波形产生电路设计
lm358正弦波方波三角波产生电路
![lm358正弦波方波三角波产生电路](https://img.taocdn.com/s3/m/fc7c45808ad63186bceb19e8b8f67c1cfad6eeae.png)
《LM358正弦波、方波、三角波产生电路设计与应用》一、引言在电子领域中,波形发生器是一种非常重要的电路,它可以产生各种不同的波形信号,包括正弦波、方波和三角波等。
LM358作为一款宽幅增益带宽产品电压反馈运算放大器,被广泛应用于波形发生器电路中。
本文将探讨如何利用LM358设计正弦波、方波和三角波产生电路,并简要介绍其应用。
二、LM358正弦波产生电路设计1. 基本原理LM358正弦波产生电路的基本原理是利用振荡电路产生稳定的正弦波信号。
通过LM358的高增益和频率特性,结合RC滤波电路,可以实现较为稳定的正弦波输出。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电容C1和C2相连,形成反馈电路,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
(2)RC滤波电路。
在LM358的输出端接入RC滤波电路,通过调节电阻和电容的数值,可以实现所需的正弦波频率和幅值。
3. 电路测试连接电源并接入示波器进行测试,调节RC滤波电路的参数,可以观察到稳定的正弦波信号输出。
三、LM358方波产生电路设计1. 基本原理LM358方波产生电路的基本原理是通过LM358的高增益和高速响应特性,结合反相输入和正向输入,实现对方波信号的产生。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电阻R1和R2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
(2)反相输入和正向输入。
通过R1和R2的分压作用,实现LM358反相输入和正向输入,从而产生方波输出。
3. 电路测试连接电源并接入示波器进行测试,调节R1和R2的数值,可以观察到稳定的方波信号输出。
四、LM358三角波产生电路设计1. 基本原理LM358三角波产生电路的基本原理是通过LM358的反相输入和正向输入结合,实现对三角波信号的产生。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电容C1和C2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
实验四波形发生与变换电路设计
![实验四波形发生与变换电路设计](https://img.taocdn.com/s3/m/801260a3162ded630b1c59eef8c75fbfc67d944f.png)
实验四波形发生与变换电路设计实验目的:1.了解波形发生电路的基本原理和设计方法。
2.了解电位器在波形发生电路中的应用。
3.掌握使用运算放大器实现波形发生电路的方法。
4.学会使用双稳态多谐振荡电路。
实验仪器:1.AD623全差动放大器芯片。
2.电位器。
3.电容器。
4.电阻器。
5.示波器。
6.功放芯片。
7.函数发生器。
8.蓝色草图记录纸。
实验原理:1.正弦波发生电路设计:正弦波发生电路是由运算放大器构成的,其主要由一个反相输入端,一个非反相输入端,以及一个输出端组成。
当输入端应用一定的正弦波信号时,通过运算放大器放大后,输出端可以得到相应的正弦波信号。
通过调节反相输入端和非反相输入端之间的电阻比例,可以改变输出端的幅度。
2.方波发生电路设计:方波发生电路是由运放和与运放相关的电阻、电容等元器件组成的。
电容的充放电过程可以实现方波的产生。
当电容放电时,输出端输出低电平,当电容充电时,输出端输出高电平。
通过改变电容的充放电时间和电压比例,可以改变输出端的频率和占空比。
3.三角波发生电路设计:三角波发生电路是由运放和与运放相关的电阻、电容等元器件组成的。
根据电容充放电的特性,可以通过改变电容充放电的时间常数,来实现产生三角波信号。
通过改变电容充放电的时间常数,可以改变输出端的频率。
实验步骤:1.正弦波发生电路设计:(2) 通过一个蓄电池连接 AD623 的 Vref 引脚来为芯片供电。
(3)将正弦波输入电压连接到AD623的非反相输入端。
(4)通过调节电位器的阻值,改变反相输入端和非反相输入端之间的电阻比例。
(5)连接示波器,观察并记录输出端的正弦波形状和幅度。
2.方波发生电路设计:(1)连接运放芯片。
(2)连接电位器,将其接入运放的非反相输入端。
(3)连接一个电容器。
(4)连接电阻器,用于调节电容充电和放电时间。
(5)连接示波器,观察并记录输出端的方波形状和频率。
3.三角波发生电路设计:(1)连接运放芯片。
