2020年沪科版七年级数学下册期末达标检测卷及答案
沪科版七年级下册数学期末考试试题及答案精选全文完整版
可编辑修改精选全文完整版沪科版七年级下册数学期末考试试卷一、选择题(本大题共有10小题,每小题4分,满分40分)1.(4分)下列实数中,是无理数的为()A.3.14 B.C.D.2.(4分)下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与23.(4分)生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子直径约为0.0000002cm,这个数量用科学记数法可表示为()A.0.2×10﹣6cm B.2×10﹣6cm C.0.2×10﹣7cm D.2×10﹣7cm4.(4分)如右图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°5.(4分)把多项式x3﹣2x2+x分解因式结果正确的是()A.x(x2﹣2x)B.x2(x﹣2)C.x(x+1)(x﹣1)D.x(x﹣1)26.(4分)若分式的值为0,则b的值是()A.1B.﹣1 C.±1 D.27.(4分)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.8.(4分)如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°9.(4分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b210.(4分)定义运算a⊗b=a(1﹣b),下面给出了关于这种运算的几个结论:11.①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+(b⊗b)=2ab;④若a⊗b=0,则a=0.其中正确结论的个数()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)化简:=.12.(5分)如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是.13.(5分)若代数式x2﹣6x+b可化为(x﹣a)2﹣1,则b﹣a的值是.14.(5分)观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:.16.(8分)解方程:.四、(本大题共2小题,每小题8分,满分16分)17.(8分)解不等式组:并把解集在数轴上表示出来.18.(8分)先化简,再求值:(1+)+,其中x=2.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,已知DE∥BC,BE平分∠ABNC,∠C=55°,∠ABC=70°.①求∠BED的度数(要有说理过程).②试说明BE⊥EC.20.(10分)描述并说明:海宝在研究数学问题时发现了一个有趣的现象:请根据海宝对现象的描述,用数学式子填空,并说明结论成立的理由.如果(其中a>0,b>0).那么(结论).理由∴,∴则.六、(本题满分12分)21.(12分)画图并填空:(1)画出△ABC先向右平移6格,再向下平移2格得到的△A1B1C1.(2)线段AA1与线段BB1的关系是:平行且相等.(3)△ABC的面积是 3.5平方单位.七、(本题满分12分)22.(12分)列分式方程解应用题巴蜀中学小卖部经营某款畅销饮料,3月份的销售额为20000元,为扩大销量,4月份小卖部对这种饮料打9折销售,结果销售量增加了1000瓶,销售额增加了1600元.(1)求3月份每瓶饮料的销售单价是多少元?(2)若3月份销售这种饮料获利8000元,5月份小卖部打算在3月售价的基础上促销打8折销售,若该饮料的进价不变,则销量至少为多少瓶,才能保证5月的利润比3月的利润增长25%以上?八、(本题满分14分)23.(14分)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值.表2a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a2参考答案与解析1、考点:无理数.专题:应用题.分析:A、B、C、D根据无理数的概念“无理数是无限不循环小数,其中有开方开不尽的数”即可判定选择项.解答:解:A、B、D中3.14,,=3是有理数,C中是无理数.故选:C.点评:此题主要考查了无理数的定义,其中:(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数.(2)无理数是无限不循环小数,其中有开方开不尽的数.(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不循环小数不能化为分数,它是无理数.2、考点:实数的性质.分析:根据相反数的概念、性质及根式的性质化简即可判定选择项.解答:解:A、=2,﹣2+2=0,故选项正确;B、=﹣2,﹣2﹣2=﹣4,故选项错误;C、﹣2+()=﹣,故选项错误;D、|﹣2|=2,2+2=4,故选项错误.故选A.点评:本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.3、考点:科学记数法—表示较小的数.专题:应用题.分析:小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 2=2×10﹣7cm.故选D.点评:本题考查用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、考点:平行线的判定.分析:根据平行线的判定分别进行分析可得答案.解答:解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.点评:此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5、考点:提公因式法与公式法的综合运用.分析:这个多项式含有公因式x,应先提取公因式,然后再按完全平分公式进行二次分解.解答:解:原式=x(x2﹣2x+1)=x(x﹣1)2.故选D.点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6、考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:由题意,得:b2﹣1=0,且b2﹣2b﹣3≠0;解得:b=1;故选A.点评:由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.7、考点:由实际问题抽象出分式方程.专题:应用题;压轴题.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.8、考点:翻折变换(折叠问题).专题:压轴题.分析:根据折叠的性质,对折前后角相等.解答:解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.9、考点:平方差公式的几何背景.分析:第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.解答:解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.10、考点:整式的混合运算.专题:新定义.分析:先认真审题.理解新运算,根据新运算展开,求出后再判断即可.解答:解:∵2⊗(﹣2)=2×[1﹣(﹣2)]=6,∴①正确;∵a⊗b=a(1﹣b)=a﹣ab,b⊗a=b(1﹣a)=b﹣ab,∴②错误;∵a+b=0,∴b=﹣a,∴(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a﹣a2+b﹣b2=0﹣a2﹣a2=﹣2a2,2ab=2a(﹣a)=﹣2a2,∴③在正确;∵a⊗b=0,∴a(1﹣b)=0,a=0或1﹣b=0,∴④错误;即正确的有2个,故选B.点评:本题考查了整式的混合运算的应用,解此题的关键是能理解新运算的意义,题目比较好,难度适中.11、考点:二次根式的性质与化简.分析:根据二次根式的性质解答.解答:解:原式===4.点评:解答此题,要根据二次根式的性质:=|a|解题.12、考点:平行线的性质.专题:计算题.分析:由AB与CD平行,利用两直线平行内错角相等求出∠D的度数,在三角形COD中,利用内角和定理即可求出所求角的度数.解答:解:∵AB∥CD,∠A=20°,∴∠D=∠A=20°,在△COD中,∠D=20°,∠COD=100°,∴∠C=60°.故答案为:60°点评:此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.13、考点:配方法的应用.分析:先将代数式配成完全平方式,然后再判断a、b的值.解答:解:x2﹣6x+b=x2﹣6x+9﹣9+b=(x﹣3)2+b﹣9=(x﹣a)2﹣1,∴a=3,b﹣9=﹣1,即a=3,b=8,故b﹣a=5.故答案为:5.点评:能够熟练运用完全平方公式,是解答此类题的关键.14、考点:尾数特征;规律型:数字的变化类.分析:由31=3,32=9,33=27,34=813,35=243,36=729,37=2187,38=6561…,可知末位数字以3、9、7、1四个数字为一循环,用32014的指数2014除以4得到的余数是几就与第几个数字相同,由此解答即可.解答:解:末位数字以3、9、7、1四个数字为一循环,2014÷4=503…2,所以32014的末位数字与32的末位数字相同是9.故答案为9.点评:此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.15、考点:实数的运算.分析:本题涉及零指数幂、负指数幂、二次根式化简、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式===2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16、考点:解分式方程.专题:计算题.分析:观察可得2﹣x=﹣(x﹣2),所以可确定方程最简公分母为:(x﹣2),然后去分母将分式方程化成整式方程求解.注意检验.解答:解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时有常数项的不要漏乘常数项.17、考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,并在数轴上表示出来即可.解答:解:解不等式①得:x≤3,由②得:3(x﹣1)﹣2(2x﹣1)>6,化简得:﹣x>7,解得:x<﹣7,在数轴上表示为:,故原不等式组的解集为:x<﹣7.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18、考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=•=,当x=2时,原式==1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19、考点:平行线的性质;垂线.专题:计算题.分析:①由BE为角平分线,求出∠EBC的度数,再由DE与BC平行,利用两直线平行内错角相等求出∠DEB度数即可;②由DE与BC平行,得到一对同旁内角互补,求出∠DEC度数,在三角形BEC中,利用内角和定理求出∠BEC为90°,即可得证.解答:解:①∵∠ABC=70°,BE平分∠ABC,∴∠EBC=∠ABC=70°×=35°,又∵DE∥BC,∴∠BED=∠EBC=35°;②∵DE∥BC,∴∠C+∠DEC=180°,∴∠DEC=180°﹣55°=125°,又∵∠BED+∠BEC=∠DEC,∴∠DCE=125°,∵∠BED=35°,∴∠BEC=90°,则BE⊥EC.点评:此题考查了平行线的判定,以及垂直定义,熟练掌握平行线的判定方法是解本题的关键.20、考点:分式的混合运算.专题:图表型.分析:根据题意列出关系式,猜想得到结论,利用分式的加减法则计算,再利用完全平方公式变形即可得证.解答:解:如果++2=ab(其中a>0,b>0),那么a+b=ab;理由:∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.故答案为:++2=ab;a+b=ab;∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21、考点:作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质,对应点的连线平行且相等;(3)利用△ABC所在的正方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.解答:解:(1)△A1B1C1如图所示;(2)AA1与线段BB1平行且相等;(3)△ABC的面积=3×3﹣×2×3﹣×3×1﹣×2×1=9﹣3﹣1.5﹣1=3.5.故答案为:平行且相等;3.5.点评:本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、考点:分式方程的应用.分析:(1)设3月份每瓶饮料的销售单价为x元,表示出4月份的销售量,根据4月份销量量增加1000瓶可得出方程,解出即可;(2)利用(1)中所求得出每瓶饮料的进价,再由5月的利润比3月的利润至少增长25%,可得出不等式,解出即可.解答:解:(1)设3月份每瓶饮料的销售单价为x元,由题意得,﹣=1000解得:x=4经检验x=4是原分式方程的解答:3月份每瓶饮料的销售单价是4元.(2)饮料的进价为(20000﹣8000)÷(20000÷4)=2.4元,设销量为y瓶,由题意得,(4×0.8﹣2.4)y≥8000×(1+25%)解得y≥12500答:销量至少为12500瓶,才能保证5月的利润比3月的利润增长25%以上.点评:本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是设出未知数,表示出3月份及4月份的销售量.23、考点:一元一次不等式组的应用.分析:(1)根据某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”,先改变表1的第4列,再改变第2行即可;(2)根据每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,然后分别根据如果操作第三列或第一行,根据每行的各数之和与每列的各数之和均为非负整数,列出不等式组,求出不等式组的解集,即可得出答案.解答:解:(1)根据题意得:原数表改变第4列得:1 2 3 7﹣2 ﹣1 0 ﹣1再改变第2行得:1 2 3 72 1 0 1(2)∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,则:①如果操作第三列,a a2﹣1 a ﹣a22﹣a 1﹣a22﹣a a2第一行之和为2a﹣1,第二行之和为5﹣2a,,解得:≤a,又∵a为整数,∴a=1或a=2,②如果操作第一行,﹣a 1﹣a2 a a22﹣a 1﹣a2a﹣2 a2则每一列之和分别为2﹣2a,2﹣2a2,2a﹣2,2a2,已知2a2≥0,则:,解得a=1,验证当a=1时,满足不等式,综上可知:a=1.点评:此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的操作要求,列出不等式组,注意a为整数。
2020届沪科版七年级数学下册期末测试卷(有答案)(已审阅)
沪科版七年级数学第二学期期末测试卷一、选择题(每小题4分,共40分)1.给出下列各数:13,0,0.21,3.14,π,0.142 87,1π,其中是无理数的有()A.1个B.2个C.3个D.4个2.如果a>b,那么下列结论一定正确的是()A.a-3<b-3 B.3-a<3-bC.ac2>bc2D.a2>b23.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时∠B=13 6°,那么∠C应是()A.136°B.124°C.144°D.154°4.如图,已知AC⊥BC,CD⊥AB,垂足分别是C,D,那么以下线段大小的比较必定成立的是()A.CD>AD B.AC<BCC.BC>BD D.CD<BD5.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076克,将0.000 000 076用科学记数法表示为()A.7.6×10-8B.0.76×10-9C.7.6×108D.0.76×1096.如果分式x2-12x+2的值为0,则x的值是()A.1 B.0 C.-1 D.±1 7.下列运算正确的是()A .-a 2·3a 3=-3a 6B .(-12a 3b )2=14a 5b 2C .a 5÷a 5=a D.⎝ ⎛⎭⎪⎫-y 2x 3=-y 38x 3 8.已知a ,b 为两个连续整数,且a <19-1<b ,则这两个整数是( )A .1和2B .2和3C .3和4D .4和59.一个三角形的一边长是(x +3)cm ,这边上的高是5 cm ,它的面积不大于20 cm 2,则( )A .x >5B .-3<x ≤5C .x ≥-3D .x ≤510.如图,AB ∥CD ,EG 、EM 、FM 分别平分∠AEF ,∠BEF ,∠EFD ,则下列结论正确的有( )①∠DFE =∠AEF ;②∠EMF =90°;③EG ∥FM ;④∠AEF =∠EG C.A .1个B .2个C .3个D .4个二、填空题(每题5分,共20分)11.因式分解 : a 2-2ab +b 2-1=________.12.如图,∠1的同旁内角是____________,∠2的内错角是____________.13.已知x 2+y 2=3,xy =12,则⎝ ⎛⎭⎪⎫1x -1y ÷x 2-y 2xy 的值为________. 14.如图,直线l 1∥l 2,则∠1+∠2=____________.三、(每题8分,共16分)15.计算:(-4)2+(π-3)0-23-|-5|.16.化简:a 2-9a 2+6a +9÷⎝⎛⎭⎪⎫1-3a .四、(每题8分,共16分)17.解不等式(组),并把解集表示在数轴上:(1)1-x 2+2x +13<1; (2)⎩⎪⎨⎪⎧x -3(x -1)≤7,①1-2-5x 3<x .②18.解分式方程:x x -2-1x 2-4=1.五、(每题10分,共20分)19.先化简,再求值:a 2-6ab +9b 2a 2-2ab ÷⎝ ⎛⎭⎪⎫5b 2a -2b -a -2b -1a ,其中a ,b 满足⎩⎨⎧a +b =8,a -b =2.20.已知代数式(ax-3)(2x+4)-x2-b化简后不含x2项和常数项.(1)求a、b的值;(2)求(2a+b)2-(a-2b)(a+2b)-3a(a-b)的值.六、(12分)21.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”.例如:8=32-12,16=52-32,24=72-52,则8、16、24这三个数都是奇特数.(1)32和2 020这两个数是奇特数吗?若是,表示成两个连续奇数的平方差形式.(2)设两个连续奇数是2n-1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?七、(12分)22.