控制系统抗干扰分析及解决方法
电梯控制系统抗干扰分析与措施探讨
电梯控制系统抗干扰分析与措施探讨本文探讨了电磁干扰的基本理论,分析了电磁干扰对电梯控制系统的影响,总结了电梯控制系统的抗干扰技术措施,以期为相关工作者提供参考。
标签:电梯控制系统;电磁干扰;抗干扰技术0 引言电梯工作环境的特殊性导致在其运行过程中会受到诸多因素干扰,如供电系统电源、电磁干扰等。
电源若不能纯正弦波而是带有噪声成分的各种次谐波就容易对电梯控制系统造成影响,进而影响电梯的正常运行。
基于此,为确保电梯使用的安全可靠性,必须对电梯控制系统的干扰因素进行深入研究,并提出相应的抗干扰措施。
1 电磁干扰基本理论1.1 电磁兼容性电磁兼容性指的是电气控制系统或设备在电磁环境中可以不被干扰而能正常运行,同时还不会对其他设备及系统造成影响。
即电磁的兼容性包含两方面内容:(1)在系统及其设备运行中对电磁环境具有一定的抗干扰能力,(2)同时还能确保在系统及其设备正常运行过程中不会对其他系统及其设备产生电磁影响。
1.2 造成干扰因素分析对电气系统及其电气设备产生干扰的因素众多,其中各种元器件、设备、信号、电网谐波、变频器、电源、电机等设备都会通过导线敏感器通道或媒介传播到信号中而形成干扰源,从而对电气系统及其设备产生不利影响。
2 电梯控制系统中电磁干扰分析在电梯控制系统的干扰因素中,电磁因素干扰是最主要因素。
此外,导致电磁干扰的因素有很多,包括电梯控制系统传输通道、电磁干扰源和敏感设备等,其中电磁干扰源可以产生使不带任何信息的和任何信号没有关联的电磁现象,也可以是电磁噪声,也可以是其他信号,或产生于电压变化中,或产生于电流的变化中。
电梯控制系统之所以会受到电磁干扰,一方面是受系统内部设备影响,另一方面是受来自于系统外部设备的影响,即系统内外设备都会对系统造成一定干扰。
其中控制系统内部干扰源主要为印制板电路中的集成芯片和电子元器件,当脉冲电流穿过电路时可能会向外发射电磁波从而对附近的电气设备产生電磁干扰。
而系统外部的通讯设备、电子设备等也可能会互相产生电磁干扰,导致电力系统出现串联谐振,从而影响设备及其系统的正常运行[1]。
工业自动化控制系统的抗干扰技术分析
工业自动化控制系统的抗干扰技术分析工业自动化控制系统的抗干扰技术是工业控制中的关键技术之一。
这种技术的主要目的是降低外界干扰对工业自动化控制系统的影响,提高系统的稳定性和可靠性。
本文将对工业自动化控制系统的抗干扰技术进行分析。
首先,工业自动化控制系统中最常见的外界干扰包括电磁干扰、噪声干扰和电力干扰。
这些干扰会导致信号传输中的误差、控制信号的失真和噪声污染等问题,从而影响工业自动化控制系统的稳定性和可靠性。
为了抵御这些外界干扰,工业自动化控制系统采用各种抗干扰技术。
以下是常见的抗干扰技术:1. 硬件层面上的抗干扰技术硬件层面上的抗干扰技术主要包括信号隔离、滤波、屏蔽和接地等。
信号隔离可以将信号电气性质分离,从而解决信号传输中的地线干扰问题;滤波可以滤除高频噪声干扰,使信号传输更加稳定;屏蔽可以在电路板上采用金属盖板、金属屏蔽罩等,阻挡外界的电磁波干扰;接地可以使电路板内的各个不同电位达到相同电位,防止因接地问题产生的干扰。
软件层面上的抗干扰技术主要包括模拟电路技术和数字信号处理技术。
模拟电路技术可以通过设计合适的滤波器、锁相环、正交解调器等,对输入信号进行处理,从而达到抗干扰的目的;数字信号处理技术可以通过采样、滤波、数字噪声抑制等处理方法,对数字信号进行处理,降低外界干扰的影响。
3. 信号传输中的抗干扰技术信号传输中的抗干扰技术主要包括差分传输和光纤传输。
差分传输使用两个相反极性的信号同时传输,从而消除共模干扰;光纤传输使用光信号传输,避免了电磁干扰和磁场干扰。
总的来说,工业自动化控制系统的抗干扰技术是保证系统稳定性和可靠性的关键。
在设计控制系统的过程中,应选用合适的抗干扰技术,以确保系统能够在复杂的工业环境中正常运行。
DCS控制系统应用中的抗干扰问题分析
DCS控制系统应用中的抗干扰问题分析DCS控制系统是现代化工自动化生产中的重要组成部分,其应用范围涵盖了化工、石化、电力、冶金等多个行业领域。
在实际应用中,DCS控制系统经常会受到各种外部干扰的影响,这些干扰可能来源于电磁干扰、物理环境变化、人为操作等多个方面,严重干扰可能导致系统运行不稳定、控制失效甚至系统瘫痪。
如何在DCS控制系统应用中解决和抵御各种干扰问题,成为了当前工业控制系统领域中的研究热点之一。
本文将对DCS控制系统中的抗干扰问题进行分析,并提出相应的解决方案。
一、电磁干扰对DCS控制系统的影响电磁干扰是DCS控制系统中常见且严重的干扰源之一。
其种类包括电磁辐射干扰、传导干扰等。
电磁干扰可能来自于外部设备、电力线路、无线电信号、雷电等多个方面,其频率范围也十分广泛。