多波形产生电路课程设计
![多波形产生电路课程设计](https://img.taocdn.com/s3/m/11d6dd5453ea551810a6f524ccbff121dc36c572.png)
多波形产生电路 课程设计一、课程目标知识目标:1. 理解并掌握多波形产生电路的基本原理和组成部分;2. 学会分析不同波形产生电路的特点及其适用场合;3. 掌握多波形产生电路的参数计算和调整方法。
技能目标:1. 能够正确绘制并搭建多波形产生电路;2. 学会使用相关仪器和工具对多波形产生电路进行调试和测试;3. 能够根据实际需求设计和改进多波形产生电路。
情感态度价值观目标:1. 培养学生热爱科学、积极探索的精神,增强对电子技术的兴趣;2. 培养学生团队协作意识,学会与他人共同分析和解决问题;3. 培养学生关注社会发展,了解多波形产生电路在现实生活中的应用。
课程性质:本课程属于电子技术领域,以实践操作为主,注重培养学生的动手能力和实际应用能力。
学生特点:高二年级学生,已具备一定的电子技术基础知识,具有较强的求知欲和动手能力。
教学要求:结合学生特点和课程性质,以实践操作为主线,注重理论与实践相结合,提高学生的实际应用能力。
通过本课程的学习,使学生能够掌握多波形产生电路的相关知识,为后续专业课程打下坚实基础。
同时,关注学生情感态度价值观的培养,提高学生的综合素质。
二、教学内容1. 多波形产生电路基本原理- 波形产生原理- 常见波形及其特点2. 多波形产生电路的组成部分- 波形发生器- 振荡器- 滤波器- 调制器3. 不同波形产生电路分析- 正弦波产生电路- 方波产生电路- 三角波产生电路- 锯齿波产生电路4. 多波形产生电路参数计算与调整- 参数计算方法- 调整技巧- 稳定性和精确性分析5. 实践操作- 搭建多波形产生电路- 调试与测试- 故障排查与解决6. 设计与改进- 根据实际需求设计多波形产生电路- 改进现有电路,提高性能和稳定性教学内容安排与进度:第一周:多波形产生电路基本原理、组成部分第二周:不同波形产生电路分析第三周:多波形产生电路参数计算与调整第四周:实践操作(1)——搭建多波形产生电路第五周:实践操作(2)——调试与测试第六周:设计与改进教材章节关联:本教学内容与教材第三章“振荡器与波形产生电路”相关,涉及3.1节至3.5节的内容。
波形产生电路实验报告
![波形产生电路实验报告](https://img.taocdn.com/s3/m/32db608b33d4b14e852468a8.png)
波形产生电路实验报告一、实验目的1. 通过实验掌握由集成运放构成的正弦波振荡电路的原理与设计方法;2. 通过实验掌握由集成运放构成的方波(矩形波)和三角波(锯齿波)振荡电路的原理与设计方法。
二、实验内容 1. 正弦振荡电路 实验电路图如下图所示,电源电压为。
U1ALF347N321141R116kΩR216kΩR310kΩR410kΩC10.01µF C20.01µF R847kΩKey=A 37.9 %D2D1212VVDD -12VVCCVDD5341(1)缓慢调节电位器,观察电路输出波形的变化,解释所观察到的现象。
(2)仔细调节电位器,使电路输出较好的正弦波形,测出振荡频率和幅度以及相 对应的之值,分析电路的振荡条件。
(3)将两个二极管断开,观察输出波形有什么变化。
2. 多谐振荡电路(1)按图 2 安装实验电路(电源电压为±12V )。
观测、波形的幅度、周期(频率)以及的上升时间和下降时间等参数。
(2)对电路略加修改,使之变成矩形波和锯齿波振荡电路,即为矩形波,为锯齿波。
要求锯齿波的逆程(电压下降段)时间大约是正程(电压上升段)时间的 20% 左右。
观测、的波形,记录它们的幅度、周期(频率)等参数。
3. 设计电路测量滞回比较器的电压传输特性。
三、预习计算与仿真 1. 预习计算 (1)正弦振荡电路 由正反馈的反馈系数为:f 1120o013V Z F Z Z V j ωωωω•••===+⎛⎫+- ⎪⎝⎭由此可得RC 串并联选频网络的幅频特性与相频特性分别为200231⎪⎪⎭⎫ ⎝⎛-+=ωωωωF0F arctan3ωωωωφ-=-易知当RC10==ωω时,•f V 和•o V 同相,满足自激振荡的相位条件。
若此时f 3v A >,则可以满足f 1v A F >,电路起振,振荡频率为000111994.7Hz 1.005ms 2216k 10nF f T RC f ππ=====⨯Ω⨯,。
模拟电子技术实验-波形发生电路
![模拟电子技术实验-波形发生电路](https://img.taocdn.com/s3/m/028227caa98271fe900ef92e.png)
实验: 波形发生电路一、 实验目的1.掌握RC 桥式正弦波振荡电路的原理与设计方法;2.加深理解矩形波和方波-三角波发生电路的工作原理与设计方法;3.了解运放转换速率对振荡波形跳变沿的影响。