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12 000元购进的科普书与用8 000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10 000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?八、(14分)23.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD上,EF 与AC相交于点G,∠ADB+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,若相等,请说明理由.答案一、1.B 点拨:π与1π都是无理数. 2.B 3.A 4.C 5.A 6.A 7.D8.C 点拨:因为16<19<25,所以4<19<5.所以4-1<19-1<5-1,即3<19-1<4.9.B 点拨:根据三角形面积的公式可以列出不等式12×5(x +3)≤20,解得x ≤5.又因为x +3>0,所以-3<x ≤5.10.C 点拨:因为AB ∥CD ,所以∠DFE =∠AEF ,故结论①正确;因为AB ∥CD ,所以∠BEF +∠DFE =180°,又因为EM 、FM 分别是∠BEF 、∠DFE 的平分线,所以∠MEF +∠MFE =12(∠BEF +∠DFE )=90°,则∠EMF =90°,故结论②正确;由题意易知∠MEG =90°,∠EMF =90°,所以EG ∥FM ,故结论③正确;结论④无法推理出.综上所述,结论①②③正确.二、11. (a -b +1)(a -b -1)点拨:a 2-2ab +b 2-1=(a -b )2-1=(a -b +1)(a -b -1).12.∠3,∠B ;∠3 点拨:当直线AB 、BC 被AC 所截时,∠1的同旁内角是∠3;当直线AB 、AC 被BC 所截时,∠1的同旁内角是∠B ;当直线AB 、CD 被AC 所截时,∠2的内错角是∠3.13.±12 点拨:(x +y )2=x 2+y 2+2xy ,由已知x 2+y 2=3,xy =12,得(x +y )2=4,解得x +y =±2.⎝ ⎛⎭⎪⎫1x -1y ÷x 2-y 2xy =-1x +y,把x +y =±2代入得⎝ ⎛⎭⎪⎫1x -1y ÷x 2-y 2xy =±12. 14.30° 点拨:如图,作l 3∥l 2,l 4∥l 1,则l 3∥l 4,∠1=∠3,∠2=∠4,所以∠5+∠6=180°,所以∠1+∠2=∠3+∠4=125°+85°-(∠5+∠6)=210°-180°=30°.三、15.解:原式=16+1-8-5=4.16.解:原式=(a -3)(a +3)(a +3)2·a a -3=a a +3.四、17.解:(1)去分母,得3(1-x )+2(2x +1)<6,整理,得x <1.在数轴上表示解集如图①所示.① ②(2)解不等式①,得x ≥-2,解不等式②,得x <-12,所以原不等式组的解集为-2≤x <-12.在数轴上表示解集如图②所示.18.解:去分母,得x (x +2)-1=x 2-4,去括号,得x 2+2x -1=x 2-4,移项、合并同类项,得2x =-3.解得x =-1.5.经检验,x =-1.5是分式方程的解.五、19.解:原式=(a -3b )2a (a -2b )÷⎣⎢⎡⎦⎥⎤5b 2a -2b -(a +2b )(a -2b )a -2b -1a =(a -3b )2a (a -2b )÷9b 2-a 2a -2b -1a=(a -3b )2a (a -2b )·a -2b (3b -a )(3b +a )-1a =-a -3b a (a +3b )-1a =-a -3b a (a +3b )-a +3b a (a +3b )=-2a a (a +3b )=-2a +3b .由⎩⎨⎧a +b =8,a -b =2, 解得⎩⎨⎧a =5,b =3,所以原式=-25+3×3=-17. 20.解:(1)(ax -3)(2x +4)-x 2-b=2ax 2+4ax -6x -12-x 2-b=(2a -1)x 2+(4a -6)x +(-12-b ),由结果不含x 2项和常数项,得到2a -1=0,-12-b =0,解得a =12,b =-12.(2)(2a +b )2-(a -2b )(a +2b )-3a (a -b )=4a 2+4ab +b 2-a 2+4b 2-3a 2+3ab=7ab +5b 2.当a =12,b =-12时,7ab +5b 2=7×12×(-12)+5×(-12)2=-42+720=678.六、21.解:(1)32这个数是奇特数,因为32=92-72.2 020这个数不是奇特数.(2)由这两个连续奇数构造的奇特数是8的倍数.理由如下:(2n +1)2-(2n -1)2=(2n +1+2n -1)(2n +1-2n +1)=4n ×2=8n .因为8n 是8的倍数,所以由这两个连续奇数构造的奇特数是8的倍数.七、22.解:(1)设文学书的单价为x 元,则科普书的单价为(x +4)元,根据题意,得12 000x +4=8 000x , 解得x =8,经检验x =8是方程的解,并且符合题意.所以x +4=12.答:文学书和科普书的单价分别是8元和12元.(2)设购进文学书550本后还能购进y 本科普书, 根据题意,得550×8+12y ≤10 000,解得y ≤46623,因为y 为整数,所以y 的最大值为466.答:至多还能购进466本科普书.八、23.解:(1)AD ∥EF .理由如下:因为∠ADB +∠CEG =180°,∠ADB +∠ADE =180°,∠FEB +∠CEF =180°, 所以∠ADE +∠FEB =180°,所以AD ∥EF .(2)∠F =∠H .理由如下:因为AD 平分∠BAC ,所以∠BAD =∠CAD ,因为∠EDH =∠C ,所以HD ∥AC ,所以∠H =∠CGH .因为AD ∥EF ,所以∠CAD =∠CGH ,∠BAD =∠F ,所以∠F =∠H .。
沪科版七年级(下)期末数学试卷含答案.doc
4321D CBA 21abc初中七年级数学试卷1.如果a 的平方根是4±= .2.一种病毒的直径是0.000 000 12m ,用科学计数法表示为 m.3. 比较大小:1.4. 关于x 的某个不等式组的解集在数轴上表示为:(如下图)则原不等式组的解集是 .5.不等式组1023x x +≥⎧⎨+<⎩的整数解是 .6. 若∠1和∠2是对顶角,∠1=25°,则∠2的余角是 °.7. 分解因式:34m m -= .8. 如下图,直线a 、b 被直线c 所截,且a ∥b ,若∠2=38°,则∠1的度数是 °.9. 当x 时,分式24xx -有意义. 10. 某住宅小区5月份随机抽查了该小区6天的用水量(单位:吨),结果分别是30、34、32、37、28、31,那么,请你估计该小区5月份的总用水量约是 吨.二 选择题(每小题3分)11. 已知,如右图AB ∥CD ,可以得到 ( ) A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4 12. 在223.14,,7π这五个数中,无理数的个数是 ( )342ab1A. 1个B. 2个C. 3个D. 4个13. 已知a b <则下列各式正确的是 ( )A. a b <-B. 33a b ->-C. 22a b <D. 33a b ->-14. 下列计算中,正确的个数是 ( )①347x x x += ②33623y y y ⋅= ③ 538()()a b a b ⎡⎤+=+⎣⎦④2363()a b a b = A. 1个 B.2个 C.3个 D. 4个15. 32-与32 的关系是 ( ) A. 互为倒数 B.绝对值相等 C. 互为相反数 D. 和为零 16. 下列各式中,正确的是 ( )A. 22a b a b a b +=++B. 1a b a b --=-+C.1a ba b--=-- D. 22a b a b a b -=-- 17. 下列多项式能用完全平方公式分解因式的有 ( )A .222x x y +- B. 2469x x -+ C. 22x xy y ++ D. 22293x xy y -+18. 如图,下列不能判定a ∥b 条件是 ( ) A.∠1=∠3 B.∠2+∠3=180° C.∠2=∠3 D. ∠2=∠419. 为了考察某班学生的身高情况,从中抽出20名学生进行身高测量,下列说法中正确的是 ( ) A. 这个班级的学生是总体 B. 抽取的20名学生是样本 C. 抽取的每一名学生是个体 D. 样本容量是2020.下列图形中,是由①仅通过平移得到的是 ( )B. C.A. ①(18题图)密 封 线 内 不 要 答 题D.三 解答题(40分)21. 解不等式组,并把其解集在数轴上表示出来(6分)211841x x x x ->+⎧⎨+<-⎩22. 先化解,再求值(8分)2131()111x x x x +-÷+-- ,其中 1x =24. 某校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也住不满,问有多少间宿舍,多少名女生?(8分)25.某车间加工300个零件,在加工完成60个以后,由于改进操作方法,每天加工的零件是原来的2倍,前后共用30天完成了任务,那么改进操作方法后每天加工多少个零件?(8分)参考答案一 填空(每小题3分,共30分)1. 42. 71.210-⨯3. <4. 23x -<≤5. 1,0x x =-=6. 657. (21)(21)m m m +-8. 1429. 2x ≠± 10. 992 二 选择(每小题3分,共30分) 三 解答题(40分)22.解:…………(3分)………………(5分) …………………… (6分)当 1x =时,原式=4211-=-+ ………………………(8分)24. 解:设有x 间宿舍,则女生数为(55)x +人,根据题意得 (1分)55358(1)55x x x +<⎧⎨->+⎩ ………………………………………(5分) 解得 1463x << ………………………………………(6分) 因为房间数为整数,所以5x =,(55)30x += ………(7分) 答:有5间宿舍,30名女生. ……………………(8分)25.解:设改进方法后每天加工的零件数为x ,则改进方法前每天加工的零件数为12x ,根据题意得 ……………………………(1分)12603006030xx-+= ……………………………(5分) 解这个分式方程得12x = ……………………………(6分) 经检验 ,12x =是原方程的根 ……………………………(7分) 答:改进方法后每天加工零件12个. …………………………(8分)2131()11113()(1)(1)(1)(1)(1)4(1)(1)(1)41x x x x x x x x x x x x x x x +-÷+---+=-⨯-+-+--=⨯-+-=-+。
2020年沪教版初一数学下学期期末考试卷
精品资料沪教版初一数学下学期期末考试卷注意事项:本卷共七大题,计23小题,满分150分,考试时间120分钟!一、选择题(本题满分40分,每小题4分。
将唯一正确答案前的代号填入下面答题栏题号 1 2 3 4 5 6 7 8 9 10答案A、3B、-3C、±3D、3±2、下列四个实数中,是无理数的是()A、2.5B、πC、103D、1.4143、下列计算正确的是()A、326a a a•= B、4442b b b•= C、1055xxx=+ D、78y y y•=4、下列分解因式错误..的是()A、243(2)(2)3x x x x x-+=+-+ B、22()()x y x y x y-+=-+-C、22(21)x x x x-=--+ D、2221(1)x x x-+=-5、已知2()11m n+=,2mn=,则2()m n-的值为()A、7B、5C、3D、16、已知am>bm,则下面结论中正确的是()A、a>bB、 a<bC、a bm m> D、2am≥2bm7、不等式260x-+>的解集在数轴上表示正确的是()8、如图,直线AB、CD、EF两两相交,则图中为同旁内角的角共有()对。
A、3B、4C、5D、69、如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A、向右平移1格,向下3格B、向右平移1格,向下4格C、向右平移2格,向下4格D、向右平移2格,向下3格10、把一张长方形的纸片按如图所示的方式折叠,EM、FM为折痕,折叠后的C点落在B′M或B′M的延长线上,那么∠EMF的度数是()A、85°B、90°C、95°D、100°二、填空题(本大题共4小题,每小题5分,满分20分)11、氢原子中电子和原子核之间最近距离为0.000 000 003 05厘米,用科学记数法表示为________________________厘米.12、当x 时,分式23x-没有意义。
沪科版数学七年级下册期末考试试卷及答案
沪科版数学七年级下册期末考试试卷评卷人得分一、单选题1.已知a b >,则下列不等式一定成立的是()A .23a b +>+B .22a b ->-C .22a b ->-D .22ab<2.如图所示:若m ∥n ,∠1=105°,则∠2=()A .55°B .60°C .65°D .75°3.下列从左到右的运算,哪一个是正确的分解因式()A .2(2)(3)56x x x x ++=++B .268(6)8x x x x ++=++C .2222()x xy y x y ++=+D .2224(2)x y x y +=+4.如果一个数的平方为64,则这个数的立方根是()A .2B .-2C .4D .±25.下列各式中,哪项可以使用平方差公式分解因式()A .22a b --B .2(2)9a -++C .22()p q --D .23a b -6.当2x =时,下列各项中哪个无意义()A .214x -B .1x x +C .2224x x ++D .24x x -+7.下列现象中不属于平移的是()A .飞机起飞时在跑道上滑行B .拧开水龙头的过程C .运输带运输货物的过程D .电梯上下运动8.下列各项是分式方程213933xx x x =--+-的解的是()A .6x =-B .3x =C .无解D .4x =-9.如图,已知两条直线被第三条直线所截,则下列说法正确的是()A .∠1与∠2是对顶角B .∠2与∠5是内错角C .∠3与∠6是同位角D .∠3与∠6是同旁内角10.在0.1、π、117数中,有理数的个数是()A .4B .5C .3D .2评卷人得分二、填空题11.因式分解481x -=_________________.12.如果a 的平方根是±16____________.13.不等式135x x +>-的解集是____________.14.当x _________时,分式236xx -无意义15.比较722-__________1216.0.0000000202-用科学记数法表示为___________.17.已知∠1与∠2是对顶角,且∠1=40 ,则∠2的补角为___________.18.满足不等式组2153142x x x +≤⎧⎨+<+⎩的正整数解有____________.19.如图,已知直线a 、b 被直线c 所截,且a ∥b ,∠1=60 ,则∠2=__________.20.有一组数据如下:10、12、11、12、10、14、10、11、11、10.则10的频数为____________频率为___________.评卷人得分三、解答题21.先化简,再求值。
沪科版七年级下册数学期末试题试卷含答案精选全文
可编辑修改精选全文完整版沪科版七年级下册数学期末试题试卷含答案上海科技版七年级下册数学期末考试试卷一、选择题(每小题4分,共40分)1.实数中,无理数的个数是()。
A。
1 B。
2 C。
3 D。
42.估计√2+1的值在()之间。
A。
2到3之间 B。
3到4之间 C。
4到5之间 D。
5到6之间3.若a<b,则下列各式中,错误的是()。
A。
a-3<b-3 B。
-a<-b C。
-2a>-2b D。
a<b4.计算(-3a^2)^2的结果是()。
A。
3a^4 B。
-3a^4 C。
9a^4 D。
-9a^45.下列多项式在实数范围内不能因式分解的是()。
A。
x^3+2x B。
a^2+b^2 C。
D。
m^2-4n^26.不等式4-x≤2(3-x)的正整数解有()个。
A。
1个 B。
2个 C。
3个 D。
无数个7.若a^2=9,则a的值为()。
A。
-5 B。
-11 C。
-3或3 D。
±3或±58.把分式中的x和y都扩大3倍,分式的值()。
A。
不变 B。
扩大3倍 C。
缩小3倍 D。
扩大9倍9.多项式12ab^3c+8a^3b的各项公因式是()。
A。
4ab^2 B。
4abc C。
2ab^2 D。
4ab10.若(x^2+px+q)(x-2)展开后不含x的一次项,则p 与q的关系是()。
A。
p=2q B。
q=2p C。
p+2q=0 D。
q+2p=0二、填空题(每小题5分,共20分)11.分解因式:4a^2-25b^2=()。
12.分式的值为1/3,那么x的值为()。
13.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()°。
14.若关于x的分式方程(x+1)/(x-2)+1=1有增根,则m=()。
三、解答题(每小题8分,共16分)15.解不等式组:(略)16.解分式方程:(略)四、计算题(每小题8分,共16分)17.先化简,再求值:(a+1)^2-(a+3)(a-3),其中a=-3.(略)18.如图:在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.1)在网格中画出三角形A1B1C1.2)三角形A1B1C1的面积为()。
最新沪科版七年级下册数学期末试卷及答案(含5套)
七年级(下)期末数学试卷(1)满分:150分一、选择题(本大题共10小题,每小题4分,共40分)1、9的平方根是( )A 、3B 、3-C 、3±D 、812、下列计算正确的是( )A 、 62322a a a =⋅B 、623a a -=-)(C 、326a a a =÷D 、224)2(a a = 3.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00 000 000 034m ,这个数用科学计数法表示正确的是( )A 、 9104.3-⨯B 、91034.0-⨯C 、10104.3-⨯D 、11104.3-⨯4、若使分式2-x x 有意义,则x 的取值范围是( ) A 、 2≠x B 、2-≠x C 、2->x D 、2<x5、不等式532≥+x 的解集在数轴上表示正确的是( )6、如图,在数轴上表示实数15的点可能是( )A 、 点PB 、点QC 、点MD 、点N7、下列多项式中,能用公式法分解因式的是( )A 、 xy x -2B 、xy x +2C 、22y x -D 、22y x +8、化简xx x +÷-21)1(的结果是( ) A 、 1--x B 、1+-x C 、11+-x D 、11+x 9、如图,把一块含有︒45角的直角三角板的两个顶点放在直尺的对边上.如果︒=∠201,那么2∠的度数是( )A 、 ︒30B 、︒25C 、︒20D 、︒1510、某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C. 丙种方案所用铁丝最长D.三种方案所用铁丝一样长二、填空题(本大题共4小题,每小题5分,满分20分)11、分解因式:3222a b a ab +-= 。
