迭代法

合集下载

迭代法

迭代法

迭代方法也称为滚动方法。

Bai是一个过程,其中变量Du的旧值用于重现新值。

迭代算法是解决计算机问题的基本方法。

它利用了运算速度快的特点,并且适合重复操作,因此计算机可以重复执行一组指令(或某些步骤)。

每次执行指令组(或这些步骤)时,都会从变量的原始值中得出一个新值。

迭代方法分为精确迭代和近似迭代。

典型的迭代方法(例如二分法和牛顿迭代)属于近似迭代。

扩展数据:
对于区间[a,b]和f(a)·f(b)<0上的连续函数y=f(x),通过连续除以函数f(x)零点所在的区间,间隔的两个端点逐渐接近零点,然后获得零点的近似值称为二分法。

令[a,b]为R的封闭区间。

连续二等分方法将创建以下区间序列([an,BN]),如下所示:A0=a,B0=B,并且对于任何自然数n,[an+1,BN+1]等于[an,cn]或等于[cn,BN],其中CN表示[an,BN]的中点。

方法介绍
迭代法是一类利用递推公式或循环算法通过构造序列来求问题近似解的方法。

例如,对非线性方程,利用递推关系式,从开始依次计算,来逼近方程的根的方法,若仅与有关,即,则称此迭代法为单步迭代法,一般称为多步迭代法;对于线性方程组,由关系从开始依次计算来过近方程的解的方法。

若对某一正整数,当时,与k无关,称该迭代法为定常迭代法,否则称之为非定常迭代法。

称所构造的序
列为迭代序列。

2.2 迭代法

2.2 迭代法

= ϕ ' (ξ )( x * − x * *) ≤ L x * − x * *
又, L < 1
⇒ x* = x * *
计算方法
② ∀x0 ∈ [a, b] 则 xk +1 − x *= ϕ ( xk ) − ϕ ( x*) = ϕ ' (ξ )( xk − x*)
≤ L xk − x * ≤ L2 xk −1 − x * x k +1 − x *
计算方法
二、收敛性分析
定理2.1 (全局收敛定理) 全局收敛定理) 定理
在区间[a,b]上可导 上可导 设ϕ ( x )在[a, b] 在区间
a (1)当a ≤ x ≤ b时, ≤ ϕ ( x ) ≤ b;
( 2) ∀x ∈ [a, b], | ϕ ' ( x ) |≤ L < 1 ( L为常数) 为常数)
ϕ ′( x ) ≤ L < 1
计算方法
则对于任意的初始值 x0 ∈ S ,由迭代公式 收敛于方程的根。 产生的数列 { xn } 收敛于方程的根。 (这时称迭代法在 α 的S邻域具有局部收敛性。) 邻域具有局部收敛性。)
x n +1 = ϕ ( x n )
Remark1:全局与局部收敛定理中的条件都是充分 Remark1: 条件,条件满足则迭代法收敛,不满足则不能判定, 条件,条件满足则迭代法收敛,不满足则不能判定, 此时可以用试算来判定迭代法的是收敛性。 此时可以用试算来判定迭代法的是收敛性。
p! p!
由迭代公式 xk +1 = ϕ ( xk ) 及 x * = ϕ ( x * ) 有 ϕ ( p ) (ξ ) * * p
′( x* ) = ϕ ′′( x* ) = L = ϕ ( p−1) ( x* ) = 0, ϕ ( p ) ( x* ) ≠ 0 ϕ 邻域是p阶收敛的。 则迭代过程在 x * 邻域是p阶收敛的。