二、实验仪器名称及型号KeySight E36313A 型直流稳压电源,KeySight DSOX3014T 型示波器/信号源一体机。
模块化实验装置。
本实验将使用三种集成运放:µA741、LM324和TL084,它们的引脚如图1所示,LM324和TL084的引脚排列完全相同。
87654321µA741+Vcc -VccOUT OA2NC 141312114321LM324(TL084)1098765V-4OUT 4IN-4IN+3OUT3IN-3IN+图1 741A 、LM324和TL084的引脚图三、实验内容1.RC 桥式正弦波振荡电路(SPOC 实验)(1)设计RC 桥式正弦波振荡电路,要求振荡频率为1.6kHz ,输出波形稳定并且无失真。
其中集成运放可采用µA741、LM324或TL084,简要写出设计过程,绘制或截取电路原理图。
电阻R1.R2与电容C1、C2构成串并联选频网络,电阻R3、R4、RP 构成负反馈网络,VD1和VD2用于限幅作用稳定波形,当R1=R2=R,C1=C2=C 时,串并联选频网络的相频特性和幅频特性分别为,相频特性为,,根据,题目要求f=1.6kHz,取参数R1=R2=10kΩ,C1=C2=0.01μF,R3=R4=5.1kΩ,R p=10kΩ。
(2)学习SPOC实验操作视频,将示波器的两个通道分别接在u o端和u f端,缓慢调节电位器R W,使电路产生正弦振荡,在确保两个通道的正弦波不失真的前提下将输出幅度调得尽量大些,记录输出u o的峰-峰值U opp和输入u f的峰-峰值U fpp。
U opp= 18.1V ;U opp= 6.1V ;(3)正反馈系数F u的测定。
基于74ls74的多波形产生电路设计
![基于74ls74的多波形产生电路设计](https://img.taocdn.com/s3/m/a96b62774a35eefdc8d376eeaeaad1f34793115c.png)
基于74ls74的多波形产生电路设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!基于74LS74的多波形产生电路设计在电子电路的设计中,多波形产生电路是一种非常常见的电路,可以用于音频信号发生器、示波器、数字逻辑分析仪等测量仪器中。
波形产生与变换设计
![波形产生与变换设计](https://img.taocdn.com/s3/m/8be3572153ea551810a6f524ccbff121dc36c57d.png)
波形产生与变换设计
波形产生与变换设计是一种电子电路设计技术,用于产生特定形状的电信号波形,并对其进行变换。
这种技术被广泛应用于各种电子设备中,如信号发生器、数字信号处理器、音频处理器等。
波形产生与变换设计的核心是波形产生与变换电路。
这种电路可以通过各种电子元件和器件实现,如电容、电感、晶体管、运算放大器等。
通过合理的电路设计和元件选择,可以实现各种形式的波形产生和变换,如正弦波、方波、三角波、锯齿波等。
波形产生与变换设计的应用非常广泛。
在通信系统中,它可以用于产生各种调制波形,如频率调制波形、相位调制波形、振幅调制波形等。
在音频系统中,它可以用于产生各种声音效果,如回声、混响、合唱等。
在数字信号处理器中,它可以用于进行数字滤波、数字变换等操作。
波形产生与变换设计是电子电路设计中的重要技术之一。
随着电子技术的不断发展,波形产生与变换设计也在不断进步和完善,为各种应用提供更加精确、高效的电信号波形产生和变换能力。
- 1 -。
波形发生电路设计
![波形发生电路设计](https://img.taocdn.com/s3/m/71cb1b2cb94ae45c3b3567ec102de2bd9705de71.png)
波形发生电路设计
波形发生电路设计可以按照以下步骤进行:
1.确定设计要求:确定需要产生的波形类型,例如方波、三角波、正弦波、锯齿波等,以及所需的频率和幅度范围。
2.选择合适的振荡电路:根据设计要求,选择合适的振荡电路,如RC振荡电路、LC振荡电路等。
3.设计振荡电路:根据选择的振荡电路类型,设计出满足要求的电路。
对于方波发生器,可以通过比较器和反相器等数字IC来实现。
对于三角波和正弦波发生器,可以使用RC振荡器和函数发生器IC等来实现。
对于锯齿波发生器,可以使用模拟电路或者数字IC结合RC 电路来实现。
4.选择合适的电源:为电路提供稳定的直流电源,确保电路的正常工作。
5.调整和测试:根据设计要求,调整电路参数,如电阻和电容的值,以确保产生正确的波形。
然后进行测试,检查电路是否满足设计要求。
需要注意的是,波形发生电路的设计需要考虑电源、频率稳定性、波形质量等因素。
此外,根据实际需要,可能还需要进行噪声抑制、保护措施等设计。
