整体结构机翼
飞机结构与系统(第三章飞机翼面结构)
一些力学基本概念
按外力是否随时间变化分为:静载荷和动载荷。
静载荷:载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著,称为静载荷。 动载荷:载荷随时间变化,可分为交变载荷和冲击载荷。
一些力学基本概念
内力、截面法和应力的概念 内力: 由于变形引起的物体内部的附加力。 物体受外力作用后,由于变形,其内部各点均会发生相对位移,因而产生相互作用力。
一些力学基本概念
材料力学中对变形固体的三个基本假设:
1.连续性假设:
2.均匀性假设:
3.小变形假设:
一些力学基本概念
外力及其分类:
外力是外部物体对构件的作用力,包括外加载荷和约束反力。 按外力的作用方式分为:表面力和体积力。 表面力:作用于物体表面的力,又可分为分 布力和集中力 体积力:连续分布于物体内部各点上的力。如物体的重力和惯性力。
机翼、尾翼功用、设计要求及外载特点
机翼、尾翼功用、设计要求及外载特点
3)机翼总体内力:
剪力 Q:Qn, Qh; 弯矩 M:Mn, Mh; 扭矩 Mt ;
机翼的外载特点
机翼、尾翼功用、设计要求及外载特点
机翼的外载特点
3)机翼总体内力:
由于阻力相对升力很小,其引起的剪力、弯矩常常可以忽略。
机翼、尾翼功用、设计要求及外载特点
翼面结构典型构件及受力特点
翼面结构的典型构件
机翼结构: 蒙皮 纵向骨架: 翼梁(缘条、腹板) 纵墙 桁条 横向骨架: 翼肋(普通肋、加强肋)
翼面结构典型构件及受力特点
机翼结构: 蒙皮 纵向骨架: 翼梁(缘条、腹板) 纵墙 桁条 横向骨架: 翼肋(普通肋、加强肋)
翼面结构的典型构件 机翼典型结构构件剖面
三、机翼的外载特点
机翼结构设计方案及强度计算
机翼结构设计方案及强度计算模型一设计思路:根据设计要求,机翼全长4m,翼弦长1m,前后两根梁。
于是利用abaqus软件的壳单元建立了一个基本的机翼模型。
图1 单只机翼模型然后参考《实用飞机复合材料结构设计与制造》、《复合材料设计手册》、《复合材料力学》等资料,初步设计机翼采用蒙皮夹心结构,上下表面分别铺3层复合材料,考虑到机翼的工况采用[45/0/-45]铺层方式,每层厚度为0.125mm,具体如图2所示。
中间夹心材料采用PMI泡沫,该材料具有突出的比强度和良好的耐蠕变性,可以很好的克服屈曲。
夹心材料厚度初步拟定为5mm,进行计算模拟,如果屈曲明显则可加厚。
表1 机翼的材料参数图2 机翼的蒙皮夹心铺层结构考虑到梁是主要的承力部件,采用[-45/0/45/90]s铺层方式,每层厚度为0.125mm,具体如图3所示。
图3 梁的铺层结构利用abaqus模拟计算时将工况环境简化,采用一端固定,在机翼下表面加载Y方向的升力,分布如图5所示。
图4 机翼的固定端约束图5 机翼的载荷分布模型一的计算结果:梁每层复合材料的应力云图图6 梁每层复合材料的应力云图梁的计算结果分析:从计算结果中不难发现,机翼前缘的梁承受的力要比尾部的梁大很多,可以考虑适当加厚。
对比各层复合材料的受力情况,0°的复合材料层受力明显,可以适当增加0°的复合材料层数。
靠机身段的梁应力集中明显,可以在该部位适当增加梁的厚度,也可考虑用工字梁强化该部位。
机翼每层复合材料的应力云图:图7 机翼每层复合材料的应力云图(1-5层)图7 机翼每层复合材料的应力云图(6-7层)图8 机翼的变形云图计算结果总体分析:表2 模型一的计算结果部件材料最大应力最大剪应力梁、肋单向带复材454.8MPa9.872Mpa蒙皮单向带复材315.4MPa15.1 Mpa蒙皮PMI泡沫0.278MPa0.0175 MPa 单向带复材的拉伸强度为1541MPa,PMI泡沫的拉伸强度为1.6MPa单向带复材的剪切强度为60MPa,PMI泡沫的剪切强度为0.8MPa从表中可以得出,模型的强度在材料的许用强度范围内,该设计符合强度要求。
2 第二章第二节 飞机的基本结构
前缘
翼尖
后缘
第二节 飞机的机体结构
2.机翼的分类
根据机翼在机身上安装的部位和形式, 飞机可以分为: 上单翼飞机(安装在机身上部) 中单翼飞机(安装在机身中部) 下单翼飞机(安装在机身下方) 目前的民航运输机大部分为下单翼飞机