迭代法的应用

迭代法的应用

迭代法的应用迭代法,又称递归法或回代法,是一种数学计算方法,通过逐步逼近的方式寻找方程的解。

迭代法广泛应用于各个领域,包括数学、计算机科学、物理学和工程学等等。

本文将介绍迭代法的基本原理,并探讨其在不同领域中的应用。

一、迭代法的基本原理迭代法的基本原理是通过逐步逼近的方式解决问题。

具体而言,迭代法使用一个初始值作为起点,然后通过一定的计算规则不断更新这个值,直到满足特定的条件为止。

这个过程可以理解为在数轴上不断靠近目标点的过程。

迭代法的核心在于不断重复更新值的操作,直到找到满足精度要求的解。

二、迭代法在数学中的应用1. 方程求解:迭代法广泛应用于方程求解中。

例如,使用牛顿迭代法可以求解非线性方程,通过不断迭代计算,逐步逼近方程的解。

迭代法不仅可以解决简单的方程,还可以应用于更复杂的方程组,如线性方程组和常微分方程等。

2. 数值积分:在数值方法中,迭代法也经常用于数值积分的计算。

通过将积分区间划分为多个小区间,利用迭代法逼近每个小区间的积分值,最后将这些积分值相加得到整个区间的积分近似值。

这种方法可以提高计算的精度和效率。

三、迭代法在计算机科学中的应用1. 数值优化:在计算机科学中,迭代法被广泛应用于数值优化问题。

例如,通过不断迭代调整参数的值,可以优化机器学习算法中的模型参数,使得模型在给定数据集上的表现达到最佳。

2. 图像处理:迭代法也可以应用于图像处理领域。

例如,通过不断迭代计算,可以对图像进行降噪、边缘检测和图像增强等操作。

迭代法能够逐步改进图像的质量,提高图像处理的效果。

四、迭代法在物理学和工程学中的应用1. 计算流体力学:在计算流体力学中,迭代法被广泛应用于求解流体动力学方程。

通过将流体域离散成网格,利用迭代法逐步求解每个网格点上的流体状态,可以模拟流体在不同条件下的行为,如风洞实验和飞行器设计等。

2. 结构分析:在工程学中,迭代法也可以用于结构分析和设计中。

通过不断迭代更新结构的参数,可以实现结构的优化和调整。

迭代法(iterative method

迭代法(iterative method

迭代法(iterative method
迭代法是一种数学方法,通过不断地迭代逼近来求解数学问题。

这种方法通常用于求解方程、优化问题、积分问题等。

迭代法的基本思想是:给定一个初始值或初始解,然后根据一定的规则进行迭代,每次迭代都得到一个新的解,直到满足某个终止条件为止。

这个终止条件可以是精度要求、迭代次数限制等。

常见的迭代法包括:
1.牛顿迭代法:用于求解非线性方程的根,通过不断地逼近方程的根来求解。

2.梯度下降法:用于求解最优化问题,通过不断地沿着负梯度的方向搜索来找到最优
解。

3.牛顿-拉夫森方法:结合了牛顿法和二分法的优点,用于求解非线性方程的根。

4.雅可比迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。

5.高斯-赛德尔迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。

使用迭代法时需要注意初始值的选择、迭代规则的合理性、终止条件的设定等问题,以确保迭代过程的收敛性和有效性。

同时,迭代法也有一定的局限性,对于一些非线性问题或复杂问题,可能需要进行多次迭代或者采用其他方法进行求解。

迭代法

迭代法

迭代法
迭代法也叫辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。

对非线性方程,利用递推关系式,从开始依次计算,来逼近方程的根的方法,若仅与有关,即,则称此迭代法为单步迭代法,一般称为多步迭代法;对于线性方程组,由关系从开始依次计算来过近方程的解的方法。

若对某一正整数,当时,与k 无关,称该迭代法为定常迭代法,否则称之为非定常迭代法。

称所构造的序列为迭代序列。

求通项公式的方法(用迭代法)已知数列{An},a1=2,an=2a(n-1)-1(n>或=2)求通项公式
an=2a(n-1)-1 an-1=2(a(n-1)-1 ) n>或=2
所以an-1 为等比数列
an-1=(a1-1)*2^(n-1)
an-1=2^(n-1)
an=2^(n-1)+1
牛顿迭代法求开方
数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数的泰勒级数的前面几项来寻找方程的根。

牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收
敛。

另外该方法广泛用于计算机编程中。

用迭代法求平方根
对于A>1,求其平方根可构造用如下公式迭代:
f(x)=(1/a)(x+a/x),a=A/(A-1),迭代初值x0=[√A]+1,[x]为x的取整.如想求70的平方根,可令初值x0=9.
对于A1,用如上方法求出平方根后,在成10^(-n),即得结果.。

常用算法——迭代法

常用算法——迭代法

常用算法——迭代法常用算法,迭代法迭代法(iteration method)是一种通过重复执行相同的步骤来逐步逼近问题解的方法。

它在计算机科学和数学中被广泛应用,可以解决各种问题,比如求近似解、优化问题、图像处理等。

迭代法的基本思想是通过不断迭代的过程,逐渐逼近问题的解。

每一次迭代都会将上一次迭代的结果作为输入,并进行相同的操作,直到满足其中一种停止条件。

在每次迭代中,我们可以根据当前的状态更新变量的值,进而改善我们对问题解的估计。

迭代法最常用的应用之一是求解方程的近似解。

对于一些复杂方程,很难通过解析方法求得解析解,这时我们可以利用迭代法来逼近方程的解。

具体地,我们可以选择一个初始的近似解,然后将其代入方程,得到一个新的近似解。

重复这个过程,直到得到一个满足我们要求的解。

这个方法被称为迭代法求解方程。

另一个常用的迭代法示例是求解优化问题。

在优化问题中,我们需要找到能使一些目标函数取得最大或最小值的变量。

迭代法可以通过不断优化变量值的方法来求解这种问题。

我们可以从一个初始解开始,然后根据目标函数的导数或近似导数的信息来更新变量的值,使得目标函数的值逐步接近最优解。

这种方法被称为迭代优化算法。

迭代法还可以应用于图像处理等领域。

在图像处理中,我们常常需要对图片进行修复、增强或变形。

迭代法可以通过对图片像素的重复操作来达到修复、增强或变形的目的。

例如,如果我们想要修复一张受损的图片,可以通过迭代地修复每个像素点,以逐渐恢复整个图片。

除了上述示例,迭代法还有很多其他应用,比如求解线性方程组、图像压缩、机器学习等。

总之,迭代法是一种非常灵活和强大的算法,可以解决各种问题。

在实际应用中,迭代法的效果往往受到选择合适的初始值、迭代次数和停止条件的影响。

因此,为了获得较好的结果,我们需要在迭代过程中不断优化这些参数。

同时,迭代法也可能会陷入局部最优解的问题,因此我们需要设计合适的策略来避免这种情况。

总的来说,迭代法是一种重要的常用算法,它可以解决各种问题。

2.2 迭代法

2.2 迭代法
* lim | x xk | 0 要证结论(1)成立,即要证 k
首先用归纳假设证明如下不等式
| x* xk | Lk | x* x1 |
38
当k=1时 x x1 L x x0 ,已证成立。
k 1 x x L x x0 成立,可得 假设 k 1
不动点迭代的几何解释 y=f(x)=x y=g(x)
38
不动点判定定理
设g是一连续函数,且 { pn } 是由不动点迭代 n 0
生成的序列。若 lim pn p ,则p是g(x)的不动点
n
pn 1 p pn p ,则 lim 证:lim n n
g ( p ) g (lim pn ) lim g( pn ) lim pn1 p
1 1 x xk x k 1 x k ( x k ) ( x k 1 ) 1 L 1 L L Lk x k x k 1 x1 x0 1 L 1 L

