控制系统抗干扰措施

合集下载

发射台自动化控制系统的抗干扰措施

发射台自动化控制系统的抗干扰措施

发射台自动化控制系统的抗干扰措施发射台运用微机控制系统实现发射机自动化的过程中,要保证系统安全可靠运行。

除要求构成系统本身的元器件质量稳定可靠外,更重要的是克服周围环境的干扰。

在设计控制系统时忽视对可能产生干扰源的分析,缺乏必要抗干扰措施,无论该系统硬件和软件如何先进、完善,都有可能由于干扰使得控制系统无法正常运行,因此必须对发射台自动化控制系统的干扰问题有足够的认识。

一、对于发射台自动控制系统的干扰源主要有三种(1)电磁波干扰发射机是发射台的核心设备,也是各自动控制系统的主要被控对象。

发射机的任务是不断产生高频电能,而天馈线是强电磁波的发生体。

在发射台内高频干扰是影响各自动化系统正常运行的重要因素。

在大功率发射机附近的强电磁场中,设备外壳、一段导线均可产生较大感应电动势而形成干扰。

另外各种控制继电器动作.电子管过流、闪烁、大电流触点的合断均可产生瞬间脉冲干扰,而脉冲干扰信号的频谱很宽,可以从几十kHz到200MHz。

所有这些干扰都可导致自动化系统程序运行失控,影响正常运行。

(2)信号通道接口引入的干扰自动化系统与被控对象以及其他外部设备之间的连接都通过信号通道来实现。

模拟量、开关量的取样输入,控制开关或模拟控制输出都是干扰串人的主要途径。

干扰信号有些是从取样电路串入的,有些是从长距离传输线上感应进来的,有时还有因电路阻抗匹配不好引起发射所造成的。

(3)电源系统引入的干扰共用电源的其他设备,所产生的干扰有可能产生使自动化系统误动作,电网上用电设备大部分是电感器件,当大电流切换时,产生瞬间过电压,时间虽极短,但瞬间电压可高于正常电压几倍,形成很高的干扰脉冲电压。

控制和被控制设备由于使用电源共地,在公共地线阻抗上产生脉冲电压在输入回路上叠加,会形成干扰信号。

二、抑制电源噪声的抗干扰技术(1)采用交流稳压和直流稳压采用交流稳压,可保证供电的稳定性,防止电源系统的过压与欠压,以提高系统的可靠性;对于直流稳压,可采用交流进线滤波器和输出滤波器,对高频干扰信号采用无源滤波电路进行抑制以降低成本,对低频噪声则采用有源滤波器进行抑制。

常见的plc控制系统抗干扰措施

常见的plc控制系统抗干扰措施

常见的PLC控制系统抗干扰措施1. 引言PLC(Programmable Logic Controller)是一种常用于工业控制系统中的计算机控制设备。

在实际工业环境中,PLC控制系统常常面临各种干扰源的干扰,这些干扰可能导致系统稳定性下降、数据误差增加甚至系统故障。

因此,在设计和应用PLC控制系统时,需要采取一系列抗干扰措施来降低干扰的影响。

本文将介绍常见的PLC控制系统抗干扰措施,包括电磁干扰、地线干扰、高温环境干扰以及其他常见干扰的应对措施。

2. 电磁干扰的抗干扰措施电磁干扰是PLC控制系统中常见的干扰源之一,它可以导致数据误差、通信故障等问题。

以下是抗电磁干扰的措施:•屏蔽设计:在PLC设备和信号线上添加屏蔽层,以阻隔外部电磁干扰的入侵。

屏蔽层可以采用金属箔、金属编织层等材料。

•磁屏蔽:在PLC设备附近放置磁场屏蔽装置,以减弱外部磁场对设备的影响。

磁屏蔽装置可以采用铁氧体材料制成。

•地线隔离:将PLC设备的地线和电源系统的地线隔离开,防止电磁干扰通过地线传输到PLC设备中。

3. 地线干扰的抗干扰措施地线干扰是指由地线电流引起的干扰,它会导致系统电势差增大、信号失真等问题。

以下是抗地线干扰的措施:•地线去耦:在PLC设备的电源输入端和地线之间添加去耦电容,并将其接地。

去耦电容可以起到隔离地线干扰的作用。

•地线分离:将PLC设备的地线和其他设备的地线分离开,避免地线干扰的相互影响。

•良好接地:确保PLC设备的良好接地,减少地线干扰的发生。

4. 高温环境干扰的抗干扰措施高温环境对PLC控制系统的影响主要体现在PLC设备的散热和温度抗性方面。

以下是抗高温环境干扰的措施:•散热设计:合理设计PLC设备的散热结构,增加散热面积和散热风扇等设备,保证设备在高温环境下正常工作。

•温度抗性选择:选择具有良好温度抗性的元件和材料,确保PLC设备在高温环境下的可靠性。

•温度检测:安装温度传感器,实时监测PLC设备的温度,及时采取散热措施以防止设备过热。

DCS控制系统应用中的抗干扰问题分析

DCS控制系统应用中的抗干扰问题分析

DCS控制系统应用中的抗干扰问题分析DCS控制系统是现代化工自动化生产中的重要组成部分,其应用范围涵盖了化工、石化、电力、冶金等多个行业领域。

在实际应用中,DCS控制系统经常会受到各种外部干扰的影响,这些干扰可能来源于电磁干扰、物理环境变化、人为操作等多个方面,严重干扰可能导致系统运行不稳定、控制失效甚至系统瘫痪。