电磁干扰会对DCS控制系统的传感器、执行元件、通信线路等组成部分造成影响,导致控制系统的工作异常,甚至失效。
电磁干扰不仅会使得传感器接收的信号产生误差,还可能引起控制命令的传输错误,从而对整个生产过程产生严重的影响。
为了解决电磁干扰对DCS控制系统的影响,可以采取一系列的技术手段。
在系统设计阶段应该合理规划布置设备,避免将敏感的传感器和执行元件置于强电磁干扰源附近。
可以采用屏蔽措施,如使用屏蔽电缆、屏蔽罩等设备,阻隔外部电磁干扰。
还可以采用滤波器、隔离器等设备对信号进行处理,消除电磁干扰对系统的影响。
通过以上技术手段的综合应用,可以有效提高DCS控制系统对电磁干扰的抵御能力,保障系统的正常稳定运行。
除了电磁干扰外,物理环境变化也会对DCS控制系统产生一定的影响。
物理环境变化主要包括温度、湿度、气压等因素的变化,这些因素的变化可能会导致系统中的传感器、执行元件的性能产生变化,从而对控制系统的稳定性产生影响。
在特殊工业环境中,如高温、高湿或者腐蚀性环境下,物理环境变化对DCS控制系统的影响尤为突出。
针对物理环境变化对DCS控制系统的影响,可以采取一系列的防护措施。
DCS控制系统应用中的抗干扰问题分析
DCS控制系统应用中的抗干扰问题分析【摘要】本文主要探讨在DCS控制系统应用中的抗干扰问题分析。
首先对干扰来源进行了分析,包括外部环境干扰和内部系统干扰。
接着探讨了干扰对DCS控制系统的影响,包括降低系统性能和稳定性。
然后提出了抗干扰方法,如信号滤波、PID参数调优等。
同时结合调试与优化方案,提高系统抗干扰能力。
最后通过工程实例分析,验证抗干扰方法的有效性。
通过本文的研究,可以更好地理解和解决DCS控制系统中的抗干扰问题,提高系统稳定性和可靠性,进一步推动工业自动化领域的发展。
【关键词】DCS控制系统、抗干扰、干扰来源、影响、方法探讨、调试、优化、工程实例、分析、结论1. 引言1.1 DCS控制系统应用中的抗干扰问题分析随着工业自动化技术的不断发展,DCS控制系统在工业生产中扮演着越来越重要的角色。
在实际应用中,由于环境的复杂性和外界干扰的存在,DCS控制系统常常受到各种干扰的影响,影响了系统的稳定性和性能。
对于DCS控制系统中的抗干扰问题进行深入分析和研究显得尤为重要。
在DCS控制系统中,干扰的来源多种多样,包括电磁干扰、机械振动干扰、温度变化干扰等等。
这些干扰源的存在会导致系统的输出与预期不符,甚至产生系统不稳定的情况。
了解各种干扰源的特点和影响是解决抗干扰问题的第一步。
干扰对DCS控制系统的影响主要体现在系统性能下降、控制精度降低、系统响应速度减慢等方面。
特别是在一些对控制精度要求较高的工业场合,干扰的存在会对生产过程产生严重的影响,甚至导致设备损坏或生产事故的发生。
针对DCS控制系统中的干扰问题,我们需要采取相应的抗干扰方法。
常见的抗干扰方法包括信号滤波、控制器参数调整、系统结构优化等。
通过合理的抗干扰方法,可以有效减轻干扰对系统的影响,提高系统的稳定性和可靠性。
在实际工程中,针对不同的干扰问题,需要制定相应的调试与优化方案。
通过系统的调试优化,可以有效提高系统的抗干扰能力,保证系统的正常运行。
工业控制系统中的抗干扰分析及措施
将导致测量精度下降,引起信号测控失真和误动 作。 ( ) 自控制器系统内部的干扰。主要 由系 5 来
的正常安 全运行 。干 扰可能使 P C接收 到错 误 的 L
阻抗耦合产生的。因电源引入的干扰造成控制系
统故 障 的情 况很多 , 换隔离性 能好 的 u s电源 , 更 P
才能解决问题。控制系统的正常供电电源均由电 网供电。由于电网覆盖范围广 ,它将受到所有空
信号 ,造成误动作 , 或使 P C内部的数据丢失, L
地等 。这样会引起各个接地点电位分布不均 ,不 同接地点间存在地电位差 ,引起地环路电流 ,影
响系 统正 常工作 。 例如 电缆屏 蔽层 必须 一点 接地 ,
如果电缆屏蔽层两端 A、B 都接地,就存在地 电
位 差 ,有 电 流流 过屏 蔽层 ,当发 生异 常情 况 时 , 地 线 电流将更 大 。 屏蔽 层 、接地 线 和大地 也 有 可能构 成 闭合 环
噪声等 。
( 来 自接地 系 统混 乱 的干 扰 。控制 系统 正 4) 确 的接 地 ,是 为 了抑 制 电磁干 扰 的影 响 ,又能 抑 制设 备 向外 发 出干 扰 ;而 错误 的 接地 ,反 而会 引 人严 重 的干 扰 信号 ,使 系统 无 法 正常工 作 。控 制 系统 的地线 包 括系 统地 、屏 蔽 地 、交流 地 和保护
路 ,在变化磁场的作用下 ,屏蔽层 内会 出现感应 电流 ,通过屏蔽层与芯线之间的耦合干扰信号回 路。若系统地与其它接地处理混乱 ,所产生的地
环流 就 可能 在地 线 上产 生 电位 分布 ,影 响控 制器