波形产生电路实验报告
![波形产生电路实验报告](https://img.taocdn.com/s3/m/b9b9e4e8250c844769eae009581b6bd97e19bc49.png)
波形产生电路实验报告1. 背景波形产生电路是电子工程中的一种基础电路,用于产生各种形状和频率的电信号。
在实际应用中,波形产生电路常被用于信号发生器、音频设备、通信系统等。
本实验旨在通过设计和搭建一个简单的波形产生电路,掌握波形产生电路的基本原理和操作方法,并通过实验验证其性能。
2. 设计与分析2.1 电路结构本实验采用了经典的RC低通滤波器作为波形产生电路的核心部分。
该滤波器由一个电阻R和一个电容C组成,输入信号通过该滤波器后,输出信号将会被滤除高频成分,从而得到所需的波形。
2.2 参数选择为了得到稳定且正弦波形的输出信号,我们需要合理选择RC值。
根据经验公式:f c=1 2πRC其中f c表示截止频率。
我们可以根据需要选择截止频率来确定RC值。
一般情况下,我们可以选择f c为所需信号频率的十分之一。
2.3 电路实现根据以上分析,我们可以设计出以下波形产生电路:其中,R1和C1为滤波器的参数,Vin为输入信号源。
3. 实验步骤3.1 实验材料•电阻R1•电容C1•示波器•函数发生器•连接线等3.2 实验步骤1.按照电路图连接上述元件。
2.将函数发生器的输出连接到滤波器的输入端。
3.打开函数发生器和示波器,并调整函数发生器的频率和幅度。
4.观察示波器上输出信号的波形,并记录相关数据。
4. 实验结果与分析根据实验步骤得到的数据,我们可以绘制出输入信号和输出信号的波形图,并进行分析。
以下是实验结果:输入频率(Hz)输出幅度(V)1000 52000 45000 2通过观察实验结果,可以看出输出信号的幅度随着输入频率的增加而减小。
这是因为滤波器对高频成分进行了滤除,使得输出信号的幅度降低。
5. 实验建议在进行本实验时,我们可以尝试调整电阻和电容的取值,观察它们对输出信号的影响。
此外,我们还可以尝试使用不同形状的输入信号,并比较它们在滤波器中的表现。
为了得到更准确的实验结果,我们还可以提高示波器的采样率,并使用更精确的测量工具来测量电阻和电容的值。
方波-三角波产生电路课程设计
![方波-三角波产生电路课程设计](https://img.taocdn.com/s3/m/9e47a040be23482fb4da4cbc.png)
方波-三角波产生电路一、技术指标方波-三角波产生电路,要求方波和三角波的重复频率为500Hz,方波脉冲幅度为6-6.5V,三角波为1.5-2V,振幅基本稳定,振荡波形对称,无明显非线性失真。
二、设计方案及其比较采用电压比较器和积分器同时产生方波和三角波。
其中电压比较器产生方波,对其输出波形进行一次积分产生三角波,该电路的优点是十分明显的:1、线性良好,稳定性好;2、频率易调,在几个数量级的频带范围内,可以方便的连续的改变频率,而且频率改变时,幅度恒定不变;3、三角波和方波在半周期内是时间的线性函数,易于变换其他波形。
因此本实验采用同相迟滞电压比较器和积分器同时产生方波和三角波的方案。
2.1.1方波产生电路:方波产生电路是一种能够直接产生方波或矩形波的非正弦信号发生电路。
利用施密特触发器,再增加少量电阻、电容原件,由于方波或矩形波的频率成分非常丰富,含有大量的谐波,该方波发生器常称为多谐振荡器,如图1所示,R和C组成的积分负反馈电路。
图一:基本方波产生电路图二:双向限幅的方波产生电路方波产生工作波形:该发生器具有负反馈和正反馈,其中电路的正反馈系数为: 212R R R F += ........① 有关参数计算:周期:)21(221R R RCLn F +=频率: T f 1= 幅值: ()Z U R R R U ⨯+=21/12.1.2三角波发生器矩形波经过积分就变成三角波。
它是在迟滞比较器的基础上,增加了一个由R C 组成的积分电路,把输出电压经过R C 反馈到比较器的反相端.在比较器的输出端引入限流电阻R 和两个背靠背的双向稳压管就组成了双向限幅房波发生电路.由于比较器中的运放处于正反馈状态,因此一般情况下,输出电压V0与输入电压V1不成线性关系,只有在输出电压V0发生跳变瞬间,集成运放两个输入电压才可近似等于零即Vid=0或Vp=Vn=V1是输出电压V0转换的临界条件。
即Vid=0或Vp=Vn=V1是输出电压V0转换的临界条件。
产生波形电路实验报告
![产生波形电路实验报告](https://img.taocdn.com/s3/m/93e54991db38376baf1ffc4ffe4733687e21fcb2.png)
一、实验目的1. 掌握产生波形电路的基本原理和设计方法。
2. 学习使用电子仪器测量波形参数。