12、分式方程xx 213=+的解是 。
13、如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张。
:2020-2021学年七年级数学下学期期末测试卷(沪教版)03 (解析版)
2020-2021学年七年级数学下学期期末测试卷03【沪教版】数学一.填空题(每小题3分,共36分)1.(2020春•浦东新区期末)计算:|﹣2|+=.【考点】实数的运算.【分析】根据绝对值的性质和立方根的定义计算可得答案.【解答】解:原式=2﹣2=0,故答案为:0.【点评】本题主要考查实数的运算,解题的关键是掌握绝对值的性质和立方根的定义.2.(2020春•浦东新区期末)计算:7×=.(结果用幂的形式表示)【考点】分数指数幂.【分析】根据同底数幂相乘,底数不变,指数相加即可得出答案.【解答】解:7×=;故答案为:.【点评】此题考查了分数指数幂,熟练掌握同底数幂相乘,底数不变,指数相加是解题的关键.3.(2018春•杨浦区期末)的小数部分是a,计算a2=.【考点】估算无理数的大小.【分析】先估算出的范围,即可求出a,再代入原式根据完全平方公式即可得出答案.【解答】解:∵1<<2,∴的小数部分a=﹣1,∴a2=(﹣1)2=2﹣2+1=3﹣2.故答案为:3﹣2【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.4.(2019春•浦东新区期末)互为邻补角的两个角的大小相差60°,这两个角的大小分别为.【考点】对顶角、邻补角.【分析】根据邻补角互补解答即可.【解答】解:设这两个角分别为α、β,根据题意可得:,解得:α=120°,β=60°,故答案为:60°、120°.【点评】此题考查邻补角,关键是根据邻补角互补解答.5.(2019春•虹口区期末)如图,如果AB∥CD,∠1=30°,∠2=130°,那么∠BEC=度.【考点】平行线的性质.【分析】先过E作EF∥AB,根据平行线的性质可得EF∥AB∥CD,可得∠2+∠BEF=180°,∠1=∠CEF,再根据∠1=30°,∠2=130°,即可得到∠BEF=50°,∠CEF=30°,进而得出∠BEC的度数.【解答】解:如图,过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠2+∠BEF=180°,∠1=∠CEF,∵∠1=30°,∠2=130°,∴∠BEF=50°,∠CEF=30°,∴∠BEC=50°+30°=80°.故答案为:80.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.6.(2019春•浦东新区期末)如图,直线l1∥l2,∠1=43°,∠2=72°,则∠3的度数是度.【考点】平行线的性质.【分析】利用平行线的性质,三角形的内角和定理解决问题即可.【解答】解:∵l1∥l2,∠1=43°,∠2=72°,∴∠5=∠2=72°,∠4=∠1=43°,∴∠3=180°﹣72°﹣43°=65°,故答案为:65【点评】本题考查平行线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(2020春•松江区期末)如图,在△ABC中,∠A=100度,如果过点B画一条直线l能把△ABC分割成两个等腰三角形,那么∠C度.【考点】等腰三角形的性质.【分析】设过点B的直线与AC交于点D,则△ABD与△BCD都是等腰三角形,根据等腰三角形的性质,得出∠ADB=∠ABD=40°,∠C=∠DBC,根据三角形外角的性质即可求得∠C=20°.【解答】解:如图,设过点B的直线与AC交于点D,则△ABD与△BCD都是等腰三角形,∵∠A=100度,∴∠ADB=∠ABD=40°,∵CD=BD,∴∠C=∠DBC,∵∠ADB=∠C+∠DBC=2∠C,∴2∠C=40°,∴∠C=20°,故答案为=20.【点评】本题考查了等腰三角形的性质,三角形内角和定理以及三角形外角的性质,熟练掌握这些性质并灵活运用是解题的关键.8.(2020春•浦东新区期末)△ABC的三个内角的度数之比是1:2:3,若按角分类,则△ABC是三角形.【考点】三角形内角和定理.【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【解答】解:设一份为k°,则三个内角的度数分别为k°,2k°,3k°.则k°+2k°+3k°=180°,解得k°=30°∴2k°=60°,3k°=90°,所以这个三角形是直角三角形.故答案为:直角.【点评】此题主要考查三角形的内角和定理,列方程求得三角形三个内角的度数来判断是解题的关键.9.(2020春•浦东新区期末)如图,△ACE≌△DBF,如果∠E=∠F,DA=10,CB=2,那么线段AB的长是.【考点】全等三角形的性质.【分析】直接利用全等三角形的性质得出AB=CD,进而求出答案.【解答】解:∵△ACE≌△DBF,DA=10,CB=2,∴AB=CD==4.故答案为:4.【点评】此题主要考查了全等三角形的性质,正确得出AB=DC是解题关键.10.(2020春•清江浦区期末)如图,AD是△ABC的中线,E是AD的中点,如果S△ABD=12,那么S△CDE =.【考点】三角形的面积.【分析】根据△ACD与△ABD等底同高,即可得到:△ACD的面积=△ABD的面积,而△CDE与△ACD 的高相等,则△CDE的面积=△ACD的面积据此即可求解.【解答】解:△ACD的面积=△ABD的面积=12,△CDE的面积=△ACD的面积=×12=6.故答案是:6.【点评】本题考查了三角形的三角形的面积的公式,关键是理解:△ACD的面积=△ABD的面积,△CDE 的面积=△ACD的面积.11.(2020春•松江区期末)如果等腰三角形的两条边长分别等于3厘米和7厘米,那么这个等腰三角形的周长等于厘米.【考点】等腰三角形的性质.【分析】分两种情况讨论:当3厘米是腰时或当7厘米是腰时.根据三角形的三边关系,知3,3,7不能组成三角形,应舍去.【解答】解:当3厘米是腰时,则3+3<7,不能组成三角形,应舍去;当7厘米是腰时,则三角形的周长是3+7×2=17(厘米).故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.此类题不要漏掉一种情况,同时注意看是否符合三角形的三边关系.12.(2018春•静安区期末)平面直角坐标系xOy中,点A(x1,y1)与B(x2,y2),如果满足x1+x2=0,y1﹣y2=0,其中x1≠x2,则称点A与点B互为反等点.已知:点C(3,8)、G(﹣5,8),联结线段CG,如果在线段CG上存在两点P,Q互为反等点,那么点P的横坐标x P的取值范围是.【考点】坐标与图形性质.【分析】因为点P、Q是线段CG上的互反等点,推出点P中线段CC′,由此可确定点P的横坐标x P 的取值范围;【解答】解:如图,设C关于y轴的对称点C′(﹣3,8).由于点P与点Q互为反等点.又因为点P,Q是线段CG上的反等点,所以点P只能在线段CC′上,所点P的横坐标x P的取值范围为:﹣3≤x P≤3,且x p≠0.故答案为:﹣3≤x P≤3,且x p≠0.【点评】本题考查坐标与图形的性质、点A与点B互为反等点的定义等知识,解题的关键是灵活运用所学知识解决问题,所以中考常创新题目.二.选择题(每小题3分,共18分)13.(2019春•崇明区期末)下列说法中正确的是()A.无限小数都是无理数B.无理数都是无限小数C.无理数可以分为正无理数、负无理数和零D.两个无理数的和、差、积、商一定是无理数【考点】实数的运算.【分析】根据无理数的概念、分类逐一求解可得.【解答】解:A.无限不循环小数都是无理数,此选项说法错误;B.无理数都是无限小数,此选项说法正确;C.无理数可以分为正无理数、负无理数,此选项说法错误;D.两个无理数的和、差、积、商不一定是无理数,此选项说法错误;故选:B.【点评】本题主要考查实数的运算,解题的关键是掌握无理数的概念.14.(2019春•崇明区期末)如图,下列说法中错误的是()A.∠GBD和∠HCE是同位角B.∠ABD和∠ACH是同位角C.∠FBC和∠ACE是内错角D.∠GBC和∠BCE是同旁内角【考点】同位角、内错角、同旁内角.【分析】根据同位角、同旁内角、内错角的定义结合图形判断.【解答】解:A、∠GBD和∠HCE不符合同位角的定义,故本选项正确;B、∠ABD和∠ACH是同位角,故本选项错误;C、∠FBC和∠ACE是内错角,故本选项错误;D、∠GBC和∠BCE是同旁内角故本选项错误;故选:A.【点评】本题考查了同位角、同旁内角、内错角的定义,属于基础题,正确且熟练掌握同位角、同旁内角、内错角的定义和形状,是解题的关键.15.(2017春•闵行区期末)如图,已知∠1=∠2,那么下列说法中正确的是()A.∠7=∠8 B.∠5=∠6 C.∠7和∠8互补D.∠5和∠6互补【考点】平行线的判定与性质.【分析】根据平行线的判定推出a∥b,再根据平行线的性质逐个判断即可.【解答】解:A、∵∠1=∠2,∴a∥b,∴∠4=∠7,∵∠4+∠8=180°,∴∠7+∠8=180°,而∠7不一定等于∠8,故本选项不符合题意;B、∵a∥b,∴∠3=∠6,∵∠2=∠5,∴不能判断∠6和∠5的大小,故本选项不符合题意;C、∵∠1=∠2,∴a∥b,∴∠4=∠7,∵∠4+∠8=180°,∴∠7+∠8=180°,故本选项符合题意;D、∵a∥b,∴∠3=∠6,∵∠2=∠5,∠3+∠2+∠9=180°,∴∠6+∠5+∠9=180°,∴说∠5和∠6互补不对,故本选项不符合题意;故选:C.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.16.(2018秋•奉贤区期末)在△ABC中,AH⊥BC,下列各组能判断△ABC是直角三角形的是()A.∠B=∠CAH B.∠B=∠C C.∠C=∠CAH D.∠BAH=∠CAH【考点】三角形内角和定理.【分析】根据AH⊥BC得出∠AHB=∠AHC=90°,求出∠BAC=∠BAH+∠B=90°,即可判断选项A;根据等腰三角形的判定和直角三角形的判定即可判断选项B、C、D.【解答】解:A.∵AH⊥BC,∴∠AHB=∠AHC=90°,∵∠B=∠CAH,∴∠BAC=∠BAH+∠CAH=∠BAH+∠B=180°﹣∠AHB=90°,∴△ABC是直角三角形,故本选项符合题意;B.∵∠B=∠C,∴AB=AC,即△ABC是等腰三角形,不一定是直角三角形,故本选项不符合题意;C.∵∠C=∠CAH,∠AHC=90°,∴∠C=∠CAH=45°,不能推出△ABC是直角三角形,故本选项不符合题意;D.∵在△AHB和△AHC中,,∴△AHB≌△AHC(ASA),∴AB=AC,即△ABC是等腰三角形,但不能推出△ABC是直角三角形,故本选项不符合题意;故选:A.【点评】本题考查了等腰三角形的性质和判定,三角形的内角和定理和直角三角形的判定等知识点,能灵活运用知识点进行推理是解此题的关键.17.(2019春•嘉定区期末)下列说法中,正确的是()A.腰对应相等的两个等腰三角形全等B.等腰三角形角平分线与中线重合C.底边和顶角分别对应相等的两个等腰三角形全等D.形状相同的两个三角形全等【考点】全等三角形的判定;等腰三角形的性质.【分析】根据全等三角形的判定判断即可.【解答】解:A、腰对应相等的两个等腰三角形不一定全等,因为角不一定相等,选项错误,不符合题意;B、等腰三角形顶角的角平分线与底边的中线重合,选项错误,不符合题意;C、底边和顶角分别对应相等的两个等腰三角形全等,利用ASA可得全等,选项正确,符合题意;D、形状、大小相同的两个三角形全等,选项错误,不符合题意;故选:C.【点评】此题考查全等三角形的判定,关键是根据全等三角形的判定方法解答.18.(2018春•浦东新区期末)线段AB经过平移得到线段CD,其中点A、B的对应点分别为点C、D,这四个点都在如图所示的格点上,那么线段AB上的一点P(a,b)经过平移后,在线段CD上的对应点Q 的坐标是()A.(a﹣1,b+3)B.(a﹣1,b﹣3)C.(a+1,b+3)D.(a+1,b﹣3)【考点】坐标与图形变化﹣平移.【分析】依据B(1,3),D(2,0),可得线段AB向右平移1个单位,向下平移3个单位得到线段CD,再根据P(a,b),即可得到对应点Q(a+1,b﹣3).【解答】解:由图可得,点A、B的对应点分别为点C、D,而B(1,3),D(2,0),∴线段AB向右平移1个单位,向下平移3个单位得到线段CD,又∵P(a,b),∴Q(a+1,b﹣3),故选:D.【点评】本题主要考查了坐标与图形变化,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.三.解答题(第19题~第21题每小题5分,第22题6分,第23题~第24题每小题8分,第25题9分)19.(2020春•浦东新区期末)计算:8﹣()2×÷+()﹣1.【考点】实数的运算;分数指数幂;负整数指数幂.【分析】根据分数指数幂的运算法则,二次根式的运算法则,负整数指数幂的运算法则计算即可.【解答】解:原式=﹣3×÷+﹣1=﹣3+﹣1=4﹣2﹣1=3﹣2.【点评】本题考查了分数指数幂,二次根式,负整数指数幂.解题的关键是掌握分数指数幂的运算法则,二次根式的运算法则,负整数指数幂的运算法,并能灵活运用.20.(2020春•浦东新区期末)计算:2÷﹣8+()﹣2﹣(π﹣3)0.【考点】实数的运算;分数指数幂;零指数幂;负整数指数幂.【分析】利用二次根式的除法计算法则、分数指数幂的性质、负整数指数幂和零次幂性质进行计算,再算加减即可.【解答】解:原式=﹣2+2﹣1=﹣+1.【点评】此题主要考查了实数的运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、分数指数幂等考点的运算.21.(2020春•浦东新区期末)如图,已知∠COF+∠C=180°,∠C=∠B.说明AB∥EF的理由.【考点】平行线的判定.【分析】根据平行线的判定可得EF∥CD,AB∥CD,再根据两条直线都和第三条直线平行,那么这两条直线平行即可求解.【解答】解:∵∠COF+∠C=180°,∴EF∥CD,∵∠C=∠B,∴AB∥CD,∴AB∥EF.【点评】考查了平行线的判定,关键是熟悉同旁内角互补,两直线平行;内错角相等,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行的知识点.22.(2019春•虹口区期末)说理填空:如图,点E是DC的中点,EC=EB,∠CDA=120°,DF∥BE,且DF平分∠CDA,求证:△BEC为等边三角形.解:因为DF平分∠CDA(已知)所以∠FDC=∠.因为∠CDA=120°(已知)所以∠FDC=°.因为DF∥BE(已知)所以∠FDC=∠.()所以∠BEC=60°,又因为EC=EB,(已知)所以△BCE为等边三角形.()【考点】平行线的性质;等边三角形的性质;等边三角形的判定.【分析】利用角平分线的性质得出∠FDC的度数,再利用平行线的性质得出∠FDC的度数,进而得出△BEC为等边三角形.【解答】解:因为DF平分∠CDA,(已知)所以∠FDC=∠ADC.(角平分线意义)因为∠CDA=120°,(已知),所以∠FDC=60°.因为DF∥BE,(已知),所以∠FDC=∠BEC.(两直线平行,同位角相等),所以∠BEC=60°,又因为EC=EB,(已知),所以△BCE为等边三角形.(有一个角是60°的等腰三角形是等边三角形)故答案为:ADC;角平分线意义;60;BEC;两直线平行,同位角相等;有一个角是60°的等腰三角形是等边三角形.【点评】此题主要考查了等边三角形的性质与判定以及平行线的性质,根据已知得出∠FDC=∠BEC是解题关键.23.(2020春•浦东新区期末)已知:如图,△ABC中,∠ABC与∠ACB的角平分线相交于点F,过点F作DE∥BC,交AB、AC于点D、E.(1)找出图中所有的等腰三角形,并且选择其中一个加以说明;(2)如果AB=3,AC=2,求△ADE的周长是多少?【考点】平行线的性质;等腰三角形的判定与性质.【分析】(1)根据角平分线的定义得∠DBF=∠CBF,∠ECF=∠BCF,再根据平行线的性质得∠DFB =∠CBF,∠BCF=∠EFC,则∠DBF=∠DFB,∠ECF=∠EFC,根据平行线的判定得DB=DF,EF =EC,即可证得△BDF和△CEF是等腰三角形;(2)根据三角形的定义得△ADE的周长=AD+DE+AE=AD+BD+EC+AE=AB+AE.【解答】解:(1)∵∠ABC与∠ACB的角平分线相交于点F,∴∠DBF=∠CBF,∠ECF=∠BCF,∵DE∥BC,∴∠DFB=∠CBF,∠BCF=∠EFC,∴∠DBF=∠DFB,∠ECF=∠EFC,∴DB=DF,EF=EC,∴△BDF和△CEF是等腰三角形;(2)∵DB=DF,EF=EC,∴△ADE的周长=AD+DE+AE=AD+DF+EF+AE=AD+BD+EC+AE=AB+AC=3+2=5,△ADE的周长是5.【点评】本题考查了等腰三角形的性质及角平分线的性质及平行线的性质;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形的;等量代换的利用是解答本题的关键.24.(2019春•奉贤区期末)已知在△ABC中,AB=AC.在边AC上取一点D,以D为顶点、DB为一条边作∠BDF=∠A,点E在AC的延长线上,∠ECF=∠ACB.(1)如图(1),当点D在边AC上时,请说明①∠FDC=∠ABD;②DB=DF.(2)如图(2),当点D在AC的延长线上时,试判断DB与DF是否相等?【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)①根据角的和差即可得到结论;②过D作DG∥BC交AB于G,根据等腰三角形的性质和全等三角形的判定和性质定理即可得到结论;(2)过D作DG∥BC交AB于G,根据平行线的性质得到∠ADG=∠ACB,∠AGD=∠ABC,根据等腰三角形的性质得到∠ABC=∠ACB,根据全等三角形的判定和性质即可得到结论.【解答】①(1)证明:①∵∠BDC=∠A+∠ABD,即∠BDF+∠FDC=∠A+∠ABD,∵∠BDF=∠A,∴∠FDC=∠ABD;②过D作DG∥BC交AB于G,∴∠ADG=∠ACB,∠AGD=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∴AD=AG,∴AB﹣AG=AC﹣AD,即BG=DC,∵∠ECF=∠ACB=∠AGD,∴∠DGB=∠FCD,在△GDB与△CFD中,,∴△GDB≌△CFD(ASA),∴DB=DF;(2)过D作DG∥BC交AB于G,∴∠ADG=∠ACB,∠AGD=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∴∠AGD=∠ADG,∴AD=AG,∴AG﹣AB=AD﹣AC,即BG=DC,∵∠ECF=∠ACB=∠AGD,∴∠DGB=∠FCD,∵∠ACB+∠BCF+∠FCD=180°,∴∠ACB+∠BCF+∠DGB=180°,∵∠DGB=∠ABC.∴∠ACB+∠BCF∠ABC=180°,∵∠A+∠ABC+∠ACB=180°,∴∠A=∠BCF,∵∠BDF=∠A,∴∠BCF=∠BDF,∵∠GBD=180°﹣∠ABC﹣∠CBD=180°﹣∠FCD﹣∠CFD=∠FDC,∴∠GBD=∠FDC,在△GDB与△CFD中,,∴△GDB≌△CFD(ASA),∴DB=DF.【点评】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行线的性质,正确的作出辅助线是解题的关键.25.(2015春•奉贤区期末)在平面直角坐标系中,点C的坐标为(2,2),将直角三角尺绕直角顶点C进行旋转,两条直角边分别与x轴正半轴,y轴交于点A,点B.(1)如图,当B与O重合时,试说明:AC=BC;(2)在旋转过程中,AC=BC这个结论还成立吗?请说明理由;(3)在旋转的过程中,设A(a,0),B(0,b),请用含a的代数式表示b.【考点】坐标与图形变化﹣旋转.【分析】(1)过点C作CD⊥x轴于点D,知AD=BD=2,由点C坐标可得∠CBD=∠BCD=45°,继而可得∠CBD=∠CAB=45°,即可得答案;(2)过点C作CD⊥x轴于点D,CE⊥y轴于点E,根据点C坐标可得四边形ODCE为正方形,从而知CE=CD、∠BCE=∠ACD,再证△BCE≌△ACD即可;(3)由(2)可知AD=BE,即a﹣2=2﹣b,即可得.【解答】解:(1)如图1,过点C作CD⊥x轴于点D,由题意可知AD=BD=2,∴∠CBD=∠BCD=45°,∵∠BCA=90°,∴∠CAB=45°,∴∠CBD=∠CAB=45°,∴CB=CA;(2)如图2,当点B在y轴正半轴上时,过点C作CD⊥x轴于点D,CE⊥y轴于点E,∴∠BOD=∠CDO=∠CEO=90°,又∵CD=OD=2,∴四边形ODCE为正方形,∴CE=CD,∵∠BCE+∠BCD=∠ACD+∠BCD=90°,∴∠BCE=∠ACD,在△BCE和△ACD中,∵,∴△BCE≌△ACD(ASA),∴AC=BC;如图3,当点B在y轴负半轴时,与以上同理可得AC=BC;(3)由(2)知,AD=BE,即a﹣2=2﹣b,∴b=4﹣a.【点评】本题主要考查等腰直角三角形的判定和性质、全等三角形的判定和性质,熟练掌握全等三角形的判定是解题的关键.。