内逻辑电路和模拟电路的正常工作。控制器工作 的逻辑电压干扰容限较低 ,逻辑地电位的分布干 扰容易影响的逻辑运算和数据存贮 ,造成数据混
PLC控制系统的抗干扰分析及措施的研究
业机械 化操作 的正 常运行。
1 P L C 的 基 本设 备 结 构
( 1 ) 电 源控 制 设 备
P L C 控 制系 统在 前 期 准备 中进行 数 据信 息
分析 。由中央 管理 器应用数据 并操作输入 .这些
带 来 的 机 械 化 水 平
是在 接地点 的选择上 .还 是应该避 开 电磁场较强 的地 方 。如果 遇到 比较 恶劣 的现 场环境 ,应 该采
( 3 )P L C编程技 术能 简明信 息检 索
用一些防护措 施 .例如对 外壳结 构进行 密封 、防
尘 、抗震 的封 装保护 。 4 解决 P L C控制 系统 抗干扰的 方法 ( 1 )改善 P L C控制 系统的 内部环境
准备 工作 都是 为 了实现 P L C 控制 系统 的通信 功 能 。P L C通 讯功 能 系统 把 其他 工 作 系统 进行 分 析 而得 出的操作 方案 .及 时发布 到机械操 作运行 的各个关 口 ,保证 工厂机械操作 的安全运 行 .实
P L C控 制 系统 是 基于 电子计 算 机 网络 来 实 现 的 .因此保 证 通 电才 能确保 P L C 控制 系统 的
众 多 电子设 备集合在一起 引发磁场 干扰 .可 以通过扩大 内部空 间实现抗干扰 。如逻 辑电路 与
模 拟电路会 互相产生辐 射 .在设 备安置 时就应考
写入 程序运 用多种 编程语言 .达到 程序重 新设置
的 目的 3 P L C控制 系统 主要 的干扰来源
( 1 )P L C 控 制 系统 内部 产 生 的 干 扰
用越来越广 泛
,
DCS控制系统应用中的抗干扰问题分析
DCS控制系统应用中的抗干扰问题分析随着科技的不断进步,DCS(分散控制系统)在工业自动化控制系统中得到了广泛的应用。
DCS系统具有分布式的特点,能够实现对工业过程的全面监测和控制,提高了生产效率和质量。
在实际应用过程中,DCS系统往往会受到各种干扰的影响,影响系统的稳定性和可靠性。
研究DCS控制系统中的抗干扰问题对于保障系统的正常运行具有重要意义。
一、干扰的来源在DCS控制系统应用中,干扰的来源主要包括内部干扰和外部干扰两种。
内部干扰主要包括系统本身的设计缺陷、硬件故障、软件故障等。
这些干扰可能会导致系统出现逻辑错误、数据丢失或误差、通讯故障等问题,影响系统的正常运行。
外部干扰主要来自工业环境中的各种因素,如电磁干扰、温度变化、湿度变化、机械振动等。
这些外部干扰会对系统的传感器、执行器、通讯设备等产生影响,造成数据失真或者传输错误,对系统的稳定性造成影响。
二、抗干扰的原则针对DCS控制系统中的抗干扰问题,我们可以从以下几个方面来制定抗干扰策略。
1.系统设计阶段要考虑抗干扰性能在系统设计阶段,应该考虑到系统的抗干扰性能。
可以采用分布式控制、冗余设计、信号过滤等手段,提高系统的抗干扰能力,减少干扰对系统的影响。
2.硬件和软件的抗干扰设计在硬件和软件设计阶段,应该采取一系列抗干扰措施,包括使用抗干扰的传感器和执行器、设计抗干扰的通讯设备、编写抗干扰的软件程序等,提高系统的抗干扰能力。
3.系统运行过程中的抗干扰控制在系统运行过程中,应该建立完善的抗干扰控制策略,包括实时监测系统的各种干扰源,及时处理干扰事件,避免干扰对系统造成严重影响。
三、抗干扰的技术手段在DCS控制系统中,有许多技术手段可以用于增强系统的抗干扰能力。
1.电磁兼容性设计在系统的硬件设计阶段,应该采取一系列的电磁兼容性设计措施,包括使用抗干扰的器件、减小电磁辐射、增加屏蔽措施等,降低电磁干扰对系统的影响。
2.传感器信号处理对于传感器信号,可以采用滤波、抗噪声设计、数字滤波等方式,对传感器信号进行处理,提高系统的抗干扰能力。
工业自动化控制系统的抗干扰技术分析
工业自动化控制系统的抗干扰技术分析工业自动化控制系统是现代工业生产的重要组成部分,其质量和稳定性对整个工业流程影响巨大。
与此同时,现代工业生产环境非常复杂多变,存在许多干扰因素,如传感器误差、电磁干扰、放大器失真等。
为保证工业自动化控制系统的稳定性和可靠性,必须采用一定的抗干扰技术。
现代工业生产环境中,电磁干扰是一个很普遍的问题。
电磁干扰可以产生高频干扰信号,这些信号会影响系统的传输和处理。
为了解决这个问题,可以采用屏蔽技术。
屏蔽技术可以把环境中的电磁辐射信号通过金属屏蔽掉,从而使系统免受电磁干扰的影响。
同时,还可以采用电磁兼容性(EMC)技术,以减少或消除电器设备之间的相互干扰。
EMC技术是一种综合性的技术,在系统设计中应尽可能考虑电磁兼容性问题,如地线接触问题、信号传输线阻抗匹配、电缆走向和屏蔽等方面。