第二节 飞机的机体结构
第二节 飞机的机体结构
上单翼布局——干扰阻力小,有很好的向下 视野,机身离地面近,便于货物的装运,发 动机可以安装得离地面较高,免受地面飞起 的沙石损害,因而大部分军事运输机和使用 螺旋桨动力装置的运输飞机都采用这种布局; 中单翼布局——气动外形是最好的,但因为大 型飞机的翼梁要从机身内穿过,使客舱容积受 到严重影响,因而在民航飞机中不采用这种布 局形式; 下单翼布局——民航运输机大部分为下单翼飞 机,机翼离地面近,起落架可以做得短些,两 个主起落架距离较宽,增加了降落的稳定性, 起落架很容易在翼下的起落架舱收放,从而减 轻重量。此外发动机和机翼离地面较近,做维 修工作方便。
第二节 飞机的机体结构
多支柱起落架
第二节 飞机的机体结构
B747的多支柱式起落架
第二节 飞机的机体结构
3.起落架的结构形式 (1)构架式起落架
在一些轻型低速飞机和直升机上采用较多。
构架式起落架结构示意
减 震 支 柱 撑杆
第二节 飞机的机体结构
3.起落架的结构形式 (2)支柱套筒式起落架
这种型式往往用作前三点式飞机的主起落架。
第二节 飞机的机体结构
5
4 3 2 1
机翼前缘有五块缝翼
第二节 飞机的机体结构
第二节 飞机的机体结构 固定式缝翼
第二节 飞机的机体结构 自动缝翼
第二节 飞机的机体结构
第二节 飞机的机体结构 (4)扰流板
民航飞机的构造
推进装置
发动机是飞机飞行的推进装置,主要有活塞式发动机和燃气涡轮发动机两种。 活塞式:一种利用一个或者多个活塞 将压力转换成旋转动能的发动机
燃气涡轮:由进气道(Intake)、压气机(compressor)、燃烧室(combustion chamber)、涡轮(turbine)、喷管(Exhaust)等部分构成。新鲜空气由进气道进入燃 气轮机后,首先由压气机加压成高压气体,接着由喷油嘴喷出燃油与空气混合后在燃烧 室进行燃烧成为高温高压燃气,然后进入涡轮段推动涡轮,将燃气的焓和动能转换成机 械能输出,最后的废气由尾喷管排出。
民航飞机的构造
黄琰 20114546
民航飞机是一种体型较大、载客量较多的集体飞行运输工具,用于来往 国内及国际商业航班
客机构造图
基本组成:机体、推进装置、飞机系统和机载设备
机体
飞机机体由机翼、机身、尾翼(组)、起落架等
机翼:机翼安装在机身上,产生升力,机翼内 部置弹药仓和油箱,收藏起落架。
机身:包括梁式机身、半硬壳式、硬壳式机身 装载人员、货物、武器和机载设备 连接机翼、尾翼、起落架等为整体
飞机系统
飞机系统包括飞机操纵系统、液压传动系统、燃油系统、空调系统、防 冰系统等。
操纵系统:操纵系统分主操作系统和辅助操纵系统,主操作系统操作升降舵、方 向舵、副翼,实现俯仰、倾侧等。 液压传动系统:飞机上以油液为工作介质,靠油压驱动执行机构完成特定操纵动 作的整套装置。 燃油系统:飞机燃油系统又称外燃油系统。燃油系统是飞机能源的供应系统。另 外发动机上还有一套系统将燃油输送到燃烧室内,称为内燃油系统。飞机的发动 机依靠燃油燃烧产生热量作功,推动飞机飞行。 空调系统:向停靠在地面的飞机机舱提供经过过滤、加压、除湿及降温(或加热) 的新鲜空气的专用空调设备系统。 防冰系统:防止飞机表面某些突出部位结冰或在结冰时能有效地除去冰层的设备。
飞机的结构是这样的
• 骨架——沿翼弦方向安置的构件。主要包括普通翼肋和加强翼肋。 (1)普通翼肋——将纵向骨架和蒙皮连成一个整体;把由 蒙皮传来的空气动力载荷传给翼梁;并保证翼剖面之形状。参与 一部分机翼结构的受力。 (2)加强翼肋——除了起普通翼肋作用外,还承受集中载 荷。 3.蒙皮——它固定在横向和纵向骨架上而形成光滑的表面。 布质蒙皮主要是承受局部空气动力载荷,并把它传给骨架。 硬质蒙皮除了上述作用外,还参与结构整体受力。视具体结构的 不同,蒙皮可能承受剪应力,也可能还承受正应力。 4.接头——把载荷从一个构件传到另一个构件上去的构件。 如机翼与机身的连接、副翼与机翼连接等,均需用接头。机翼接 头的形式很多,常见的有耳片式接头,套管式接头、对孔式接头, 垫板式和角条式接头等多种。 2.机翼构造的发展在机翼构造的发 展过程中,最主要的变化就是维形件和受力件的逐渐合并。在飞 机发展的初期,为了减小重量,完全根据受力件和维形件分开, 并且分段地承受载荷的原理来安排机翼的构造。这种构造形式的 受力骨架是一个由翼梁、张线及横支柱(或翼肋)所组成的空间 桁架系统。它承受所有的弯矩、扭矩和剪力。机翼的表面和机翼 的形状是用亚麻的蒙皮和翼肋形成的。所以这种机翼可以叫作构 架式机翼
