是一个长方体的主视图,左视图与俯视图,根据图中数据计算这个长方体的表面积是.12.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n= .|13.一个几何体有若干大小相同的小立方块搭成,如图分别是从它的正面、左面看到的形状图,则搭成该几何体最多需要个小立方块.14.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是.三.解答题(共2小题)15.根据如图视图(单位:mm),求该物体的体积.!16.分别画出图中几何体的主视图、左视图、俯视图.17.如图,该物体是由14块棱长为1厘米的小正方体堆积而成的,求它的表面积.(含底面)。
最新北师大版七年级数学上册第一章-1、生活中的立体图形(练习题及答案)
1、生活中蕴含着大量的几何图形,这些几何图形可以抽象为几何体.常见的几何体有()、()、()、()、()、和()等。
2、几何图形包括立体图形和(),几何图形是由()、()、()构成。
面有平面和(),面不分厚薄;线有直线和(),线不分粗细。
面与面相交得到(),线与线相交得到(),点不分大小。
3、从运动的角度看,点动成(),线动成(),面动成()。
(例如,把笔尖看做一个点,笔尖在纸上移动就能形成一条线,即点动成线。
点动成线的实例还有:流星划过天空、粉笔在黑板上划动、保龄球滚动过的路线等。
钟表的分针旋转一周形成一个圆面,即线动成面。
线动成面的实例还有:汽车上的雨刷扫过玻璃窗、用刷子涂油漆等。
长方形绕它的一边旋转一周就能形成一个圆柱,即面动成体。
面动成体的实例还有:以三角形的一边为轴旋转一周形成的几何体等)4、如图所示的立体图形,是由()个面组成的,其中有()个平面,有()个曲面;面与面相交成()条线,其中曲线有()条。
5、立体图形的识别。
几何图形的特征:(1)圆柱:两个底面是(),侧面是()。
如()、()等。
(2)圆锥:底面是(),侧面是(),像锥子。
如()、()等。
(3)长方体:有6个面,底面是(),相对的两个面平行且()。
如()、()等。
(4)正方体:6个面是大小完全相同的()。
如()、()等。
(5)棱柱:所有()都相等,底面是(),上、下底面的(),侧面的形状都是()。
(6)球:由一个()组成,圆圆的。
如足球、乒乓球等。
(7)棱锥:一个面是多边形,其余各面是一个有公共顶点的()。
多边形的面称为棱锥的(),其余各面称为棱锥的()。
根据()可将棱锥分为三棱锥、四棱锥……谈重点从哪几个方面认识几何体的特征①有几个面围成,是平面还是曲面;②有无顶点,有几个顶点;③侧面是平面还是曲面;④底面是什么形状,是多边形还是圆,有几个底面等。
6、请在每个几何体下面写出它们的名称。
7、如图,在下面四个物体中,最接近圆柱的是( ).8、几何体的分类(1)几何体按柱、锥、球的特征分为:(2)按围成的面分为:9、在粉笔盒、三棱镜、乒乓球、易拉罐瓶、书本、热水瓶胆等物体中,形状类似于棱柱的有( )。
生活中的立体图形习题精练- 2021-2022学年七年级数学北师大版上册
第一章1.1生活中的立体图形习题精练一、选择题1.下列几何体中,含有曲面的有()A. 1个B. 2个C. 3个D. 4个2.下面几何体中为圆柱的是()A. B. C. D.3.如果一个棱柱有12个顶点,那么它的面的个数是()A. 10B. 9C. 8D. 74.下列图形中,不是立体图形的是()A. 圆锥B. 圆柱C. 圆D. 球5.下列说法中,正确的个数是()①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤正棱柱的侧面一定是长方形.A. 2个B. 3个C. 4个D. 5个6.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.7.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.8.如图是由()图形绕虚线旋转一周形成的.A.B.C.D.9.一个六棱柱模型如图所示,底面边长都是5 cm,侧棱长为4 cm,这个六棱柱的所有侧面的面积之和是()A. 20cm2B. 60cm2C. 120cm2D. 240cm210.某几何体的三视图及相关数据(单位:cm)如图所示,则该几何体的侧面积是()πcm2A. 652B. 60πcm2C. 65πcm2D. 130πcm211.如图,在平整的地面上,有若干个完全相同的棱长为2cm的小正方体堆成的一个几何体.