如何在DCS控制系统应用中解决和抵御各种干扰问题,成为了当前工业控制系统领域中的研究热点之一。

本文将对DCS控制系统中的抗干扰问题进行分析,并提出相应的解决方案。

一、电磁干扰对DCS控制系统的影响电磁干扰是DCS控制系统中常见且严重的干扰源之一。

其种类包括电磁辐射干扰、传导干扰等。

电磁干扰可能来自于外部设备、电力线路、无线电信号、雷电等多个方面,其频率范围也十分广泛。

电磁干扰会对DCS控制系统的传感器、执行元件、通信线路等组成部分造成影响,导致控制系统的工作异常,甚至失效。

电磁干扰不仅会使得传感器接收的信号产生误差,还可能引起控制命令的传输错误,从而对整个生产过程产生严重的影响。

为了解决电磁干扰对DCS控制系统的影响,可以采取一系列的技术手段。

在系统设计阶段应该合理规划布置设备,避免将敏感的传感器和执行元件置于强电磁干扰源附近。

可以采用屏蔽措施,如使用屏蔽电缆、屏蔽罩等设备,阻隔外部电磁干扰。

还可以采用滤波器、隔离器等设备对信号进行处理,消除电磁干扰对系统的影响。

通过以上技术手段的综合应用,可以有效提高DCS控制系统对电磁干扰的抵御能力,保障系统的正常稳定运行。

除了电磁干扰外,物理环境变化也会对DCS控制系统产生一定的影响。

物理环境变化主要包括温度、湿度、气压等因素的变化,这些因素的变化可能会导致系统中的传感器、执行元件的性能产生变化,从而对控制系统的稳定性产生影响。

在特殊工业环境中,如高温、高湿或者腐蚀性环境下,物理环境变化对DCS控制系统的影响尤为突出。

针对物理环境变化对DCS控制系统的影响,可以采取一系列的防护措施。

简述PLC控制系统的抗干扰措施

简述PLC控制系统的抗干扰措施
科 技 搽 i 习
简述 P C控制系统的抗干扰措施 L
徐 娓
( 东滨 州技术 学 院 山东 滨 州 2 6 0 山 5 0 0)

要 :分 析 了提 高 P C控 制 系统 抗 干扰 措 施 的 重要 性 ,指 出在 工程 应 用 时必 须综 合 考 虑控 制 系统 的抗 干扰 性 能 ,并提 出几 种抗 干 L
扰措施 。
关 键词 :可靠性 抗 干扰 硬件 软 件 引 言 P C L ,是可 编 程控 制 器 的 英文 缩 写 ,它 是一 种 专 门 为适 应工 业 生 产环 境 而设 计 的控 制 设 备 。他 们 有 的 是 集 中安 装 在 控制 室 , 有 的是 分散 安 装在 生 产现 场 的 各单 机 设 备上 .为适 应 由强 电 电路 和 强 电设备 所 形成 的恶 劣 电磁 环境 ,生产 厂 家在 设计 和制造 过 程 中采用 了多层 次 抗 干扰 和 精选 元 件 措 施 ,故 P C具 有抗 干扰 强 、 L 运 行稳 定 、可靠 性 高 等优 点 。适 应 恶 劣工 业尽 管 其制 造 厂采 取 了 些措 施 ,使 得 它 的可 靠 性 较 高 ,但 是 由于它 直 接 和现 场 的 IO , 设备 相连 ,外 来干 扰很 容 易通 过 电 源线 或 I / O传输 线 侵入 ,造成 程 序误 变或 运 算错 误 ,从 而产 生 误 输入 并 引起 误 输 出 ,这将 会造 成设 备 的失 控 和误 动作 。从 而 引起 控 制 系统 的误 动 作 。P C受 到 L 的干 扰 可分 为外 部 干扰 和 内部 干扰 。在 实 际 的生 产环 境 下 ,外部 干扰 是 随机 的 ,与 系统 结构 无 关 ,且干 扰源 是 无 法消 除 的 ,只能 针对 具 体情 况 加 以 限制 ;内部 干 扰 与系 统结 构 有关 ,主要 通 过系 统 内交 流主 电路 ,模拟 量输 入 信 号 等 引起 ,可 合理 设 计 系统 线路 来 削弱 和抑制 内部 干扰 和 防 止外 部 干扰 。随 着 P C应 用的 日渐广 L 泛 ,其抗 干 扰 问题 也 显 得 日益 重 要 。本 文就 此 问题 提 出一些 抗 干 扰 的措 施 。

工业控制系统中的抗干扰分析及措施

工业控制系统中的抗干扰分析及措施

将导致测量精度下降,引起信号测控失真和误动 作。 ( ) 自控制器系统内部的干扰。主要 由系 5 来
的正常安 全运行 。干 扰可能使 P C接收 到错 误 的 L
阻抗耦合产生的。因电源引入的干扰造成控制系
统故 障 的情 况很多 , 换隔离性 能好 的 u s电源 , 更 P
才能解决问题。控制系统的正常供电电源均由电 网供电。由于电网覆盖范围广 ,它将受到所有空
信号 ,造成误动作 , 或使 P C内部的数据丢失, L
地等 。这样会引起各个接地点电位分布不均 ,不 同接地点间存在地电位差 ,引起地环路电流 ,影
响系 统正 常工作 。 例如 电缆屏 蔽层 必须 一点 接地 ,
如果电缆屏蔽层两端 A、B 都接地,就存在地 电
位 差 ,有 电 流流 过屏 蔽层 ,当发 生异 常情 况 时 , 地 线 电流将更 大 。 屏蔽 层 、接地 线 和大地 也 有 可能构 成 闭合 环
噪声等 。
( 来 自接地 系 统混 乱 的干 扰 。控制 系统 正 4) 确 的接 地 ,是 为 了抑 制 电磁干 扰 的影 响 ,又能 抑 制设 备 向外 发 出干 扰 ;而 错误 的 接地 ,反 而会 引 人严 重 的干 扰 信号 ,使 系统 无 法 正常工 作 。控 制 系统 的地线 包 括系 统地 、屏 蔽 地 、交流 地 和保护
路 ,在变化磁场的作用下 ,屏蔽层 内会 出现感应 电流 ,通过屏蔽层与芯线之间的耦合干扰信号回 路。若系统地与其它接地处理混乱 ,所产生的地
环流 就 可能 在地 线 上产 生 电位 分布 ,影 响控 制器
内逻辑电路和模拟电路的正常工作。控制器工作 的逻辑电压干扰容限较低 ,逻辑地电位的分布干 扰容易影响的逻辑运算和数据存贮 ,造成数据混