飞机的结构是这样的
七色光小队 龚长认
飞机图片
飞机图片
• 翼 1.机翼的基本结构元件及受力 机翼的基本结构元件是由纵向 骨架、横向骨架以及蒙皮和接头等组成,现将各个结构元件的作 用及受力分述如下: 1.纵向骨架——沿翼展方向安置的构件,包括梁、纵樯和桁 条。 (1)梁——最强有力的纵向构件。它承受着全部或大部分 的弯矩和剪力。梁的椽条承受由弯矩而产生的正应力;腹板承受 剪力。梁的数量一般为一根或两根,也有两根以上的。机翼结构 只有一根梁者称为单梁机翼;有两根者称为双梁机翼;两根以上 者称为多梁机翼;没有翼梁称为单块式机翼。 翼梁的位置:在双翼及有支撑的机翼上,根据统计,前梁在 12~18%翼弦处;后梁在55~70%翼弦处。在悬臂式单翼机上, 单梁机翼的梁位于25~40%翼弦处。双梁机翼的前梁在20~ 30%翼弦处;后梁在50~70%翼弦处。 (2)纵樯——承受由弯矩和扭转而产生的剪力。与梁的区 别是椽条较弱,椽条不与机身相连。其长度与翼展相等或仅为翼 展的一部分。纵樯通常放置在机翼的前缘或后缘,与机翼上下蒙 皮相连,形成一封闭的盒段以承受扭矩。 在后缘的纵樯,通常还用来连接襟翼及副翼。 (3)桁条——承受局部空气力载荷;支持和加强蒙皮;并 将翼肋互相连系起来。而且还可以承受由弯曲而产生的正应力。 有的机翼为了更加强蒙皮,桁条需要很密,因而导致使用波纹板 来代替桁条,或者把桁条与蒙皮作成一体,形成整体壁钣。
飞机机翼结构分析
飞机机翼结构分析前言飞机机翼结构分析实根据发《飞机结构强度》一书中第三章的内容,本文主要论述了飞机机翼的功用及翼面结构。
机翼由副翼前缘缝翼襟翼扰流板组成,从机翼的空气动力载荷到机翼的总体受力,能够更深入更全面的了解机翼了解航空领域所涉及学科的基础知识基础原理及发展概况,对开拓视野,扩大知识面以及今后的学习和工作都有帮助。
1.1机翼的功用机翼是飞机的一个重要部件,其主要功用是产生升力。
当它具有上反角时,可为飞机提供一定的横侧安定性。
除后缘布置有横向操纵用的副翼、扰流片、等附翼外,目前在机翼的前、后缘越来越多地装有各种形式的襟翼、缝翼、等增升装置,以提高飞机的起降或机动性能。
机翼上常安装有起落架、发动机等其它部件。
现代歼击机和歼击轰炸机往往在机翼下布置多种外挂,如副油箱和导弹、炸弹等军械设备。
机翼的内部空间常用来收藏起落架或其部分结构和储放燃油。
特别是旅客机,为了保证旅客的安全,很多飞机不在机身内贮存燃油,而全部贮存在机翼内。
为了最大限度地利用机翼容积,同时减轻重量,现代飞机的机翼油箱大多采用利用机翼结构构成的整体油箱。
此外机翼内常安装有操纵系统和一些小型设备和附件。
1.2翼面结构设计要求1.气动要求翼面是产生升力主要部件,对飞行性能有很大的影响,因此,满足空气动力方面的要求是首要的。
翼面除保证升力外,还要求阻力尽量小﹙少数特殊机动情况除外﹚。
翼面的气动特性主要取决于其外行参数﹙如展弦比、相对厚度、后掠角和翼型等﹚,这些参数在总体设计时确定;结构设计则应强度、刚度及表面光滑度等方面来保证机翼气动外形要求的实现。
2.质量要求在外形、装载和连接情况一定的条件下,质量要求时翼面结构设计的主要要求。
具体地说,就是在保证结构完整性的前提下,设计出尽可能请的结构。
结构完整性包含了强度、刚度、耐久性和损伤容限等多方面内容。
3.刚度要求随着飞机速度的提高,翼面所受载荷增大,特别对于高机动性能歼击机和高速飞行的导弹;由于减小阻力等空气动力的要求,翼面的相对厚度越来越小,再加上后掠角的影响,导致翼面结构的扭转刚度、弯曲度将越来越难保证,这些均将引起翼面在飞行中的变形增加。
机翼的横向受力结构
机翼的横向受力结构引言机翼是飞机的重要组成部分,承担着产生升力和控制飞行姿态的重要任务。
在飞行中,机翼需要承受来自气流和飞机自身的各种力,其中包括横向受力。
本文将详细介绍机翼的横向受力结构及其相关原理和设计。