另外,传感器误差也是影响工业自动化控制系统稳定性的重要因素之一。
传感器误差可以分为系统误差和随机误差。
系统误差可以通过校准,误差补偿等方法进行解决。
随机误差则需要采用滤波技术。
滤波技术可以利用滤波器对信号进行滤波处理,滤去干扰信号,保留有用信号。
滤波器种类繁多,包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
滤波器的设计需要根据具体问题选择合适的滤波技术和滤波器类型。
在工业自动化控制系统中,放大器失真也是一个很普遍的问题。
放大器失真会导致信号失真,从而影响系统的控制效果。
为了解决这个问题,可以采用自适应控制技术。
自适应控制技术可以通过对系统状态和输出进行自适应调整,以适应环境变化和外界干扰,从而达到改善系统性能的目的。
自适应控制技术的实现需要充分考虑控制算法的稳定性和鲁棒性。
除了上述几种抗干扰技术外,还有一些其他的技术应用在工业自动化控制系统中。
例如,时域分析技术可以对干扰进行精细分析,确定采取何种抗干扰技术。
另外,可靠性工程可以在系统设计中充分考虑系统的可靠性和冗余性,从而提高系统的稳定性和可靠性。
PLC控制系统抗干扰的措施及方法
PLC控制系统抗干扰的措施及方法摘要:介绍PLC控制系统在不同的工业环境中受到来自系统本身(包含PLC硬件及软件)以及外界(包含空间辐射电磁场、电源、信号线、接地等)的干扰;并且通过分析产生干扰的原因,提出了解决主要抗干扰措施。
关键词:PLC;控制系统;干扰类型随着科学技术的发展,PLC作为一种自动化程度高、配置灵活的工业生产过程控制装置,因为其本身的高可靠性、允许在较为恶劣的环境下工作而在自动控制领域中得到广泛应用。
由于受到现场条件所限,工业控制系统的各类PLC大多处在强电电路和强电设备所形成的恶劣电磁环境中,电磁干扰极其严重,对PLC控制系统可靠运行极其不利,因此,一方面要求PLC生产厂家提高设备的抗干扰能力,另一方面要求使用部门在工程设计、安装调试和运行维护过程中采取抗干扰措施,双方配合才能妥善解决问题,有效增强系统的抗干扰性能。
因此,研究PLC控制系统干扰信号的来源、成因及抑制措施,对于提高PLC控制系统的抗干扰能力和可靠性具有重要作用。
一、提高PLC硬件抗干扰能力在选择设备时,首先要选择有高效抗干扰能力的产品,其中包括了电磁兼容性。
尤其是抗外部干扰能力,如采用浮地技术、隔离性能较好的PLC系统;监控信号在接入PLC前,在信号线与地之间并接电容,以减少共模干扰;在信号两极间加装滤波器可减少差模干扰。
;另外要考察其在类似工作环境中的应用实绩。
在选择国外进口产品要注意:我国是采用220 V高内阻电网制式,而欧美地区是110 V低内阻电网制式。
由于我国电网内阻大,零点电位漂移大,地电位变化大,工业企业现场的电磁干扰至少要比欧美地区高4倍以上,对系统抗干扰性能要求更高,在国外能正常工作的PLC产品在国内不一定能可靠运行,这就要在采用国外产品时,按我国的标准(GB/T13926)合理选择。
另外,在干扰多的场合,安装在控制对象侧的I/0模块要使用绝缘型的I/0模块;在干扰相对较小的场合,可使用非绝缘型的I/O模块。
工业自动化控制系统的抗干扰技术分析
工业自动化控制系统的抗干扰技术分析
工业自动化控制系统是指利用计算机和现代控制技术对工业生产过程进行全面、快速、准确的监控和控制,从而提高生产效率和质量的自动化系统。
工业控制系统受到外部干扰
的影响,如电磁干扰、噪声干扰、温度变化、震动等,这些干扰会导致控制系统正常运行
的困难,因此需要采取一些抗干扰的技术手段来保证系统的稳定性和可靠性。
一、电磁干扰抗干扰技术
1.屏蔽技术:利用屏蔽材料对关键部件进行屏蔽,以防止外界电磁干扰的进入。
对于
电缆等传输线路,采用屏蔽电缆进行布置。
2.滤波技术:通过滤波器对输入信号进行滤波处理,滤除高频噪声,以减小对控制器
的干扰。
3.接地技术:合理的系统接地可以减小电磁干扰的影响。
通过增加接地电阻、加强地
线连接等手段来提高系统的抗干扰能力。
1.信号调理技术:通过信号调理器对输入信号进行放大、滤波、去噪等处理,以提高
信号的质量和稳定性。
2.差分输入技术:对于传输线路较长的情况,可以采用差分输入的方式,以减小噪声
的干扰。
三、温度变化抗干扰技术
1.温度补偿技术:对于受温度影响较大的传感器和执行器,可以采用温度补偿技术,
通过对温度进行实时监测和补偿来提高系统的精度和稳定性。
2.热控技术:对于温度敏感的元件,可以采用热控技术来控制其工作温度,以提高系
统的稳定性和可靠性。
四、震动抗干扰技术
1.机械减振技术:通过在机械结构中加入减振装置来减小震动对系统的影响。
2.信号处理技术:对于受到震动干扰的信号,可以采用信号处理技术对其进行滤波和