探讨单片机控制系统的抗干扰措施

探讨单片机控制系统的抗干扰措施

探讨单片机控制系统的抗干扰措施摘要:单片机控制系统是一种监控功能强、可靠性高、方便使用的自动控制系统,在多种领域受到广泛应用。

在进行单片机控制系统应用时,为了提高控制的有效性,需要避免单片机控制系统受到其他因素的干扰。

通过分析单片机控制系统的主要干扰来源,可以有针对性地制定抗干扰措施,避免单片机控制系统在运行中受到干扰,造成不必要的生产问题。

关键词:单片机;控制系统;抗干扰措施一、单片机控制系统干扰源分析单片机作为工业生产运行系统中非常重要的构成部分之一,由单片机所构成的控制系统必须具备较高的灵敏度。

但同时,灵敏度越高,则意味着系统可能引入干扰因素越多。

特别在强噪声环境下,被测信号可能被淹没,影响测量效果的实现。

工业现场应用中,存在大量且多类型的干扰源,这些干扰源以一种或多种方式对计算机测控系统产生影响,导致整个控制系统性能指标无法满足设计要求,进而对测量控制结果的可靠性产生不良影响,必须引起高度重视。

结合单片机控制系统的实际运行情况来看,在单片机控制系统工业现场应用中,所承受干扰以电磁能量干扰为主。

具体而言,单片机控制系统内外部干扰源主要包括以下几个方面:第一是无线电设施所产生射频干扰;第二是发动机装置上高压点火线圈向外辐射磁场强度大且频带宽的电磁波信号干扰;第三是单片机内部晶振电路干扰;第四是外部交流电路系统中所产生工频信号干扰;第五是数字电路本身门电路频繁的导通、截止造成电源地线在电流变化因素作用下所产生高频电磁干扰。

二、抗干扰的措施2.1软件抗干扰措施在单片机运行时,会有少数的干扰进入单片机控制系统,软件抗干扰措施必不可少。

因为软件抗干扰措施是以CPU为代价的,所以,如果没有硬件抗干扰措施来消除绝大多数的干扰,CPU就会一直忙碌,没有精力进行正常工作,进而严重影响单片机系统的工作效率与实时性。

下面介绍几种CPU解决抗干扰的措施。

2.1.1人工复位针对于失控的CPU,最简单的方法就是让CPU进行复位,使程序自动从OOOOH开始执行。

控制系统抗干扰措施

控制系统抗干扰措施

控制系统抗干扰措施控制系统的抗干扰措施是为了保证系统在外界干扰的情况下能够正常运行和工作。

在实际应用中,干扰因素往往较多,包括电磁干扰、机械振动、温度波动等等。

因此,为确保系统的可靠性和稳定性,需要采取一系列的抗干扰措施来提高系统的抗干扰能力。

电磁干扰是控制系统中最常见的一种干扰方式,主要通过电磁波的传播而影响系统的正常运行。

为了有效抵御电磁干扰,可以采取以下措施:1.电磁屏蔽:采用具有良好屏蔽性能的金属外壳或屏蔽罩来阻挡电磁波的传播,减少干扰对系统的影响。

2.策略引入:在系统的设计中,通过良好的布线规划和装置安装方式,降低电路之间的串扰,避免电磁干扰的传导。

3.使用滤波器:在输入输出端口的信号传输线上安装适当的滤波器,滤除不需要的电磁波成分,提高系统的信噪比。

机械振动是指由于设备的震动、冲击或共振现象引起的机械振动干扰。

为了减少机械振动的干扰,可以采取以下措施:1.振动隔离:通过采用弹性材料、减振器等装置来减少机械振动对系统的干扰,有效地隔离振动波的传播。

2.调整装置布局:合理布置安装设备和传感器的位置,避免设备之间的机械振动相互传导,减少干扰的发生。

3.机械结构的改进:通过结构设计和材料的选择来提高装置的抗振能力,降低机械振动的传导和反馈。

温度波动是指环境温度的变化引起的干扰,对温度敏感的系统尤为重要。

为了减少温度波动对系统的干扰,可以采取以下措施:1.温度控制:通过采用恒温设备、温度传感器和温度反馈控制系统,控制系统的工作温度在一个较稳定的范围内,减少温度波动对系统的影响。