机翼的功能和结构机翼是飞机上产生升力的主要部件,其主要功能包括: - 产生升力:通过机翼的气动特性,使得飞机能够在空中维持飞行。
- 提供稳定性和操纵性:机翼的形状和布局对飞机的稳定性和操纵性有重要影响。
- 承受各向受力:机翼需要承受来自气流和飞机自身的各种力,包括横向受力。
机翼的基本结构包括: - 主翼:产生大部分升力的翼面。
- 副翼:用于操纵飞机的翼面,通常位于主翼的后缘。
- 翼尖:机翼的末端,对气动性能有重要影响。
- 翼梁:连接机翼和机身的结构,承受机翼的各种受力。
机翼的横向受力在飞行中,机翼需要承受来自气流和飞机自身的横向受力,主要包括以下几种: - 滚转力:由于飞机的横向姿态变化,机翼会受到滚转力的作用,产生滚转力矩。
- 侧向力:由于飞机受到侧风的作用,机翼会受到侧向力的作用,产生侧向力矩。
- 副翼力:在操纵飞机时,副翼会产生力矩,使机翼受到横向力的作用。
机翼的横向受力结构设计为了保证机翼能够承受横向受力并保持结构的稳定性和强度,需要进行合理的设计和优化。
以下是机翼横向受力结构设计的一些关键考虑因素:1. 结构强度机翼的横向受力结构需要具备足够的强度,以承受来自滚转力、侧向力和副翼力的作用。
结构强度的设计主要包括: - 材料选择:选择适当的材料,如高强度铝合金或复合材料,以满足强度和重量的要求。
- 结构布局:合理布置翼梁和副翼,以增强结构的刚度和强度。
- 加强结构:在关键部位添加加强件,如肋骨、肋帽、腹板等,以增加结构的强度和刚度。
2. 气动特性机翼的气动特性对横向受力结构的设计有重要影响。
良好的气动特性可以减小横向受力的大小,并提高飞机的操纵性和稳定性。
气动特性的设计考虑包括: - 翼型选择:选择合适的翼型,以提高机翼的升力和减小阻力。
飞机机翼结构剖析
飞机机翼结构剖析机翼是飞机的重要部件之一,它就好比鸟儿的翅膀。
飞机之所以能在天上飞,靠的就是机翼产生的升力!不过除了提供飞机升力,机翼其实还有许多辅助功能,比如悬挂发动机、存储燃油、控制飞机水平翻转、减速等。
因此在机翼上还有很多特别设计的“机关”,也许经常坐飞机的朋友会注意到,但是不一定说得出这些机关的名字和具体作用。
今天,我们就和大家聊一聊飞机的机翼!机翼如何产生升力?众所周知,机翼的主要功能就是产生升力,让飞机飞起来,那么它为什么能产生升力呢?这还得从飞机机翼具有独特的剖面说起。
我们把机翼横截面的形状称为翼型,翼型上下表面形状是不对称的,顶部弯曲,而底部相对较平。
当飞机发动机推动飞机向前运动时,机翼在空气中穿过将气流分隔开来。
一部分空气从机翼上方流过,另一部分从下方流过。
日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。
空气的流动与水流其实有较大的相似性。
由于机翼上下表面形状是不对称的,空气沿机翼上表面运动的距离更长,因而流速较快。
而流过机翼下表面的气流正好相反,流速较上表面的气流慢。
根据流体力学中的伯努利原理,流动慢的大气压强较大,而流动快的大气压强较小,这样机翼下表面的压强就比上表面的压强高。
换句话说,就是大气施加于机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了飞机的升力。
机翼有多坚固?机翼除了提供升力之外,还必须得承重。
飞机在天上飞的时候,整个机身的重量几乎都是由机翼给“托”着的。
飞机在地面上的时候,机翼还得悬臂“举”着重重的发动机,像A380、747这样的巨无霸飞机,单片机翼还得悬臂“举”起两个发动机,要知道A380的单台发动机自重就达8吨。
因此,机翼必须得足够坚固。
目前主流的民航客机的机翼结构采用的是双梁单块式,前后有两根梁,之间又有很多的翼肋,这样梁和肋就组成了机翼的内部骨架结构,外侧是蒙皮和壁板设计。
飞机机体结构组成部分和作用
飞机机体结构组成部分和作用
飞机机体结构由机翼、机头、机尾和机身4部分组成,这些部件具有不同的结构特征
和功能,在飞行中发挥着不同的作用,保证飞机飞行中的正常工作。
一、机翼:机翼是飞机机体的主要部分,也是浮力、翼型面积、机翼形状定位和机头
形状和机尾形状有关系的主要位置,它将空气分割为上下两部分,自上而下分别形成了上
流和下流,机翼可以生成提供正向推力的升力,也可以通过改变机翼表面的形状来调整飞
