电路理论基础》(第三版 陈希有)习题答案第十章
电路理论基础(陈希有)习题解答10-14
uC (0 ) uC (0 ) 24V iL (0 ) iL (0 ) 2A
由 KVL 得开关电压:
6
6 3
Ri
u(0 ) uC (0 ) 8 iL (0 ) (24 8 2)V 8V
(b)
答案 10.3 解: t 0 时电容处于开路, i 0 ,受控源源电压 4i 0 ,所以 等 效 电 阻
由换路定律得:
t0
4 4
时 电 感 处 于 短 路 , 故
Ri
(b)
8
3 i L (0 ) 9A 3A ,由换路定律得: 63 iL (0 ) iL (0 ) 3A
求等效电阻的电路如图(b)所示。 ,
等效电阻
Ri (4 // 4) // 8 1.6
时间常数
求稳态值的电路如图(b)所示。 i ( ) 2 2 10V 3 3 4 Ri iL ( ) 4 2 2
(b) (c)
(b)
Ri (
时间常数
6 3 3 1.5 )k 3k 6 3 3 1.5
3 6 3
答案 10.13
解:当 t 0 , r 列 KVL 方程得:
-1-
答案 10.1
解: t
0 时,电容处于开路,故 uC (0 ) 10mA 2k 20V
t 0 时,求等效电阻的电路如图(b)所示。
i 6 3 4i
iL (t ) iL (0 )e t / 3e 2t A (t 0)
电感电压
由换路定律得:
u1 (t ) L
由换路定律得
L / Ri 0.5s
由三要素公式得: 解 得 A 答案 10.9 解:当 t 原始值
《电路理论基础》(第三版陈希有)习题答案第十章
i答案10.1解:t ::: 0时,电容处于开路,故u C (0 _) = 10mA 2k 「- 20V 由换路定律得:u C (0 .) +(0”20V换路后一瞬间,两电阻为串联,总电压为 u C (0 )。
所以再由节点①的KCL 方程得:i C (0 ) =10mA -i 1(0 .)二(10-5)mA =5mA答案10.2解:t :::0时电容处于开路,电感处于短路,3门电阻与61电阻相并联,所以45V6i(0J3A ,L(0Ji(0」= 2A(5+8 + 6 3)0 6+36+3u C (0J =8 i(0J = 24V 由换路定律得:U C (0 ) 7C (0J =24V ,匚(0.) “L (0_)=2A由KVL 得开关电压:u(0 ) --U c (0 ) 8 匚(0 .)=(-24 8 2)V 8V答案10.3解:t ::: 0时电容处于开路,i =0 ,受控源源电压4i =0 ,所以U C (0 J =U C (0」=U 1(0」61.5V = 0.6V(9 6尸等效电阻i i (0 )=%(0 .) (2 2)k 」=5mA(b)所示。
R 段「4i (6 3)i容i时间常数二 R C 二 0 ・1st 0后电路为零输入响应,故电容电压为:u C (t)二 u C (0 ,)e~ =0.6e A0°V6“电阻电压为:“⑴工―6门 i 6门 ^C-dUc ^0.72e 10t V (t 0)dt答案10.43解:t :::0时电感处于短路,故L(0J= 39A=3A ,由换路定律得:6 + 3i L (0^i L (0J=3A求等效电阻的电路如图(b)所示。
等效电阻R 「6 •色卫=8」,时间常数.二L/R =0.5s6+3t 0后电路为零输入响应,故电感电流为i L (t) =i L (0 .)e^^ =3e 2t A (t _o ) 电感电压._2tu ,(t)二 L 匕二-24e V (t .0)dt31电阻电流为U 36C 汽L +U 1小2八i 3 2e A33「3「31电阻消耗的能量为:W3°= f 30i ;dt = f12/dt =12[-0.25ed=3W答案10.5解:由换路定律得i L (0.) “L (0」=0,达到稳态时电感处于短路,故LG) =20/4=5A求等效电阻的电路如图(b)所示。
《电路理论基础》(第三版 陈希有)习题答案第八章
答案8.1解:)/1()(T t A t f -= T t <<0⎰⎰-==T T dt T t A T dt t f T A 000)/1(1)(1A T t t T A T5.0]2[02=-=⎰-=Tk dtt k T t A T a 0)cos()/1(2ω0)sin(2)]sin()/1(2[020=+⨯-=⎰T T dt t k T k A t k Tk T t A ωωωω ⎰-=Tk dtt k T t A T b 0)sin()/1(2ωπωωωωωk A kT A dt t k T k A t k Tk T t A T T==-⨯--=⎰2)cos(2)]cos()/1(2[020 所以∑∞=+=1sin 5.0)(k t k k AA t f ωπ频谱图如图(b)所示。
.0答案8.2解:电流i 的有效值57.1)2/13.0()2/67.0()2/57.1(12222≈+++=I A只有基波电流与正弦电压形成平均功率,故二端电路输入的平均功率为:95.73)]90(90cos[257.122.94=︒--︒-⨯=P W 注释:非正弦周期量分解成傅里叶级数后,其有效值等于直流分量和不同频率交流分量有效值平方和的平方根。
答案8.3解:对基波︒∠=0100m(1)U V , A 010m(1)︒∠=I 由Ω==-+=10)1(j )1(m )1(m )1(I U C L R Z ωω求得Ω=10R , 01=-CL ωω (1)对三次谐波︒-∠=3050m(3)U V , A 755.1im(3)ψ-∠=I又由Ω+︒-∠==-+=)30(5.28)313(j m(3)m(3))3(i I U C L R Z ψωω (2)所以2225.28)313(=-+CL R ωω (3)将式(1)代入式(3), 解得mH 9.31=L将mH 9.31=L 代入式( 1 ),求得F 3.318μ=C再将C L R 、、值代入式(2),有Ω︒-∠=Ω+=3028.5j26.7)10(i )3(ψZ 解得︒=45.99i ψ答案8.4解: (1) 电压有效值:V 01.80)225()250()2100(222=++=U电流有效值58.74mA )210()220()280(222=++=I (2) 平均功率 kW 42.345cos 210250cos 22050)45cos(280100=︒⨯+︒⨯+︒-⨯=PΩ︒∠=︒∠︒∠=Ω=︒∠︒∠=Ω︒-∠=︒∠︒-∠=k 455.2mA010V 4525k 5.2mA 020V 050k 4525.1mA 080V45100)3()3()2()1(Z Z Z 注释:非正弦周期量分解成傅里叶级数后,某端口的平均功率等于直流分量和不同频率交流分量单独作用产生的平均功率之和。