沪科版七年级数学下册期末试卷-含答案
最新沪科版七年级数学下册期末试卷-含答案(共7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--沪科版七年级数学下册期末检测卷(时间:120分钟 满分:120分)一、选择题(共10小题,每小题3分,满分30分) 1.-8的立方根是( )A .2B .-2C .±2D .-32 2.下列实数中,是无理数的是( ) B .-4 C .3.若实数x 和y 满足x >y ,则下列式子中错误的是( ) A .2x -6>2y -6 B .x +1>y +1 C .-3x >-3y D .-x 3<-y34.如图,下列各组角中,是对顶角的一组是( )(第4题图)A .∠1和∠2B .∠2和∠3C .∠2和∠4D .∠1和∠5 5.计算a ·a 5-(2a 3)2的结果为( ) A .a 6-2a 5B .-a 6C .a 6-4a 5D .-3a 66.化简a 2b -ab 2b -a的结果是( )A .-abB .abC .a 2-b 2D .b 2-a 27.如图,已知a ∥b ,直角三角板的直角顶点在直线b 上,若∠1=58°,则下列结论错误的是( )(第7题图)A .∠3=58°B .∠4=122°C .∠5=42°D .∠2=58°8.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n +q =0,则m ,n ,p ,q 四个实数中,绝对值最小的是( )A .pB .qC .mD .n第8题图 第9题图9.如图,以表示2的点为圆心,以边长为1的正方形的对角线长为半径画弧与数轴交于点A ,则点A 表示的数为( )-1 -2 D .2- 210.不等式组⎩⎪⎨⎪⎧x >a ,x <3的整数解有4个,则a 的取值范围是( )A .-2≤a <-1B .-2<a <-1C .-2≤a ≤-1D .-2<a ≤-1 二、填空题(共4小题,每小题5分,满分20分) 11.分解因式:3x 2-3y 2=________________.12.我们的生活离不开氧气.已知氧原子的半径大约是米,米用科学记数法表示为__________米.13.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为800m ,且桥宽忽略不计,则小桥的总长为________m.(第13题图)14.有下列说法:①两条直线被第三条直线所截,内错角相等;②过一点有且只有一条直线与已知直线垂直;③在连接直线外一点与直线上各点的线段中,垂线段最短;④在同一平面中,两条直线不相交就平行.其中正确的结论是________(填序号).三、解答题(共2小题,满分70分)15.(6分)先化简,再求值:a 2-1a 2+a ÷⎝ ⎛⎭⎪⎫a -2a -1a ,其中a =-8.16.(6分)如图,用相同的小正方形按照某种规律进行摆放.(第16题图)根据图中小正方形的排列规律解答下列问题:(1)第5个图中有________个小正方形,第6个图中有________个小正方形; (2)写出你猜想的第n 个图中小正方形的个数是____________(用含n 的式子表示).17.(8分)解不等式组⎩⎪⎨⎪⎧x -1<2①,2x +3≥x -1②.请结合题意填空,完成本题的解答.(1)解不等式①,得____________; (2)解不等式②,得____________;(3)把不等式①和②的解集在数轴上表示出来 (4)该不等式组的解集为____________.(第17题图)18.(8分)外商要买项链和发箍一共48个,项链每条10元,发箍每个13元,但总费用不能超过580元,发箍好卖,外商要买尽可能多的发箍,问外商最多能买到发箍多少个?19.(8分)已知实数m,n满足m+n=6,mn=-3.(1)求(m-2)(n-2)的值;(2)求m2+n2的值.20.(10分)甲、乙两名同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校;乙同学骑自行车去学校.已知乙骑自行车的速度是甲步行速度的2倍,公交车的速度是乙骑自行车的速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求甲步行的速度;(2)当甲到达学校时,乙同学离学校还有多远?21.(12分)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A 等.(1)陈海同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则陈海同学测试成绩和平时成绩各得了多少分?(2)某同学的测试成绩为70分,他的综合评价得分有可能达到A等吗为什么(3)如果某同学的综合评价要达到A等,那么他的测试成绩至少要得多少分?22.(12分)如图a,点E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=22°,∠D=61°,则∠AED的度数为________;②若∠A=32°,∠D=45°,则∠AED的度数为________;③猜想图a中∠AED、∠EAB、∠EDC之间的关系并说明理由.(2)拓展应用:如图b,射线FE与长方形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的四个区域(不含边界,其中区域①②位于直线AB的上方,区域③④位于直线AB的下方、直线CD的上方),点P是位于以上四个区域内的点,连接PE,PF,猜想∠PEB、∠PFC、∠EPF之间的关系(不要求写出过程).(第22题图)参考答案与解析1.B11.3(x +y )(x -y ) 14.②③④15.解:原式=(a +1)(a -1)a (a +1)÷a 2-2a +1a =a -1a ÷(a -1)2a =a -1a ·a(a -1)2=1a -1.当a =-8时,原式=1-8-1=-19. 16.(1)41 55 (2)n 2+3n +1 17.解:(1)x <3 (2)x ≥-4 (3)如图所示.(4)-4≤x <318.解:设外商买了发箍x 个,则买了项链(48-x )条.根据题意得10(48-x )+13x ≤580,(3分)解得x ≤1003.因为x 为整数,所以x 的最大值为33.答:外商最多能买到发箍33个.19.解:(1)因为m +n =6,mn =-3,所以(m -2)(n -2)=mn -2m -2n +4=mn -2(m +n )+4=-3-2×6+4=-11.(2)m 2+n 2=(m +n )2-2mn =62-2×(-3)=36+6=42.20.解:(1)设甲步行的速度为x 米/分,则乙骑自行车的速度为2x 米/分,公交车的速度为4x 米/分.根据题意得600x +3000-6004x +2=30002x ,解得x =150.经检验,x =150是原分式方程的解.答:甲步行的速度为150米/分.(2)由(1)知乙骑自行车的速度为150×2=300(米/分),300×2=600(米). 答:当甲到达学校时,乙同学离学校还有600米.21.解:(1)设陈海同学的测试成绩为x 分,则平时成绩为(185-x )分,根据题意得80%x +20%(185-x )=91,解得x =90,则185-x =95.答:陈海同学的测试成绩为90分,平时成绩为95分.(2)不可能.理由如下:当他的平时成绩最高为100分时,他的综合得分为70×80%+100×20%=76(分).因为76<80,所以他的综合评价得分不可能达到A 等.(3)设他的测试成绩为y 分,根据题意得80%y +100×20%≥80,解得y ≥75. 答:如果某同学的综合评价要达到A 等,那么他的测试成绩至少要得75分. 22.解:(1)①83°②77°③∠AED =∠EAB +∠EDC .理由如下:如图,过点E 作EF ∥AB .因为AB ∥CD ,所以AB ∥EF ∥CD ,所以∠2=∠EDC ,∠1=∠EAB ,所以∠1+∠2=∠EAB +∠EDC ,即∠AED =∠EAB +∠EDC .(第22题答图)(2)当点P 位于区域①时,∠PEB =∠PFC +∠EPF .当点P 位于区域②时,∠PEB =∠PFC -∠EPF .当点P 位于区域③时,∠PEB +∠PFC +∠EPF =360°.当点P 位于区域④时,∠EPF =∠PEB +∠PFC .。
沪科版七年级下册数学期末考试试卷附答案
沪科版七年级下册数学期末考试试题一、单选题1.实数3的平方根是()A .3B .-3C .3±D .3±2.下列计算正确的是()A .3+2=5B .3⋅2=5C .(22)3=66D .6÷2=33.如图,数轴上点P 表示的数可能是()A 2B 5C 10D 154.用科学记数法表示数0.000301正确的是()A .630110-⨯B .430.110-⨯C .43.0110-⨯D .30.30110-⨯5.不等式6﹣4x ≥3x ﹣8的非负整数解为()A .2个B .3个C .4个D .5个6.已知2a b +=,则224a b b -+的值().A .2B .3C .6D .47.如图,将一张长方形纸片ABCD 沿EF 折叠,点D ,C 分别落在点'D ,'C 处,若156∠=o ,则EFC ∠的度数是()A .110B .118oC .120D .124o8.若关于x 的方程223ax a x =-的解为1x =,则a 等于()A .12-B .2C .12D .-29.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD的周长是()A .16cmB .18cmC .20cmD .21cm10.已知220192a a -=,则240382a a --的值是()A .2019B .-2019C .4038D .-4038二、填空题11.因式分解:22bx bx b -+=______.12.已知2x +3y -5=0,则9x •27y 的值为______.13.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,若长方形纸片的一组对边与直角三角形的两条直角边相交成∠1,∠2,则∠2-∠1=____.14.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.三、解答题15)1132π-⎛⎫--+--+ ⎪⎝⎭16.化简:()()()()232325121x x x x x +-----17.解不等式组415211132x x x x+≥-⎧⎪⎨+--<⎪⎩①②,并把解集在数轴上表示出来.18.先化简()222a 2a 1a 1a 1a 2a 1+-÷++--+,然后a 在﹣1、1、2三个数中任选一个合适的数代入求值.19.甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价15%后的售价为1.15元,则该商品在甲商场的原价为______元;(2)乙商场将该商品提价20%后,用6元钱购买该商品的件数比没提价前少买1件,求该商品在乙商场的原价是多少?20.我们已经学习过“乘方”和“开方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果()0,1,0ba N a a N =>≠>,则b 叫做以a 为底N 的对数,记作log a N b =.例如:因为35125=,所以5log 1253=;因为211121=,所以11log 1212=.(1)填空:6log 6=______,3log 81=______.(2)如果()2log 23m -=,求m 的值.21.如图,在四边形ABCD中,E、F分别是CD、AB延长线上的点,连结EF,分别交AD、BC于点G、H.若∠1=∠2,∠A=∠C,试说明AD∥BC和AB∥CD.请完成下面的推理过程,并填空(理由或数学式):∵∠1=∠2()∠1=∠AGH()∴∠2=∠AGH()∴AD∥BC()∴∠ADE=∠C()∵∠A=∠C()∴∠ADE=∠A∴AB∥CD()22.在长方形纸片ABCD中,AB=m,AD=n,将两张边长分别为6和4的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.(1)在图1中,EF=___,BF=____;(用含m的式子表示)(2)请用含m、n的式子表示图1,图2中的S1,S2,若m-n=2,请问S2-S1的值为多少?参考答案1.D【解析】直接根据平方根的概念即可求解.【详解】∵(2=3,∴3的平方根是为故选D.【点睛】此题考查平方根,解题关键在于掌握运算法则.2.B【解析】A选项:2、3不是同类项,故不能合并;B选项:同底数幂相乘,底数不变,指数相加;C选项:幂的乘方,底数不变,指数相乘;D选项:同底数幂相除,底数不变,指数相减;【详解】A选项:2、3不是同类项,不能合并,故是错误的;B选项:2⋅3=5,故是错误的;C选项:(3)2=6,故是正确的;D 选项:8÷4=6,故是错误的;故选C.【点睛】考查了同底数幂的乘、除法和幂的乘方的运算,解题关键是牢记运算法则:①同底数幂相乘,底数不变,指数相加;②幂的乘方,底数不变,指数相乘;③同底数幂相除,底数不变,指数相减.3.B 【解析】由数轴可知点P 在2和3<<,所以23<<,故选B .4.C 【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000301=43.0110-⨯,故选:C.【点睛】此题考查科学记数法,解题关键在于掌握其一般形式.5.B 【解析】移项得,﹣4x ﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤2.故其非负整数解为:0,1,2,共3个.故选B .6.D 【解析】分析:将代数式224a b b -+变形为()()4a b a b b +-+的形式,再将2a b +=代入计算即可.详解:∵2a b +=,∴224()()42()42()4a b b a b a b b a b b a b -+=+-+=-+=+=.故选D.点睛:能够将代数式224a b b -+变形为()()4a b a b b +-+的形式是解答本题的关键.7.B 【解析】【分析】根据折叠性质得出∠DED′=2∠DEF ,根据∠1的度数求出∠DED′,即可求出∠DEF 的度数,进而得到答案.【详解】由翻折的性质得:∠DED′=2∠DEF ,∵∠1=56°,∴∠DED′=180°−∠1=124°,∴∠DEF=62°,又∵AD ∥BC ,∴∠EFB=∠DEF=62°.∴EFC ∠=180°-62°=118°,故选B.【点睛】此题考查折叠的性质,平行线的性质,解题关键在于求出∠DED′.;8.A 【解析】【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含a 的新方程,解此新方程可以求得a 的值.【详解】把x=1代入方程223ax a x =-得:22=13a a -,解得:a=12-;经检验a=12-是原方程的解;故选A.【点睛】此题考查分式方程的解,解题关键在于把x 代入解析式掌握运算法则.9.C 【解析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C .考点:平移的性质.10.A 【解析】【分析】由220192a a -=知−a 2−2a=−2019,代入原式=4038+(−a 2−2a)计算可得答案.【详解】∵220192a a -=,∴−a 2−2a=−2019,则原式=4038+(−a 2−2a)=4038−2019,=2019,故选:A .【点睛】此题考查代数式求值,解题关键在于掌握运算法则.11.()21b x -【解析】【分析】先提出公因式b ,再根据完全平方公式即可求出答案.【详解】由完全平方公式:22bx bx b -+=()221b x x -+=()21b x -故答案为:()21b x -.【点睛】此题考查因式分解-运用公式法,解题关键在于掌握计算公式.12.243【解析】【分析】先将9x •27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x ⋅27y =32x ⋅33y =32x+3y =35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则.13.90°【解析】【详解】如图:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为90°.14.7.【解析】【分析】本题可设打x 折,根据保持利润率不低于5%,可列出不等式:12008008005%10x,⨯-≥⨯解出x 的值即可得出打的折数.【详解】设可打x 折,则有12008008005%10x,⨯-≥⨯解得7.x ≥即最多打7折.故答案为7.【点睛】考查一元一次不等式的应用,读懂题目,找出题目中的不等关系,列出不等式是解题的关键.15.0【解析】【分析】分别利用立方根,负整数指数幂、零指数幂以及二次根式的性质进行化简,再利用实数的运算法则进行计算即可.【详解】解:原式23214=--+-+0=【点睛】此题考查立方根,负整数指数幂,零指数幂,二次根式的性质,解题关键在于掌握运算法则.16.95x -【解析】【分析】此题直接利用完全平方公式和平方差公式将原式展开,再合并同类项即可,【详解】解:原式2229455441x x x x x =--+-+-95x =-【点睛】此题考查整式的混合运算,解题关键在于掌握运算公式.17.21x -£<.数轴表示见解析.【解析】【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【详解】解:解不等式①得:2x ≥-,解不等式②得:1x <,故不等式组的解集为:21x -£<.在数轴上表示为:【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握不等式组的解法.18.5【解析】解:原式=()()()()22a 1a 1a 112a 1a 3a 1a 1a 1a 1a 1a 1++-++⋅+=+=-+----.