2.绝热设计:对系统进行合理的绝热设计,减少外部温度变化对系统内部温度的传导,降低干扰的发生。

3.温度补偿:对温度敏感的元件进行温度补偿,在设计中考虑和修正元件在不同温度下的工作特性,提高系统的稳定性和准确性。

综上所述,控制系统的抗干扰措施需要从多个方面进行考虑和实施。

只有通过合理的设计和有效的控制措施,才能提高系统的抗干扰能力,使系统在外界干扰的情况下依然能够正常工作和运行。

PLC控制系统工程应用的抗干扰措施

PLC控制系统工程应用的抗干扰措施

系统 供 电 的电源 , 一般都 采 用 隔离性 能 较好 的
电 源 , 对 于 变 压 器 供 电 的 电 源 和 P C系 统 有 而 L 直 接 电 气 连 接 的 仪 表 的供 电 电 源 , 没 引 起 足 并 够 的 重 视 , 然 采 取 了 一 定 的 隔 离 措 施 , 普 虽 但 遍 还 不 够 , 要 是 使 用 的 隔 离 变 压 器 分 布 参 数 主 大 , 制 干 扰 能 力 差 , 电 源 耦 合 而 串 人 共 模 抑 经 干 扰 、 模 干 扰 。所 以 , 于 变 压 器 和 共 用 信 号 差 对 仪 表 供 电应 选 择 分 布 电容 小 、 制 能 力 强 ( 抑 如
4 来 自 P C 系 统 内部 的 干 扰 . L 主 要 由 系 统 内 部 元 器 件 及 电 路 间 的 相 互
供 电 电源或 共 用 信 号仪 表 的供 电 电源 串入 的 电网 干扰 , 往 往 被忽 视 ; 是 信 号线 受 空 间 电磁 辐射 这 二 感应 的干扰 , 即信 号 线 上 的外 部感 应 干 扰 , 是很 这 严 重 的 。 由信号 引入 干 扰会 引起 I / 号 工 作 异 0信
为 工 频 , 率 较 低 , 扰 一 般 发 生 在 近 场 , 近 频 十 而 场 中 随 着 干 扰 源 的 特 性 不 同 , 场 分 量 和 磁 场 电 分 量 有 着 很 大 差 别 。特 别 是 大 型 动 力 设 备 启 动
层 两 端 A、 B都 接 地 , 存 在 电 位 差 , 电 流 流 就 有 过 屏 蔽层 , 当发 生 异 常 状 态 ( 雷 击 ) , 线 如 时 地 电流将更 大 。 此 外 , 蔽 层 、 地 线 和 大 地 有 日 能 构 成 屏 接 J