电路理论基础习题答案
《电路理论基础》(第三版陈希有)习题答案(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--答案解:本题练习分流、分压公式。
设电压、电流参考方向如图所示。
(a) 由分流公式得:23A 2A 23I R Ω⨯==Ω+解得75R =Ω (b) 由分压公式得:3V 2V 23R U R ⨯==Ω+解得47R =Ω答案解:电路等效如图(b)所示。
20k Ω1U +-20k Ω(b)+_U图中等效电阻(13)520(13)k //5k k k 1359R +⨯=+ΩΩ=Ω=Ω++由分流公式得:220mA 2mA 20k RI R =⨯=+Ω电压220k 40V U I =Ω⨯=再对图(a)使用分压公式得:13==30V 1+3U U ⨯答案解:设2R 与5k Ω的并联等效电阻为2325k 5k R R R ⨯Ω=+Ω(1)由已知条件得如下联立方程:32113130.05(2) 40k (3)eqR U UR R R R R ⎧==⎪+⎨⎪=+=Ω⎩由方程(2)、(3)解得138k R =Ω 32k R =Ω再将3R 代入(1)式得210k 3R =Ω 答案解:由并联电路分流公式,得1820mA 8mA (128)I Ω=⨯=+Ω2620mA 12mA (46)I Ω=⨯=+Ω由节点①的KCL 得128mA 12mA 4mA I I I =-=-=-答案解:首先将电路化简成图(b)。
图 题2.5120Ω(a)(b)图中1(140100)240R =+Ω=Ω2(200160)120270360(200160)120R ⎡⎤+⨯=+Ω=Ω⎢⎥++⎣⎦ 由并联电路分流公式得211210A 6A R I R R =⨯=+及21104A I I =-=再由图(a)得321201A 360120I I =⨯=+由KVL 得,3131200100400V U U U I I =-=-=-答案xRx(a-1)图解:(a )设R 和r 为1级,则图题(a)为2级再加x R 。
电路理论基础课后习题答案 陈希有主编 第十到十四章
答案10.1解:0<t时,电容处于开路,故V 20k 2m A 10)0(=Ω⨯=-C u由换路定律得:V 20)0()0(==-+C C u u换路后一瞬间,两电阻为串联,总电压为)0(+C u 。
所以m A 5k )22()0()0(1=Ω+=++C u i再由节点①的KCL 方程得:m A5m A )510()0(m A 10)0(1=-=-=++i i C答案10.2解:0<t时电容处于开路,电感处于短路,Ω3电阻与Ω6电阻相并联,所以A3)363685(V45)0(=Ω+⨯++=-i,A 2)0(366)0(=⨯+=--i i LV 24)0(8)0(=⨯=--i u C由换路定律得:V24)0()0(==-+C C u u ,A 2)0()0(==-+L L i i由KVL 得开关电压:V8V )2824()0(8)0()0(-=⨯+-=⨯+-=+++L C i u u答案10.3解:0<t 时电容处于开路,0=i ,受控源源电压04=i ,所以V 6.0V 5.1)69(6)0()0()0(1=⨯Ω+Ω===--+u u u C C>t 时,求等效电阻的电路如图(b)所示。
等效电阻Ω=++-==5)36(4i ii i i u R 时间常数s 1.0i ==C R τ0>t 后电路为零输入响应,故电容电压为:V e 6.0e )0()(10/t t C C u t u --+==τΩ6电阻电压为:V e 72.0)d d (66)(101t Ctu Ci t u -=-⨯Ω-=⨯Ω-=)0(>t答案10.4 解:<t 时电感处于短路,故A 3A 9363)0(=⨯+=-L i ,由换路定律得: A 3)0()0(==-+L L i i求等效电阻的电路如图(b)所示。
(b)等效电阻Ω=+⨯+=836366i R ,时间常数s 5.0/i ==R L τ 0>t 后电路为零输入响应,故电感电流为 A e 3e )0()(2/t t L L i t i --+==τ)0(≥t电感电压V e 24d d )(21t Lti Lt u --==)0(>t Ω3电阻电流为A e 23632133t L u i u i --=Ω+⨯Ω=Ω=Ω3电阻消耗的能量为:W3]e 25.0[1212304040233=-==Ω=∞-∞-∞Ω⎰⎰t t dt e dt i W答案10.5解:由换路定律得0)0()0(==-+L L i i ,达到稳态时电感处于短路,故A 54/20)(==∞L i求等效电阻的电路如图(b)所示。
电路理论基础(陈希有)课后题答案
答案11.1解: (1)2020001e 1e 1e e )()(-ssdt s stdt t t s F stst stst =-=+-==∞-∞-∞-∞----⎰⎰ε (2)20)(20)(00)(1e)(1e 1e e )(e )(-ααααεααα+=+-=+++-==∞+-∞+-∞-∞-----⎰⎰s s dts s t dt t t s F ts t s st st t答案11.2解:)/1(//1)(1τττ+=+-=s s A s A s A s F 由拉氏变换的微分、线性和积分性质得:)/1(/)()()/(]/)([)()]0()([)(22111112ττ+++=++=++-=-s s A c bs as s F s c b as s s F c s bF f s sF a s F答案11.3解:设25)}({)(11+==s t f s F L ,52)}({)(22+==s t f L s F 则)5)(2(10)()(21++=s s s F s F)(1t f 与)(2t f 的卷积为)e e (310]e 31[e 10e e 10e 2e 5)(*)(520350350)(5221t t t tt ttt d d t f t f --------=⨯==⨯=⎰⎰ξξξξξξ对上式取拉氏变换得:)5)(2(10)5121(310)}(*)({21++=+-+=s s s s t f t f L 由此验证)()()}(*)({2121s F s F t f t f =L 。