取a=2,原式23521+==-.先根据分式混合运算的法则把原式进行化简,再选取合适的a 的值(使分式的分母和除式不为0)代入进行计算即可.19.(1)1;(2)该商品在乙商场的原价为1元.【解析】【分析】(1)根据题意可得该商品在甲商场的原价为1.15÷(1+15%),再进行计算即可;(2)设该商品在乙商场的原价为x 元,根据提价20%后,用6元钱购买该商品的件数比没提价前少买1件,即可列方程求解.【详解】(1)1.15÷(1+15%)=1(元)(2)设该商品在乙商场的原价为x 元,则6611.2x x-=.解得1x =.经检验:1x =是原方程的解,且符合题意.答:该商品在乙商场的原价为1元.【点睛】此题考查分式方程的应用,解题关键在于理解题意列出方程.20.(1)1,4;(2)10m =.【解析】【分析】(1)根据新定义由61=6、34=81可得6log 6=1,3log 81==4;(2)根据定义知m-2=23,解之可得;【详解】(1)∵61=6、34=81,∴6log 6=1,3log 81==4,故答案为:1,4;(2)∵()2log 23m -=,∴322m =-,解得:10m =.【点睛】此题考查有理数的混合运算,解题关键在于理解题意找到运算法则.21.见解析.【解析】【分析】先根据同位角相等,两直线平行,判定AD ∥BC ,进而得到∠ADE =∠C ,再根据内错角相等,两直线平行,即可得到AB∥CD.【详解】证明:∵∠1=∠2(已知)∠1=∠AGH(对顶角相等)∴∠2=∠AGH(等量代换)∴AD∥BC(同位角相等,两直线平行)∴∠ADE=∠C(两直线平行,同位角相等)∵∠A=∠C(已知)∴∠ADE=∠A∴AB∥CD(内错角相等,两直线平行)故答案为:已知;对顶角相等;等量代换;同位角相等,两直线平行;两直线平行,同位角相等;已知;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.22.(1)EF=10-m;BF=m-6;(2)8;【解析】【分析】(1)根据线段的和差即可求出EF与BF;(2)利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.【详解】(1)EF=AF-AE=AF-(AB-BE)=AF-AB+BE=6-m+4=10-m,BF=BE-EF=4-(10-m)=m-6.故答案为10-m,m-6;(2)∵S1=6(AD-6)+(BC-4)(AB-6)=6(n-6)+(n-4)(m-6)=mn-4m-12,S2=AD(AB-6)+(AD-6)(6-4)=n(m-6)+2(n-6)=mn-4n-12,∴S2-S1=mn-4n-12-(mn-4m-12)=4m-4n=4(m-n)=4×2=8.【点睛】此题考查整式的混合运算,正方形的性质,解题关键在于适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.。
2020年沪科版七年级数学下学期期末模拟试卷 (含答案)
..A、a>bB、a<bC、a七年级数学下册期末模拟试卷本试卷共8大题,计23小题,满分150分,考试时间120分钟.一、选择题(本大题共10小题,每小题4分,满分40分)1、9的平方根为()A、3B、-3C、±3D、±32、下列四个实数中,是无理数的是()A、2.5B、πC、3、下列计算正确的是()103D、1.414A、a3 a2=a6B、b4 b4=2b4C、x5+x5=x10D、y7 y=y84、下列分解因式错误的是()A、x2-4+3x=(x+2)(x-2)+3xC、2x2-x=-x(-2x+1)B、-x2+y2=-(x+y)(x-y)D、x2-2x+1=(x-1)25、已知(m+n)2=11,mn=2,则(m-n)2的值为()A、7B、5C、3D、16、已知am>bm,则下面结论中正确的是()b>D、am2≥bm2m m7、不等式-2x+6>0的解集在数轴上表示正确的是()8、如图,直线AB、CD、EF两两相交,则图中为同旁内角的角共有()对。
A、3B、4C、5D、69、如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A、向右平移1格,向下3格C、向右平移2格,向下4格B、向右平移1格,向下4格D、向右平移2格,向下3格10、把一张长方形的纸片按如图所示的方式折叠,EM、FM为折痕,折叠后的C点落在B′M或B′M的延长线上,那么∠EMF的度数是()⎧ x - 3A 、85°B 、90°C 、95°D 、100°二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)211、当 x 时,分式 没有意义。
x -312、如图,AB =BC =CD =1,则图中所有线段长度之和为。
13、一个宽度相等的纸条,如下图这样折叠,则∠1 等于。
14、在一块长为 a ,宽为 b 的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是 1 个单位),则草地的面积为 。
2020年沪教版数学七年级下册期末测试卷附答案(一)
2020年沪教版数学七年级下册期末测试卷附答案(一)一、选择题(共6小题;共18分)1. 在实数:,,(每个之间依次多一个)中,无理数的个数是A. 个B. 个C. 个D. 个2. 求的值是A. B. C. D.3. 点所在的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 下列说法正确的是A. 的平方根是B. 的平方根是的立方根是的立方根是5. 如图,点在的延长线上,下列条件中不能判定的是A. B.C. D.6. 将的三个顶点的横坐标乘以,纵坐标不变,则所得图形A. 与原图形关于轴对称B. 与原图形关于轴对称C. 与原图形关于原点对称D. 向轴的负方向平移了一个单位二、填空题(共12小题;共42分)7. 计算:.8. 中国的领水面积约为,将数用科学记数法表示为.9. 如图,与是直线和直线被直线所截的同位角.10. 如图,,,,则度.11. 已知的两条边的长度分别为,若的周长为偶数,则第三条边的长度是.12. 直线外一点到这条直线的叫做点到直线的距离.13. 点在第象限,点在轴上.14. 已知点是直角坐标平面内的点,如果,那么点在第象限.15. 如图,已知中,,剪去后成四边形,则度.16. 如图,点是线段上一点,且,.若点是线段的中点,则线段的长为.17. 如图,,只需补充一个条件:,就可得.18. 学习等腰三角形相关内容后,张老师请同学们交流这样的一个问题:“在等腰中,,请你求出其余两个角的度数”.同学们经过片刻的思考和交流后,李明同学举手说“其余两个角的度数是和”,你认为李明回答是否正确:,你的理由是.三、解答题(共7小题;共90分)19. 已知一个直角三角形的两条直角边的长分别为和.求这个直角三角形的周长与面积.20. 计算:.21. 利用幂的性质计算:.22. 解方程:.23. 已知直线,被直线所截,,分别平分于和.如果,那么和平行么?为什么?24. 如图,在中,,是边上一点,点在线段上,.(1)说明与全等的理由;(2)说明的理由.25. 如图,在中,已知,,线段经过点,且,说明的理由.答案第一部分1. C 【解析】无理数为无限不循环小数.无理数有:,.2. B 【解析】.3. B4. C5. A6. A第二部分7.8.9. ,,,10.11. 或【解析】设第三边长为,则,即.又周长为偶数,为奇数,.12. 垂线段的长度13. 三,14. 一、三15.16.17. (答案不唯一)18. 不正确,其余两个角度数分别为和或和第三部分19. 周长为,面积为20. 原式21. .22.23. ,又,分别平分,,,,,.24. (1)理由略(提示:隐含条件(等边对等角))(2)理由略(提示:三线合一)25. 提示:证与全等即可.。
2019-2020学年沪教版数学七年级(下)期末测试卷(含答案解析)
七年级下册期末数学试卷姓名:得分:日期:一、选择题(本大题共 10 小题,共 40 分)1、(4分) 在13,0,√2,-3这四个数中,为无理数的是()A.13B.0C.√2D.-32、(4分) 下列计算正确的是()A.x2•x2=x4B.4x2+2x2=6x4C.(x-y)2=x2-y2D.(x3)2=x53、(4分) 下列分式中,是最简分式的是()A.4xyx2B.x2−11+xC.x2+1x−1D.42x−64、(4分) 随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007(平方毫米),这个数用科学记数法表示为()A.7×10-6B.0.7×10-6C.7×10-7D.70×10-85、(4分) 如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°6、(4分) 计算(6x3-2x)÷(-2x)的结果是()A.-3x2B.-3x2-1C.-3x2+1D.3x2-17、(4分) 不等式组{2x>−1−3x+9≥0的所有整数解的和是()A.4B.6C.7D.88、(4分) 关于x 的方程3x−2x+1-m x+1=2有增根,则m 的值是( )A.-5B.5C.-7D.29、(4分) 已知a+b=-5,ab=-4,则a 2-ab+b 2的值是( )A.37B.33C.29D.2110、(4分) 已知关于x 的不等式3x-m+1>0的最小整数解为2,则实数m 的取值范围是() A.4≤m <7 B.4<m <7 C.4≤m≤7 D.4<m≤7二、填空题(本大题共 4 小题,共 20 分)11、(5分) 若(x-1)3=8,则x=______.12、(5分) 分解因式:a 3-4ab 2=______.13、(5分) 如图,已知直线AD 、BE 、CF 相交于O ,OG⊥AD ,且∠BOC=35°,∠FOG=30°,则∠DOE=______.14、(5分) 若关于x 的分式方程x+m x−2+2m2−x =3的解为正实数,则实数m 的取值范围是______.三、解答题(本大题共 9 小题,共 90 分)15、(8分) 计算:−22+√9−(−12)−2−(3−π)016、(8分) 解不等式组{5−x >3x 2−2x−13−1≤0并把解集在数轴上表示出来.17、(8分) 解方程:xx+1−2x−1=1.18、(8分) 如图:已知∠1+∠2=180°,∠3=∠B,请问AB与DE是否平行,并说明理由.19、(10分) 如图,在边长为1的小正方形组成的网格中,将△ABC向右平移5个单位长度,再向上平移4个单位长度,得到△A1B1C1.(1)在网格中画出△A1B1C1;(2)求△ABC的面积.20、(10分) 先化简:(2x-x 2+1x )÷x 2−2x+1x ,然后从0,1,-2中选择一个适当的数作为x 的值代入求值.21、(12分) 观察下列等式: ①11+12-12=11;②13+14-112=12;③15+16-130=13;④17+18-156=14;…(1)请按以上规律写出第⑤个等式:______;(2)猜想并写出第n 个等式:______;(3)请证明猜想的正确性.22、(12分) 为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.23、(14分) 如图,已知AM∥BN ,∠A=60°,点P 是射线AM 上一动点(与A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,交射线AM 于C 、D .(要有推理过程,不需要写出每一步的理由)(1)求∠CBD的度数;(2)试说明:∠APB=2∠ADB;(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.参考答案【第 1 题】【答案】C【解析】解:无理数为√2,故选:C.分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√2,0.8080080008…(每两个8之间依次多1个0)等形式.【第 2 题】【答案】A【解析】解:∵x2•x2=x4,∴选项A符合题意;∵4x2+2x2=6x2,∴选项B不符合题意;∵(x-y)2=x2-2xy+y2,∴选项C不符合题意;∵(x3)2=x6,∴选项D不符合题意.故选:A.根据幂的乘方与积的乘方,完全平方公式的应用,以及合并同类项的方法,逐项判断即可.此题主要考查了幂的乘方与积的乘方,完全平方公式的应用,以及合并同类项的方法,要熟练掌握.【 第 3 题 】【 答 案 】C【 解析 】解:A 、原式=4y x ,故本选项错误;B 、原式=x-1,故本选项错误;C 、是最简分式,故本选项正确;D 、原式=2x−3,故本选项错误. 故选:C .最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.本题考查了分式的基本性质和最简分式,能熟记分式的化简过程是解此题的关键,首先要把分子分母分解因式,然后进行约分.【 第 4 题 】【 答 案 】C【 解析 】解:0.000 0007=7×10-7.故选:C .科学记数法就是将一个数字表示成(a×10的n 次幂的形式),其中1≤|a|<10,n 表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.本题0.000 000 7<1时,n 为负数.此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【 第 5 题 】【 答 案 】C【 解析 】解:如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD ,∴∠1=∠EBC=16°,故选:C .依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD ,即可得出∠1=∠EBC=16°. 本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.【 第 6 题 】【 答 案 】C【 解析 】解:原式=-3x 2+1故选:C .根据整式的除法法则即可求出答案.本题考查整式的除法,解题的关键是熟练运用整式的除法法则,本题属于基础题型.【 第 7 题 】【 答 案 】B【 解析 】解:不等式组整理得:{x >−12x ≤3, 解得:-12<x≤3,则不等式组的整数解为0,1,2,3,之和为6,故选:B .分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而求出整数解之和即可.此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.【 第 8 题 】【 答 案 】A【 解析 】解:由题意得:3x-2-m=2(x+1),方程的增根为x=-1,把x=-1代入得,-3-2-m=0解得m=-5,故选:A .根据分式的方程增根定义,得出增根,再代入化简后的整式方程进行计算即可.本题考查了分式方程的增根,掌握分式方程增根的定义是解题的关键.【 第 9 题 】【 答 案 】A【 解析 】解:∵a+b=-5,ab=-4,∴a 2-ab+b 2=(a+b )2-3ab=(-5)2-3×(-4)=37,故选:A .先根据完全平方公式进行变形,再代入求出即可.本题考查了完全平方公式,能灵活运用完全平方公式进行变形是解此题的关键.【 第 10 题 】【 答 案 】A【 解析 】解:解不等式3x-m+1>0,得:x >m−13,∵不等式有最小整数解2, ∴1≤m−13<2, 解得:4≤m <7,故选:A .先解出不等式,然后根据最小整数解为2得出关于m 的不等式组,解之即可求得m 的取值范围.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.【第 11 题】【答案】3【解析】解:∵(x-1)3=8,∴x-1=2,解得:x=3.故答案为:3.直接利用立方根的定义得出x的值,进而得出答案.此题主要考查了立方根,正确开立方是解题关键.【第 12 题】【答案】a(a+2b)(a-2b)【解析】解:a3-4ab2=a(a2-4b2)=a(a+2b)(a-2b).故答案为:a(a+2b)(a-2b).观察原式a3-4ab2,找到公因式a,提出公因式后发现a2-4b2符合平方差公式的形式,再利用平方差公式继续分解因式.本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.【第 13 题】【答案】25°【解析】解:∵OG⊥AD,∴∠GOD=90°,∵∠EOF=∠BOC=35°,又∵∠FOG=30°,∴∠DOE=∠GOD-∠EOF-∠GOF=90°-35°-30°=25°,故答案为:25°.由已知条件和观察图形可知∠EOF与∠BOC是对顶角,OG⊥AD,∠GOD为90°,利用这些关系可解此题.本题利用垂直的定义,对顶角的性质计算,要注意领会由垂直得直角这一要点.【第 14 题】【答案】m<6且m≠2【解析】解:x+mx−2+2m2−x=3,方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6−m2,∵6−m2≠2,∴m≠2,由题意得,6−m2>0,解得,m<6,故答案为:m<6且m≠2.利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.【第 15 题】【答案】原式=-4+3-4-1=-6.【解析】直接利用负指数幂的性质以及零指数幂的性质、二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.【第 16 题】【答案】解:{5−x>3①x2−2x−13−1≤0②,解不等式①,得x<2,解不等式②,得x≥-4,所以,不等式组的解集是-4≤x<2不等式组的解集在数轴上表示如下:.【解析】首先分别解出两个不等式的解集,再根据解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到,确定不等式组的解集,再在数轴上表示解集即可.此题主要考查了一元一次不等式组的解法,关键是正确解出两个不等式的解集,掌握确定不等式组解集的规律.【第 17 题】【答案】解:原方程得:xx+1−2(x+1)(x−1)=1,方程两边同乘以(x+1)(x-1)得:x(x-1)-2=x2 -1,整理得:x2-x-2=x2-1,∴x=-1,检验:当x=-1时,(x+1)(x-1)=0,∴原分式方程无解.【解析】首先对分式的分母进行因式分解,然后通过方程两边同乘以最简公分母,把分式方程转化为整式方程进行求解,最后要把求得的x的值代入到最简公分母进行检验.本题主要考查因式分解,解分式方程,关键在于正确把分式方程整理为整式方程,注意最后要进行检验.【第 18 题】【答案】解:结论:AB∥DE.理由:∵∠1+∠ADC=180°(平角的定义),又∵∠1+∠2=180(已知),∴∠ADC=∠2(等量代换),∴EF∥DC (同位角相等两直线平行),∴∠3=∠EDC (两直线平行,内错角相等),又∵∠3=∠B (已知),∴∠EDC=∠B (等量代换),∴AB∥DE (同位角相等两直线平行).【 解析 】结论:AB∥DE .首先证明EF∥BC ,再证明∠B=∠EDC 即可.