3. 分析不同波形电路的特性及其在实际应用中的意义。
二、实验原理产生波形电路是指利用电子元件和电路设计方法,产生不同波形(如正弦波、方波、三角波等)的电路。
常见的波形产生电路包括:1. 正弦波振荡电路:利用RC或LC振荡电路产生正弦波信号。
2. 方波振荡电路:利用555定时器、施密特触发器等产生方波信号。
3. 三角波振荡电路:利用积分电路和微分电路产生三角波信号。
三、实验仪器与设备1. 信号发生器2. 示波器3. 万用表4. 集成运算放大器5. 电阻、电容、电感等电子元件6. 连接导线四、实验内容及步骤1. 正弦波振荡电路实验(1)搭建RC振荡电路,利用电阻和电容产生正弦波信号。
(2)使用示波器观察输出波形,调整电路参数使波形稳定。
(3)测量输出波形的频率、幅值等参数。
2. 方波振荡电路实验(1)搭建555定时器振荡电路,产生方波信号。
(2)使用示波器观察输出波形,调整电路参数使波形稳定。
(3)测量输出波形的频率、幅值等参数。
3. 三角波振荡电路实验(1)搭建积分电路,利用电容和电阻产生三角波信号。
(2)使用示波器观察输出波形,调整电路参数使波形稳定。
(3)测量输出波形的频率、幅值等参数。
五、实验结果与分析1. 正弦波振荡电路通过实验,成功搭建了RC振荡电路,并观察到了稳定的正弦波信号。
根据实验数据,计算了振荡电路的频率、幅值等参数,并与理论值进行了比较。
2. 方波振荡电路通过实验,成功搭建了555定时器振荡电路,并观察到了稳定的方波信号。
根据实验数据,计算了振荡电路的频率、幅值等参数,并与理论值进行了比较。
3. 三角波振荡电路通过实验,成功搭建了积分电路,并观察到了稳定的三角波信号。
根据实验数据,计算了振荡电路的频率、幅值等参数,并与理论值进行了比较。
六、实验总结1. 通过本次实验,掌握了产生波形电路的基本原理和设计方法。
lm358正弦波方波三角波产生电路
![lm358正弦波方波三角波产生电路](https://img.taocdn.com/s3/m/754cd80f777f5acfa1c7aa00b52acfc789eb9fcd.png)
lm358正弦波方波三角波产生电路LM358是一种双通道运算放大器,具有低功耗和宽电源电压范围等特点,非常适合用于信号处理、滤波以及波形生成电路。
在本文中,我们将针对LM358正弦波、方波和三角波产生电路展开探讨,并提供详细的电路设计原理和实现步骤。
1. LM358正弦波产生电路正弦波产生电路是一种基本的波形生成电路,能够产生具有稳定幅值和频率的正弦波信号。
使用LM358运算放大器和一些基本的无源元件,我们可以设计出简单而稳定的正弦波产生电路。
我们需要通过一个RC 网络将运算放大器配置为反馈振荡电路。
通过调整RC网络的参数,可以实现所需频率的正弦波输出。
需要注意的是,为了稳定输出的幅值和频率,我们需要精心选择和调整电阻和电容的数值。
2. LM358方波产生电路方波产生电路是一种能够生成具有固定占空比和频率的方波信号的电路。
使用LM358运算放大器和几个简单的元件,我们可以设计出稳定的方波产生电路。
我们可以将LM358配置为比较器,通过设置阈值电压和反馈电阻,可以实现所需频率和占空比的方波输出。
需要注意的是,选择合适的电阻和电容数值,可以使得方波输出的上升和下降沿更加陡峭。
3. LM358三角波产生电路与正弦波和方波不同,三角波产生电路能够生成具有线性变化斜率的三角波信号。
同样地,我们可以利用LM358运算放大器和几个简单的元件设计出稳定的三角波产生电路。
我们可以将LM358配置为积分放大器,通过输入一个方波信号,并将其积分,可以得到具有线性变化斜率的三角波输出。
调整输入方波的频率和幅值,可以进一步调整三角波输出的频率和幅值。
总结回顾通过对LM358正弦波、方波和三角波产生电路的探讨,我们可以看到LM358作为运算放大器在波形生成电路中的灵活性和高性能。
通过精心设计和调整,我们可以实现稳定、精确和灵活的波形输出。
值得一提的是,LM358产生的波形信号可以应用于各种信号处理和波形调制电路中,具有广泛的应用前景。
基于555定时器的方波和三角波产生电路设计
![基于555定时器的方波和三角波产生电路设计](https://img.taocdn.com/s3/m/d068a50ee55c3b3567ec102de2bd960590c6d91a.png)
基于555定时器的方波和三角波产生电路设计555定时器是一种常用的集成电路,可用于产生各种波形信号。
本文将介绍基于555定时器的方波和三角波产生电路设计。
1. 方波产生电路设计:方波波形是一种具有固定高电平和低电平时间的信号。
基于555定时器的方波产生电路设计如下:- 使用555定时器作为单稳态多谐振荡器。
- 将电源正极连接到VCC引脚,地连接到GND引脚。
- 使用电容C和电阻R1连接555定时器的2号引脚和6号引脚。