答案11.4解:(a)6512)(2+++=s s s s F 3221+++=s A s A3|31221-=++=-=s s s A , 3|31221-=++=-=s s s A 所以t t s s t f 321e 5e 3}3523{)(---+-=+++-=L(b))2)(1(795)(23+++++=s s s s s s F 212)2)(1(3221+++++=+++++=s A s A s s s s s 2|2311=++=-=s s s A 1|1321-=++=-=s s s A 所以t t t t s s s L t f 21e e 2)(2)(}21122{)(----++'=+-++++=δδ (c)623)(2++=s s s F 22)5()1(5)5/3(++⨯=s 查表得)5sin(e 53)(t t f t-=答案11.5解:(a) 由运算电路(略)求得端口等效运算阻抗为:11262241)3/(142)]3/(14[21)(22i ++++=++++=s s ss s s s s s Z , 112611430)(22++++=s s s s s Z i (b) 画出运算电路如图11.5(c)所示U )(2s __在端口加电流,列写节点电压方程如下⎩⎨⎧-==++-=-+)2()]()([3)(3)()]5.0/(11[)()1()()()()1(2122s U s U s U s U s s U s I s U s U s由式(2)解得)(144)(2s U s ss U ⨯+=代入式(1)得)()()1221(s I s U s ss =+-+所以1212)(2i +++=s s s s Y答案11.6解:运算电路如图11.6(b)所示。
电路理论基础(哈尔滨工业大学陈希有第3版)13共44页文档
5 3
6 ② 1
两个子图
③
①
4
3
2
6
②
(a)
③①
4
③
6
②
(b)
有向图:图中的所有支路都指定了方向,则称为有向图;反之为无向图
回 路: 从图中某一节点出发,经过若干支路和节点(均只许经过一次)又 回到出发节点所形成的闭合路径称为回路。 割 集: 连通图的割集是一组支路集合,并且满足:
(1)如果移去包含在此集合中的全部支路(保留支路的两个端点),则 此图变成两个分离的部分。
单树支割集
4
5
3
4
5
3
c1
1
2
6
c2 1
2
6
1
(a)
(b)
(c)
基本割集:每取一个树支作一个单树支图割基本集割,集称为基本割集。
基本割集的方向规定为所含树支的方向。
基本割集的性质 图中3个基本割集 KCL方程是(独立):
c1
i1i5i6 0
c 2 i2i4i5i60
1 3 . 1 网 络 的 图 树
基本要求:掌握网络的图、子图、连通图、割集和树等概念。
1 网络的图
图( graph) :由“点” 和“线”组成。 • “点”也称为节点或顶点(vertex),“线”也称为支路或
边(edge)。 • 图通常用符号G来表示。
图 (a) 电路只含二端元件,对应的图如图 (b)所示。
用点表示王宫,用线表示王宫间的 道路,便抽象成图。问题变成该图 是否为平面图?
4 四色定理
四色问题:只须4种不同颜色,就能使平面地图上任何两个相 邻的国家的颜色不同。
图论问题:用点表示国家,用边表示国家直接相邻。证明只 须4种颜色就可使所有相邻顶点具有不同颜色。
电路理论基础(哈尔滨工业大学陈希有第3版) 第6章-第10章
例题
6.2
分别写出代表正弦量的相量
i3 5cos t 60) ( , 解 i1 I1m 30 A
( , i1 3cos t , i2 4cos t 150) i4 6sin( t 30) .
i2 I 2m 4 150 A 5120 A I i3 5 cos t 60 ) 5 cos( t 60 180 ) ( 3m i4 6 sin( t 30) 6 cos( t 30 90) I 4m 6 60 A
m
解
当u和ψ的参考方向符合右螺旋定则时 d
u dt
根据正弦量的相量表示的惟一性和微分规则,与上述微分关系 对应的相量关系式为
U m j m 或
1 m Um j
6.3
基尔霍夫定律的相量形式
基本要求:透彻理解相量形式的基尔霍夫定律方程,比较与线性直流电路相应方 程的异同。
2 2
U 3 j4 V 490 V
u3 4 2 cos t 90 ) (
关于相量说明
1. 相量是复值常量,而正弦量是时间的余弦函数,相量只是代表正弦量,而不 等于正弦量。 +j I m1 2. 复平面上一定夹角的有向线段 初 I m2 ——相量图6.7所示 振 相
m1 m2
充要条件为
(2) 线性性质
Am1 Am2
(3) 微分规则 正弦量(角频率为 ) 时间导数 的相量等于表示原正弦量的相 量乘以因子 j 即设 f (t ) Re[ Am e jt ] ,则 d f (t ) Re[ jAm e jt ] dt
N个同频率正弦量线性组合 (具有实系数)的相量等于 各个正弦量相量的同样的线 性组合。设 f k (t ) Re[ Amk e j t ] ( bk 为实数),则
电路理论基础(哈尔滨工业大学陈希有第3版)10
t O τ1 τ 2 τ 3
不同 τ 值对应的 u C 变化规律
1 2 1 2 1 2 We (0+ ) = CuC (0+ ) = CuC (0− ) = CU0 2 2 2 电容的原始储能
2 RL电路的零输入响应 KVL方程
I0
R
+ uR
iL
−
iL
di uL + uR = L L + RiL = 0 dt 特征方程
uL
I0
O
t
O
(a)
− RI 0
t
(b)
换路时电感两 端可能出现很 高的瞬间电压
iL 和 uL 的变化曲线
τ
=L/R
L越大
2 wL = LiL / 2
τ 越大
R越小
2 p = Ri L
电感储能越多
电阻消耗功率越小
放电时间越长
例题
10.2
S (t = 0)
+ uk −
R2
−
图示电路,已知US=35V,R1=5Ω,R1=5kΩ, L=0.4H。t<0时电路处于直流稳态。 t=0时开关断 US 开。求t>0时的电流iL及开关两端电压uk 。 iL的初始值及时间常数分别为