单片机控制系统的抗干扰与安全措施

单片机控制系统的抗干扰与安全措施

单片机控制系统的抗干扰与安全措施
单片机控制系统在现代电子设备中得到广泛应用,其具有高效、稳定的特点。

然而,由于外部环境的干扰和可能发生的安全问题,需要采取一系列措施来保证单片机控制系统的抗干扰能力和安全性。

为了提高单片机控制系统的抗干扰能力,可以采取以下措施。

为了保证单片机控制系统的安全性,需要采取以下措施。

首先,加密和验证系统的软件和固件,以防止未经授权的访问和篡改。

除了上述措施,还可以采用其他方法来提高单片机控制系统的抗干扰性和安全性。

例如,可以采用冗余设计和备份机制,确保系统在部分故障或攻击情况下仍能正常工作。

此外,定期进行系统的维护和检修,更新软件和固件,修复已知的漏洞和问题。

另外,对系统进行严格的测试和验证,确保系统在各种条件下都能正常工作和抵抗干扰。

单片机控制系统的抗干扰和安全措施至关重要。

通过合理的电路设计、元器件选择和系统设置,可以有效提高系统的抗干扰能力。

同时,通过加密、验证、权限管理和安全监控等措施,可以确保系统的安全性能。

此外,采用冗余设计、备份机制和定期维护等方法,可以进一步提高系统的可靠性和安全性。

综合运用这些措施,可以构建出具有较高抗干扰性和安全性的单片机控制系统,为各种电子设备的正常运行提供保障。

微机控制系统中电磁阀和继电器干扰的抑制措施

微机控制系统中电磁阀和继电器干扰的抑制措施

微机控制系统中电磁阀和继电器干扰的抑制措施
微机控制系统中,电磁阀和继电器是常用的执行元件,但它们也可能对系统造成干扰。

本文将介绍一些常见的干扰抑制措施。

1. 电磁阀的抗干扰设计
电磁阀是一种由电磁铁控制的机械阀,通过线圈产生磁场,驱动阀芯动作。

由于线圈内的高频电压及电流,使电磁阀产生EMI干扰。

针对这种干扰,可以采用以下措施:
(1)防护措施:通过外部线圈和屏蔽罩来抵消磁场的影响。

(2)电源噪声抑制:在电源输入过滤器中加入降噪滤波器,
可有效地降低电源线引起的EMI。

(3)降低开关速度:通过调节电流控制电子开关的速度,降
低干扰的发生频率。

2. 继电器的抗干扰设计
继电器是一种将小电流转换为大电流的电子开关装置。

因其工作原理,继电器也可能对系统造成干扰。

以下是一些可行的干扰抑制措施:
(1)选择高品质继电器:高品质继电器可以提高系统的稳定
性和可靠性。

(2)使用反向降噪器:反向降噪器是一种可通过降噪处理来消除继电器干扰的装置。

(3)电磁屏蔽:通过绕制的导线来包裹继电器,以降低其产生的EMI干扰。

(4)避免继电器直接控制电源线:将继电器放在电源后面,避免将大电流的负载直接接到电源线上。

(5)降低开关速度:和电磁阀一样,通过调节电流控制电子开关的速度,也能有效地降低干扰的发生频率。

总体而言,通过科学的抗干扰设计和控制方法,可以有效地减少电磁阀和继电器带来的EMI干扰,在保证系统稳定性和可靠性的同时,达到合理的系统性能。

控制系统信号干扰与抗干扰措施

控制系统信号干扰与抗干扰措施
路径 . 是 由 多 种 类 型 的信 号 线 构 成 的 . 这 些 信 号 线 除 了 传 输 有效 的数 据 信 息 之 外 . 还 会 引 入 一 些 外 部 干 扰 信 号 。一 种 是
通 过 共用 电源 串人 的 干 扰 . 这 类 干 扰 不 易 被 发 现 。另 一 种 是
途径 . 或 把 干 扰 强 度 降到 最 大 可 能 低 的 限 度 内 , 并 增 强 设 备
器是用三相电的 。 有零线 、 火线和地线 。 零 线 与 火 线 之 间 的 干
扰 叫 做差 模 干 扰 . 火线 与 地 线 之间 的干扰 叫做共 模 干 扰 。 差 模
干 扰 就是 线 与线 之 间 的 干扰 . 共 模 干扰 是 线 与地 之 间 的 干扰 。
种, 主 要 包 括 屏蔽 地 、 保护地 、 系 统 地 等 。 由于 目前 工 程 上 的 接 地 系统 施 工 并 不 规 范 . 控 制 系 统 的 接 地 常 常 存 在 各 个 接 地 点 的电位分布不均 . 不 同 接 地 点 间存 在 电 位 差 . 从 而 引 起 地 环 路 电流 。 产生干扰 , 影 响 系 统 正 常工 作 。 例 如测 量 电缆 的屏 蔽层 必须单点接地 . 如果 电缆屏蔽层 的两端都 接地 . 就 容 易 存 在 电位 差 . 产 生 电 流 通过 屏 蔽 层 。 尤其是在雷击发生时 . 接 地 线 中 的 电位 差 将 更 大 , 产 生 的 电 流 也 更 大 。此 外 , 在大地 、 接地 线 和屏 蔽 层 之 间有 可 能 构成 闭合 环路 . 在 变 化 磁 场 的作 用下 , 会有感应电流出现在屏蔽层 内。 通 过 耦合 . 在 芯 线 上 产 生 干 扰信 号 回路 。若 系统 地 与 强 电接 地 处 理 混 乱 。 所 产 生 的 接地 环 流 就 更 有 可 能在 地 线 上产 生 不 等 的 电 位 分 布 . 尤 其 是

工业自动化控制系统的抗干扰技术分析

工业自动化控制系统的抗干扰技术分析

工业自动化控制系统的抗干扰技术分析工业自动化控制系统的抗干扰技术是指采用各种方法和措施,来消除或抑制在系统中出现的各种外来干扰,确保系统的可靠性、稳定性和正确性。