修复,提高系统的稳定性。
关于电梯控制系统抗干扰分析及解决措施
关于电梯控制系统抗干扰分析及解决措施摘要:电梯控制系统大量使用的场所容易受到外部和内部电磁干扰。
控制系统性能的不稳定会导致电梯故障频发,大大降低电梯的舒适性和安全可靠性。
电磁环境恶化给电梯运行环境带来的影响已不容忽视。
对于已经选用或投入使用的电梯,其设计或选用的控制电路、控制方式、系统组成均已成型并进入使用过程。
随着电磁环境进一步恶化、设备老化等因素,必须保证或改善电梯的电磁兼容性。
关键词:电梯控制系统;抗干扰分析;措施引言接地线和接地体合称为接地装置。
电气上的“地”,是指电位等于零的地方。
电气设备的接地部分,如接地的外壳和接地体等,与零电位的“大地”之间的电位差,称为接地部分的对地电压。
当电气设备发生接地故障时,就有电流通过接地体向大地作半球形散开,这一电流称之为接地电流。
接地电流向大地散流过程中遇到的电阻,称为接地电阻。
电梯控制系统是一个比较复杂的弱电控制系统,随着电力电子装置在电梯控制中的广泛应用,其抗干扰和各种接地保护措施也日益显得重要。
在电梯控制系统中,接地保护主要包括信号接地保护、安全接地保护和防雷击接地保护等。
1磁干扰分析电梯电控系统产生电磁干扰的主要原因有:电梯电控系统的传输通道或耦合路径、电磁干扰源、敏感设备等。
电磁干扰源可以不含任何与任何信号电磁现象无关的信息;它可能是电磁噪声,也可能是其他无用的信号;它是由电压和电流的急剧变化引起的,而电梯控制系统受到的干扰源来自于系统外部设备和系统内部设备两个方面,也就是系统内干扰和系统间干扰。
控制系统内部的干扰源主要是印制板电路中的电子元件和集成芯片包等,只要有脉冲电流流过,都有可能向外发射电磁波,对周围的其他设备产生电磁干扰;同时系统外部所带来的干扰源主要是控制系统的通信设备和电子设备也会产生相互严重干扰,也可引起电力系统局部并联谐振或串联谐振,造成设备不能工作甚至烧毁。
因此,控制系统中任何一个电子设备都可能成为一个干扰源。
电磁干扰按传播途径可以分为辐射干扰和传导干扰两种。
DCS控制系统应用中的抗干扰问题分析
DCS控制系统应用中的抗干扰问题分析DCS控制系统是一种用于工业自动化领域的分散式控制系统,它可以实现对生产过程的监控和控制,从而提高生产效率和产品质量。
在实际应用过程中,DCS控制系统常常会面临各种干扰和噪声,影响其正常的工作和控制效果,因此如何有效地抗干扰成为了DCS控制系统应用中的一个重要问题。
本文将针对DCS控制系统应用中的抗干扰问题进行分析,并提出相应的解决方案。
1. 工业环境的复杂性在工业生产现场,存在着各种各样的电磁干扰源,如变频器、电机、电炉等,这些设备会产生各种频率的噪声和干扰信号,对DCS控制系统的传感器和信号传输线路造成干扰,影响系统的正常运行。
2. 通信信号的稳定性3. 系统的稳定性DCS控制系统是一个包含多个子系统和模块的复杂系统,各个子系统和模块之间存在着复杂的耦合和交互关系,一旦受到外部干扰,可能引起系统失稳或者产生振荡,从而影响系统的控制效果和安全性。
二、DCS控制系统的抗干扰解决方案1. 设备和线路的屏蔽和隔离针对工业环境中存在的各种电磁干扰源,可以通过对传感器和信号传输线路进行屏蔽和隔离来减小外部干扰对系统的影响。
比如使用屏蔽罩来包裹传感器和信号传输线路,选择抗干扰性能好的传感器和信号传输设备等。
2. 信号处理技术的应用采用信号处理技术对传感器采集到的信号进行处理,提取出有效的信息,抑制干扰信号,从而提高系统的抗干扰能力。
比如采用滤波器对信号进行滤波、采用数字信号处理技术对信号进行处理等。
3. 多级冗余和容错设计在DCS控制系统中引入多级冗余和容错设计,通过备用设备和冗余通信线路来提高系统的可靠性和抗干扰能力。
当主设备或通信线路发生故障或受到干扰时,系统可以自动切换到备用设备和通信线路来保证系统的正常运行。
4. 系统参数的自适应调整DCS控制系统可以通过自适应控制算法实时调整系统的控制参数,以适应工业环境中的不确定性和干扰,从而提高系统的控制精度和稳定性。
比如采用自适应PID控制算法来实时调整控制参数,根据系统的实际工作状态来调整控制策略等。
PLC控制系统的抗干扰分析及措施
L C所用 的测量 、控制 的不同 ,可分为差模干扰和共模干扰。差模干 变 送 电 电源 ,还有 与 P
工作 电源是 P L C控制 系统 中的主 要 电磁 干扰导入来源 , 导入的途径有P L C的供 电电源、
[ J 】 .科技创新导报 , 2 0 1 0( 1 0 ) . [ 2 ] 李 伟 ,陈 豪 杰 .用 P L C组 态 软 件 消 除干 扰的 方法解 析 … J.科 技 致 富 向
而 人 为 因 素 主 要 有 设 备 周 边 的 电气 、电 子 设 备 所 发 出的 电磁 干 扰 , 由于 其 通 常 比较 高 宏 亮 .浅谈 P L C应 用 中的抗 干扰 问题