L越小,收敛越快
38
不动点迭代的图形解释
一般来说从 f ( x ) 0 , 构造 ( x )不止一种,有的
38
由介值定理,存在 x [a , b] 使 f ( x ) 0



x ( x ).
②设方程 x ( x ) 还有一根 , 即 a (a ). 则由微分中值定理有
x ( x ) ( ) ( )( x ) L x
x4 2x 2 x 3 0 x 2 ( x)
x 4 1
x 3 ( x) x4 2x2 3
(其中第二式 x4 2 x 2 1=x 4 )

常用算法(一)——迭代法

常用算法(一)——迭代法

常用算法——迭代法一、迭代法迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。

设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:(1)选一个方程的近似根,赋给变量x0;(2)将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;(3)当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。

若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。

上述算法用C程序的形式表示为:【算法】迭代法求方程的根{ x0=初始近似根;do {x1=x0;x0=g(x1);/*按特定的方程计算新的近似根*/} while ( fabs(x0-x1)>Epsilon);printf(“方程的近似根是%f\n”,x0);}迭代算法也常用于求方程组的根,令X=(x0,x1,…,xn-1)设方程组为:xi=gi(X) (I=0,1,…,n-1)则求方程组根的迭代算法可描述如下:【算法】迭代法求方程组的根{ for (i=0;i<n;i++)x=初始近似根;do {for (i=0;i<n;i++)y=x;for (i=0;i<n;i++)x=gi(X);for (delta=0.0,i=0;i<n;i++)if (fabs(y-x)>delta) delta=fabs(y-x);} while (delta>Epsilon);for (i=0;i<n;i++)printf(“变量x[%d]的近似根是%f”,I,x);printf(“\n”);}具体使用迭代法求根时应注意以下两种可能发生的情况:(1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;(2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。

迭代法求解方程

迭代法求解方程

迭代法求解方程1 什么是迭代法?迭代法是一种求解方程的方法,通常用于在数值计算中。

迭代法的基本思想是通过不断重复一个固定的计算过程来逼近目标解,直到精度满足要求为止。

迭代法在理论研究和实际应用中都有广泛应用,例如在数学、物理、工程学等领域。

2 迭代法的例子在数学中,迭代法最常用于求解方程。

例如,我们有一个方程f(x) = 0,我们希望找到它的一个解x。

迭代法的一般形式是从一个初始值x0开始,通过重复应用某个公式,得到序列{x0, x1, x2, …, xn},使得xn逐步逼近解。

具体而言,每一次迭代都利用前一次的计算结果,求出新的解,即:xn+1 = g(xn)其中g(x)是某个函数,也被称为迭代函数。

当序列{x0, x1,x2, …, xn}满足一定条件时,我们称其为收敛序列,此时xn就是方程f(x) = 0的解。

3 迭代法的实现迭代法需要满足一定的收敛条件,才能有效地找到解。

在迭代函数的选择中,一般应满足以下要求:1. 迭代函数必须是连续的。

2. 选取的初值必须接近解。

3. 迭代函数的值域必须包含自变量的定义域。

4. 迭代函数的导数要通常利于计算。

基于以上原则,我们可以通过编写程序来实现迭代法求解方程。

代码示例如下:```python定义迭代函数def g(x):return (x**2 + 2) / 3定义初始值x0 = 1设置迭代次数n = 20进行迭代for i in range(n):x1 = g(x0)print("x{} = {}".format(i+1, x1))x0 = x1```这段代码中,我们定义了一个迭代函数g(x) = (x² + 2) / 3,初始值为x0 = 1,迭代次数为20次。