- 将6号引脚接地,以固定低电平。
- 将7号引脚和8号引脚连接在一起,作为电源输入。
- 将3号引脚连接到一个较大的电阻R2,然后通过R2连接到电源正极,以固定高电平。
- 在输出引脚5(OUT)获得方波信号。
通过调整R1和C的数值,可以控制方波的频率。
较大的R1和C值将导致较低的频率,较小的R1和C值将导致较高的频率。
如果需要调整高电平和低电平的占空比,可以通过调整R2的数值来实现。
2. 三角波产生电路设计:三角波波形是一种具有逐渐上升和逐渐下降的线性变化的信号。
基于555定时器的三角波产生电路设计如下:- 使用555定时器作为双稳态多谐振荡器。
- 将电源正极连接到VCC引脚,地连接到GND引脚。
- 使用电容C和电阻R1连接555定时器的2号引脚和6号引脚。
- 将6号引脚接地,以固定低电平。
- 将7号引脚和8号引脚连接在一起,作为电源输入。
- 在输出引脚5(OUT)获得三角波信号。
通过调整R1和C的数值,可以控制三角波的频率。
较大的R1和C值将导致较低的频率,较小的R1和C值将导致较高的频率。
总结:基于555定时器的方波和三角波产生电路设计可以通过调整电阻和电容的数值来控制波形的频率。
方波波形具有固定的高电平和低电平时间,而三角波波形具有逐渐上升和逐渐下降的线性变化。
根据具体需求,可以调整电路中的元件参数以实现所需的波形。
实验三:波形产生电路
![实验三:波形产生电路](https://img.taocdn.com/s3/m/f6471b02f12d2af90242e6c3.png)
四、 实验内容
2) 对图 3.5.4 电路进行修改,使之变成矩形 波和锯齿波振荡电路,即 vO1为矩形波, vO2 为锯齿波。要求锯齿波的逆程(电压 下降段)时间大约是正程(电压上升段) 时间的20%左右。观测vO1、vO2的波形, 记录它们的幅度、周期(频率)等参数。
下次实验内容
题目:晶体管输出特性测试电路:
1)电阻R3= R4=10K,测出下面情况时vo 的波形 电位器RW阻值依次为0 , 10K, 15K, 20K
2) 调整电位器RW使vo 为正弦波(不能失真)且 幅值最大,用示波器测出vo 的频率和峰值。并 测出电位器 RW 的阻值,分析电路的振荡条件。 3)将两个二极管断开,观察输出波形有什么变化。
实验三 波形产生电路
一 、 实验目的
1.
通过实验掌握由运放构成的正弦波振荡 电路的原理与设计方法。 2. 通过实验掌握由运放构成的方波(矩形 波)和三角波(锯齿波)振荡电路的原理 与设计方法。 3*.了解运放摆率对振荡波形跳变沿的影 响。
二、 实验任务
正弦波、三角波及脉冲方波的产生。 实验要求: (1)正弦波振荡电路的内容, 起评分70分 ( 2 )在( 1 )的基础上另作多谐振荡电路的方波 及三角波的产生 起评分85分 (3)在(2)的基础上另作多谐振荡电路的矩形 波及锯齿波的产生 起评分100分
三、实验电路在实验性上的位置
实验用元件为两只A741,已经插在实验向上。
四、 实验内容
1. RC桥氏正弦振荡电路
R2 16k R1 16k C2 0.01F D1 D2
vf
C1 0.01F
+ A
-
vo
a
R3 10k
RW b 47k
R4 10k
波形发生器电路设计与制作
![波形发生器电路设计与制作](https://img.taocdn.com/s3/m/960fee5f5e0e7cd184254b35eefdc8d376ee1437.png)
波形发生器电路设计与制作波形发生器电路设计与制作是电子技术中非常重要的一部分。
波形发生器主要用于产生各种类型的电子信号,如正弦波、方波、三角波、锯齿波等,广泛应用于实验室、电子产品测试和各种电子系统中。
在这篇文章中,我们将介绍波形发生器电路的设计与制作过程。
接下来,我们需要选择合适的电子元件来实现波形发生器电路。
根据波形类型的不同,我们需要选择不同的电子元件。
例如,要产生正弦波,可以使用一个运放芯片和一组电阻、电容来实现。
在电路设计过程中,我们需要考虑一些重要的因素,如频率稳定性、波形失真、输出幅度等。
频率稳定性是指波形发生器电路产生的波形频率在一定范围内保持稳定。
为了提高频率稳定性,我们可以使用一个稳压电源和一个精度较高的电容。
波形失真是指波形发生器产生的波形与理想的波形之间的偏差。
为了减小波形失真,我们可以使用滤波电路对波形进行滤波处理。
输出幅度是指波形发生器输出的信号的幅度大小。
为了调整输出幅度,可以使用电阻分压电路或放大电路。
在电路设计完成后,我们可以进行电路调试和测试。
首先,我们需要验证电路的基本功能,即产生所需的波形类型。
然后,可以使用示波器和频谱分析仪等测试设备,对波形发生器电路进行性能测试。
电路制作是波形发生器电路设计的最后一步。