此是 P L C最主要 的干扰源。 电磁 干扰 的种 类有 很多 ,根 据干 扰模 式
A u t o ma t i c C o n t r o l ・ 自动化控制
P L C控 制系统 的抗 干扰分析及措施
文/ 汪 洁
而在 P L C控制 系统 的工作 现场 ,P LC会 同时 受 到其 自身和周边设备所产 生的共 模干扰、差
电安全性能 ,应选 取持续供 电的在 线式 u p s电
源为 P L C控制 系统供 电,它 可 以在 P L C控 制
模干扰对其信号 和电压 产生干扰。 由于这些 电 系统 自身方面加强对 电源导入干扰 的抗 干扰、 磁 干扰源 会在很 大程度 上对 P L C控 制系统 控 隔离性 能。
制 、测量的可靠性产生 影响 ,因此对 它们 采取 2 . 3信号线导人的电磁干扰
境极其复杂 ,电磁干扰种类多且无孔不入 ,因
此我 们在对 P LC采 取抗 干扰措 施时 ,必 须要 条信号 线之间对电磁干扰的隔离 、屏蔽 工作, 同时在 线缆铺 设时 ,应尽可能避免对信号 线与 对P L C控 制 系统 的设计 、安 装 、使 用 以及维 【 关键 词】P L C 控 制系统 抗干扰 可靠性 安 护 全过程进行周 密的考虑 ,对 每个步骤分别采
PLC控制系统常见干扰及应对措施
PLC控制系统常见干扰及应对措施PLC抗干扰能力强有利于整个系统稳定的运行,文章从探究干扰PLC的影响因素上分析,研究了从硬件和软件上如何进行抗干扰,提出了相应的抗干扰措施,硬件能够抑制干扰源,软件对抗干扰具有辅助作用,在这两方面进行抗干扰的优化,能够提升PLC系统运行的可靠性和稳定性。
标签:PLC控制系统;抗干扰;硬件;软件引言PLC控制系统的抗干扰能力与系统运行的稳定性有很大关系,本文首先对干扰因素进行分析,确定了干扰因素主要有空间辐射,系统本身的干扰和系统外部的干扰,并且根据这些干扰因素,提出了具有针对性的建议,从硬件和软件两部分内容上进行抗干扰,硬件抗干扰主要是阻断干扰源,对干扰源进行控制,但是硬件抗干扰并不能完全阻断干扰,因此又研究了软件抗干扰,将硬件抗干扰与软件抗干扰进行结合,就可以有效的应对干扰,实现PLC的稳定运行。
1 干扰PLC控制系统的因素分析1.1 辐射干扰通过空间以电磁波形式传播的电磁干扰称为辐射干扰,是由高频感应设备、电力网络、大型整流变压变频设备、无线电广播、雷达、雷电、电视等运行产生的。
如果PLC控制系统处在辐射中,则它的数据线、电源线和信号线都会转变为天线,因此受到辐射的干扰[1]。
这其中,主要是两个路径,一是对PLC内部电路感应的辐射干扰,二是对PLC网络通讯线路的辐射干扰[2]。
1.2 系统本身的干扰PLC系统本身也会产生干扰,这主要是由于系统中各电路和元器件的辐射所产生的,如元器件之间不匹配、信号之间相互影响、逻辑电路之间有辐射等,在使用过程中系统本身的干扰不能消除,但是在系统选择上要尽量选择经过多重实验检验的PLC控制系统。
1.3 外部干扰首先是电源干扰,这又分为三个层面:一是PLC控制系统中大型设备的启用和关停造成的欠电压和过电压等;二是电网短路造成的冲击、工业电网大型设备启动或者停止、交直流传动装置所引起的谐波等;三是SCR、IGBT、GTO等运行期间产生的高次谐波、寄生振荡、噪声等,这些都会对PLC造成干扰,产生很大的危害[3]。
PLC控制系统的抗干扰分析与措施
三、 抑 制干扰 的 主要措 施 为保 证 P L C在 工业 环境 下 能 可靠 工 作 ,在 设
计和生产过程中一般采取以下措施来抑制干扰。 1 、 采 取 相 应 的 隔 离 措施 : 这是 P L C抗 干 扰 的
主要 措施 之 一 。 在P L C的输 入 、 输 出接 口电路 中采
重 钢 机 动 能 源
第 2 6卷 2 0 1 3年第 2 期( 总第 1 0 4期 )
P L C控 制 系统 的抗 干 扰 分 析 与 措 施
张 振 宇
( 重钢股 份公 司机 动 处 )
摘
要
P L C有 来 自系统 内外、 P L C 系统 外部 引线 和 空 间辐 射 的干扰 ,需采取 滤波 、 隔
Байду номын сангаас
带铠装屏蔽电力电缆 , 同时严禁用同一 电缆的不 同 导 线 同时传输 电源 和其它信 号 , 导线 间尽量 避免 平
行 敷设 , 正确 的选择 接地点 , 完 善接地 系统 , 都是 提 高抗 干扰能力 的有效 措施 。
护接地等。接地系统混乱时对 P L C系统 的干扰主
要使 各个 接地 点 电位分 布不 均 , 不 同接地 点 间存 在
P L C系统广 泛应 用 于各 行 业 , 其应 用 主要 有 以