随着工业自动化控制系统的应用越来越广泛,对抗干扰技术的要求也越来越高。

在工业自动化控制系统中,主要的外来干扰包括电磁干扰、电力干扰、地线干扰、热干扰等。

下面介绍几种主要的抗干扰技术。

1. 屏蔽技术屏蔽技术是通过在电气设备的内部或外部包覆屏蔽材料,来防止电磁波向设备传递,从而达到抑制干扰的目的。

屏蔽技术的优点是结构简单、易于实现,但其缺点是耗费的成本较高,生产周期较长。

2. 线路设计正确的线路设计能够显著地降低外部干扰对系统的影响。

对于电源线、信号线、地线的设计,需要充分考虑其长度、布局位置以及电器元件的受电量。

例如,在连接耦合器时,最好将信号和电源线相分离,并采取盐稳压、滤波等措施,以保证干净的电源线。

3. 综合降噪技术综合降噪技术包括软件和硬件两种方式。

在软件方面,可以通过编写程序对采样数据进行处理以降低噪声,还可利用滤波技术进行降噪。

在硬件方面,可以采用例行的电气清洗和维护,以保障系统的正常运行。

4. 外部配套设备防护工业自动化控制系统中的外部配套设备, 如变频器等, 也经常会出现影响系统正常工作的干扰, 因此需要采取防护措施, 确保其正常工作。

常见的方法包括: 在配套设备关键部分的电路上添加RC滤波器, 使用交流滤波器和电源滤波器等。

总结:上述抗干扰技术不仅可以降低电器元件被外部干扰的风险, 还能大大提高设备的可靠性和性能。

因此, 工业自动化控制系统中必须要考虑到抗干扰技术的应用, 以增强其稳定性和可靠性。

电气控制系统的抗干扰技术措施

电气控制系统的抗干扰技术措施

电气控制系统的抗干扰技术措施电气控制系统的抗干扰技术措施主要是为了保证系统的稳定性和可靠性,减少外部干扰对系统的影响。

在电气控制系统中,常见的干扰源包括电磁干扰、电压浪涌、电网电压波动、噪声等。

下面将对电气控制系统的抗干扰技术措施进行详细介绍。

首先,针对电磁干扰,可以采取以下技术措施:1.电磁兼容性(EMC)设计:在系统设计的早期阶段,应考虑到电磁兼容性,合理布局电气设备,减少电气设备之间的相互干扰。

2.地线设计:合理设计地线系统,将设备的金属壳体接地,形成完善的地网,以减少电磁辐射。

3.屏蔽设计:对于特别敏感的设备,可以采用屏蔽措施,如金属屏蔽盒,减少外界电磁场对设备的干扰。

4.滤波器设计:在电源输入端加装滤波器,可以将高频噪声滤除,减小对系统的影响。

其次,对于电压浪涌和电网电压波动引起的干扰,可以采取以下技术措施:1.过压保护器:在电源输入端安装过压保护器,当电压超过设定值时,自动切断电源,以保护系统设备。

2.电容器滤波器:在电源线上并联安装电容器滤波器,能够阻抗电网电压变化的高频干扰。

3.稳压器:通过电压稳定器,将电源的输出保持在一个稳定的范围内,避免电网电压波动对系统的影响。

此外,针对噪声引起的干扰,可以采取以下技术措施:1.屏蔽技术:对于特别敏感的电气设备,可以采用金属屏蔽技术,将设备屏蔽起来,减少噪声的干扰。

2.滤波器:在信号输入端设置滤波器,能够将高频噪声滤除,保证输入信号的准确性。

3.悬空引线:对于特别敏感的信号线,可以使用悬空引线的技术,将信号线与其他线路分开,减少噪声的传导。

另外,还有一些通用的技术措施1.输入电源隔离:使用隔离变压器或光电隔离器,将输入电源与外部干扰隔离开来,减少外来干扰的传导。

2.过滤器:在信号线上使用低通滤波器、带通滤波器或高通滤波器,以根据实际需求滤除特定频段的干扰信号。

3.增加缓冲区:通过增加缓冲区,可以减小外部干扰对系统的影响,并提高系统的稳定性。

关于电梯控制系统抗干扰分析及解决措施

关于电梯控制系统抗干扰分析及解决措施

关于电梯控制系统抗干扰分析及解决措施摘要:电梯控制系统大量使用的场所容易受到外部和内部电磁干扰。

控制系统性能的不稳定会导致电梯故障频发,大大降低电梯的舒适性和安全可靠性。

电磁环境恶化给电梯运行环境带来的影响已不容忽视。

对于已经选用或投入使用的电梯,其设计或选用的控制电路、控制方式、系统组成均已成型并进入使用过程。

随着电磁环境进一步恶化、设备老化等因素,必须保证或改善电梯的电磁兼容性。

关键词:电梯控制系统;抗干扰分析;措施引言接地线和接地体合称为接地装置。

电气上的“地”,是指电位等于零的地方。

电气设备的接地部分,如接地的外壳和接地体等,与零电位的“大地”之间的电位差,称为接地部分的对地电压。

当电气设备发生接地故障时,就有电流通过接地体向大地作半球形散开,这一电流称之为接地电流。

接地电流向大地散流过程中遇到的电阻,称为接地电阻。

电梯控制系统是一个比较复杂的弱电控制系统,随着电力电子装置在电梯控制中的广泛应用,其抗干扰和各种接地保护措施也日益显得重要。

在电梯控制系统中,接地保护主要包括信号接地保护、安全接地保护和防雷击接地保护等。

1磁干扰分析电梯电控系统产生电磁干扰的主要原因有:电梯电控系统的传输通道或耦合路径、电磁干扰源、敏感设备等。

电磁干扰源可以不含任何与任何信号电磁现象无关的信息;它可能是电磁噪声,也可能是其他无用的信号;它是由电压和电流的急剧变化引起的,而电梯控制系统受到的干扰源来自于系统外部设备和系统内部设备两个方面,也就是系统内干扰和系统间干扰。

控制系统内部的干扰源主要是印制板电路中的电子元件和集成芯片包等,只要有脉冲电流流过,都有可能向外发射电磁波,对周围的其他设备产生电磁干扰;同时系统外部所带来的干扰源主要是控制系统的通信设备和电子设备也会产生相互严重干扰,也可引起电力系统局部并联谐振或串联谐振,造成设备不能工作甚至烧毁。