机的航向。
二、机头:机头是飞机机身的前端部分,主要起到阻力的作用,较高的阻力可降低飞
机的飞行特性,较低的阻力可提高飞机的加速度,同时也是改变飞机行进方向的关键部分,一般采用较窄、较短的结构。
三、机尾:机尾位于飞机机身的后部,由机叶、垂尾及垂尾减流装置组成,主要调节
飞机的姿态、控制飞机行进方向和稳定空气流。
四、机身:机身是飞机重要的结构,是飞机飞行的主要部分,机身包括主翼梁、机翼梁、分量、驾驶舱、燃料筒以及许多连接机翼、机头、机尾的部件,它不仅负责连接各个
结构部分,主要用作空气流动和阻力的传输,也是飞机携带燃料、装备和乘员的地方。
【内部教材】飞机结构与修理 第二章 机翼结构和受力分析
者在腹板上用支柱加强(图2-12(b))。
翼肋的选用: 相对载荷大,采用构架式; 相对载荷小,采用腹板式。 普通肋较多采用腹板式。 加强肋承受较大的载荷,当翼型较厚时,采用
实用文档
§2-2 机翼结构的外载荷
一、机翼的外部载荷 (一)机翼的外部载荷及其大小 1.飞行中,作用于机翼的外部载荷有: (1)空气动力q气动 (2)机翼结构的质量力q机翼 (3)部件的质量力P部件 (见图2-17)
实用文档
17
2.外部载荷的大小 飞行中,作用于机翼的各种载荷的大小是经常
是承受机翼的弯矩和剪力。
翼梁由梁的腹板和缘条(或称凸缘)组成,见图2 -8 。
腹板式翼梁 翼梁主要有 整体式翼梁 桁架式翼梁 (现代飞机的机翼,一般都采用腹板式金属翼梁
(图2-8)。)
1.腹板式翼梁 翼梁由缘条和腹板铆接而成。 缘条用硬铝或合金钢的厚壁型材制成,截面形状多为
“T”或“L”形。
实用文档
实用文档
吊架的上连杆和斜支撑杆与机翼连接的接头处 采用结构保险销连接;
中梁与机翼连接的接头处采用结构保险螺栓连 接。
这些接头处的结构保险销或保险螺栓的作用是: 当发动机遭到严重损坏而导致剧烈振动或巨大阻 力时,该保险销或保险螺栓被剪断使发动机及其 吊架脱离机翼,防止损坏机翼而避免出现更大的 灾难性的破坏。
腹板用硬铝板制成。薄壁腹板上往往还铆接了许多硬 铝支柱,以增强其抗剪稳定性和连接翼肋。
为了合理地利用材料和减轻机翼的结构重量,缘条和 腹板的截面积,一般都是沿翼展方向改变的,即翼根部 分的截面积较大,翼尖部分的截面积较小。
飞机的结构(精)
作用:尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。
四、起落架
起落装置——飞机的起落架大都由减震支柱和机轮组成,起落架是 飞机停放,滑行,起飞或者着陆时的主要支撑部分。大多数普通类型的 起落架由轮子组成,但是飞机也可以装备浮筒以便在水上运作,或者用
于雪上着陆的雪橇。
起落架由三个轮子组成,两个主轮子,以及一个可以在飞机后面或者前 面的第三个轮子。使用后面安装第三个轮子的起落架称为传统起落架。传统 起落架的飞机有时候是指后三点式飞机。当第三个轮子位于飞机头部位置时 称为前三点式飞机,相应的这种设计叫三轮车式起落架。可操控的前轮或者 尾轮允许在地面上对飞机的全部控制。
现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、 涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。
作用:动力装置主要用来产生拉力和推力,使飞机前进,其次还可为飞 机上的其他用电设备提供电源等。
飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还 装有各种仪表、通讯设备、领航设备、安全设备等其他设备。
飞机的结构
要了解飞机的飞行原理就必须先知道飞机的组成以 及功用 。不同的飞机,有不同的性能,其用途也各不 同,尽管飞机可以设计用于很多不同的目的,大多数还是 有相同的主要结构。它的总体特性大部分由最初的设计目 标确定。大部分飞机的结构包含机身、机翼、尾翼、起落 架和动力装置五个基本结构。
一、机身 机身包含驾驶舱和/或客舱,其中有供乘客使用的坐位和飞机 的控制装置。另外,机身还提供货舱和其他主要飞机部件的挂载 点。