下类型 : ①运动控制 ; ②通讯和联网 ; ③数据处理 ; ④开关量的顺序控制 ; ⑤工业过程控制。 P L C的控制具有 以下特点 : ① 编程方便 、 易于 使用 ; ②功能完善 、 扩展能力强 ; ③可靠性高 , 抗于 扰能力强 ; ④控制系统结构简单 、 通用性强 、 灵活性 高; ⑤ 维 修 工作 量 小 且 方便 、 快捷 ; ⑥体积小 、 重 量 轻、 功耗低 ; ⑦ 系统的设计 、 安装 、 调试 方便 , 周期
PLC控制系统的干扰源及抗干扰措施
PLC控制系统的干扰源及抗干扰措施PLC控制系统的干扰源主要包括电磁干扰、电源噪声、开关干扰以及环境干扰等。
这些干扰源可能会导致PLC控制系统中的信号干扰、误触发、故障等问题。
为了保证PLC控制系统的稳定和可靠运行,需要采取一些抗干扰措施。
以下将详细介绍PLC控制系统的干扰源及抗干扰措施。
电磁干扰是PLC控制系统中常见的干扰源。
电磁干扰可以通过电缆、接口、线路等途径进入PLC系统中。
电磁干扰会造成PLC系统中的信号干扰,导致PLC输入/输出模块的误触发或失效。
为了抵御电磁干扰,可以采取以下措施:1.使用屏蔽电缆:将PLC系统的输入/输出信号线采用屏蔽电缆,可以有效地减小电磁干扰的影响。
2.增加滤波器:在PLC系统的电源线路中增加滤波器,可以过滤掉电源线上的噪声,减小电磁干扰。
3.设备隔离:对于容易受到电磁干扰的设备,可以将其与其他设备进行隔离,减少干扰的传导。
4.绝缘:对PLC系统中的输入/输出信号线进行绝缘处理,以减少干扰的传递。
电源噪声是另一个常见的干扰源。
电源噪声可能来自于电源本身或者是其他设备在电源线上引入的干扰。
电源噪声会干扰PLC系统的稳定运行,造成信号误触发、系统死机等问题。
以下是一些防止电源噪声的措施:1.使用稳压电源:采用稳压电源可以保证PLC系统的电压稳定,减少电源噪声的影响。
2.增加滤波器:在PLC系统的电源线路中增加滤波器,可以过滤电源线上的噪声,减少电源噪声对PLC系统的干扰。
3.接地处理:良好的接地可以有效地减少电源噪声的传递。
确保PLC系统和其他设备的接地良好,并使用合适的接地线缆。
开关干扰是指当开关设备(如电机、继电器等)开关时,由于电磁感应或接点弹跳等原因造成的干扰。
开关干扰会导致PLC输入/输出模块的误触发、稳定性下降等问题。
以下是一些防止开关干扰的措施:1.使用阻尼元件:在开关设备的输入端口和输出端口上安装阻尼元件,可以减小开关干扰的影响。
2.触发级联:对于容易受到开关干扰的PLC输入/输出模块,可以采用级联触发的方式,将干扰传递到多个模块上,减小干扰对单个模块的影响。
DCS控制系统应用中的抗干扰问题分析
DCS控制系统应用中的抗干扰问题分析DCS控制系统是工业自动化控制的重要手段之一,广泛应用于各个领域,如化工、电力、生物制药、钢铁、水处理等。
在实际应用中,DCS控制系统往往会面临各种各样的干扰,如设备故障、电磁干扰、环境干扰等,这些干扰会使DCS控制系统输出错误的控制信号,导致生产出现问题。
因此,DCS控制系统中的抗干扰问题十分重要。
1.电磁干扰问题电磁干扰是指电磁场中的干扰信号对DCS控制系统产生的影响。
在DCS控制系统中,常见的电磁干扰源包括高压电场、电力设备、雷电等。
电磁干扰主要表现为控制信号失真、误差增大、噪声干扰等。
为了降低电磁干扰对系统的影响,应采用抗电磁干扰措施,如采用屏蔽电缆、增加信号放大器、加强接地等措施。
环境干扰是指环境中的温度、湿度、压力等因素对DCS控制系统产生的影响。
在有些场合下,如化工、电力电站等,环境的恶劣程度比较高,易受到污染、高温、高压等影响。
如果对DCS控制系统进行封闭式防护,可以有效降低环境干扰产生的影响。
3.设备故障问题设备故障是DCS控制系统中最常见的干扰源之一。
设备故障主要包括机械故障、电气故障、软件故障等。
当发生设备故障时,控制系统容易失去控制,导致生产事故。
为了防止设备故障对DCS控制系统的影响,应采用预防维护措施,加强设备检修、故障诊断和修理等工作。
4.人为操作失误问题人为操作失误是DCS控制系统中最容易发生的干扰源之一。
人为操作失误可能包括误操作、误判、误调或操作过程中的失误等,这些失误可能导致控制系统出现巨大的控制误差或设备故障。
为了避免人为操作失误对DCS控制系统的影响,应采用完善的操作规程、培训工作、设备锁定等措施,将操作失误减至最小。
综上所述,DCS控制系统应用中的抗干扰问题是一个综合性的问题,需要系统地研究各种干扰源对系统的影响,采取科学有效的抗干扰措施进行防范和整治,以确保系统稳定、安全、可靠地运行,为生产安全和质量提供有力保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制系统抗干扰分析及解决方法