如果在这个几何体的表面喷上红色的漆(贴紧地面的部分不喷),这个几何体喷漆的面积是()A. 30cm2B. 32cm2C. 120cm2D. 128cm212.把一个长12cm,宽9cm,厚2cm的长方体铁坯,加工成一个正方体铁锭后,则其表面积的变化是()A. 变大B. 变小C. 不变D. 无法确定二、填空题13.一个五棱柱有______个顶点,______个面,______条棱.14.如图所示的几何体由个面围成,面与面相交成条线,其中直的线有条,曲线有条.15.雨点从高空落下形成的轨迹说明了点动成线,那么一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了.16.如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.三、解答题17.观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?18.观察图,回答下列问题:(1)图 ①是由几个面组成的?这些面有什么特征?(2)图 ②是由几个面组成的?这些面有什么特征?(3)图 ①中共形成了多少条线?这些线都是直的吗?图 ②呢?(4)图 ①和图 ②中各有几个顶点?19.如图是一个几何体的表面展开图,图中的数字表示相应的棱的长度(单位:cm)(1)写出该几何体的名称;(2)计算该几何体的表面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、选择题(每小题4分,共40分)
1. 用一个平面去截球得到的图形是()
2. 下列说法正确的是()
A.用一个平面去截正方体能得到八边形
B.用一个平面去截长方体能得到八边形
C.用一个平面去截圆柱能得到梯形
D. 用一个平面去截圆台能得到梯形
3. 一个几何体的三视图如图所示,这个几何体是()
A.棱柱
B.圆柱
C.圆锥
D.球
正视a 左视图俯视S
* 4.如图是由相同小正方体组成的立体图形,它的左视图为(
*5.下列有关三棱柱的截面说法正确的是
A.不可能是长方形
B.不可能是三角形
*6.如图所示的圆锥的三视图是
()
C.不可能是正方形
D.可能是长方形或三角形
F图是由几个小立方块搭成的几何体的俯视
图,小正方形中的数字表示在该位置的)X_*
A. 三个三角形
B. 主视图和侧视图都是三角
形,
C. 主视图和侧视图都是三角形,
D. 主视图和侧视图都是三角
形,
俯视图是三角形和三角形内的一个点
俯视图是圆
俯视图是圆和圆心
A长方形 B.正方形 C .梯形 D.圆
* 7.
小立方块的个数,那么这个几何体的主视图是(
33
1
* 8.如图,是一个由若干个相同的小正方体组成的几何体的三视图
小正方体的个数是()
,则组成这个几何体的
** 16、如图所示是某种型号的正六角螺母毛坯的三视图,
则它的侧面积为
cm 2
* 9、如图是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示 该位置立方体的个数,则这个几何体的主视图是(
)
** 10、一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示, 则组成这
个几何体的小正方块最多
有()
A. 4 个 B . 5个
C . 6 个
俯视图 主视图
二、填空题(每题 4分,共24分) 13.从一个多边形的某个顶点出发 ,分别与其余各顶点连接,把此多边形分割成10个三角
形,则原多边形是
14.三种视图都是正方形的几何体是我们学的 ____________ .
* 15如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形 可能是 .(把下图中正确的立体图形的序号都填在横线上)
A.7 个
B.8 个
C.9 个
D.10
11.十边形有 条边.
* 12.七棱柱有 “不能”)。
个面,用一个平面截七棱柱能不能得到七边形
(填“能”或
左视图
俯视图
E
.
D . I ..
■ j
①
②
③
④
主视图
左视图
** 20.(本题12分)如图所示是由几个小正方体组成的几何体的俯视图,小正方形中的
数字表示在该位置的小正方体的个数,请画出这个几何体的主视图和左视图
.
3
4 2
2
1
三、解答题(共 * 17、(本题 36
分) 9分)
* 18、(本题 四棱柱. * 19、(本
7 分) 8 分) 俯视图
画出下列几何体的三视图
一个四棱柱被一刀切去一部分,试举例说明剩下的部分是否可能还是 请利用若干个三角形拼出一个你喜欢的图案
,并说明你的创意.
护
I。