因此,控制系统中任何一个电子设备都可能成为一个干扰源。

电磁干扰按传播途径可以分为辐射干扰和传导干扰两种。

PLC控制系统的干扰源及抗干扰措施

PLC控制系统的干扰源及抗干扰措施

PLC控制系统的干扰源及抗干扰措施PLC控制系统的干扰源主要包括电磁干扰、电源噪声、开关干扰以及环境干扰等。

这些干扰源可能会导致PLC控制系统中的信号干扰、误触发、故障等问题。

为了保证PLC控制系统的稳定和可靠运行,需要采取一些抗干扰措施。

以下将详细介绍PLC控制系统的干扰源及抗干扰措施。

电磁干扰是PLC控制系统中常见的干扰源。

电磁干扰可以通过电缆、接口、线路等途径进入PLC系统中。

电磁干扰会造成PLC系统中的信号干扰,导致PLC输入/输出模块的误触发或失效。

为了抵御电磁干扰,可以采取以下措施:1.使用屏蔽电缆:将PLC系统的输入/输出信号线采用屏蔽电缆,可以有效地减小电磁干扰的影响。

2.增加滤波器:在PLC系统的电源线路中增加滤波器,可以过滤掉电源线上的噪声,减小电磁干扰。

3.设备隔离:对于容易受到电磁干扰的设备,可以将其与其他设备进行隔离,减少干扰的传导。

4.绝缘:对PLC系统中的输入/输出信号线进行绝缘处理,以减少干扰的传递。

电源噪声是另一个常见的干扰源。

电源噪声可能来自于电源本身或者是其他设备在电源线上引入的干扰。

电源噪声会干扰PLC系统的稳定运行,造成信号误触发、系统死机等问题。

以下是一些防止电源噪声的措施:1.使用稳压电源:采用稳压电源可以保证PLC系统的电压稳定,减少电源噪声的影响。

2.增加滤波器:在PLC系统的电源线路中增加滤波器,可以过滤电源线上的噪声,减少电源噪声对PLC系统的干扰。

3.接地处理:良好的接地可以有效地减少电源噪声的传递。

确保PLC系统和其他设备的接地良好,并使用合适的接地线缆。

开关干扰是指当开关设备(如电机、继电器等)开关时,由于电磁感应或接点弹跳等原因造成的干扰。

开关干扰会导致PLC输入/输出模块的误触发、稳定性下降等问题。

以下是一些防止开关干扰的措施:1.使用阻尼元件:在开关设备的输入端口和输出端口上安装阻尼元件,可以减小开关干扰的影响。

2.触发级联:对于容易受到开关干扰的PLC输入/输出模块,可以采用级联触发的方式,将干扰传递到多个模块上,减小干扰对单个模块的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 传感器抗干扰
一、干扰类型 (1) 机械干扰:
是由于机械的振动或冲击,使传感器系统的敏感和
转换元件发生振动、变形,使连接导线发生位移等,这 些都将影响传感器电路的正常工作。 (2) 热干扰: 设备和元器件在工作时产生的热量所引起的温度波 动以及环境温度的变化等会引起传感器电路的元器件参 数发生变化,从而影响了传感器电路的正常工作。
(5)会对邻近的通信系统产生干扰;
2 变频器的干扰与抗干扰
电磁干扰的抑制与处理
对EMC问题的研究就是对干扰源、耦合途径、敏感 设备三者之间关系的研究。大多数时候解决干扰的基本方
法是:屏蔽、滤波或接地。
2 变频器的干扰与抗干扰
谐波的传播途径是传导和辐射,解决传导干扰主要 是在电路中把传导的高频电流滤掉或者隔离;解决辐射 干扰就是对辐射源或被干扰的线路进行屏蔽。具体常用 方法: (1)变频系统的供电电源与其他设备的供电电源相互独 立,或在变频器和其他用电设备的输入侧安装隔离变压 器或滤波器,切断谐波电流。 (2)在变频器输入侧与输出侧串接合适的电抗器,或在
(2)影响各种电气设备的正常工作,除了引起附加损耗外,还可
使电机产生机械振动、噪声和过电压,使变压器局部严重过热,使 电容器、电缆等设备过热、绝缘老化、寿命缩短,以致损坏; (3)会引起公用电网中局部并联谐振和串联谐振,从而使谐波放 大,使前述的危害大大增加,甚至引起严重事故; (4)会导致继电保护和自动装置误动作,并使电气测量仪表计量 不准确;
以采用滤波、选频、双绞线、对称电路和负反馈等措施。 (4) 采用软件抑制干扰: 对于已进入电路的干扰,用硬件措施又不易实现或不易 奏效,可以考虑在采用微处理器的智能传感器电路中,通过
编写一定的程序进行信号处理和分析判断,达到抑制干扰的
目的。
1 传感器抗干扰
五、抑制电磁干扰的技术 1、屏蔽技术 用低电阻材料或高磁导率材料制成容器,将需要防 护的部分包起来。这种防静电或电磁感应所采取的措施 称为“屏蔽”。屏蔽的目的是隔断场的耦合,既抑制各
2 变频器的干扰与抗干扰
2、 变频器对外界设备的干扰 起动变频器后,机床报警,经查找,电机线和监视电 机的接近开关线穿在一根管里,接近开关接在PC机的输 入端,当起动变频器后,高次谐波干扰了接近开关信号, 使PC机误动作,产生机床报警,把穿在同一根管里的接 近开关线或电机线任何一种改为屏蔽线后即恢复正常,这 属于变频器对外界弱电设备干扰。
影响。 (8) 电和磁干扰: 电和磁可以通过路和场两个路径对传感器系统形 成干扰,这种干扰是最普遍和严重的干扰。
1 传感器抗干扰
二、电磁干扰分类 (1) 从噪声产生的来源分类 ①固有噪声源:是指器件内部物理性的无规则波动所 形成的噪声。它有热噪声、散粒噪声和接触噪声等。 ②人为噪声源:是指各种电气设备所产生的噪声。它 有工频噪声、射频噪声和电子开关通断形成冲击噪声。 ③自然噪声源和放电噪声:自然噪声主要指雷电形
计者管理权限范围内的噪声源可以消除或抑制。 (2) 破坏干扰的耦合通道: 对于以“路”的形式侵入的干扰,可以采用阻 截和给予低阻通路的办法,使干扰不能进入接收电
路。
8.1 传感器抗干扰
(3) 消除接收电路对干扰的敏感性: 高输入阻抗电路比低输入阻抗电路易接收干扰,模拟电
路比数字电路易接收干扰。为消弱电路对干扰的敏感性,可
1 传感器抗干扰
⑥对于化学干扰,一般采取的措施是密封和保持传感器的
清洁。
⑦对于射线辐射干扰,主要是对射线进行防护,国家有专 门的规范。
⑧对于电和磁的干扰,针对不同的电磁干扰类型采取不同