本题考查平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【 第 19 题 】【 答 案 】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)△ABC 的面积为:2×3-12×1×1-12×2×2-12×1×3=2.【 解析 】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用△ABC 所在矩形面积减去周围三角形面积进而得出答案.此题主要考查了平移变换以及三角形面积求法,正确得出平移后对应点位置是解题关键.【 第 20 题 】【 答 案 】解:原式=(2x 2x -x 2+1x )÷(x−1)2x =(x+1)(x−1)x •x (x−1)=x+1x−1,当x=-2时,原式=−2+1−2−1=13.【 解析 】先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可. 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.【 第 21 题 】【 答 案 】(1)19+110-190=15(2) 12n−1+12n -1(2n−1)2n =1n(3)左边=2n+(2n−1)(2n−1)2n -1(2n−1)2n=4n−1−1(2n−1)2n=4n−2(2n−1)2n=1n ,即左边=右边,所以12n−1+12n -1(2n−1)2n =1n .【 解析 】解:(1)19+110-190=15,故答案为:19+110-190=15;(2)12n−1+12n -1(2n−1)2n =1n ,故答案为:12n−1+12n -1(2n−1)2n =1n ;(3)左边=2n+(2n−1)(2n−1)2n -1(2n−1)2n=4n−1−1(2n−1)2n=4n−2(2n−1)2n=1n ,即左边=右边,所以12n−1+12n -1(2n−1)2n =1n .(1)根据算式所反应的规律得出即可;(2)根据算式所反应的规律得出即可;(3)求出左边的值,再判断即可.本题考查了有理数的混合运算,能根据算式得出规律是解此题的关键.【 第 22 题 】【 答 案 】解:(1)设梨树苗的单价为x 元,则苹果树苗的单价为(x+2)元,依题意得:2500x =3500x+2,解得x=5.经检验x=5是原方程的解,且符合题意.答:梨树苗的单价是5元;(2)设购买梨树苗种树苗a 棵,苹果树苗则购买(1100-a )棵,依题意得:(5+2)(1100-a )+5a≤6000,解得a≥850.答:梨树苗至少购买850棵.【 解析 】(1)设梨树苗的单价为x 元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;(2)设购买梨树苗种树苗a 棵,苹果树苗则购买(1100-a )棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.本题考查了列分式方程解实际问题的运用,一元一次不等式解实际问题的运用,解答时由方程求出两种树苗的单价是关键.【 第 23 题 】【 答 案 】解:(1)∵AM∥BN∴∠A+∠ABN=180°又∵∠A=60°∴∠ABN=120°∵BC 、BD 分别平分∠ABP 和∠PBN ∴∠CBP=12∠ABP ,∠PBD=12∠PBN∴∠CBD=12∠ABP+12∠PBN=12∠ABN=60°.(2)∵AM∥BN ,∴∠APB=∠PBN∠ADB=∠DBN ,又∵∠PBD=∠DBN ,∴∠APB=2∠DBN ,∴∠APB=2∠ADB .(3)AM∥BN∴∠ACB=∠CBN又∵∠ACB=∠ABD∴∠CBN=∠ABD∴∠CBN -∠CBD=∠ABD∠CBD ∴∠DBN=∠ABC又∵∠CBD=60°,∠ABN=120°∴∠ABC=30°.【 解析 】(1)证明∠CBD=12∠ABP+12∠PBN=12∠ABN 即可解决问题. (2)利用平行线的性质即可解决问题.(3)只要证明∠DBN=∠ABC 即可解决问题.本题考查了平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.。
沪科版七年级数学下册期末测试卷-带参考答案
沪科版七年级数学下册期末测试卷-带参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.下列各数是无理数的是()A.2 024 B.0 C.227 D. 32.某细胞的直径约为0.000 006 m,将数据0.000 006用科学记数法表示为() A.6×10-6B.0.6×10-5 C.6×10-7 D. 6×10-53.下列运算正确的是()A.(a4)3=a7B.a6÷a3=a2C.(3a-b)2=9a2-b2D.-a4·a6=-a104.下列各选项中正确的是()A.若a>b,则a-1<b-1 B.若a>b,则a2>b2C.若a>b,且c≠0,则ac>bc D.若a|c|>b|c|,则a>b5.下列因式分解正确的是()A. a2-2a+1=a(a-2)+1B. a2+b2=(a+b)(a-b)C. a2+4ab-4b2=(a-2b)2D. -ax2+4ax-4a=-a(x-2)26.已知a+b=5,ab=3,则ba+ab的值为()A.6 B.193 C.223D.87.如图,不能说明AB∥CD的有()①∠DAC=∠BCA;②∠BAD=∠CDE;③∠DAB+∠ABC=180°;④∠DAB=∠DCB.A. 1个B. 2个C. 3个D. 4个(第7题)8.如图,直线l1∥l2,AB⊥CD,∠1=22°,那么∠2的度数是()(第8题)A .68°B .58°C .22°D .28°9.若关于x 的不等式组⎩⎪⎨⎪⎧x2-1<2-x 3,a -3x ≤4x -2有且仅有3个整数解,且关于y 的方程a -y 3=2a -y5+1的解为负整数,则符合条件的整数a 的个数为( ) A .1B .2C .3D .410.我国宋朝数学家杨辉提出“杨辉三角”(如图),此图揭示了(a +b )n (n 为非负整数)展开式的项数及各项系数的有关规律.(第10题)例如: (a +b )0=1; (a +b )1=a +b ; (a +b )2=a 2+2ab +b 2; (a +b )3=a 3+3a 2b +3ab 2+b 3; (a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4; ……请你猜想(a +b )9的展开式中所有系数的和是( ) A .2 048B .512C .128D .64二、填空题(本大题共4小题,每小题5分,共20分) 11.181的算术平方根为________.12.已知a 2-2a -3=0,则代数式3a (a -2)的值为________.13.将两个直角三角尺按如图的方式放置,点E 在AC 边上,且ED ∥BC ,∠C第 3 页 共 10 页=30°,∠F =∠DEF =45°,则∠AEF =______.(第13题)14.观察下列方程和它们的解:①x +2x =3的解为x 1=1,x 2=2;②x +6x =5的解为x 1=2,x 2=3;③x +12x =7的解为x 1=3,x 2=4.(1)按此规律写出关于x 的第n 个方程为________________________; (2)(1)中方程的解为__________________. 三、(本大题共2小题,每小题8分,共16分) 15.计算:-12+|-2|+3-8+(-3)2.16.解不等式组:⎩⎪⎨⎪⎧2(2x -1)≤3(1+x ),x +13<x -x -12.四、(本大题共2小题,每小题8分,共16分) 17. 先化简,再求值:⎝ ⎛⎭⎪⎫1-1a +1÷2a a 2-1,其中a =-3.18.已知5a +2的立方根是3,3a +b -1的算术平方根是4,c 是13的整数部分,求3a -b +c 的平方根.五、(本大题共2小题,每小题10分,共20分) 19.在如图所示的网格中,画图并填空:(1)画出三角形ABC 向右平移6个小格得到的三角形A 1B 1C 1; (2)画出三角形A 1B 1C 1向下平移2个小格得到的三角形A 2B 2C 2;(3)如果点M 是三角形ABC 内一点,点M 随三角形ABC 经过(1)、(2)两次平移后得到的对应点是M 2,那么线段MM 2与线段AA 2的位置关系是________.(第19题)20.已知点A,B在数轴上所对应的数分别为mx-7,x-87-x,若A,B两点在原点的两侧且到原点的距离相等.(1)当m=2时,求x的值;(2)若不存在满足条件的x的值,求m的值.六、(本题满分12分)21.如图,已知∠EDC=∠GFD,∠DEF+∠AGF=180°.(1)请判断AB与EF的位置关系,并说明理由;(2)过点G作线段GH⊥EF,垂足为H,若∠DEF=30°,求∠FGH的度数.(第21题)第5 页共10 页七、(本题满分12分)22.实践与探索:如图①,边长为a的大正方形里有一个边长为b的小正方形,把图①中的阴影部分通过剪切拼成一个长方形(如图②所示).(第22题)(1)上述操作能验证的等式是:__________.(填“A”“B”或“C”)A.a2-b2=(a+b)(a-b)B.a2-2ab+b2=(a-b)2C.a2+ab=a(a+b)(2)请应用这个等式完成下列各题:①已知4a2-b2=24,2a+b=6,则2a-b=________.②计算:9×(10+1)(102+1)(104+1)(108+1)(1016+1).八、(本题满分14分)23.已知直线PQ∥MN,把一个三角尺(∠A=30°,∠C=90°)按如图①的方式放置,点D,E,F是三角尺的边与平行线的交点.(1)①∠PDC,∠MEC,∠BCE之间有怎样的数量关系?请说明理由;②若∠AEN=∠A,则∠BDF=________;(2)将图①中的三角尺进行适当转动,得到图②,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,求∠BDF∠GEN的值.(第23题)第7 页共10 页答案一、1.D 2.A 3.D 4.D 5.D 6.B 7.C 8.A9.C 思路点睛:解不等式组得⎩⎪⎨⎪⎧x <2,x ≥a +27.根据不等式组有且仅有3个整数解得到a 的取值范围.再解方程a -y 3=2a -y 5+1得y =-a +152.根据解为负整数,得到另一个a 的取值范围.再取两个a 的取值范围的公共部分即可. 10.B二、11.13 12.9 13.165° 14.(1)x +n (n +1)x=2n +1 (2)x 1=n ,x 2=n +1三、15.解:原式=-1+2+(-2)+3=-1+2-2+3=2. 16.解:⎩⎪⎨⎪⎧2(2x -1)≤3(1+x ),①x +13<x -x -12,② 解不等式①,得x ≤5.解不等式②,得x >-1. 所以不等式组的解集为-1<x ≤5.四、17.解:原式=⎝ ⎛⎭⎪⎫a +1a +1-1a +1÷2a(a +1)(a -1)=a a +1·(a +1)(a -1)2a =a -12.当a =-3时,原式=-3-12=-2.18.解:因为5a +2的立方根是3, 3a +b -1的算术平方根是4,所以5a +2=27,3a +b -1=16.所以a =5,所以3×5+b -1=16,所以b =2.因为c 是13的整数部分,3<13<4,所以c =3.所以3a -b +c =3×5-2+3=16.所以3a -b +c 的平方根是±4. 五、19.解:(1)如图,三角形A 1B 1C 1即为所作.(2)如图,三角形A 2B 2C 2即为所作.(第19题) (3)平行20.解:(1)根据题意,得mx-7+x-87-x=0.把m=2代入,得2x-7+x-87-x=0,解得x=10.经检验,x=10是分式方程的解.所以x=10.(2)将mx-7+x-87-x=0化为整式方程为m-(x-8)=0.根据题意,得x-7=0,所以x=7.把x=7代入m-(x-8)=0,得m-(7-8)=0,解得m=-1.六、21.解:(1)AB∥EF,理由:因为∠EDC=∠GFD,所以DE∥GF,所以∠DEF=∠GFE.因为∠DEF+∠AGF=180°,所以∠GFE+∠AGF=180°,所以AB∥EF.(2)如图,因为GH⊥EF,所以∠GHF=90°.因为∠GFE=∠DEF=30°所以∠FGH=180°-∠GHF-∠GFE=180°-90°-30°=60°.(第21题)七、22.解:(1)A(2) ①4②9×(10+1)(102+1)(104+1)(108+1)(1016+1)=(10-1)(10+1)(102+1)(104+1)(108+1)(1016+1)第9 页共10 页=(102-1)(102+1)(104+1)(108+1)(1016+1)=(104-1)(104+1)(108+1)(1016+1)=(108-1)(108+1)(1016+1)=(1016-1)(1016+1)=1032-1.八、23.解:(1)①∠BCE=∠PDC+∠MEC.理由:过点C向右作CH∥PQ,所以∠PDC=∠DCH.因为PQ∥MN,所以CH∥MN所以∠MEC=∠ECH所以∠BCE=∠DCH+∠ECH=∠PDC+∠MEC.②60°(2)设∠CEG=∠CEM=x,则∠GEN=180°-2x.由(1)可得∠PDC+∠MEC=∠BCE=90°所以∠CDP=90°-∠CEM=90°-x所以∠BDF=90°-x.所以∠BDF∠GEN=90°-x180°-2x=12.。
2020年沪教版数学七年级下册期末测试卷附答案
2020年沪教版数学七年级下册期末测试卷附答案一、选择题(共6小题;共18分)1. 下列各数中是无理数的是A. B. C. D.2. 已知面积为的正方形的边长为,那么的值是A. B. C. D.3. 若点位于第一象限,则点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 下列计算正确的是A. 的平方根是C. 的四次方根是D.5. 如图,不能推断的是A. B.C. D.6. 在直角坐标平面内,已知在轴与直线之间有点,如果该点关于直线的对称点的坐标为,那么的值为A. B. C. D.二、填空题(共12小题;共36分)7. .8. 据上海市统计局最新发布的统计公报显示,年末上海市常住人口总数约为人,用科学记数法将保留三个有效数字是.9. 如图,的同位角是.10. 如图,已知,,那么直线,的夹角是.11. 已知三角形的三边长分别为、和,则的取值范围是.12. 如图,点到直线的距离是线段的长度.13. 在平面直角坐标系中,如果点在第三象限,那么的取值范围是.14. 如图,将边长为个单位的正方形置于平面直角坐标系内,如果与轴平行,且点的坐标是,那么点的坐标为.15. 如图,已知点,,,在同一条直线上,,,,那么的度数是.16. 如图,将沿射线方向平移得到,,,那么的长度是.17. 如图,在四边形中,,要使,可添加一个条件为.18. 在中,,若将绕点顺时针旋转得,使点落在原的边上,如果,则.三、解答题(共10小题;共96分)19. 计算:.20. .21. (结果表示为含幂的形式).22. 解方程:.23. 如图,已知直线,被直线所截,平分,,求的度数.解:因为(已知),所以().所以().因为(),所以因为平分(已知),所以(角平分线的意义).所以所以24. 如图,已知,,垂足为点,,.(1)求的度数;(2)求的长度.25. 如图,已知,,,垂足分别为点,.说明与全等的理由.26. 如图,点是等边外一点,点是边上一点,,,联结,.(1)试说明的理由;(2)试判断的形状,并说明理由.27. 如图,在直角坐标平面内,已知点,点的横坐标是,的面积为.(1)求点的坐标.(2)如果是直角坐标平面内的点,那么点在什么位置时,?28. 如图,以为腰向两侧分别作全等的等腰三角形和等腰三角形,过顶角的顶点作,使(),将的边与重合,绕点按逆时针方向旋转,与射线,分别交于点,,设旋转角度为.(1)如图,当时,线段与相等吗?请说明理由.(2)当时,线段,与线段具有怎样的数量关系?请在图中画出图形并说明理由.(3)连接,在绕点逆时针旋转过程中(),当线段时,请用含的代数式直接表示出的度数.答案第一部分1. C2. A3. B4. D5. B6. D第二部分7.8.9.10.11.12.13.14.15.16.17. 答案不唯一,如等18. 或第三部分.20..22.23. 同位角相等,两直线平行;两直线平行,同旁内角互补;邻补角的意义;;;;24. (1)(2)25. 理由略(提示:根据说明).26. (1)略(2)是等边三角形,理由略(提示:由得,,从而可得为有一个内角等于的等腰三角形,即等边三角形).27. (1)点的坐标为或.(2)当点在直线或直线上时,.28. (1)相等.理由如下:等腰三角形和等腰三角形全等,,(全等三角形、等腰三角形的性质),(全等三角形的对应角相等).(已知),(等量代换),所以(等式性质),即.在和中,所以(),所以(全等三角形的对应边相等).(2).画出图形如图所示,理由如下:(等量代换),(等式性质),即.(已证),,即.在和中,(),(全等三角形的对应边相等),(等量代换).与全等,(全等三角形的对应边相等),(等量代换).(3).。
沪科版七年级下册数学期末考试试卷带答案