功能:主要是装载乘员、旅客、武器、货物和各种设备,将 飞机的其他部件如:机翼、尾翼及发动机——机翼是连接到机身两边的翅膀,也是支持飞机飞行的主 要升力表面。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚 转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱 等。不同用途的飞机其机翼形状、大小也各有不同。
飞机基本构造
硬壳式机身结构是由蒙皮与少数隔框组成。其特点是没有纵向构件,蒙皮厚。由厚蒙皮承受机身总体弯、剪、扭引起的全部轴力和剪力。隔框用于维持机身截面形状,支持蒙皮和承受、扩散框平面内的集中力。这种型式的机身实际上用得很少,其根本原因是因为机身的相对载荷较小.而且机身不可避免要大开口,会使蒙皮材料的利用率不高,开口补强增重较大。所以只在机身结构中某些气动载荷较大、要求蒙皮局部刚度较大的部位,如头部、机头罩、尾锥等处有采用。具体构造也有用夹层结构或整体旋压件等形式。
桁梁式
桁梁式机身结构特点是有几根(如四根)桁梁,桁梁的截面面积很大。在这类机身结构上长桁的数量较少而且较弱,甚至长桁可以不连续。蒙皮较薄。这种结构的机身,由弯曲引起的轴向力主要由桁梁承受,蒙皮和长桁只承受很小部分的轴力。剪力则全部由蒙皮承受。
桁条式
这种型式机身的特点是长桁较密、较强;蒙皮较厚。此时弯曲引起的轴向力将由许多桁条与较厚的蒙皮组成的壁板来承受;剪力仍全部由蒙皮承受。
(a)桁条式;(b)桁梁式;(c)硬壳式
1--长桁;2--桁梁;3--蒙皮;4--隔框
隔框
隔框分为普通框与加强框两大类。
普通框用来维持机身的截面形状。一般沿机身周边空气压力为对称分布,此时空气动力在框上自身平衡,不再传到机身别的结构去。
加强框,其主要功用是将装载的质量力和其他部件上的载荷经接头传到机身结构上的集中力加以扩散,然后以剪流的形式条弱得多,一般与长桁相近,纵墙与机身的连接为铰接,腹板即没有缘条。墙和腹板一般都不能承受弯矩,但与蒙皮组成封闭盒段以承受机翼的扭矩,后墙则还有封闭机翼内部容积的作用。
机身
机身的主要功用是装载乘员、旅客、武器、货物和各种设备;还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。
民航飞机的构造
分类:航空仪表 :驾驶导航、发动机、辅助仪表 航空无线电:无线电导航系统、无线电测距差系统、雷达设备等 机载电器:供电设备,用电设备,具体包括飞机电源,变压整流流器,灯光 照明系统、发动机点火装置
谢谢!
水平尾翼:安装在机身后部,主要用于保持飞机在飞行中的稳定性和控制飞机的飞行姿态。尾翼的内部结 构与机翼十分相似,通常都是由骨架和蒙皮构成。 垂直尾翼 :垂尾都能保持其航向平衡、稳定和操纵作用。 起落架:用于起飞降落或地面(或水面)滑行时支撑航空器并用于地面(或水面)移动的附件装置。唯一 一种支撑整架飞机的部件,没有它,飞机便不能在地面移动。当飞机起飞后,可以视飞机性能而收回起落 架。
民航飞机的构造
黄琰 20114546
民航飞机是一种体型较大、载客量较多的集体飞行运输工具,用于来往 国内及国际商业航班
客机构造图
基本组成:机体、推进装置、飞机系统和机载设备
机体
飞机机体由机翼、机身、尾翼(组)、起落架等
机翼:机翼安装在机身上,产生升力,机翼内 部置弹药仓和油箱,收藏起落架。
机身:包括梁式机身、半硬壳式、硬壳式机身 装载人员、货物、武器和机载设备 连接机翼、尾翼、起落架等为整体
飞机系统
飞机系统包括飞机操纵系统、液压传动系统、燃油系统、空调系统、防 冰系统等。
操纵系统:操纵系统分主操作系统和辅助操纵系统,主操作系统操作升降舵、方 向舵、副翼,实现俯仰、倾侧等。
液压传动系统:飞机上以油液为工作介质,靠油压驱动执行机构完成特定操纵动 作的整套装置。
燃油系统:飞机燃油系统又称外燃油系统。燃油系统是飞机能源的供应系统。另 外发动机上还有一套系统将燃油输送到燃烧室内,称为内燃油系统。飞机的发动 机依靠燃油燃烧产生热量作功,推动飞机飞行。
第十讲:机翼结构设计
结构重量越轻。 3) 布置加强构件应尽量做到综合利用,以减轻重量。 4) 布置受力构件时要有全局观。
22
1、主要受力构件布置的原则 5) 损伤容限设计。 6) 改善结构工艺性和使用维护性。 7) 注意结构的现实性和先进性,适当采用新结构、新材料和