在制作电路时,我们需要选取合适的电子元件和电路板,并按照电路设计图进行布线和焊接。
制作完成后,我们需要进行电路测试和性能调试。
综上所述,波形发生器电路设计与制作是一项繁琐的工作,但在电子技术中具有广泛应用。
通过合理选择电子元件、合理设计电路和仔细调试电路,我们可以获得高质量的波形发生器电路。
希望通过本文的介绍,读者能够对波形发生器电路的设计与制作有所了解。
单电源多波形信号发生器电路设计
![单电源多波形信号发生器电路设计](https://img.taocdn.com/s3/m/06a0033991c69ec3d5bbfd0a79563c1ec5dad70b.png)
单电源多波形信号发生器电路设计1. 引言在电子电路的测试和测量中,波形信号发生器起到了至关重要的作用。
它能够产生各种形式的波形信号,如正弦波、方波、三角波等。
传统的波形信号发生器通常需要使用多个电源来供电,并且每个波形信号需要独立的电路实现。
为了简化电路设计并提高性能,本文将讨论一种单电源多波形信号发生器电路的设计方案。
2. 设计原理2.1 单电源设计传统的波形信号发生器通常使用正负电源供电,其中正电源提供正半周期的波形,负电源提供负半周期的波形。
然而,使用多个电源带来了一些问题,如电路复杂度的增加、功耗的增加以及信号幅度的限制。
为了解决这些问题,本设计将采用单电源设计方案。
单电源设计将波形信号的偏移电平和振幅归零点设置为单电源的公共地,从而避免了使用两个电源的问题。
2.2 多波形信号发生器设计为了实现多波形信号的发生,本设计将采用可编程运算放大器(Programmable Operational Amplifier, PGA)作为主要的信号发生器。
PGA能够根据控制信号的输入产生不同形式的波形。
通过调整控制信号的参数,可以在同一个电路中实现多种波形的发生。
3. 电路设计3.1 电源电路单电源设计中,正确选择合适的电源电路是非常重要的。
本设计将使用开关电源作为波形信号发生器的电源,因其具有高效、稳定的特点。
开关电源通过开关器件将输入电压变换为需要的输出电压,并通过滤波电路对输出电压进行滤波。
选择合适的开关电源,能够提供稳定的直流电源,为波形信号发生器提供可靠的电源。
3.2 多波形信号发生器电路多波形信号发生器电路由可编程运算放大器(PGA)、控制信号发生电路和输出电路组成。
可编程运算放大器作为核心芯片,支持多种波形的生成。
控制信号发生电路负责产生控制信号,通过控制信号的输入来控制PGA的输出波形。
输出电路将PGA的输出信号进行放大和滤波,并将波形信号通过连接器输出。
4. 实现步骤4.1 选择合适的PGA芯片选择合适的可编程运算放大器芯片对多波形信号发生器的性能至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2三角波发生原理图
时: (式5)
时: (式6)
三角波的波幅为: (式7)
方波三角波的频率为: (式8)
3.正弦波发生电路设计于分析
其电路图如下:
图3正弦波发生原理图
传输特性曲线的表达式:
(式9)
式中: (式10)
为差分放大器的恒定电流
1N4743A
2个
NPN型三极管
2N2222A
4个
电阻
2 6.8 7.5
各2个
电阻
8 20 75 100
各1个
电阻
10
3个
滑动变阻器
20 47
各1个
滑动变阻器
100
2个
电容
0.01 1 10
各1个
电容
0.1
2个
电解电容
470
3个
六、设读了相关知识学到了一些关于波形发生电路的设计知识,在我们所学教材内容的基础上,在实际过程中得到了更好地体现与知识的运用,使理论联系实际得到了更好地结合,使自己的动手能力和思维逻辑能力又进一步加强。并且在设计过程中不仅对一前的知识是一种在学习的过程而且又学到了新的只是,加强了自己的知识储备量。
5.对最后的仿真结果以及所设计的波形发生电路进行总结,找出其中有可能出现
的错误进行修正。
6.完成设计报告,并对此次设计过程结果进行总结,找出在设计过程中存在的问
题以及在设计过程中得到的经验进行总结。
指导教师评语:
评定成绩为:
指导教师签名:年月日
波形产生电路的设计
一、系统方案框图
方案一的系统框图
方案二的系统框图
三、单元电路的设计分析
1.方波发生电路的设计与分析
此电路可以在矩形波发生电路的基础上得到,矩形波发生电路由反向输入的滞回比较器和RC电路组成。RC回路既作为延迟环节,又作为反馈网络,通过RC充放电实现输出状态的自动转换。由于滞回比较器的输出只有高电平和低电平。两种不同的输出电平时RC电路进行充电或放电于是电容上的电压将升高或降低,而电容上的电压作为滞回比较器的输入电压控制其输出端状态发生跳变,从而使RC电路有充电过程变为放电过程,如此循环电路产生了自激振荡。