通过重复调用迭代函数g(x),我们依次求得了序列{x1, x2, …, x20},并输出每一次迭代的结果。

4 迭代法的优缺点迭代法的优点主要包括:1. 迭代法适用于求解各种类型的方程,具有较高的通用性。

22第二节 迭代法

22第二节 迭代法

上述令p→∞, 及limxk+p=x* (p→∞)即得第一式.
L x xk xk xk 1 1 L

数学学院 信息与计算科学系
3 2 f ( x ) x 4 x 10 0 在 例2 用迭代法求方程
[1,2] 内的一个近似根,取初始近似值 x0 1.5

原方程的等价方程可以有以下不同形式
x ( x ) ( ) ( )( x ) L x
此式仅当 x 0 才能成立, 因此 x 。 ( 2) 再证迭代格式 xk 1 ( xk ) 收敛 任取 x0∈[ a, b ],由微分中值定理,有
数学学院 信息与计算科学系
10 x n 1 4 xn xn 1 3 xn 1 10 xn 2 10 xn 1 4 xn
数学学院 信息与计算科学系
考察四种迭代法在根附近的收敛情况,取根的 x0 1.5。 近似值为 解
(1) ( x ) x x 3 4 x 2 10
( x ) 1 3 x 2 8 x (1.5) 17.75 1
e k 1 c ( k , c 0) p ek 则称迭代格式 xk 1 ( xk ) 是 p 阶收敛的.
特别地, p = 1时称为线性收敛, p = 2 时称为二阶(平方)收敛,
p>1时称为超线性收敛. 显然, 收敛阶越大, 收敛越快
利用微分中值定理及泰勒展式可得下面的定理3.
数学学院 信息与计算科学系
定理 3
x x ( x ) 设x 为 之根,在 的邻域 U内
x x ( x ) 在[a , b]上有唯一根 ;
(2) 对任意迭代初值 x0∈[a , b],迭代序列 xk 1 ( xk ) ( k 0,1, 2,) 收敛于 x 。

迭代法举例

迭代法举例

迭代法举例
迭代法是指通过反复迭代,逐步逼近求解方程的一种方法。

下面我们来举几个例子。

1.牛顿迭代法求解方程根
牛顿迭代法是一种求解方程根的迭代方法,假设需要求解的方程为f(x)=0,初始点为
x0,则可以通过以下迭代公式求解:
xn+1=xn-f(xn)/f'(xn)
其中f'(xn)表示f(x)在点xn处的导数。

通过不断的迭代求解,当f(xn+1)足够小的时候,就可以认为xn+1是方程f(x)=0的解。

这可以用来求解很多实际问题,例如求解非线
性方程、求解微积分中的最大值和最小值等。

2.雅可比迭代法求解线性方程组
x(k+1)=D^{-1}(b-(L+U)x(k))
其中D是A的对角线元素构成的对角矩阵,L和U分别是A的下三角和上三角部分矩阵。

这个迭代公式是通过将原方程组的系数矩阵A分解为D-(L+U)的形式而得到的。

使用雅可比迭代法求解线性方程组时,需要保证矩阵A是对称正定的,否则该方法可
能会失效。

此外,这个方法的收敛速度通常较慢。

3.梯度下降法求解函数最小值
其中α为步长,∇f(xn)表示f(x)在点xn处的梯度。

通过不断的迭代求解,可以逐步逼近函数f(x)的最小值。

但是需要注意的是,当该函数的梯度存在很大的方向差异时,梯度下降法的收敛速度
可能较慢,因此需要改进方法,例如Adagrad和Adam等算法,使得每个变量的更新步长可以根据过去的梯度值自适应地调整。

迭代法

迭代法

一,对迭代法进行简介迭代法又称为辗转法,是用计算机解决问题的一种基本方法,为一种不断用变量的旧值递推新值的过程,与直接法相对应,一次性解决问题。

迭代法分为精确迭代和近似迭代,“二分法”和“牛顿迭代法”属于近似迭代法。

迭代法利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法(Iterative Method)。

一般可以做如下定义:对于给定的线性方程组x=Bx+f(这里的x、B、f同为矩阵,任意线性方程组都可以变换成此形式),用公式x(k+1)=Bx(k)+f(括号中为上标,代表迭代k次得到的x,初始时k=0)逐步带入求近似解的方法称为迭代法(或称一阶定常迭代法)。

如果k趋向无穷大时limx(k)存在,记为x*,称此迭代法收敛。

显然x*就是此方程组的解,否则称为迭代法发散。

跟迭代法相对应的是直接法(或者称为一次解法),即一次性的快速解决问题,例如通过开方解决方程x +3= 4。

一般如果可能,直接解法总是优先考虑的。

但当遇到复杂问题时,特别是在未知量很多,方程为非线性时,我们无法找到直接解法(例如五次以及更高次的代数方程没有解析解,参见阿贝耳定理),(这是为什么迭代法可以求解复杂方程的原因之一)。

这时候或许可以通过迭代法寻求方程(组)的近似解(还是没有详细解释选用迭代法的原因)。

最常见的迭代法是牛顿法。

其他还包括最速下降法、共轭迭代法、变尺度迭代法、最小二乘法、线性规划、非线性规划、单纯型法、惩罚函数法、斜率投影法、遗传算法、模拟退火等等。

利用迭代算法解决问题,需要做好以下三个方面的工作:1.确定迭代变量在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