换路定律
Ψ (0+ ) =Ψ (0− )
iL (0+ ) = iL (0− )
2 除uC 、 iL之外各电压电流初始值的确定 依据电路的结构约束和元件约束,在t=0+瞬间有: KVL KCL
∑u(0 ) = 0 ∑i(0 ) = 0
+ +
= Gu 电阻元件 uR (0+ ) = Ri R (0+ ) 或 iR (0+ ) =GuR (0+ )
《电路理论基础》(第三版 陈希有)习题答案第六章
答案6.22解:对图(a)电路做戴维南等效,如图(b)所示。
OC U inZ (b)i j 1/(j )Z L C ωω=+ (1)SOC j I U Cω=(2) 由图(b)可知,当i 0Z =时,电阻两端电压U 与电阻R 无关,始终等于OC (0)U R ≠。
由式(1)解得1/100rad/s ω== 将式(3)代入式(2)得OC 1100A 1090V j100rad/s 0.01FU U ==∠︒⨯=∠-︒⨯90V u t ω=-()答案6.23解:先对图(a)电路ab 端左侧电路作戴维南等效,如图(b)所示。
U iZ (b)令32000rad/s 210H 4L X L ω-==⨯⨯=Ω得等效阻抗i 4j48//8//j42(1j)4j4Z Ω⨯Ω=ΩΩΩ==+ΩΩ+Ω由OCi 1j U i Z R Cω=++知,欲使电流i 有效值为最大,电容的量值须使回路阻抗虚部为零,即:012]j 1Im[=-=++CC R Z i ωω 等效后电路如图(b)所示。
解得1250μF 2C ω==答案6.24解:应用分压公式,输出电压o U 可表示为o n1n 2U U U =-i i 1j 12j U C U R Cωω=-⨯+ i i i j 121j 2(j 1)U U CR U CR CR ωωω-=-=++ 当 0=R , o U 超前于i U 180;当 1R Cω=,o U 超前于i U ︒90;当 ∞→R , o U 与i U 同相位。
即当R 由零变到无穷时,o U 超前于i U 相位差从180到0变化。
答案6.25解:图示电路负载等效导纳为22221j j()j ()()R LY C C R L R L R L ωωωωωω=+=+-+++ (1) 22222222222)()(21)()(C L R LC L R L C L R R Yωωωωωωω++-=⎥⎥⎦⎤⎢⎢⎣⎡+-+⎥⎥⎦⎤⎢⎢⎣⎡+= (2) 由式(2)可见:当)2/(12LC =ω时,Y C ω=与R 无关,电流有效值CU U Y I ω==不随R 改变。
电路理论基础(陈希有)课后题答案
答案13.1解: (1)、(4)是割集,符合割集定义。
(2)、(3)不是割集,去掉该支路集合,将电路分成了孤立的三部分。
(5)不是割集,去掉该支路集合,所剩线图仍连通。
(6)不是割集,不是将图分割成两孤立部分的最少支路集合。
因为加上支路7,该图仍为孤立的两部分。
答案13.2解:选1、2、3为树支,基本回路的支路集合为 {1,3,4},{2,3,5},{1,2,6}; 基本割集的支路集合为 {1,4,6},{2,5,6},{3,4,5}。
答案13.3 解:(1) 由公式l t I B I T t =,已知连支电流,可求得树支电流A 1595111011010654321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡i i i i i i (2) 由公式t t U B U -=l ,已知树支电压,可求得连支电压V 321321100111110654⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡u u u (3) 由矩阵B 画出各基本回路,如图(a)~(c)所示。
将各基本回路综合在一起得题中所求线图,如图13.3(d)所示。
(a)(b)(c)(d)答案13.4解:连支电流是一组独立变量,若已知连支电流,便可求出全部支路电流。
因此除将图中已知电流支路作为连支外,还需将支路3或4作为连支。
即补充支路3或4的电流。
若补充3i ,则得A 11=i ,A 22-=i ,34A 3-i i -=;若补充4i ,则得A 11=i ,A 22-=i ,43A 3-i i -=答案13.5解:树支电压是一组独立变量,若已知树支电压,便可求出全部支路电压。
除将图中已知支路电压作为树支外,还需在支路1、2、3、4、5中任选一条支路作为树支。
即在1u 、2u 、3u 、4u 、5u 中任意给定一个电压便可求出全部未知支路电压。
电路理论教程答案陈希有
电路理论教程答案陈希有【篇一:《电路理论基础》(第三版陈希有)习题答案第一章】电路电流的参考方向是从a指向b。
当时间t2s时电流从a流向b,与参考方向相同,电流为正值;当t2s时电流从b流向a,与参考方向相反,电流为负值。
所以电流i的数学表达式为2a t?2s? i??-3at?2s ?答案1.2解:当t?0时u(0)?(5?9e0)v??4v0其真实极性与参考方向相反,即b为高电位端,a为低电位端;当t??时u(?)?(5?9e??)v?5v0其真实极性与参考方向相同,即a为高电位端,b为低电位端。
答案1.3解:(a)元件a电压和电流为关联参考方向。
元件a消耗的功率为pa?uaia则ua?pa10w??5v ia2a真实方向与参考方向相同。
(b) 元件b电压和电流为关联参考方向。
元件b消耗的功率为pb?ubib则ib?pb?10w1a ub10v真实方向与参考方向相反。
(c) 元件c电压和电流为非关联参考方向。
元件c发出的功率为pc?ucic则uc?pc?10w10v ic1a真实方向与参考方向相反。
答案1.4解:对节点列kcl方程节点③: i4?2a?3a?0,得i4?2a?3a=5a节点④: ?i3?i4?8a?0,得i3??i4?8a?3a节点①: ?i2?i3?1a?0,得i2?i3?1a?4a节点⑤: ?i1?i2?3a?8a?0,得i1?i2?3a?8a??1a若只求i2,可做闭合面如图(b)所示,对其列kcl方程,得 i28a-3a+1a-2a0解得i2?8a?3a?1a?2a?4a答案1.5解:如下图所示(1)由kcl方程得节点①:i1??2a?1a??3a节点②:i4?i1?1a??2a节点③:i3?i4?1a??1a节点④:i2??1a?i3?0若已知电流减少一个,不能求出全部未知电流。