5
三、机翼结构设计的步骤
总体要求
方案 设计 机翼外形 阶段
机翼载荷
确定机翼分离面、 选择结构型式、布 置主要受力结构
进行主要结 构受力分析
绘制机翼 理论图
打样 设计 阶段
机翼装载 及系统与 结构协调
结构打 样设计
详细设 计阶段
绘制生 产图纸
结构强 度、气 弹计算
重量、 惯性矩 计算
寿命、可 靠性维护 性分析
具体地说,机翼的结构设计是指,根据给出的原始依据,合理地选择
机翼的受力形式,布置机翼的主要受力构件,确定沿展向各剖面处
纵向元件的尺寸,并对各主要受力构件进行设计。
2
二、机翼结构设计的原始依据
机翼结构设计 的原始依据
强度刚度规范 及设计参数
全机参数 机翼外形参数
机翼的位置 机翼内部布置
翼载 p=Y/S 或 G/S 机翼面积 S
外缘分散,抗弯、抗扭强度及刚度均有所提高。安全可靠性好。
缺 点: 结构复杂,对开口敏感。与中翼或机身接合点多,连接
复杂。
9
多腹板式
多腹板式机翼的结构特点
主要结构特点是:这类机翼布置了较多的纵墙,蒙皮较厚。厚蒙
皮单独承受全部弯矩。
优 点:抗弯材料分散在剖面上下缘,结构效率高;局部刚度及
飞机机翼结构强度分析与优化设计
飞机机翼结构强度分析与优化设计飞机机翼是整个飞机结构中最重要的部分之一,其承载着飞行中所受到的各种力和振动。
机翼的结构强度分析与优化设计是确保飞机空中安全飞行的关键环节之一。
首先,我们来讨论机翼结构的强度分析。
机翼的设计要求必须满足飞行过程中的各种负载条件,如升力、阻力、重力、操纵力等。
这些负载条件会给机翼结构造成较大的应力和变形,因此在设计中必须充分考虑这些因素。
强度分析的目的是通过建立合适的数学模型,计算出机翼结构在各个工况下的应力和变形情况,以确保机翼在各种情况下都能满足强度要求。
针对机翼结构的强度分析,通常采用有限元方法进行数值模拟。
有限元方法将机翼划分为一系列小的单元,通过数值计算来预测机翼结构在各种工况下的应力和变形。
通过这种方法可以快速而准确地评估机翼的结构强度,并对不合格的部分进行修改和优化。
在强度分析的基础上,我们可以进行机翼结构的优化设计。
目前,为了提高飞机的性能和降低燃油消耗,很多工程师都在探索更轻、更强的机翼结构设计。
优化设计的目标是在满足强度要求的前提下,尽可能减小机翼的重量。
为了实现这一目标,我们可以借助先进的优化算法和计算机辅助设计工具。
一个常见的优化策略是采用复合材料来替代传统的铝合金结构。
复合材料由两种或多种不同性质的材料按一定比例组合而成,具有高强度、轻质和抗腐蚀等优点。
通过合理选择复合材料的种类和分布方式,可以在保证机翼结构强度的同时,显著降低机翼的重量。
除了材料选择,机翼结构的几何形状也可以通过优化来进行设计。
传统的机翼结构多为直翼或者后掠翼,这种形状在某些情况下可能会导致结构应力集中或者不稳定。
因此,我们可以通过改变机翼的几何形状,如机翼的弯曲程度、长度和展弦比等来达到优化设计的目的。
这样的优化设计可以减小机翼的应力集中程度,提高机翼的承载能力和稳定性。
总而言之,飞机机翼结构的强度分析与优化设计是飞机设计中不可或缺的一环。
通过强度分析可以预测机翼结构在各种工况下的应力和变形情况,评估其结构的可靠性。
一种结构功能一体化复合材料机翼及其整体成型方法[发明专利]
专利名称:一种结构功能一体化复合材料机翼及其整体成型方法
专利类型:发明专利
发明人:韩蕾,袁一博,卢山,柳晓辉,李丽英,王国勇,龚文化
申请号:CN201911302283.4
申请日:20191217
公开号:CN110978567A
公开日:
20200410
专利内容由知识产权出版社提供
摘要:本发明涉及一种结构功能一体化复合材料机翼及其整体成型方法。
所述方法:制备复合材料承载梁;干燥具有机翼前后缘形状的泡沫芯层,然后将其拼接在复合材料承载梁的前后侧;将吸波层板粘贴在泡沫芯层上,得到拼接组件;将拼接组件通过真空袋法预压实;将干态玻璃布和/或石英布粘贴在复合材料承载梁和吸波层板的表面,得到预成型体;将预成型体置于机翼成型模具中,采用RTM工艺进行制备,得到结构功能一体化复合材料机翼。