【摘要】工业控制系统的检测信号一般比较微弱,干扰信号不能有效解决,则会严重影响系统的正常工作。
尤其是现在单片机ARM 技术的广泛应用,对信号的要求也越来越高,微弱的干扰都会影响整个系统的稳定性。
本文以开发设计、检测调试过程中的实际经验为例,从原理图设计、PCB布线等方面详细讲述了干扰信号的产生及消除方法,是理论与实际的经验总结。
【关键词】抗干扰;信号;毛刺
1 概述
工业控制系统的任务是根据现场的测量信号,经分析比较后控制继电器完成预定操作。
但现场测量信号往往比较微弱,比如负荷电流、零序电流、电压等,由于干扰信号的存在,当干扰信号强度较大时,有用的测量信号淹没在杂乱的干扰信号中,系统无法得到正确的测量结果,严重影响系统的正常工作,甚至造成误判或误动。
本文以馈电开关保护器研发过程中发现的电磁干扰及处理方法加以叙述,供同行们借鉴参考。
2 干扰的形成及处理
该馈电开关采用外部开关电源供电,本身噪声及纹波较大,若直接送给保护器系统,将形成较大的干扰源,解决方法是利用磁珠与电容组成L型滤波电路,磁珠的电感量不易大,以直插(3.5*6mm)或六孔磁珠为宜,电容选用470uF/50V 电解电容。
磁珠可以减缓因电流突变产生的干扰,而电容则可以减缓因电压突变产生的干扰。
(1)模拟地与数字地要物理分开,从器件布局、PCB走线、铺地都要隔离,然后通过一磁珠或0Ω电阻连接。
磁珠选用直插的,电阻的功率要大,1W为宜,若表贴器件选择1812封装。
(2)每个数字器件的VCC附近布置一个0.01uF陶瓷电容,用于减小高低电平变化时产生的突变干扰,俗称“去耦”。
(3)模拟信号在放大器处理过程中每步增加一个0.01uF陶瓷电容,该电容对高频信号敏感,可有效的将高频干扰信号滤除,而对工频待测信号则不敏感,允许传感器信号正常通过。
(4)开关量采用光耦隔离,开关量输入的隔离光耦采用TLP181或TLP121,该光耦的导通压降0.3mm。
2)布线不拐90°弯。
3)尽量少过孔,过孔的焊盘外径为孔径的一倍关系,如0.7/0.35mm。
4)地线不走线,以铺地连接。
交流电源不得进入铺地范围,铺地采用网格形式。
5)器件布局规则:继电器、电源远离CPU、模拟量采样电路。
6)晶振器件下面不得走线。
3 动态毛刺去除
图1
模拟量测量信号一般比较微弱,虽然经过上述处理仍不能去除叠加在信号上的毛刺尖峰。
若对该检测信号进行幅值比较,则会出现误判现象。
解决办法是在信号检测电路前增加一动态毛刺去除电路,可有效地将叠加在有效信号上的毛刺干扰去除掉。
原理图如图1。
器件工作原理如下:磁珠L1与电容C1组成LC滤波器,起一个初级滤波的预处理作用。
其后的电路为毛刺去除电路,当输入信号上出现一个正毛刺时,该信号进入放大器的负相输入端,在输出端产生一个等幅值的负毛刺。
该信号经高频电容C2反馈到负相输入端与原来的正毛刺抵消中和,最终使输出毛刺消除。
该原理是一个动态负反馈过程,反馈速度的快慢直接影响到毛刺消除的效果,如果放大器的动态响应速度较低,增加该电路后将会使检测信号的波形变粗,但这不影响后续电路的信号处理。
增加毛刺去除电路前后的信号波形比较如图2。
图2
4 软件抗干扰处理
进入控制系统的干扰信号随机性很强,频段较宽。
尽管采取了硬件措施,仍会有干扰信号进入系统。
控制系统是依赖于对开关信号及模拟信号的采集来完成控制操作的,一个错误信号就可造成程序的紊乱或死机,给系统造成不可预料的严重后果。
所以软件抗干扰以其灵活多变、节省硬件资源、可靠性好的优势得以普遍采用。
常用软件抗干扰方法如下:(1)滤波算法:采用算数取平均值法、比较取舍、中值法等软件算法滤掉由于干扰信号造成的错误采样。
我的经验模拟量采样32次或16次然后取平均值,这样可有效的消除信号的波动对采样结果造成的影响。
(2)冗余法:在软件中关键多字节指令后加入NOP指令,可有效地防止因干扰造成的程序走错。
(3)开启看门狗,防止程序跑飞。
(4)开关量多次判断。
一次判断过后,经一段延时(比如5ms),再进行判断一次,若两次判断一致,则认为次信号有效。
5 结束语
干扰是控制系统的严重威胁,一个系统如果未能有效地滤除输入通道的干扰信号,轻者不能进行正确测量及比较,重者将引起错误判断和输出,造成不可预料的严重后果。
本文从硬件、软件两方面介绍了常用抗干扰措施,我们在控制系统设计时就要首先考虑可能的干扰存在,分析电源输入、机构输出是否会产生何种类型干扰,继而在设计原理时就要增加相应措施,使干扰及早消除或将其减小到最小程度。
然而干扰的随机性、不可预见性很强,产生干扰的途径和机理各有不同,解决办法也不尽相同。
我们要在工作中总结经验,认真分析何种原因产生何种干扰,采取什么样的措施将其消除。
只有在工作当中不断发现问题,不断总
结经验,才能使经验更丰富、分析问题更准确性、解决问题更迅速。