(2)由kvl方程得回路l1:u14?u12?u23?u34?19v回路l2:u15?u14?u45?19v-7v=12v回路l3:u52?u51?u12??12v+5v=-7v回路l4:u53?u54?u43?7v?8v??1v若已知支路电压减少一个,不能求出全部未知电压。
电路理论基础(陈希有)课后题答案
答案12.1解:分别对节点①和右边回路列KCL 与KVL 方程:Cq u u i i qi C L L R C C /===--==ψ将各元件方程代入上式得非线性状态方程:C q C q f f q/)/()(21=--=ψψ方程中不明显含有时间变量t ,因此是自治的。
答案12.2解:分别对节点①、②列KCL 方程: 节点①:=1i 321S 1/)(R u u i q--= 节点②:=2i 423212//)(R u R u u q--= 将)(),(222111q f u q f u == 代入上述方程,整理得状态方程:⎩⎨⎧+-=++-=)/())((/)(/)(/)(4343223112S 3223111R R R R q f R q f q i R q f R q f q答案12.3解:分别对节点①列KCL 方程和图示回路列KVL 方程得:⎩⎨⎧-=-=(2)(1) /323321u u R u i qS ψ 3u 为非状态变量,须消去。
由节点①的KCL 方程得:0413332432=-++-=++-R u u R u i i i i 解得)/()]()([)/()(433224114332413R R R f R q f R R R i R u u ++=++=ψ 将)(111q f u =、)(222ψf i = 及3u 代入式(1)、(2)整理得:⎩⎨⎧++-+-=+++-=Su R R R R f R R R q f R R R f R R q f q)/()()/()()/()()/()(4343224331124332243111ψψψ 答案12.4解:由KVL 列出电路的微分方程:=L u )(sin )(d d 3t R u Ri tS ωβψαψ+-=+-= 前向欧拉法迭代公式:)](sin )([31k k k k t R h ωβψαψψ+-+=+后向欧拉法迭代公式:)](sin )([1311++++-+=k k k k t R h ωβψαψψ梯形法迭代公式:)](sin )()(sin )([5.013131++++-+-+=k k k k k k t R t R h ωβψαωβψαψψ答案12.5解:由图(a)得:tu C u U t C t u Ci R R C R d d )(d dd d S -=-== (1) 由式(1)可知,当0>R i 时,0d d <t u R ,R u 单调减小;当0<R i 时,0d d >tuR ,R u 单调增加。
电路理论基础习题答案
电路理论基础习题答案第一章1-1. (a)、(b)吸收10W ;(c)、(d)发出10W. 1-2. –1A; –10V; –1A; – 4mW.1-3. –0.5A; –6V; –15e –t V; 1.75cos2t A; 3Ω; 1.8cos 22t W.1-4. u =104 i ; u = -104 i ; u =2000i ; u = -104 i ; 1-5.1-6. 0.1A. 1-7.1-8. 2F; 4C; 0; 4J. 1-9. 9.6V,0.192W, 1.152mJ; 16V , 0, 3.2mJ.1-10. 1– e -106t A , t >0 取s .1-11. 3H, 6(1– t )2 J; 3mH, 6(1–1000 t ) 2 mJ;1-12. 0.4F, 0 .1-13. 供12W; 吸40W;吸2W; (2V)供26W, (5A)吸10W. 1-14. –40V , –1mA; –50V, –1mA; 50V , 1mA. 1-15. 0.5A,1W; 2A,4W; –1A, –2W; 1A,2W. 1-16. 10V ,50W;50V ,250W;–3V ,–15W;2V ,10W. 1-17. (a)2V;R 耗4/3W;U S : –2/3W, I S : 2W; (b) –3V; R 耗3W; U S : –2W, I S :5W; (c)2V ,–3V; R 耗4W;3W;U S :2W, I S :5W; 1-18. 24V , 发72W; 3A, 吸15W;24V 电压源; 3A ↓电流源或5/3Ω电阻. 1-19. 0,U S /R L ,U S ;U S /R 1 ,U S /R 1 , –U S R f /R 1 . 1-20. 6A, 4A, 2A, 1A, 4A; 8V, –10V , 18V . 1-21. K 打开:(a)0, 0, 0; (b)10V , 0, 10V; (c)10V,10V ,0; K 闭合: (a)10V ,4V ,6V; (b)4V ,4V ,0; (c)4V,0,4V; 1-22. 2V; 7V; 3.25V; 2V. 1-23. 10Ω.1-24. 14V .1-25. –2.333V , 1.333A; 0.4V , 0.8A.1-26. 12V , 2A, –48W; –6V , 3A, –54W . ※第二章2-1. 2.5Ω; 1.6R ; 8/3Ω; 0.5R ; 4Ω; 1.448Ω; . R /8; 1.5Ω; 1.269Ω; 40Ω; 14Ω. 2-2. 11.11Ω; 8Ω; 12.5Ω. 2-3. 1.618Ω.2-4. 400V;363.6V;I A =.5A, 电流表及滑线电阻损坏. 2-6. 5k Ω. 2-7. 0.75Ω.2-8. 10/3A,1.2Ω;–5V ,3Ω; 8V ,4Ω; 0.5A,30/11Ω. 2-9. 1A,2Ω; 5V,2Ω; 2A; 2A; 2A,6Ω. 2-10. –75mA; –0.5A.2-11. 6Ω; 7.5Ω; 0; 2.1Ω. 2-12. 4Ω; 1.5Ω; 2k Ω. 2-13. 5.333A; 4.286A. 2-14. (a) –1 A ↓; (b) –2 A ↓, 吸20W. 2-16. 3A. 2-17. 7.33V . 