迭代法求解方程原理

迭代法求解方程原理

迭代法求解方程:原理与步骤详解迭代法,又称为辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。

迭代法又分为精确迭代和近似迭代。

迭代法求解方程的原理是基于数学中的逼近理论,通过构造一个序列,使得该序列的极限值就是方程的解。

这种方法通常用于求解非线性方程或者方程组,因为这些方程可能难以通过直接求解的方式得到解析解。

迭代法求解方程的基本步骤:1.选择迭代函数:根据待求解的方程,选择一个合适的迭代函数。

这个迭代函数通常是通过对方程进行某种变换得到的。

2.确定迭代初值:为迭代过程选择一个初始值,这个初始值可以是任意的,但不同的初始值可能会影响到迭代的收敛速度和稳定性。

3.进行迭代计算:使用迭代函数和初始值,计算得到序列的第一个值。

然后,用这个值作为下一次迭代的输入,继续计算得到序列的下一个值。

如此反复进行,直到满足某个停止条件(如达到预设的迭代次数,或者相邻两次迭代结果的差值小于某个很小的阈值)。

4.判断解的有效性:如果迭代过程收敛,即序列的极限值存在且唯一,那么这个极限值就是方程的解。

否则,如果迭代过程发散,或者收敛到非唯一解,那么这种方法就失败了。

迭代法的收敛性:迭代法的关键问题是判断迭代过程是否收敛,即序列的极限值是否存在且唯一。

这通常取决于迭代函数的选择和初始值的设定。

对于某些迭代函数,无论初始值如何,迭代过程都会收敛到同一个值;而对于其他迭代函数,迭代过程可能会发散,或者收敛到多个不同的值。

迭代法的优缺点:优点:◆迭代法适用于求解难以直接求解的方程或方程组。

◆迭代法通常比直接法更容易编程实现。

◆在某些情况下,迭代法可能比直接法更快。

缺点:◆迭代法可能不收敛,或者收敛速度很慢。

◆迭代法的收敛性通常需要额外的数学分析或实验验证。

◆对于某些方程,可能需要尝试不同的迭代函数和初始值,才能找到有效的解决方案。

常见的迭代法:◆雅可比迭代法:用于求解线性方程组的一种方法,通过不断更新方程组的近似解来逼近真实解。

迭代法

迭代法


• • • • • • • • • • • • • • • • •
int main() { double x,precision; int maxcyc; printf("输入初始迭代值x0:"); scanf("%lf",&x); printf("输入最大迭代次数:"); scanf("%d",&maxcyc); printf("迭代要求的精度:"); scanf("%lf",&precision); if(Newton(&x,precision,maxcyc)==1) //若函数返回值为1 printf("该值附近的根为:%lf\n",x); else //若函数返回值为0 printf("迭代失败!\n"); getch(); return 0; }
解非线性方程f(x)=0的牛顿法是把非线性方程线性化 的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部 分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前 两项,则有f(x0)+f'(x0)(x-x0)-f(x)=0 设f'(x0)≠0则其解为 x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列: x(n+1)=x(n)-f(x(n))/f'(x(n))。
谢 谢!
邮箱:lihaicg@
迭代关系式: • if (y<=3) • f=f1=f2=f3=1; • else • { f=f1+f3; • f1=f2; • f2=f3; • f3=f; • } • 相信大家都能理解!!!

迭代法

迭代法

迭代方法,也称为抛掷和翻转方法,是从变量的旧值连续递归新值的过程。

与迭代方法相对应的是直接方法(或一次性解决方案),即一次解决问题。

迭代算法是计算机解决问题的基本方法。

它利用计算机的快速运行速度并适合于重复操作,并使计算机重复执行一组指令(或某些步骤)。

每次执行这组指令(或这些步骤)时,都会从原始值中得出新的变量值。

迭代方法分为精确迭代和近似迭代。

典型的迭代方法(例如“二分法”和“牛顿迭代法”)是近似迭代方法。

迭代方法的主要研究课题是为有问题的问题构造收敛的迭代方案,并分析它们的收敛速度和收敛范围。

迭代方法的收敛定理可分为以下三类:
①局部收敛定理:假设存在问题的解,则可以得出结论,当初始逼近足够接近解时,迭代方法就会收敛;
②半局部收敛定理:在不假设解存在的前提下,得出迭代法根据迭代法在初始逼近时所满足的条件收敛到问题的解;
③大规模收敛定理:得出的结论是,替换方法收敛于问题的解,而无需假设初始近似值足够接近该解。