本发明实现了承载梁、泡沫芯层、吸波材料、蒙皮的一次整体成型机翼;同时,将吸波材料成型在材料内部,避免了吸波层放置在最外层时易老化失效的问题,制备出了既具备承载功能又具备吸波隐身功能的结构功能一体机翼。
申请人:航天特种材料及工艺技术研究所
地址:100074 北京市丰台区云岗北里40号院
国籍:CN
代理机构:北京格允知识产权代理有限公司
代理人:刘晓
更多信息请下载全文后查看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 机体
2.对飞机的要求
基本要求: 安全 快速 经济 舒适 环保
特殊要求 : 1.空气动力要求(升力大、阻力小、稳定性、操纵性好) 2.强度、刚度要求 3.工艺要求 4.使用维护要求
ห้องสมุดไป่ตู้构架式机身
薄壳式机身
第一章 机体
2.机翼
机翼是飞机产生升力的主要部件。 通常机翼下方安装有起落架和发动机。
机翼大部分内部空间经密封 后用作存放燃油的油箱。 机翼上安装有襟翼、缝翼、 副翼和扰流板。
机翼的配置
第一章 机体
目前,除了个别低速飞机仍是双 翼机外,决大多数是单翼机。
单翼机的机翼在机身上的配置, 可分为上单翼, 中单翼和下单 翼三种型式。
A320
第一章 机体
第一章 机体
A320
第一章 机体
第一章 机体
第一章 机体
第一章 机体
第一章 机体
第一章 机体
二、飞机的组成
飞机结构包括机身、机翼(包括襟翼、缝翼、副翼和扰流 板)、尾翼,另外飞机还包括起落架、动力装置。
第一章 机体
1.机身
机身的主要用于容纳机组人员、乘客、货物和机载设 备等。另外,机身把机翼、尾翼、起落架和发动机等部件 连接成一个整体。
第一章 机体
机身的结构形式
机身通常由大梁、桁条、隔框和蒙皮等组成。机身的结构 形式也是随飞行速度的提高而不断改进的。
第一章 机体
飞行器的分类 •航空器:能在大气层内进行可控飞行的各种 飞行器统称为航空器。
根据升力产生的原理可分为:轻于空气的航空器 和重于空气的航空器。
•航天器
第一章 机体
第一章 机体
一、飞机的发展与现状
1.飞机的发展
波音(包括原麦道)系列 : B707、B727、B737、B747、 B757、B767、B777等 MD90、MD11等
第一章 机体
A320
4.起落架
第一章 机体
地面支撑、运动、减 速、着陆减震
5.动力装置
提供拉力或推力
第一章 机体
第一章 机体
三、飞机的主要系统
四、驾驶舱
第一章 机体
A320
顶板
A320
第一章 机体
遮光板
A320
第一章 机体
中央仪表
A320
第一章 机体
中央操纵台
A320
第一章 机体
侧操纵台
第一章 机体
机翼的结构形式
机翼通常是由翼梁、桁条、翼肋和蒙皮等构件组成
整体结构机翼
第一章 机体
第一章 机体
副翼
副翼的作用是:是机翼产生滚转力矩,以保证飞机 具有横侧操纵性。
副翼通常安装在 机翼后缘外侧部分。
第一章 机体
襟翼、缝翼
两种增升装置,用于改善飞 机的低速性能。在飞机起飞和降 落时放出,可以缩短飞机的起降 滑跑距离。
空客系列:
国产民用飞机 运5、运7、运8、运 12等
新舟600、700
A300、A318、A319、A320、
A321、A330、A340、A380等 前苏联
图154、图204、图144等
安2 、安12、安24、安124 、安225等
伊尔76、62、18、14等
第一章 机体
按照航程的远近可以分为:
第一章 机体
3.民用客机的发展走向
1.机翼技术上 超临界翼型、大展弦比、“层流机翼”技术, 减少飞机的阻力。 2.动力装置上 高涵道比、低油耗、低污染排放的发动机 3.燃料方面上 液氢,同重量液氢的能量比煤油高2.8倍, 大大降低起飞重量。 4.制造材料上 广泛采用复合材料,减轻重量、发展融合体
第一章 机体
第一章 机体
扰流板
扰流板是铰接在机翼表面的板,它只可以上偏。打 开扰流板,可以使机翼的升力减小,阻力增加。扰流板 分为空中和地面扰流板。
第一章 机体
副翼、襟翼、缝翼、扰流板
A320
第一章 机体
3.尾翼
尾翼包括水平尾翼和垂直尾翼,水平尾翼 由水平安定面和升降舵构成,垂直尾翼由垂直 安定面和方向舵构成。 水平安定面——用于飞机的纵向配平。 升降舵——用于飞机的俯仰操纵。 方向舵——用于飞机的方向操纵。