2-18. 86.76W. 2-19. 1V , 4W. 2-20. 64W.2-21. 15A, 11A, 17A. 2-23. 7V , 3A; 8V ,1A. 2-24. 4V , 2.5V, 2V. 2-26. 60V . 2-27. 4.5V. 2-28. –18V .2-29. 原构成无解的矛盾方程组; (改后)4V ,10V . 2-30. 3.33 k , 50 k . 2-31. R 3 (R 1 +R 2 ) i S /R 1 .2-32. 可证明 I L =-u S /R 3 . 2-33. –2 ; 4 .2-34. (u S1 + u S2 + u S3 )/3 . ※第三章3-1. –1+9=8V; 6+9=15V; sin t +0.2 e – t V. 3-2. 155V . 3-3. 190mA.i A0 s 1 12 3 1-e -t t 0 t ms i mA 410 0 t ms p mW 4 100 2 25i , A 0.4 .75 t 0 .25 1.25 ms -0.4 (d) u , V 80 0 10-20 t , ms(f ) u , V 1000 10 t , ms (e)p (W) 100 1 2 t (s) -103-4. 1.8倍.3-5. 左供52W, 右供78W. 3-6. 1; 1A; 0.75A.3-7. 3A; 1.33mA; 1.5mA; 2/3A; 2A. 3-8. 20V , –75.38V.3-9. –1A; 2A; –17.3mA. 3-10. 5V , 20; –2V, 4. 3-12. 4.6. 3-13. 2V; 0.5A. 3-14. 10V , 5k .3-15. 4/3, 75W; 4/3, 4.69W. 3-16. 1, 2.25W. 3-18. 50. 3-19. 0.2A. 3-20. 1A. 3-21. 1.6V . 3-22. 4A; –2A.3-23. 23.6V; 5A,10V . 3-24. 52V . ※第四章4-1. 141.1V , 100V , 50Hz, 0.02s,0o , –120o ; 120 o.4-2. 7.07/0 o A, 1/–45 o A, 18.75/–40.9 oA. 4-3. 3mU , 7.75mA .4-4. 10/53.13o A, 10/126.87o A, 10/–126.87oA,10/–53.13oA ;各瞬时表达式略。
电路理论基础(陈希有)习题答案第一章
实际吸收 2W 功率。
答案 1.15 解: (a)对节点①列 KCL 方程得 i1 i i 由 KVL 得
u uR uS i1R uS (1 )iR uS
(b)由 KCL 得
i0 iS i
由 KVL 得
u ri0 Ri0 (r R)i0 (r R)(iS i)
50cos 2 ( t )W
(b) 电路各元件电压、电流参考方向如图(b)所示。 电压源发出功率为 puS uSiS 10V 8cos(t )A
80cos( t )W 由 KVL 可得 u uR uS 8cos( t) 2 10V (16cos t 10)V
答案 1.8 解:由欧姆定律得 30V i1 0.5A 60 对节点①列 KCL 方程 i i1 0.3A 0.8A 对回路 l 列 KVL 方程 u i1 60 0.3A 50 15V 因为电压源、电流源的电压、电流参考方向为非关联,所以电源发出的功率 分别为 P uS 30V i 30V 0.8A 24W
注释:受控电源可能处于供电状态,例如图中的 CCVS,也可能处于用电状 态,例如图中的 VCCS
答案 1.13 解:对回路列 KVL 方程
2 i1 1V l1 1 ri1 + l2 u 2A
回路 l1 :
i1 1 1V i1 1A
回路 l2 :
u 2 2A ri1
将 u 6V, i1 1A 代入,解得 r 2 答案 1.14 解: 设各元件电流参考方向如图所示。 2 i 2V ② i3 ① i2 i1 1 2i 2V l l 2 1 1V 对回路列 KVL 方程: 回路 l1 :
电路理论基础(陈希有)课后题答案
答案15.1解: 波阻抗Ω500400102003c =⨯==++i u Z终端反射系数133c 2c 22=+-=Z R Z R N故负载承受的电压V k 15.24610200)1331(32222=⨯⨯+=+=++u N u u 答案15.2解:终端反射系数31c c 2=+-=Z Z Z Z N L L始端反射系数1cS cS 1-=+-=Z Z Z Z N这是一个多次反射过程,反射过程如图题15.2所示。
其中v l t d /= 当vlt 20<<时,反射波未达到始端,只有入射波。
mA 30500V 15c 11=Ω===+Z u i i 当vlt v l 42<<时,反射波到达始端, mA 101010302121=--=+-=+++i N N i N i i 当vlt v l 64<<时 ,始端电流为: mA 67.1631031010103022212212121=++--=+-+-=+++++i N N i N N i N N i N i i 达到稳态时mA 15)(211==∞R u i 所以⎪⎩⎪⎨⎧<<<<<<=v l t l/v v l t l/v v l t t i /64 16.67mA /42 10mA /20 mA30)(1 mA 15)(211==∞R u i图题15.2答案15.3解:波从始端传到中点所用的时间为:μs 10s 1010310325831==⨯⨯==-v l t (1)当μs 100<<t 时,入射波从始端发出,尚未到达中点所以 0)(=t i 。
(2)μs 30μs 10<<t 时,入射波已经过中点,但在终端所产生的反射波还没有到达中点。
A 2.0600600240)(c S S 1=+=+==+Z R U i t i(3) μs 60μs 30<<t 时,在终端所产生的反射波已经过中点,并于μs 40=t 时 刻到达始端。
《电路理论基础》(第三版 陈希有)习题解答第六章
答案6.22解:对图(a)电路做戴维南等效,如图(b)所示。
OC U inZ (b)i j 1/(j )Z L C ωω=+ (1)S OC j I U Cω=&& (2)由图(b)可知,当i 0Z =时,电阻两端电压U &与电阻R 无关,始终等于OC(0)U R ≠&。