方波发生电路中运算放大器接成同相输入滞回比较器形式,由这一端口反馈引入三角波信号,触发滞回比较器自动翻转变成方波信号,方波信号从运算放大器输出端输出电路图如下
图1方波发生原理图
如图1.运算放大器U1与R1、R2及R3、R4组成电压比较器,由R2引出的一端接入三角波信号,运算放大器U接成同相输入滞回比较器形式,触发滞回比较器自动翻转形成方波信号方波信号从接近D1的一个端口输出。运算放大器反相端接基准电压,即U-=0相同输入端接输入电压Uia、R1称为平衡电阻,比较器的输出Uo1的高电频等于正电源电压+Vcc,低电频等于负电源电压-Vcc,当比较器U+=U-比较器翻转,输出Uo1从高电频跳到低电频或者从低电频跳到高电频。设Uo1=+Vcc则:
方案二:用多谐振荡器实现多种波形发生器,由比较器和积分器组成方波三角产生电路,比较器输出的方波经积分器得到三角波,用差分放大器来实现积分器输出的三角波转变为正弦波。
2.方案比较选择
方案一中的频率的频段的选择和调节需同时改变正弦波振荡电路和积分电路中的电容电阻和电容,调整复杂,而方案二虽然在转变为正弦波时存在正弦波非线性失真对差动放大电路较高,但在调节频率要求上要比方案一要简便许多所以选用方案二。
在电路仿真的过程中能够让我更加深层的了解和熟悉multisim软件的使用和操作,并且进一步提升了自己在使用软件的熟悉程度,能够更快的找到相应电路元件,更快的完成电路图的连接以及仿真。
在此设计波形发生电路的实验中也暴露出不少问题,自己对很多理论知识的掌握的不够熟练以及不精细,在选择参数和计算电路的过程中遇到了很多问题,通关翻阅相关资料最后才得以解决,所以在次试验后自己仍需要更加认真的细心的学习理论知识,并且拓宽自己的知识储备量和深度。
二、方案选择
1.方案简介
方案一:用正弦波振荡器实现多种波形,用正弦波振荡器产生正弦波输出,正弦波信号用比较器得到方波输出,方波信号用积分器得到三角波输出。此方案用RC串并联振荡器产生正弦波,串并联网络作为选频网络和正反馈网络,其振动频率为 改变RC的值则可改变正弦波频率。为了使输出电压稳定必须采取稳幅措施。
为温度的电压当量,当室温为25度时
四、参数的选择与计算
1.方波发生电路的参数选择与计算
根据式7得 (式11)
由于要求三角波的峰峰值为8V所以得:
(式12)
取 ,则 ,取 , 的滑动变阻器
(式13)
2.三角波发生电路的参数选择与计算
根据式8可以得出 (式14)
当 时取, ,取 则 滑动变阻器。
当 时取 ,以实现频率波段的转换, 的阻值不变所以可得 分别为 , 。
五、电路的仿真
1.方波三角波仿真结果
图4方波正弦波仿真电路图
图5方波仿真波形图
图6三角波仿真波形
2.正弦波仿真结果
图7正弦波仿真电路图
图8正弦波仿真波图形
3.整体仿真结果
图9整体仿真电路图
图10整体波形图
4.所用电路元件列表
表1元件明细表
元件名称
说明
数量
直流电源
+12V
4个
运算放大器
741
2个
稳压二极管
2.对设计电路进行参数选择和计算,进行EDA电路仿真,画出所设计的仿真电路
图,并且进行电路仿真,得到相应的电路仿真图。
3.掌握初步进行相关电路设计的方法、思路、流程,通过设计得到一定的设计方
法与技巧。
4.进一步通过设计波形产生电路了解、熟悉multisim软件的仿真过程锻炼自己的
操作运用该软件的能力,更好的学习该软件。
七、参考资料
《现代电子技术课程指导》谢云等北京机械工业出版社2003年。
《电子技术试验与课程设计》贾更新西北工业大学出版社2010年。
《电子电路设计》赵家贵中国计量出版社2005年。
《模拟电子技术实验及综合实训教程》于卫华中科技大学出版社2008年。
新疆大学
课程设计报告
所属院系:电气工程学院
专业:电气工程及其自动化
课程名称:电子技术基础A
设计题目:波形产生电路设计
班级:
学生姓名:
学生学号:
指导老师:
完成日期:2012.6.29
课程设计题目:波形产生电路设计
要求完成的内容:
1.设计一个波形发生电路,可以输出正弦波、三角波和方波,并且可调频率范围
在1HZ到10HZ,10HZ到100HZ。
(式1)
将式1整理可得比较器的翻转下门限单位
(式2)
若 则比较器上门限电位
(式3)
比较器的门限宽度
(式4)
稳压管D1、D2对接,起到正负向输出的双向限幅作用。
2.三角波发生电路的设计和分析
在产生方波后,利用此波形输入到一个积分电路便得到三角波,为了能够得到线性度更好的三角波,可以运用几个电阻和电容构成积分电路。
3.正弦波发生电路的参数选择与计算
将三角波信号转化为正弦波信号,传输曲线越对称,线性区越好三角波幅值应正好是体管结晶饱和区和截止区,电路中晶体管的放大倍数 ,电源电压取, ,
当 相并联,以减小差分放大器的线性区。差分放大器的静态工作点可通过观测传输特性曲线,调整 和 确定。
隔直电容 、 、 要取得较大,因为输出频率很低,所以可以得出 。