沪科版七年级下册数学期末考试试题一、单选题1.下列实数中,无理数是()A B C .17D .3.141592.若x y >,则下列式子中正确的是()A .33x y->-B .33x y ->-C .33x y ->-D .33x y->-3.下列各式计算的结果为5的是()A .3+2B .10÷2C .⋅4D .−324.下列多项式在实数范围内不能因式分解的是()A .x 3+2xB .a 2+b 2C .y 2+y +14D .m 2-4n 25.若分式23x x -+有意义,则x 的取值范围是()A .x≠﹣3B .x≥﹣3C .x≠﹣3且x≠2D .x≠26.如图,将周长为8的△ABC 沿BC 方向平移1个单位长度得到DEF ∆,则四边形ABFD 的周长为()A .8B .10C .12D .167.如图,已知//a b ,直角三角板的直角顶点在直线b 上,若158∠= ,则下列结论正确的是()A .342∠=B .4138∠=C .542∠=D .258∠=8.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+q=0,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是()A .pB .qC .mD .n9.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本3元,每支钢笔5元,求小明最多能买几支钢笔.设小明买了x 支钢笔,依题意可列不等式为()A .3x +5(30﹣x )≤100B .3(30﹣x )+5≤100C .5(30﹣x )≤100+3xD .5x ≤100﹣3(30+x )10.若()2231x m x +-+是完全平方式,x n +与2x +的乘积中不含x 的一次项,则m n 的值为A .-4B .16C .4或16D .-4或-16二、填空题11.49的平方根是_____.12.因式分解:23m n n -=__________.13.如图,用相同的小正方形按照某种规律进行摆放.根据图中小正方形的排列规律,猜想第n 个图中小正方形的个数为___________(用含n 的式子表示)14.式子“1 23 4... 100+++++”表示从1开始的100个连续自然数的和,由于式子比较长,100书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号,如422221123430n =+++=∑,通过对以上材料的阅读,计算()2019111n n n ==+∑__________.三、解答题15.若1+1=3,则r2KB+2的值为_____.16.(1)()10312753π-⎛⎫+-+- ⎪⎝⎭;(2)计算:()()()252x x x x -+--;17.(1)先化简:244411x x x x x x --+⎛⎫-÷⎪--⎝⎭,并将x 从0,1,2中选一个合理的数代入求值;(2)解不等式组:()432326x x x x -⎧+≥⎪⎨⎪+>--⎩①②,并把它的解集在如图的数轴上表示出来;18.如图,已知,A AGE D DGC ∠=∠∠=∠.(1)试说明://AB CD ;(2)若21180∠+∠= ,且230BEC B ∠=∠+ ,求B Ð的度数.19.某商场计划购进A 、B 两种新型节能台灯,已知B 型节能台灯每盏进价比A 型的多40元,且用3000元购进的A 型节能台灯与用5000元购进的B 型节能台灯的数量相同.(1)求每盏A 型节能台灯的进价是多少元?(2)商场将购进A 、B 两型节能台灯100盏进行销售,A 型节能台灯每盏的售价为90元,B 型节能台灯每盏的售价为140元,且B 型节能台灯的进货数量不超过A 型节能台灯数量的2倍.应怎样进货才能使商场在销售完这批台灯时利最多?此时利润是多少元?20.数学活动课上,老师准备了若千个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积:方法1:,方法2:_;(2)观察图2,请你写出代数式:()222,,a b a b ab ++之间的等量关系;(3)根据(2)题中的等量关系,解决如下问题:①已知:225,13a b a b +=+=,求ab 的值;②已知()()22201920185a a -+-=,求()()20192018a a --的值.21.淮河汛期即将来临,防汛指挥部在一危险地带两岸各安置了-探照灯,便于夜间查看河面及两岸河堤的情况.如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是a o /秒,灯B 转动的速度是b o /秒,且,a b 满足:a 1的整数部分,b 是不等式()213x +>的最小整数解.假定这--带淮河两岸河堤是平行的,即//PQ MN ,且45BAN ∠= .(1)如图1,a=_____,b=;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光東互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前。
:2020-2021学年七年级数学下学期期末测试卷(沪教版)02 (解析版)
2020-2021学年七年级数学下学期期末测试卷02【沪教版】数学一.选择题(每小题3分,共18分)1.(2020春•浦东新区期末)下列语句错误的是()A.无理数都是无限小数B.=±2C.有理数和无理数统称实数D.任何一个正数都有两个平方根【考点】实数.【分析】根据无理数的定义,平方根的定义,实数的分类,即可解答.【解答】解:A、无理数是无限不循环小数,原说法正确,故此选项不符合题意;B、=2,原说法错误,故此选项符合题意;C、有理数和无理数统称实数,原说法正确,故此选项不符合题意;D、任何一个正数都有两个平方根,原说法正确,故此选项不符合题意;故选:B.【点评】本题考查了无理数的定义,平方根的定义,实数的分类,解题的关键是掌握无理数的定义,平方根的定义,实数的分类等知识.2.(2020秋•浦东新区期末)如图,不能推断AD∥BC的是()A.∠1=∠5 B.∠2=∠4C.∠3=∠4+∠5 D.∠B+∠1+∠2=180°【考点】平行线的判定.【分析】根据平行线的判定方法分别进行分析即可.【解答】解:A、∠1=∠5可根据内错角相等两直线平行可得AD∥BC,故此选项不合题意;B、∠2=∠4可根据内错角相等两直线平行可得AB∥DC,故此选项符合题意;C、∠3=∠4+∠5可根据同位角相等两直线平行可得AD∥BC,故此选项不合题意;D、∠B+∠1+∠2=180°可根据同旁内角互补,两直线平行可得AD∥BC,故此选项不合题意;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.3.(2018春•长宁区期末)已知两条直线被第三条直线所截,下列四个说法中正确的个数是()(1)同位角的角平分线互相平行;(2)内错角的角平分线互相平行(3)同旁内角的角平分线互相垂直;(4)邻补角的角平分线互相垂直A.4个B.3个C.2个D.1个【考点】余角和补角;垂线;同位角、内错角、同旁内角;平行线的判定.【分析】根据平行线的判定定理解答.【解答】解:(1)两条平行直线被第三条直线所截,同位角的角平分线互相平行,故错误.(2)两条平行直线被第三条直线所截,内错角的角平分线互相平行,故错误.(3)两条平行直线被第三条直线所截,同旁内角的角平分线互相垂直,故错误.(4)邻补角的角平分线互相垂直,故本选项正确.综上所述,正确的说法只有1个.故选:D.【点评】考查了平行线的判定,余角和补角,同位角、内错角、同旁内角.关键是熟练掌握平行线的判定定理.4.(2020春•浦东新区期末)下列说法中错误的是()A.有两个角及它们的夹边对应相等的两个三角形全等B.有两个角及其中一个角的对边对应相等的两个三角形全等C.有两条边及它们的夹角对应相等的两个三角形全等D.有两条边及其中一条边的对角对应相等的两个三角形全等【考点】全等三角形的判定.【分析】根据全等三角形的判定对各选项分析判断后利用排除法求解.【解答】解:A、有两个角及它们的夹边对应相等的两个三角形全等,是“ASA”,说法正确;B、两个角及其中一个角的对边对应相等的两个三角形全等,是“AAS”,说法正确;C、有两条边及它们的夹角对应相等的两个三角形全等,是“SAS”,说法正确;D、有两条边及其中一条边的对角对应相等的两个三角形不一定全等,说法错误;故选:D.【点评】本题考查了全等三角形的判定,是基础题,熟记全等三角形判定方法是解题的关键,要注意“SSA”不能判定三角形全等.5.(2018春•虹口区期末)如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),那么棋子“炮”的坐标为()A.(3,0)B.(3,1)C.(3,2)D.(2,2)【考点】坐标确定位置.【分析】根据平面直角坐标系,找出相应的位置,然后写出坐标即可.【解答】解:根据棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3)可得:棋子“炮”的坐标为(3,2).故选:C.【点评】本题考查坐标确定位置,本题解题的关键就是确定坐标原点和x,y轴的位置及方向.6.(2020春•松江区期末)如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组【考点】等腰三角形的性质;等腰三角形的判定.【分析】根据等腰三角形的判定定理逐个判断即可.【解答】解:①、∵△ABC中,AB=AC,∴△ABC是等腰三角形,故①正确;②、∵△ABC中,∠B=56°,∠BAC=68°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣68°﹣56°=56°,∴∠B=∠C,∴△ABC是等腰三角形,故②正确;③∵△ABC中,AD⊥BC,AD平分∠BAC,∴∠BAD=∠CAD,∠ADB=∠ADC,∵∠B+∠BAD+∠ADB=180°,∠C+∠CAD+∠ADC=180°,∴∠B=∠C,∴△ABC是等腰三角形,故③正确;④、∵△ABC中,AD⊥BC,AD平分边BC,∴AB=AC,∴△ABC是等腰三角形,故④正确;即正确的个数是4,故选:D.【点评】本题考查了线段垂直平分线的性质,三角形的内角和定理,等腰三角形的判定等知识点,能灵活运用定理进行推理是解此题的关键.二.填空题(每小题2分,共28分)7.(2021春•青浦区期中)把表示成幂的形式为.【考点】分数指数幂.【分析】利用=(a≥0),再根据a﹣p=计算.【解答】解:=7.故答案为:7.8.(2021春•青浦区期中)比较大小:π(填“<”“>”或“=”).【考点】算术平方根;实数大小比较.【分析】判断出、π与4的大小关系,即可判断出、π的大小关系.【解答】解:∵>=4,π<4,∴>π.故答案为:>.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是判断出、π与4的大小关系.9.(2020春•嘉定区期末)已知有理数a,b,c在数轴上的位置如图所示,那么a+b﹣c0.(填“>”,“<”“≥”,“≤“或“=”)【考点】数轴;有理数的加减混合运算;实数大小比较.【分析】由数轴可知,a<0,b<0,c>0,且|a|>|b|>|c|,所以a+b﹣c<0.【解答】解:由数轴可知,a<0,b<0,c>0,且|a|>|b|>|c|,∴a+b﹣c<0.故答案为:<.【点评】本题考查了数轴、绝对值与有理数的加减混合运算,正确理解有理数的加减法法则是解题的关键.10.(2020春•浦东新区期末)计算:|﹣2|+=.【考点】实数的运算.【分析】根据绝对值的性质和立方根的定义计算可得答案.【解答】解:原式=2﹣2=0,故答案为:0.【点评】本题主要考查实数的运算,解题的关键是掌握绝对值的性质和立方根的定义.11.(2020春•浦东新区期末)如图,直线a∥b且直线c与a、b相交,若∠1=70°,则∠2=°.【考点】平行线的性质.【分析】利用平行线的性质求出∠3即可解决问题.【解答】解:如图,∵a∥b,∴∠1=∠3,∵∠1=70°,∴∠3=70°,∴∠2=180°﹣∠3=110°,故答案为110.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.12.(2019春•青浦区期末)如图,直线AB、CD相交于点O,OE平分∠BOC.如果∠BOE=65°,那么∠AOC=度.【考点】角平分线的定义;对顶角、邻补角.【分析】先根据角平分线的定义,求出∠BOC的度数,再根据邻补角的和等于180°求解即可.【解答】解:∵OE平分∠BOC,∠BOE=65°,∴∠BOC=2∠BOE=2×65°=130°,∴∠AOC=180°﹣∠BOC=180°﹣130°=50°.故答案为:50.【点评】本题考查了角平分线的定义以及邻补角的定义.解题的关键是掌握角平分线的定义以及邻补角的和等于180°,是基础题,比较简单.13.(2020春•闵行区期末)如图,已知直线a∥b∥c,△ABC的顶点B、C分别在直线b、c上,如果∠ABC =60°,边BC与直线b的夹角∠1=25°,那么边AB与直线a的夹角∠2=度.【考点】平行线的性质.【分析】证明∠ABC=∠1+∠2即可解决问题.【解答】解:如图,∵a∥b∥c,∴∠2=∠3,∠1=∠4,∴∠ABC=∠2+∠1.∵ABC=60°,∠1=25°,∴∠2=60°﹣25°=35°,故答案为35.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(2020秋•长宁区期末)在△ABC中,∠ABC=48°,点D在BC边上,且满足∠BAD=18°,DC=AB,则∠CAD=度.【考点】三角形内角和定理;三角形的外角性质;全等三角形的判定与性质;等腰三角形的判定.【分析】作辅助线,构建等腰三角形ABE,证明AB=BE,再证明△ABD≌△ACE,得∠CAE=∠BAD=18°,根据角的和可得结论.【解答】解:如图,在线段CD上取一点E,使CE=BD,连接AE,∴CE+DE=BD+DE,即CD=BE,∵CD=AB,∴AB=BE,∴∠BAE=∠BEA,∵∠B=48°,∴∠BAE=∠BEA=66°,∵∠B=48°,∠BAD=18°,∴∠ADE=66°=∠AED,∴AD=AE,∠ADB=∠AEC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠EAC=∠BAD=18°,∴∠CAD=∠CAE+∠DAE=∠BAD+∠DAE=66°.故答案为:66.【点评】本题考查了三角形的内角和定理,三角形全等的性质和判定,等腰三角形的性质和判定,正确作辅助线,构建等腰三角形是本题的关键.15.(2020春•浦东新区期末)直角坐标平面内,经过点A(2,﹣3)并且垂直于y轴的直线可以表示为直线.【考点】点的坐标.【分析】垂直于y轴的直线,纵坐标相等,都为﹣3,所以为直线:y=﹣3.【解答】解:由题意得:经过点A(2,﹣3)且垂直于y轴的直线可以表示为直线为:y=﹣3,故答案为:y=﹣3.【点评】此题考查了坐标与图形的性质,解题的关键是抓住过某点的坐标且垂直于y轴的直线的特点:纵坐标相等.16.(2018秋•奉贤区期末)已知:如图,在△ABC中,AB=AC,要使BD=CE,还需添加一个条件,这个条件可以是.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】先证△ABD≌△ACE(SAS),再由全等三角形的性质即可得出结论.【解答】解:添加条件:AD=AE,理由如下:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,故答案为:AD=AE(答案不唯一).【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法是解题的关键.17.(2020春•浦东新区期末)如图,△ABC和△BDE都是等边三角形,且点E在AD边上,已知∠ECB=35°.则∠ABE=.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】先证△ABD≌△ACE(SAS),再由全等三角形的性质即可得出结论.【解答】解:添加条件:AD=AE,理由如下:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,故答案为:AD=AE(答案不唯一).【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法是解题的关键.18.(2019春•崇明区期末)如果等腰三角形的两条边长分别等于4厘米和8厘米,那么这个等腰三角形的周长等于厘米.【考点】三角形三边关系;等腰三角形的性质.【分析】分两种情况讨论:当4厘米是腰时或当8厘米是腰时.根据三角形的三边关系,知4,4,8不能组成三角形,应舍去.【解答】解:当4厘米是腰时,则4+4=8,不能组成三角形,应舍去;当8厘米是腰时,则三角形的周长是4+8×2=20(厘米).故答案为:20.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.此类题不要漏掉一种情况,同时注意看是否符合三角形的三边关系.19.(2019秋•杨浦区期末)若等腰三角形一腰上的高与另一腰的夹角等于30°,则此三角形的顶角为度.【考点】等腰三角形的性质.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是90°+30°=120°.故答案为:60或120.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.20.(2019春•普陀区期末)如图,在△ABC中,AB=AC,BD平分∠ABC,交AC于点D、过点D作DE ∥AB,交BC于点E,那么图中等腰三角形有个.【考点】平行线的性质;等腰三角形的判定与性质.【分析】根据等腰三角形的判定和性质定理以及平行线的性质即可得到结论.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵DE∥AB,∴△CED是等腰三角形;∴∠BDE=∠ABD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠CBD=∠BDE,∴△EBD是等腰三角形;则图中等腰三角形的个数有3个;故答案为:3.【点评】此题考查了等腰三角形判定和性质、角平分线的性质、平行线的性质,由已知条件利用相关的性质求得各个角相等是本题的关键.三.解答题(第21题~第24题每小题5分,第25题~第27题每小题8分,第28题10分)21.(2020春•松江区期末)计算:3÷﹣27+()﹣1﹣(+2)0.【考点】实数的运算;分数指数幂;零指数幂;负整数指数幂.【分析】直接利用零指数幂的性质和二次根式的性质、负指数幂的性质分别化简得出答案.【解答】解:原式=﹣3+﹣1=1﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.22.(2019春•嘉定区期末)利用幂的性质计算:(25×75)÷14(结果表示为幂的形式).【考点】分数指数幂.【分析】先根据积的乘方运算法则化简,再根据幂的乘方运算法则以及同底数幂的除法法则计算即可.【解答】解:(25×75)÷14====.【点评】本题主要考查了分数指数幂,熟记幂的运算法则是解答本题的关键.23.(2014秋•昆山市校级期末)已知3﹣的整数部分是a,小数部分是b,求500a2+(2+)ab+4的值.【考点】估算无理数的大小.【分析】根据1<<2,得a=1,b=2﹣,再进一步求500a2+(2+)ab+4的值.【解答】解:∵1<<2,∴a=1,b=2﹣,∴500a2+(2+)ab+4=500×12+(2+)×1×(2﹣)+4=500+4﹣3+4=505.【点评】此题考查了二次根式的化简以及计算,同时考查了学生的估算能力,“夹逼法”是估算的一般方法,也是常用方法.24.(2020春•松江区期末)如图,已知在△ABC中,点D为AC边上一点,DE∥AB交边BC于点E,点F 在DE的延长线上,且∠FBE=∠ABD,若∠DEC=∠BDA.(1)试说明∠BDA=∠ABC的理由;(2)试说明BF∥AC的理由.【考点】平行线的判定与性质.【分析】(1)根据平行线的性质得出∠DEC=∠ABC,根据∠DEC=∠BDA求出∠BDA=∠ABC即可;(2)求出∠ABC=∠FBD,根据∠BDA=∠ABC得出∠BDA=∠FBD,根据平行线的判定得出即可.【解答】解:(1)理由是:∵DE∥AB,∴∠DEC=∠ABC,∵∠DEC=∠BDA,∴∠BDA=∠ABC;(2)∵∠ABD=∠FBE,∴∠ABD+∠DBE=∠FBE+∠DBE,即∠ABC=∠FBD,∵∠BDA=∠ABC,∴∠BDA=∠FBD,∴BF∥AC.【点评】本题考查了平行线的性质和判定,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.25.(2020春•浦东新区校级期末)阅读并填空:如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,点E在AD上,点F在AD的延长线上,且CE∥BF,试说明DE=DF.∵AB=AC,AD⊥BC,∴BD=(),∵CE∥BF,∴∠CED=().(完成以下说理过程)【考点】平行线的性质;等腰三角形的性质.【分析】根据已知条件判定两三角形全等并利用全等三角形的对应边相等得到线段DE=DF的长即可.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD,(等腰三角形底边上的高与底边上的中线、顶角的平分线重合),∵CE∥BF,∴∠CED=∠BFE,(两直线平行,内错角相等),∠EDC=∠BDF,在△BFD和△CED中,,∴△BFD≌△CED(AAS),∴DE=DF(全等三角形对应边相等).故答案为:CD,等腰三角形底边上的高与底边上的中线、顶角的平分线重合,∠BFE,两直线平行,内错角相等.