由式(1)解得1/100rad/s ω== 将式(3)代入式(2)得OC1100A 1090V j100rad/s 0.01FU U ==∠︒⨯=∠-︒⨯&&90V u t ω=-o ()答案6.23解:先对图(a)电路ab 端左侧电路作戴维南等效,如图(b)所示。
U iZ (b)令32000rad/s 210H 4L X L ω-==⨯⨯=Ω得等效阻抗i 4j48//8//j42(1j)4j4Z Ω⨯Ω=ΩΩΩ==+ΩΩ+Ω由OCi 1j U i Z R Cω=++知,欲使电流i 有效值为最大,电容的量值须使回路阻抗虚部为零,即:012]j 1Im[=-=++CC R Z i ωω 等效后电路如图(b)所示。
解得1250μF 2C ω==答案6.24解:应用分压公式,输出电压oU &可表示为 o n1n 2U U U =-&&& i i 1j 12j U C U R Cωω=-⨯+&& i ii j 121j 2(j 1)U U CR U CR CR ωωω-=-=++&&& 当 0=R , o U &超前于iU &180o ; 当 1R Cω=,o U &超前于i U &︒90; 当 ∞→R , o U &与iU &同相位。
即当R 由零变到无穷时,oU&超前于iU &相位差从180o 到0o 变化。
答案6.25解:图示电路负载等效导纳为22221j j()j ()()R LY C C R L R L R L ωωωωωω=+=+-+++ (1) 22222222222)()(21)()(C L R LC L R L C L R R Yωωωωωωω++-=⎥⎥⎦⎤⎢⎢⎣⎡+-+⎥⎥⎦⎤⎢⎢⎣⎡+= (2) 由式(2)可见:当)2/(12LC =ω时,Y C ω=与R 无关,电流有效值CU U Y I ω==不随R 改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案解:0<t 时,电容处于开路,故V 20k 2m A 10)0(=Ω⨯=-C u由换路定律得:V 20)0()0(==-+C C u u换路后一瞬间,两电阻为串联,总电压为)0(+C u 。
所以m A 5k )22()0()0(1=Ω+=++C u i再由节点①的KCL 方程得:m A 5m A )510()0(m A 10)0(1=-=-=++i i C答案解:0<t 时电容处于开路,电感处于短路,Ω3电阻与Ω6电阻相并联,所以A 3)363685(V45)0(=Ω+⨯++=-i ,A 2)0(366)0(=⨯+=--i i L V 24)0(8)0(=⨯=--i u C 由换路定律得:V 24)0()0(==-+C C u u ,A 2)0()0(==-+L L i i 由KVL 得开关电压:V 8V )2824()0(8)0()0(-=⨯+-=⨯+-=+++L C i u u答案解:0<t 时电容处于开路,0=i ,受控源源电压04=i ,所以V 6.0V 5.1)69(6)0()0()0(1=⨯Ω+Ω===--+u u u C C0>t 时,求等效电阻的电路如图(b)所示。
等效电阻Ω=++-==5)36(4i ii i i u R时间常数s 1.0i ==C R τ0>t 后电路为零输入响应,故电容电压为:V e 6.0e )0()(10/t t C C u t u --+==τΩ6电阻电压为:V e 72.0)d d (66)(101t Ctu Ci t u -=-⨯Ω-=⨯Ω-=)0(>t答案解:0<t 时电感处于短路,故A 3A 9363)0(=⨯+=-L i ,由换路定律得: A 3)0()0(==-+L L i i求等效电阻的电路如图(b)所示。
(b)等效电阻Ω=+⨯+=836366i R ,时间常数s 5.0/i ==R L τ 0>t 后电路为零输入响应,故电感电流为 A e 3e )0()(2/t t L L i t i --+==τ)0(≥t电感电压V e 24d d )(21t L tiL t u --==)0(>tΩ3电阻电流为A e 23632133t L u i u i --=Ω+⨯Ω=Ω=Ω3电阻消耗的能量为:W 3]e 25.0[1212304040233=-==Ω=∞-∞-∞Ω⎰⎰t t dt e dt i W答案解:由换路定律得0)0()0(==-+L L i i ,达到稳态时电感处于短路,故A 54/20)(==∞L i求等效电阻的电路如图(b)所示。
(b)等效电阻Ω==6.18//)4//4(i R时间常数s )16/1(/i ==R L τ0>t 后电路为零状态响应,故电感电流为:A )e 1(5)e 1)(()(16/t t L L i t i ---=-∞=τ)0(≥tA e 8e 1651.08/)d d (8)(1616t tL L t i L u t i --=⨯⨯⨯=Ω=Ω=)0(>t答案解:0<t 时电路为零状态,由换路定律得:0)0()0(==-+C C u u0>t 时为简化计算,先将ab 左边电路化为戴维南电路形式。
当ab 端开路时,由02=+i i ,得0=i 所以开路电压V )100cos(210S OC t u u == 当ab 端短路时,Ω⨯==+=3332SSC u i i i i 故等效电阻Ω==1SCOCi i u R , 0>t 时等效电路如图(b)所示。
(b)电路时间常数为s C R 01.0i ==τ。
用相量法计算强制分量p C u :V 4525010j 1j )j /(11)j /(1p ︒-∠=︒∠⨯--=⨯+=OCC U C C U &&ωω V )45100cos(10)(p ︒-=t t u CV 25)45cos(10)0(p =︒-=+C u 由三要素公式得:]e 25)45100cos(10[e )]0()0([)()(100/p p t t C C C C t u u t u t u --++-︒-=-+=τV答案解:0<t 时电容处于开路,由换路定律得:V 6V 9366)0()0(=⨯+==-+C C u u ,∞→t 电容又处于开路,V 12)V 18(366)(-=-⨯+=∞C u等效电阻Ω=Ω+⨯+=10)36368(i R时间常数s 2.0i ==C R τ 由三要素公式得:V )e 1812(e )]()0([)()(5/t t C C C C u u u t u --++-=∞-+∞=τ)0(≥t)e 1812()e 90(16.0d d 8)(55t t C Cu t u C t u --+-+-⨯=+⨯Ω= 所以]e 6.312[)(5t t u -+-= V )0(>t答案解:当0<t 时,列写节点方程求原始值20123)0()2015161(1-=++-u , 解得 V 76.5)0(1=-u 由换路定律得=+)0(L i A 04.2A )6/76.53(6)0(A 3)0(A 3)0(11=-=Ω-=-=---u i i L 换路后的电路如图(b)所示。