代换法广泛用于求解线性和非线性方程,优化计算和特征值计算。

迭代过程何时结束?这是编写迭代程序时必须考虑的问题。

迭代过程不能无休止地重复。

迭代过程的控制通常可以分为两种情况:一种是所需的迭代次数是某个值,并且可以计算;另一个是无法确定所需的
迭代次数。

在前一种情况下,可以构造固定数量的循环来控制迭代过程。

在后一种情况下,有必要进一步分析结束迭代过程的条件。

常用算法——迭代法

常用算法——迭代法

常用算法——迭代法迭代法是一种常见的算法设计方法,它通过重复执行一定的操作来逐步逼近问题的解。

迭代法是一种简单有效的求解问题的方法,常用于求解数值问题、优化问题以及函数逼近等领域。

本文将介绍迭代法的基本概念、原理以及常见的应用场景。

一、迭代法的基本概念迭代法的思想是通过反复应用一些函数或算子来逐步逼近问题的解。

对于一个需要求解的问题,我们首先选择一个初始解或者近似解,然后通过不断迭代更新来逼近真实解。

迭代法的核心是找到一个递推关系,使得每次迭代可以使问题的解越来越接近真实解。

常见的迭代法有不动点迭代法、牛顿迭代法、梯度下降法等。

这些方法的求解过程都是基于迭代的思想,通过不断逼近解的过程来得到问题的解。

二、迭代法的原理迭代法的基本原理是通过不断迭代求解迭代方程的解,从而逼近问题的解。

迭代法的求解过程通常分为以下几个步骤:1.选择适当的初始解或者近似解。

初始解的选择对迭代法的收敛性和效率都有影响,一般需要根据问题的特点进行合理选择。

2.构建递推关系。

通过分析问题的特点,构建递推关系式来更新解的值。

递推关系的构建是迭代法求解问题的核心,它决定了每次迭代如何更新解的值。

3.根据递推关系进行迭代。

根据递推关系式,依次更新解的值,直到满足收敛条件为止。

收敛条件可以是解的变化小于一定阈值,或者达到一定的迭代次数。

4.得到逼近解。

当迭代停止时,得到的解即为问题的逼近解。

通常需要根据实际问题的需求来判断迭代停止的条件。

三、迭代法的应用迭代法在数值计算、优化问题以及函数逼近等领域有广泛的应用。

下面将介绍迭代法在常见问题中的应用场景。

1.数值计算:迭代法可以用于求解方程的根、解线性方程组、求解矩阵的特征值等数值计算问题。

这些问题的解通常是通过迭代的方式逼近得到的。

2.优化问题:迭代法可以应用于各种优化问题的求解,如最大值最小化、参数估计、模式识别等。

迭代法可以通过不断调整参数的值来逼近问题的最优解。

3.函数逼近:迭代法可以应用于函数逼近问题,通过不断迭代来逼近一个函数的近似解。

迭代法原理

迭代法原理

迭代法原理迭代法是一种常见的数值计算方法,也是一种解决问题的有效途径。

它的基本思想是通过不断迭代更新,逐步逼近问题的解。

在实际应用中,迭代法被广泛应用于数值分析、优化算法、计算机模拟等领域,具有较强的实用性和普适性。

迭代法的原理非常简单,它通过不断重复一个固定的计算过程,直到满足某个终止条件为止。

通常情况下,迭代法的过程可以描述为,首先选取一个初始值作为迭代的起点,然后根据某种规则进行迭代更新,直到满足预设的终止条件为止。

在每一次迭代中,都会根据当前的值计算出下一步的值,然后用新的值替代旧的值,不断迭代更新,直到满足终止条件。

迭代法的核心在于不断重复的更新过程,这种更新过程可以是简单的数值计算,也可以是复杂的函数迭代。

在实际应用中,迭代法通常用于求解方程的近似解、优化问题的最优解等。

通过不断迭代更新,可以逐步逼近问题的解,达到较高的精度要求。

迭代法的原理简单清晰,但在实际应用中需要注意一些问题。

首先,迭代法的收敛性是一个重要的问题,即迭代过程是否能够收敛到问题的解。

在一些情况下,迭代法可能会出现发散的情况,导致无法得到有效的解。

因此,在应用迭代法时,需要对问题的性质和迭代过程进行充分的分析,以确保迭代法能够有效收敛。

其次,迭代法的收敛速度也是一个重要的问题。

在实际应用中,迭代法的收敛速度直接影响到计算的效率和精度。

一般来说,迭代法的收敛速度越快,计算所需的迭代次数就越少,计算效率就越高。

因此,如何提高迭代法的收敛速度,是一个需要重点关注的问题。

总的来说,迭代法作为一种常见的数值计算方法,具有较强的实用性和普适性。

通过不断迭代更新,可以逐步逼近问题的解,解决一些复杂的数值计算和优化问题。

在实际应用中,需要注意迭代法的收敛性和收敛速度等问题,以确保迭代法能够有效地解决问题。

在数值计算、优化算法、计算机模拟等领域,迭代法都发挥着重要的作用,成为解决问题的有效途径。

通过对迭代法原理的深入理解和实际应用,可以更好地利用迭代法解决实际问题,提高计算效率和精度,推动科学技术的发展。

迭代法的原理

迭代法的原理

迭代法的原理
迭代法(IterativeMethods),又称顺序近似法,是求解用数学模型表示的问题的一
种有效方法。

它是建立在一组数值变量之间一种有效动态关系的基础上,使用迭代格式求
解问题的一种数学技术。

迭代法的基本原理是:将要求的接近的解的迭代过程,转换成一系列的子解,每个子
解满足某些约束条件。

然后,使用某种有效算法,将这些子解迭代直至满足所需的最终目
标值或损失函数的最小值。

迭代法的基本思想,主要是将一个解求解问题过程转化为一系列的子问题,对这些子
问题进行求解,以获得问题最优解。

可以将迭代法总结为以下几个步骤:
第一步:确定问题的初始值;
第二步:使用某种有效算法,将这些初始值迭代改变成满足所需最终目标的子解;
第三步:重复第二步,直至解的精度达到一定的要求;
第四步:求解完成,输出最终结果。

迭代法求解内容有:迭代解方程组,求函数极值和最优化等;优点是解的收敛速度较快,有较强的数值模拟能力,应用范围广,缺点是实现起来较为复杂,并且存在收敛障碍,很难得到满意解。

迭代法

迭代法

迭代法迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。

迭代法又分为精确迭代和近似迭代。

“二分法”和“牛顿迭代法”属于近似迭代法。

迭代算法是用计算机解决问题的一种基本方法。

它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代变量。

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

不能让迭代过程无休止地重复执行下去。

迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。

对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。

例 1 :一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。

如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只?分析:这是一个典型的递推问题。

我们不妨假设第 1 个月时兔子的只数为u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有u 1 = 1 , u 2 = u 1 +u 1 × 1 = 2 , u 3 = u 2 +u 2 × 1 =4 ,……根据这个规律,可以归纳出下面的递推公式:u n = u n - 1 × 2 (n ≥ 2)对应 u n 和 u n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系:y=x*2x=y让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。