相应措施。
1 传感器抗干扰
四、抑制电磁干扰的基本方法 (1) 消除和抑制干扰源:
能从根本上消除和减小干扰,但只有部分在设
干扰。
(5)变频器使用专用接地线,且用粗短线接地。 (6) 适当降低载波频率。
(7) 若用通讯功能,RS485通讯线用双绞线。
2 变频器的干扰与抗干扰
(8)检查信号线是否破损。 (9)增加变压器的容量,减少回路的阻抗及切断传输 线路法。采用带屏蔽层的变压器,且屏蔽层要可靠接地。 (10)在控制电源的输入端加入线路滤波器,减少变频 器辐射干扰对线路的影响。 (11)控制信号如是模拟量请在控制信号线上并联一个 磁片或者在信号线上加磁环,根据实际情况一般104磁片即 可,一般情况下磁环的匝数越多越好。 (12)避免变频器动力线与信号线平行布线, 应分散布 线。 当信号电缆、控制电缆必须与电源电缆有交叉时,
8.2 变频器的干扰与抗干扰
变频器谐波的产生的原因
众所周知,电机的转速和电源的频率是线性关系。变频器输入部分
为整流电路,输出部分为逆变电路,这些都是由非线性元件组成的,在 开断过程中,其输入端和输出端都会产生高次谐波。另外变频器输入端
的谐波还会通过输入电源线对公用电网产生影响。谐波产生的根本原因
任何重复的波形都可以分解为含有基波和各次谐波的无穷级数。 变频器输入侧产生谐波机理:对于变频器而言,只要是电源侧有整 流回路的,都将产生因非线性引起的谐波。以三相桥整流电路为例,交 流电网电压为一正弦波,交流输入电流波形为方波,对于这个波形,按 傅氏级数可分解为基波和各次谐波,通常含有6m±1(m=1,2,…)次谐波,
成的放电现象。放电现象的起因除雷电外,还有各种电气
设备所造成的,主要有:火花放电、电晕放电、放电管放电 等。
1 传感器抗干扰
(2) 从干扰的表现形式分类 ①规则干扰:电源的波纹、放大器的自激振荡等形
成有一定规律的干扰。
②不规则干扰:有些元器件的额定值和特性随使用 条件而变形成不规则的干扰。 ③随机干扰:接触不良、空间电磁耦合等引起随机 的干扰。
相绝缘。主要抑制来自接线的干扰,其优点是抗干扰性能
好,缺点是电子设备容易产生静电积累。 6、对称电路 对称电路有抑制干扰的能力,在不对称电路中,为使 传输导线在传递信号过程中所检拾的噪声不对电路造成干
扰,可用两个变压器把信号传输线变成对称电路,使噪声
在变压器原边处互相抵消,从而抑制了信号传输线引进的干 扰。
2 变频器的干扰与抗干扰
变频器干扰问题一般分为两大类:
(1) 外界设备产生的电磁波对变频器干扰。
(2) 变频器对其它弱电设备干扰。
2 变频器的干扰与抗干扰
1、 外界设备对变频器的干扰 案例:某厂电机偶尔停不下来,经检查屏蔽层接地正 确良好,降低载波频率不起作用。变频器输入侧及输出侧 加磁环滤波器不起作用,后来发现,机床配电柜相邻房间 是动力配电室,变频器离配电室配电柜大约有1.5m,全厂 有3台30kW电炉和两台45kW机床用电机,配电室配电柜 电室后即恢复正常,这属于 外界设备对变频器干扰。
1 传感器抗干扰
7、隔离技术 可以在两个电路之间加一个隔离变压器或电容,加入隔
离变压器后两电路之间电的联系被切断,以磁的形式传递
信号,从而抑制了干扰的影响。也可在两个电路之间加入一 个光耦合器,光耦合器把两电路间的地环回路完全隔断,
信号靠光传递,更能有效地抑制地线干扰。
8、滤波 它是一种只允许某一频带信号通过或阻止某一频带信 号通过的一种抑制干扰措施。滤波方式有无源滤波、有源 滤波和数字滤波。
2 变频器的干扰与抗干扰
对EMC没有严格要求的工控现场,可以将电机外壳和
变频器外壳用导线连接,然后接地,这样,即完成了电机的
保护接地,又使电机产生的高频噪声电流Ism 能沿保护接地 线流到变频器外壳,然后在变频器的输入端安装高频噪声滤
另一类接地称为屏蔽接地,采用屏蔽层接地,能起到良好 的抗干扰作用。
4、铁氧体抑制元件
采用铁氧体抑制元件应安装在尽可能接近干扰源的地
方,这样可防止噪声耦合到其它地方。在使用空间允许的
情况下,选择尽量长、尽量厚和内径尽量小的铁氧体抑制 元件,可有效地将噪声衰减掉。
1 传感器抗干扰
5、浮置技术 将电子设备地线系统与接大地系统及其它导电结构互
控制系统抗干扰措施
主讲:王玉昆
1 传感器抗干扰
在实际检测系统中,传感器的工作环境是比较复杂和
恶劣的,它所输出的电信号幅值很小,,并且与电路之间的
连接具有一定的距离,这时需要传送信号的电缆电阻和传感 器的内阻以及放大电路等产生的噪声,再加上环境噪声都
会对放大电路造成干扰,影响其正常工作。
因此,必须采取有针对性的措施来提高传感器电路的 抗干扰能力。
(5) 尘埃干扰: 环境灰尘的加重,也会造成漏电流增加,电路的参
数发生改变,同样影响传感器电路的正常工作。
(6) 化学干扰: 化学物品中的酸、碱及腐蚀性气体等通过腐蚀作用 损坏元器件。造成传感器电路不能正常工作。
1 传感器抗干扰
(7) 射线辐射干扰: 射线会使气体电离、半导体激发出电子—空穴时,
金属逸出电子等,从而使传感器系统的正常工作受到
1 传感器抗干扰
(3) 从干扰出现的区域分类 ①内部干扰:电路的过度过程、寄生反馈等引起的
干扰属于内部干扰。
②外部干扰:电网电压波动、电磁辐射等属于外部 干扰。
1 传感器抗干扰
(4) 从干扰对电路作用的形式分类
①差模干扰:这种干扰和有用信号叠加起来直接作
用于输入端,它直接影响到测量结果。 ②共模干扰:不直接对测量结果造成影响,但当信号 输入电路不对称时,它会转化为差模干扰,对测量产生更 为严重的影响。
1 传感器抗干扰
三、抑制干扰的基本方法 ①对于机械干扰,主要是采取减振措施来解决。 ②对于热干扰,通常采取的方法有热屏蔽、恒温措施、对 称平衡结构、温度补偿技术等。 ③对于光干扰,可以对半导体元器件用光屏蔽来抑制。 ④对于湿度干扰,可以采取防潮措施,如浸漆、环氧树脂
或硅橡胶封灌等。
⑤对于尘埃干扰,可以采取将传感器密封起来,以及增加 其它的防尘措施。
输入侧安装谐波滤波器,滤波器的组成必须是LC型,吸
相关文档
最新文档