(b)列写节点方程得:2012)0()0()20151(1-=+++L i u 解得V 76.5)0(1=+u ,A 888.020)0(V 12)0(1=Ω+=++u i稳态时,电感处于短路,所以A 6.020V 12)(=Ω=∞i等效电阻Ω=+⨯=4205205i R时间常数s 5.0/i ==R L τ 由三要素公式得:)e 288.06.0(e )]()0([)()(2/t t i i i t i --++=∞-+∞=τ A答案解:当0<t 时,电容处于开路,列写节点电压方程求原始值⎪⎩⎪⎨⎧=⨯-+++-=⨯--++----883)0()834121()0(210821)0(21)0()312121(2121n n n n u u u u 解得V 8.4)0(1=-n u ,由换路定律得:V 8.4)0()0()0(1===--+n C C u u u∞→t 电容又处于开路,再列写节点电压方程如下:⎪⎩⎪⎨⎧=∞++∞⨯-=⨯-∞⨯-∞++0)()4121()(210821)(21)()312121(2121n n n n u u u u 解得:V 4)()(1=∞=∞n C u u求等效电阻的电路如图(b)所示。
(b)Ω=+=1)]42//(3//[2i R时间常数s 1i ==C R τ 由三要素公式得:)e 8.04(e )]()0([)()(/t t C C C C u u u t u --++=∞-+∞=τ V答案解:由换路定律得:A 52V10)0()0(=Ω==-+L L i i求稳态值的电路如图(b)所示。
10(b)A 65)2//342(V 10233)(233)(=Ω++⨯+=∞⨯+=∞i i L 求等效电阻的电路如图(c)所示。
等效电阻Ω=Ω++++=4]423)42(32[i R时间常数s 5.04/2/i ===R L τ 由三要素公式得:A )e 51(65e )]()0([)()(2/t t L L L L i i i t i --++=∞-+∞=τ答案解:当0<t 时,电容处于开路,由换路定律得:3V V 9633)0()0()0(1-=⨯+-=-==--+u u u C C ∞→t 电容又处于开路V 3V 9633V 95.133)()()(12=⨯+-⨯+=∞-∞=∞u u u C 求等效电阻的电路如图(b)所示。
(b)等效电阻Ω=Ω+⨯++⨯=k 3k )5.135.133636(i R时间常数s 106F 102103363--⨯=⨯⨯Ω⨯=τ 由三要素公式得V )e 63(e )]()0([)()(610/3t t C C C C u u u t u --+-=∞-+∞=τ (1)设1t t =时,0=C u 。
由式(1)得:0e6313610=--t , 解得:s 1016.42ln 106331--⨯=⨯=t答案解:初始值4mA mA 5144)0()0(=⨯+==-+L L i i 稳态值mA 5.25444)(=⨯+=∞L i 等效电阻Ω=++=k 8314i R时间常数s 101088.043i -=⨯==R L τ 由三要素公式得:mA ]5.15.2[)(410t L e t i -+= 0(≥t )由KVL 得:V )e 1(5.7)(k 3d d )(4103tL L L t i ti L u u t u --=⨯Ω+=+=)0(>t答案解:当0<t ,10r =Ω时,电容处于开路,对回路l 列KVL 方程得:20)0()51010()0(5)0()0(10=++=++----i i ri i解得A 8.0)0(=-i由换路定律得V 4)0(5)0()0(=⨯Ω==--+i u u C C当∞→t 时,5r =Ω,电容又处于开路,再对回路l 列KVL 方程得:20)()5510()(5)()(10=∞++=∞+∞+∞i i ri i解得A 1)(=∞iV 5)(5)(=∞⨯Ω=∞i u C当ab 端短路时 ,电路如图(b)所示。
201i i SC =0=i ,0ri =,A 210V201SC =Ω==i i 等效电阻Ω==∞=5.2A2V5)(SC i i u R C 时间常数i 1R C s τ== 由三要素公式得V )e 5(e )]()0([)()(/t t C C C C u u u t u --+-=∞-+∞=τ)0(≥t答案解:由题接电容时的零状态响应,可得+=0t 和∞→t 时的计算电路,分别如图(b)和(c)所示。
u (c)(b)Su -+u -+u由于电感对直流稳态相当于短路,零状态电感在换路瞬间相当于开路,故接电感在+=0t 和∞→t 时的计算电路分别与接电容时∞→t 和+=0t 时的情况相同。
所以接L 时,初始值(0)10V u +=, 稳态值()5V u ∞=。
由接电容时的响应得时间常数C i 0.5R C τ==,所以 Ω==50i CR Cτ接电感后,i R 不变,故时间常数s 1.0i==R LL τ 将上述初始值、稳态值和时间常数代入三要素公式得10()[55]()V t u t e t ε-=+答案解: 由于S i 为指数函数,故须列写关于i 的微分方程来计算i 的强制分量。
由换路定律得:A 3)0()0(==-+L L i iA 235)0()0()0(S =-=-=+++L i i i (1)根据KVL023d d =--i i t iL L 将i i i L -=S 代入上式化简得t t i L i t iL10S e 25d d 5d d --==+ t i ti10e 5010d d --=+ (2) 由式(1)中得时间常数s 1.010/1==τ等于电流源衰减系数的倒数,故设强制分量为t t A t i 101p e )(-=,代入式(2)解得501-=A 。