迭代法原理

迭代法原理

迭代法原理
迭代法是一种常用的数值计算方法,其原理是通过反复迭代逼近解的方法来求解数学问题。

迭代法的关键在于找到一个递推关系式,使得每一次迭代的结果能够接近问题的解。

具体而言,迭代法通常从一个初始值开始,然后根据递推关系式计算出下一个近似解。

然后,将新的近似解作为初始值,再次进行迭代计算,直到满足预设的停止条件。

迭代法的核心思想是将复杂的问题拆解成一系列简单的计算步骤,并通过多次迭代逼近解。

这种方法在数学问题求解、优化问题求解等领域都有广泛应用。

迭代法的成功与否取决于所选的递推关系式、初始值以及停止条件的选择。

合理选择这些参数可以提高迭代法的效率和准确性。

另外,迭代法有时也可能存在收敛性问题,即迭代的结果可能发散而无法得到解。

因此,在使用迭代法求解问题时,还需对迭代的结果进行检验和验证。

总之,迭代法是一种通过反复迭代逼近解的方法,通过选择递推关系式、初始值和停止条件来求解数学问题。

它在实际问题求解中有着广泛的应用和理论基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 线性代数方程组数值解法(迭代法)迭代法是解线性方程组的另一类方法,特别是适用于解大型稀疏线性方程组,如由某些偏微分方程数值解法中转化来的高阶线性代数方程组。

事实上,迭代法是求解多种数值问题的基本方法。

迭代法作为一种求解数值问题的通用方法,其基本思想是针对求解问题预先设计好某种迭代格式,从而产生求解问题的近似解的迭代序列,在迭代序列收敛于精确解的情况下,按精度要求取某个迭代值作为问题解的近似值,这就是求解数值问题的迭代法。

在这一章,我们的求解问题是线性方程组,下一章是非线性方程和非线性方程组,在不少其他问题中还会用到。

迭代法的内容包括下述两个主要方面: ① 针对具体问题构造具体的迭代格式。

② 研究迭代格式(序列)的收敛性并作误差分析。

3.1 解线性方程组迭代法的基本概念和基本迭代公式解线性代数方程组 b Ax = (3.1.1) (nn RA ⨯∈非奇异,0),,,(21≠=T n b b b b , Tn x x x x ),,,(21 =为解向量 )的迭代法的具体做法是: 把方程组(3.1.1)变形为等价形式)(x F x =我们这里只研究如上式的线性的形式 f Bx x +=(其中nn R B ⨯∈,nR f ∈ )例如把A分解为nn R M N M A ⨯∈-=,则( b M Nx Mx b x N M 11)(--+=→=- )如果令 N M B 1-=, b M f 1-= 这就是前面的迭代格式 f Bx x +=。

(对应的迭代公式是: ),,2,1,0()()1(n k f Bx xk k =+=+ 其中每一步迭代值仅依赖于前一步的迭代值。

称为单步迭代。

) 如果{)(k x }当 ∞→k 时有极限*x 存在, *)(lim x xk k =∞→则称迭代公式是收敛的;3.2 Jacobi 迭代法/Gauss —Seidel 迭代法这是解线性方程组的两种基本的方法。

1. Jacobi 迭代公式设方程组b Ax =中 nn ij Ra A ⨯∈=)(,ni R b b ∈=且 ),,2,1(0n i a ii =≠。

从方程组的分量形式来构造迭代格式,改写的迭代格式如下:1111113132121//)(a b a x a x a x a x n n +----= 2222223231212//)(a b a x a x a x a x n n +----=nn n nn n nn n n n a b a x a x a x a x //)(1122112+----=-- 或记为向量—矩阵形式 f x B x J +=于是对选定的初始向量 Tn x x x x ),,,()0()1(2)0(1)0( =构造迭代公式(格式): ⎪⎪⎩⎪⎪⎨⎧+----=+----=+----=--+++nn n nn k n nn k n k n k nk n n k k k k n n k k k ab a x a x a x a x a b a x a x a x a x a b a x a x a x a x //)(//)(//)()(11)(22)(11)1(22222)(2)(323)(121)1(211111)(1)(313)(212)1(1或记成 ),,2,1,0()()1(n k f x B xk J k =+=+这就是解方程组b Ax =的Jacobi 迭代公式,J B 为迭代矩阵。

迭代公式也可写成),2,1,0(,,2,1/)(),,,(1)(11)()1()0()0(2)0(1)0( =⎪⎪⎩⎪⎪⎨⎧=--==∑∑+=-=+k ni a x a x a b x x x x x ii n i j k j ij i j k j ij i k i T n⎢⎢⎢⎢⎢⎢⎢⎣⎡--=nn n J a a a a B 122210nn n a a a a 211120-- ⎥⎥⎥⎥⎥⎥⎥⎦⎤--0222111 a a a a n n ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=nn n a b a b a b f 222111 也可一般地推导如下:将A 分裂为⎢⎢⎢⎢⎣⎡=11a A 22a⎥⎥⎥⎥⎦⎤nn a +⎢⎢⎢⎢⎣⎡1120n a a 20n a ⎥⎥⎥⎥⎦⎤0+⎢⎢⎢⎢⎣⎡0012a ⎥⎥⎥⎥⎦⎤021 n n a a 由于),,2,1(0n i a ii =≠即D 非奇异,1-D 存在,故有 b x U L D b Ax =--⇒=)(b x U L Dx ++=)(b D Ux D Lx D x 111---++=b D x U L D x 11)(--++= 即得Jacobi 迭代矩阵和常数项)(1U L D B J +=- (或 A D I B J 1--=) b D f 1-=2. Gauss —Seidel 迭代公式Gauss 迭代公式是Jocobi 迭代公式的改进版。