【点评】本题考查了等腰三角形的性质,全等三角形的判定与性质,通常利用全等三角形证明线段相等或角相等.26.(2020春•松江区期末)在平面直角坐标系中,已知点A的坐标为(3,2).设点A关于y轴的对称点为B,点A关于原点O的对称点为C,点A绕点O顺时针旋转90°得点D.(1)点B的坐标是;点C的坐标是;点D的坐标是;(2)顺次联结点A、B、C、D,那么四边形ABCD的面积是.【考点】三角形的面积;关于x轴、y轴对称的点的坐标;关于原点对称的点的坐标;坐标与图形变化﹣旋转.【分析】(1)根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,以及利用旋转的性质即可解答本题.(2)利用矩形面积减去两个三角形求出即可.【解答】解:(1)∵点A的坐标为(3,2),点A关于y轴对称点为B,∴B点坐标为:(﹣3,2),∵点A关于原点的对称点为C,∴C点坐标为:(﹣3,﹣2),∵点A绕点O顺时针旋转90°得点D,∴D点坐标为:(2,﹣3),故答案为:(﹣3,2),(﹣3,﹣2),(2,﹣3);(2)顺次连接点A、B、C、D,那么四边形ABCD的面积是:5×6﹣×1×5﹣×1×5=25.故答案为:25.【点评】本题考查了在平面直角坐标系中,点关于x轴,y轴及原点对称时横纵坐标的符号以及图形面积求法,正确掌握点的变换坐标性质是解题关键.27.(2020春•浦东新区期末)如图,点A、B分别在射线ON、OM上运动(不与点O重合),AC、BC分别是∠BAO和∠ABO的角平分线,BC延长线交ON于点G.(1)若∠MON=60°,则∠ACB=°;若∠MON=90°,则∠ACB=°;(2)若∠MON=n°.请求出∠ACG的度数;(用含n的代数式表示)【考点】列代数式;三角形内角和定理.【分析】(1)由三角形内角和定理和角平分线的定义即可得到结论;(2)由三角形内角和定理和角平分线的定义即可得到结论.【解答】解:(1)∵∠MON=60°,∴∠OBA+∠OAB=120°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×120°=60°,∴∠ACB=180°﹣60°=120°,∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×90°=45°,∴∠ACB=180°﹣45°=135°;(2)在△AOB中,∠OBA+∠OAB=180°﹣∠AOB=180°﹣n°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°﹣n°),即∠ABC+∠BAC=90°﹣n°,∴∠ACB=180°﹣(∠ABC+∠BAC)=180°﹣(90°﹣n°)=90°+n°,∴∠ACG=180°﹣(90°+n°)=90°﹣n°.故答案为:120,135.【点评】本题考查了三角形的内角和,角平分线的定义,正确的识别图形是解题的关键.28.(2020秋•奉贤区期末)已知:在△ABC中,AB=6,AC=5,△ABC的面积为9.点P为边AB上动点,过点B作BD∥AC,交CP的延长线于点D.∠ACP的平分线交AB于点E.(1)如图1,当CD⊥AB时,求P A的长;(2)如图2,当点E为AB的中点时,请猜想并证明:线段AC、CD、DB的数量关系.【考点】全等三角形的判定与性质.【分析】(1)根据三角形的面积公式得出CP,进而利用勾股定理得出P A即可;(2)延长BD,过A作AO∥BC,利用平行四边形的性质解答即可.【解答】解:(1)∵CD⊥AB,△ABC的面积为9,AB=6,∴,∴CP=3,由勾股定理得:P A=;(2)延长BD,过A作AO∥BC,∵BD∥AC,AO∥BC,∴四边形AOBC是平行四边形,∵E是AB的中点,∴延长CE肯定可以过点O点,∴∠OCD=∠ACO=∠COD,∴CD=DO,∵DO+DB=AC,∴AC=CD+DB.【点评】考查了全等三角形的判定和性质和平行四边形的性质,解题的关键是根据平行四边形的性质进行解答,属于中考常考题型.。
沪科版七年级(下)期末数学试卷含答案
4321D CBA 21abc初中七年级数学试卷1.如果a 的平方根是4±= .2.一种病毒的直径是0.000 000 12m ,用科学计数法表示为m. 3. 比较大小:1.4. 关于x 的某个不等式组的解集在数轴上表示为:(如下图)则原不等式组的解集是 .5.不等式组1023x x +≥⎧⎨+<⎩的整数解是 .6. 若∠1和∠2是对顶角,∠1=25°,则∠2的余角是 °.7. 分解因式:34m m -= .8. 如下图,直线a 、b 被直线c 所截,且a ∥b ,若∠2=38°,则∠1的度数是 °.9. 当x 时,分式24xx -有意义. 10. 某住宅小区5月份随机抽查了该小区6天的用水量(单位:吨),结果分别是30、34、32、37、28、31,那么,请你估计该小区5月份的总用水量约是 吨.二 选择题(每小题3分)11. 已知,如右图AB ∥CD ,可以得到 ( ) A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4 12. 在223.14,,7π这五个数中,无理数的个数是 ( )aA. 1个B. 2个C. 3个D. 4个13. 已知a b <则下列各式正确的是 ( )A. a b <-B. 33a b ->-C. 22a b <D. 33a b ->-14. 下列计算中,正确的个数是( )①347x x x += ②33623y y y ⋅= ③ 538()()a b a b ⎡⎤+=+⎣⎦④2363()a b a b = A. 1个 B.2个 C.3个 D. 4个15. 32-与32 的关系是 ( ) A. 互为倒数 B.绝对值相等 C. 互为相反数 D. 和为零 16. 下列各式中,正确的是 ( )A. 22a b a b a b +=++B. 1a b a b --=-+C.1a ba b--=-- D. 22a b a b a b -=-- 17. 下列多项式能用完全平方公式分解因式的有 ( )A .222x x y +- B. 2469x x -+ C. 22x xy y ++ D. 22293x xy y -+18. 如图,下列不能判定a ∥b 条件是 ( ) A.∠1=∠3 B.∠2+∠3=180° C.∠2=∠3 D. ∠2=∠419. 为了考察某班学生的身高情况,从中抽出20名学生进行身高测量,下列说法中正确的是 ( ) A. 这个班级的学生是总体 B. 抽取的20名学生是样本 C. 抽取的每一名学生是个体 D. 样本容量是2020.下列图形中,是由①仅通过平移得到的是 ( )密 封 线 内 不 要 答 题三 解答题(40分)21. 解不等式组,并把其解集在数轴上表示出来(6分)211841x x x x ->+⎧⎨+<-⎩22. 先化解,再求值(8分)2131()111x x x x +-÷+-- ,其中 1x =24. 某校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也住不满,问有多少间宿舍,多少名女生?(8分)25.某车间加工300个零件,在加工完成60个以后,由于改进操作方法,每天加工的零件是原来的2倍,前后共用30天完成了任务,那么改进操作方法后每天加工多少个零件?(8分)参考答案一 填空(每小题3分,共30分)1. 42. 71.210-⨯3. <4. 23x -<≤5. 1,0x x =-=6. 657. (21)(21)m m m +-8. 1429. 2x ≠± 10. 992 二 选择(每小题3分,共30分) 三 解答题(40分)22.解:…………(3分)………………(5分) …………………… (6分)当 1x =时,原式=4211-=-+ ………………………(8分)24. 解:设有x 间宿舍,则女生数为(55)x +人,根据题意得 (1分)55358(1)55x x x +<⎧⎨->+⎩ ………………………………………(5分) 解得 1463x << ………………………………………(6分) 因为房间数为整数,所以5x =,(55)30x += ………(7分) 答:有5间宿舍,30名女生. ……………………(8分)25.解:设改进方法后每天加工的零件数为x ,则改进方法前每天加工的零件数为12x ,根据题意得 ……………………………(1分)12603006030xx-+= ……………………………(5分) 解这个分式方程得12x = ……………………………(6分) 经检验 ,12x =是原方程的根 ……………………………(7分) 答:改进方法后每天加工零件12个. …………………………(8分)2131()11113()(1)(1)(1)(1)(1)4(1)(1)(1)41x x x x x x x x x x x x x x x +-÷+---+=-⨯-+-+--=⨯-+-=-+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末达标检测卷(150分,120分钟)题号 一 二 三 总分 得分一、选择题(每题4分,共40分) 1.下列说法不正确的是( )A .-1的立方根是-1B .-1的平方是1C .-1的平方根是-1D .1的平方根是±1 2.下列计算正确的是( )A .a 2·a 3=a 6B .(-2ab)2=4a 2b 2C .(a 2)3=a 5D .3a 3b 2÷a 2b 2=3ab3.把代数式3x 3-6x 2+3x 分解因式,结果正确的是( ) A .3x(x 2-2x +1) B .3x(x -2)2 C .3x(x +1)(x -1) D .3x(x -1)24.将分式15x +13y35x -y 中的字母的系数化为整数得( )A .3x +5y 9x -15yB .3x +y 9x -yC .x +5y x -15yD .3x +5y 9x -y 5.下列结论正确的是( )A .3a 2b -a 2b =2B .单项式-x 2的系数是-1C .使式子x +2有意义的x 的取值范围是x >-2D .若分式a 2-1a +1的值等于0,则a =±16.四根火柴棒摆成如图所示的形状,平移火柴棒后,可得到下列图形中的( )(第6题)7.不等式组⎩⎪⎨⎪⎧x +4>3,x ≤1的解集在数轴上可表示为( )8.关于x 的分式方程m -2x -1-2xx -1=1有增根,则m 的值为( )A .1B .4C .2D .0(第9题)9.如图,AB ∥CD ,CD ∥EF ,则∠BCE 等于( ) A .∠2-∠1 B .∠1+∠2C .180°+∠1-∠2D .180°-∠1+∠210.读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为Σ100n =1n ,这里“Σ”是求和符号.通过对以上材料的阅读,计算Σ2 015n =1 1n (n +1)=( )A .2 0142 015B .2 0152 016C .2 0162 015D .2 0152 014二、填空题(每题5分,共20分)11.写出一个比-1大的负无理数:________.12.将一张长方形(对边平行)纸条按如图方式折叠,则∠1=________.(第12题)13.若m 为正实数,且m -1m =3,则m 2-1m 2=________. 14.定义新运算“△”,a △b =ab a +b ,如:2△3=65.则下列结论:①a △a =a2;②2△x =1的解是x =2;③若(x +1)△(x -1)的值为0,则x =1;④1a △1+2a △2+-3a △(-3)=3.正确的结论是________________.(把所有正确结论的序号都填在横线上)三、解答题(15~18题每题8分,19、20题每题10分,21、22题每题12分,23题14分,共90分)15.计算:-12+30.027-0.09+|3-8|-(-1)0.16.先化简,再求值:(a 2b -2ab 2-b 3)÷b -(a +b)(a -b),其中a =12,b =-1.17.关于x 的不等式组⎩⎨⎧x 2+x +13>0,x +5a +43>43(x +1)+a恰有两个整数解,试确定实数a 的取值范围.18.已知x +y =-3,求代数式⎝ ⎛⎭⎪⎫x 2-3xy x -y -x +y ÷y2x -2y 的值.19.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变,不等式组是否也具有类似的性质呢?请解答下列问题:(1)完成下列填空:已知用“<”或“>”填空5321⎧⎨⎩>,> 5+2________3+1 3512--⎧⎨--⎩>,> -3-1________-5-2 1421⎧⎨-⎩<,< 1-2________4+1(2)一般地,如果⎩⎪⎨⎪⎧a >b ,c >d ,那么a +c________b +d(用“>”或“<”填空).你能用不等式的性质说明上述关系吗?20.观察下列等式:① 1×12=1-12;② 2×23=2-23;③ 3×34=3-34… (1)猜想并写出第n 个等式; (2)说明你写出的等式的正确性.21.已知,如图,EF⊥AC于点F,DB⊥AC于点M,∠1=∠2,∠3=∠C,求证:AB∥MN.(第21题)22.老师在黑板上写出三个算式:52-32=8×2,92-72=8×4,152-32=8×27.欢欢接着又写了两个具有同样规律的算式:112-52=8×12,152-72=8×22.(1)请你再写出两个(不同于上面算式)具有上述规律的算式;(2)用文字描述上述算式的规律;(3)请尝试探究这个规律的正确性.23.某市在道路改造过程中,需要铺设一条长为1 000米的管道.已知甲工程队每天能铺设x米,单独完成该项工程的工期为y1天;乙工程队每天比甲工程队少铺设20米,单独完成该项工程的工期为y2天.(1)用含x的代数式分别表示甲、乙两工程队单独完成该项工程的工期y1、y2.(2)已知甲工程队每天需要的经费比乙工程队多40%,且两个工程队单独完成这项工程所需要的经费一样多,问:甲、乙两工程队每天各能铺设多少米?(3)如果要求两工程队同时开工且完成该项工程的工期不超过10天,那么分配工程量(以整百米分配)的方案有几种?分别如何分配?答案一、1.C点拨:负数没有平方根,故C中的说法不正确.2.B点拨:因为a2·a3=a2+3=a5,(-2ab)2=(-2)2a2b2=4a2b2,(a2)3=a2×3=a6,3a3b2÷a2b2=3a,所以选项B正确.3.D点拨:原式=3x(x2-4x+4)=3x(x-2)2,故选D.4.A点拨:将分式15x+13y35x-y中的分子、分母同乘15,得3x+5y9x-15y.5.B点拨:合并同类项时,字母和字母的指数不变,系数相加减,则3a2b-a2b=2a2b,故选项A错误;单项式的系数是1或-1时,“1”省略不写,则-x2的系数是-1,故选项B正确;被开方数为非负数时,二次根式有意义,即当x+2≥0时,二次根式x+2有意义,则x的取值范围是x≥-2,故选项C错误;当a=-1时,分式a2-1 a+1无意义,故选项D 错误.6.A 点拨:平移只改变图形的位置,不改变图形的形状和大小.故选A .7.D 点拨:解不等式组得-1<x ≤1,因此选D .8.B 点拨:将分式方程m -2x -1-2x x -1=1两边同乘x -1,得m -2-2x =x -1,若原分式方程有增根,则必为x =1,将x =1代入m -2-2x =x -1,得m =4.9.C 点拨:如图,因为AB ∥CD ,所以∠3=∠1,因为CD ∥EF ,所以∠4=180°-∠2,所以∠BCE =∠3+∠4=∠1+180°-∠2.故选C .(第9题)10.B 点拨:∑2 0151n (n +1)=11×2+12×3+…+12 015×2 016=1-12+12-13+…+12 015-12 016=1-12 016=2 0152 016.二、11.2-2 点拨:本题答案不唯一.12.60° 点拨:由题意得2∠1=120°,所以∠1=60°.13.313 点拨:由等式m -1m =3,得⎝ ⎛⎭⎪⎫m -1m 2=9,即m 2-2+1m 2=9,所以m 2+1m 2=11,m 2+1m 2+2=13,即⎝ ⎛⎭⎪⎫m +1m 2=13,当m 为正实数时m +1m =13,所以m 2-1m 2=⎝⎛⎭⎪⎫m +1m ⎝ ⎛⎭⎪⎫m -1m =313. 14.①②④ 点拨:a △a =a 2a +a =a 2,①正确;2△x =2x 2+x=1,解得x =2,经检验x =2是分式方程的根,②正确;(x +1)△(x -1)=(x +1)(x -1)x +1+x -1=x 2-12x =0,则x 2-1=0且x ≠0,所以x =±1,③错误;1a △1=1a a +1=a +1a ,2a △2=22a a +2=a +2a ,-3a △(-3)=-3-3aa -3=a -3a ,所以1a △1+2a △2+-3a △(-3)=3,④正确. 15.解:原式=-1+0.3-0.3+|-2|-1=-1+2-1=0.16.解:原式=a 2-2ab -b 2-a 2+b 2=-2ab.当a =12,b =-1时,原式=1.17.解:解不等式x 2+x +13>0,得x >-25,解不等式x +5a +43>43(x +1)+a ,得x <2a.因为原不等式组恰有两个整数解,所以1<2a ≤2,所以12<a ≤1.18.解:原式=[x 2-3xy x -y -(x -y )2x -y]·2(x -y )y =-xy -y 2x -y·2(x -y )y =-2(x +y). 当x +y =-3时,原式=-2×(-3)=6.19.解:(1)从上到下依次填:>,>,<.(2)>因为a >b ,所以a +c >b +c ,因为c >d ,所以b +c >b +d ,所以a +c >b +d.20.解:(1)猜想:n ×n n +1=n -n n +1. (2)因为n ×n n +1=n 2n +1, n -n n +1=n (n +1)-n n +1=n 2n +1, 所以n ×n n +1=n -n n +1. 21.证明:因为EF ⊥AC ,DB ⊥AC ,所以EF ∥BD , 所以∠2=∠CDM.因为∠1=∠2,所以∠1=∠CDM , 所以MN ∥CD ,所以∠C =∠AMN.因为∠3=∠C ,所以∠3=∠AMN ,所以AB ∥MN.22.解:(1)答案不唯一,如:72-32=8×5,172-132=8×15.(2)规律:任意两个奇数的平方差是8的倍数.(3)设m 、n 为整数,两个奇数可表示为2m +1和2n +1, 则(2m +1)2-(2n +1)2=4m 2-4n 2+4m -4n=4(m -n)(m +n +1).当m 、n 同为奇数或偶数时,m -n 一定为偶数,所以4(m -n)一定是8的倍数;当m 、n 为一奇一偶时,m +n +1一定为偶数,所以4(m +n +1)一定是8的倍数.所以任意两个奇数的平方差是8的倍数.23.解:(1)由题意得y 1=1 000x ,y 2=1 000x -20. (2)设乙工程队每天需要经费k 元,则k(1+40%)·1 000x =k ·1 000x -20, 解得x =70,经检验,x =70是分式方程的解.答:甲、乙两工程队每天各能铺设70米和50米.(3)设分配给甲工程队a 米,则分配给乙工程队(1 000-a )米.由题意,得⎩⎨⎧a 70≤10,1 000-a 50≤10,解得500≤a ≤700.因为以整百米分配,所以分配方案有3种:方案一:分配给甲工程队500米,分配给乙工程队500米;方案二:分配给甲工程队600米,分配给乙工程队400米;方案三:分配给甲工程队700米,分配给乙工程队300米.。