容易看到,上面的公式是)1()1(2)1(1+++→→→k nk k x x x 的次序计算的。

其实,当计算)1(+k i x 时,前面1-i 个)1(1+k x ,)1(2+k x ,, )1(1+-k i x 已经计算出,但Jacobi 并没有及时利用这些最新算出的近似值,而仍用)(1k x ,)(2k x ,, )(1k i x -。

为此,改造Jacobi 迭代公式为⎪⎪⎩⎪⎪⎨⎧+----=+----=+----=+--++++++nn n nn k n nn k n k n k nk n n k k k k n n k k k ab a x a x a x a x a b a x a x a x a x a b a x a x a x a x //)(//)(//)()1(11)1(22)1(11)1(22222)(2)(323)1(121)1(211111)(1)(313)(112)1(1或写成),2,1,0(,,2,1/)(),,,(1)(11)1()1()0()0(2)0(1)0( =⎪⎪⎩⎪⎪⎨⎧=--==∑∑+=-=++k ni a x a x a b x x x x x ii n i j k j ij i j k j ij i k iTn 或写成增量形式:),2,1,0(,,2,1/)(),,,()(11)1()()1()0()0(2)0(1)0( =⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=∆∆+==∑∑=-=++k ni a x a x a b x x x x x x x x iin ij k j ij i j k j ij i i i k i k i Tn类似地,Gauss —Seidel 迭代公式可以表述成基本格式),2,1,0()()1( =+=+k f x B x k GS k它的推倒过程如下:b x U L D b Ax =--⇒=)(b Ux Lx Dx ++=b D Ux D Lx D x 111---++=从而可得 b D Ux D Lx D xk k k 1)(1)1(1)1(--+-+++=或由假设可知1)(--L D 存在,故有b Ux x L D k k +=-+)()1()(b L D Ux L D x k k 1)(1)1()()(--+-+-=从而可得Gauss —Seidel 迭代矩阵和常数项:U L D B GS 1)(--= b L D f 1)(--=3 Jacobi 迭代法与Gauss-Seidel 迭代法上述两种迭代公式,如果是收敛(即∞→k 当时有极限,且极限就是方程组的解),则按精度要求,取某个迭代向量{}kx作为解的近似值,这就是解方程组(3.1.1)的Jacobi 迭代法(简称J 法)和Gauss-Seidel 迭代法(简称GS 法)。

例3.2.1 已知方程组⎪⎩⎪⎨⎧=++=-+=+-12423311420238321321321x x x x x x x x x 分别用(1)J 法和(2)GS 法以T x )0,0,0()0(=为初始向量,计算其前3个迭代值。

并精确解T x )1,2,3(*=比较。

解(1)J 法迭代公式为⎪⎪⎩⎪⎪⎨⎧+--==++-=+-=+++4/)122(),.1,0(11/)334(8/)2023()(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x k x x x x x x 前3个迭代值为:T(3)T (2)T (1)59)0455,0.971(3.1364,2.=x 0)3636,1.000(2.8750,2.=x 0)0000,3.000(2.5000,3.=x(2)GS 法的迭代公式为⎪⎪⎩⎪⎪⎨⎧+--==++-=+-=++++++4/)122(),.1,0(11/)334(8/)2023()1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x k x x x x x x 前3个迭代值为:T(3)T (2)T(1)9)9968,0.995(3.0098,1.=x 3)0289,1.004(2.9772,2.=x3)0909,1.227(2.5000,2.=x在实践上,Jacobi 方法似乎比Gauss —Seidel 迭代法收敛速度快,但没有理论支持。

甚至有这样的方程组,使用J 法收敛,使用GS 法反而发散。

几点说明:① 一般计算是在没有肯定迭代法收敛的情况下进行的。

② 实际计算总是用迭代法的分量形式,迭代法的矩阵形式则用于研究收敛性理论。

③Jacobi 公式简单,每次迭代只需做矩阵与向量的一次乘法,特别适合于并行计算,缺点是需要存储两个向量)1()(,+k k x x . 4. Gauss —Seidel 迭代法的计算机算法 假定Tn x x x x),,,()0()0(2)0(1)0( =作为初值,以ε<-=-=∆=∞++)()1()1(0||max ||max ||k k k i k i ii ix x x x x P控制迭代终止,ε为精度要求,k 记录迭代次数,N 为允许的迭代次数最大值,n 为方程组的阶数,二维数组{}1,1,1+==n n j i ij a , 存放A 和b ,一维数组n i i x 1}{=开始存放初值,迭代过程中存放迭代值,最后存放近似值;算法使用工作单元0P 和P 以及循环变量i ;输入数据包括n ,A ,b , ε, N . [GS 算法] ① 0=k② 对 ,,,2,1n i =置初值 0=i x ③ 1+=k k④ 如果 N k >,则 输出当前迭代值i x (n i ,,2,1 =)和 k 值,并停机。

相关文档
最新文档