函数的值域求法集锦
函数值域的13种求法
函数值域十三种求法1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法(只有定义域为整个实数集R 时才可直接用)例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
例说求函数值域的十种基本方法
例说求函数值域的十种基本方法求函数值域是数学中的一个重要问题,涉及到了函数的性质和特点。
接下来,我将为您介绍求函数值域的十种基本方法。
1.函数特性法首先,我们可以通过函数的特性来判断其值域。
例如,如果函数是线性函数,那么它的值域是整个实数集;如果函数是二次函数,那么它的值域可以通过求解二次方程得到。
2.函数图像法通过绘制函数的图像,可以直观地看出函数的值域。
值域可以通过观察函数图像的最高点、最低点以及其他特殊点得出。
3.函数解析式法通过函数的解析式,可以对其进行分析,确定函数的值域。
例如,对于一个多项式函数,可以通过求导,找出函数的极值点,从而得到值域。
4.函数区间法将函数的定义域划分为若干个区间,在每个区间内分别求出函数的最大值和最小值,然后取这些最值的并集,即可得到函数的值域。
5.函数性质法根据函数的性质,判断其值域。
例如,若函数是奇函数,那么其值域与定义域对称;若函数是周期函数,那么值域只需要求出一个周期内的值。
6.函数导数法通过求函数的导数,可以找出函数的极值点,然后确定函数的值域。
导数为零的点是函数的极值点,其中最大值和最小值即为函数的值域的上界和下界。
7.函数符号法通过研究函数的符号变化,可以确定函数值域。
例如,对于一个有理函数,可以研究当自变量趋于正无穷和负无穷时,函数值的变化情况。
8.函数求导法对于一些复杂的函数,可以通过对函数进行求导,并求出导函数的零点,从而找到函数的极值点。
极值点即为函数的值域的边界点。
9.函数的逆函数法若函数的逆函数存在,可以通过研究逆函数的定义域来确定函数的值域。
逆函数与原函数的值域相同,因此可以求出函数的逆函数,然后通过研究逆函数的值域来确定函数的值域。
10.函数的一些特点法对于一些具有特殊特点的函数,可以通过对这些特点进行分析,来确定函数的值域。
例如,对于一个增函数,函数的值域是从函数图像的最低点到最高点。
求函数值域常用的十种方法
值域是全体函数值所构成的集合,值域也是构成函数的三要素之一。
由于求函数值域所涉及到的知识面较宽,所用到的数学思想与数学方法也相应较多,因此、求函数的值域往往是数学考察的基本内容之一,本文将举例说明求函数值域常用的十种方法,仅供参考。
1、利用非负数的性质根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。
例1、(1)求函数216x y -=的值域。
(2)求函数1322+-=x x y 的值域。
解析:(1)161602≤-≤x , 41602≤-≤∴x故 所求函数的值域为 []40,∈y 。
(2)012>+x ,∴原函数可化为 3)1(22-=+x x y ,即 3)1(2+=-y y x , 当1≠y 时,y y x -+=132, 02≥x ,013≥-+∴yy ,解得13≤≤-y 又 1≠y , 所以 13<≤-y ,故 所求函数的值域为 ),13[-∈y 。
2、利用函数的图象对于含有绝对值(或分段)函数,若函数图象比较易作出,则利用函数图象能较快的求出其值域。
例2、求函数|1||2|+--=x x y 的值域。
解析:去掉绝对值符号得 :⎪⎩⎪⎨⎧-<=++-≤≤-+-=+-->=+--=)1(3)1(2)21(12)1(2)2(3)1(2x x x x x x x x x x y 。
画出函数的图象(如图):由函数的图象可得,原函数的值域为]33[,-∈y 。
3、利用二次函数的性质对于二次函数或与二次函数有关的函数,在求其值域时常用此法。
例3、(1)求函数]22[2,,-∈+-=x x x y 的值域。
(2)求函数]231[27,,∈-=x x x y的值域。
解析:(1)41)21(22+--=+-=x x x y ,]22[,-∈x ,416≤≤-∴y 故 所求函数的值域为 ]416[,-∈y (2)849)471(2722727222+--=+-=-=-=x xx x x x x y , ]231[,∈x ,4273≤≤∴y 解得:, 故 所求函数的值域为 ]4273[,∈y 。
求函数值域的方法大全
求函数值域的方法大全
1、极限法:极限法是求函数值域的一种重要技术,可以用来求函数
的极值。
原理是找到函数的变量的极限,在此极限处求函数的极值。
求极
限的方法有四种:求不等式的极限,求一元函数的极限,求二元函数的极限,求多元函数的极限。
2、求导法:求导法是求函数的最值的经典方法。
原理是求函数的导数,当导数当0的时候,其点处就会是极值点,可以分别求函数的一次导
数和二次导数,分析二次导数的符号可以判断函数的极值点属性,从而有
效解决函数求极值问题。
3、几何法:几何法是求函数最值问题的一种有效方法。
原理是利用
函数的图象特征,以图形分析的方法在实值空间中求解函数的极值、拐点,从而求函数的最值。
因为函数图象的研究具有直观性,使用几何法能够比
较快速地解决函数最值问题。
4、范数法:范数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
这种方法利用范数的基本性质,即大于等于零、对称
性以及三角不等式,一般使用二范数求解,其核心思想是将函数转化为范
数的格式,得出最值的解。
5、参数法:参数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
函数值域求法十一种
函数值域求法十一种函数值域求法十一种1.直接观察法对于一些简单的函数,可以通过观察得到其值域。
例如,求函数 $y=\frac{1}{x}$ 的值域。
解:由于 $x\neq 0$,显然函数的值域是:$(-\infty,0)\cup(0,+\infty)$。
2.配方法配方法是求二次函数值域最基本的方法之一。
例如,求函数 $y=x^2+2x+3$ 在 $x\in[-1,2]$ 时的值域。
解:将函数配方得:$y=(x+1)^2+2$。
由二次函数的性质可知:当 $x=-1$ 时,$y_{\max}=2$,当 $x=1$ 时,$y_{\min}=4$。
故函数的值域是:$[2,4]$。
3.判别式法例如,求函数 $y=\frac{1+x+x^2}{1+x^2}$ 在 $x\in[-1,2]$ 时的值域。
解:将函数化为关于 $x$ 的一元二次方程 $(y-1)x^2+(y-1)x+(1-y)=0$。
1)当 $y\neq 1$ 时,$\Delta=(-1)^2-4(y-1)(1-y)\geq 0$,解得:$y\in[\frac{1}{2},2]$。
2)当 $y=1$ 时,$x=\pm 1$,故函数的值域是:$[\frac{1}{2},2]$。
4.反函数法例如,求函数 $y=3x+4$ 的值域。
解:由原函数式可得其反函数为:$x=\frac{y-4}{3}$,其定义域为 $\mathbb{R}$,故函数的值域也为 $\mathbb{R}$。
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
函数的值域为:XXX11(x1)2 2令x1t,(t0)则XXX11t2 2化简得XXX11t2函数的值域为(0,1]。
例13.求函数y sinx cosx的值域。
解:由三角函数的性质可知。
1sinx1,1cosx 1故2sinx cosx 2由于sinx cosx的周期为2,所以只需考虑[0,2)的值域即可。
函数的值域求法大全
y1 2 x 5 , y 2 log3 x 1 解:令
则 y1 , y 2 在[2,10]上都是增函数 所以 y y1 y 2在[2,10]上是增函数 1 y 2 log 2 1 当x=2时, 8 y max 25 log3 9 33 当x=10时, 故所求函数的值域为: 1 ,33
y x 2 6x 13 4 • 例6. 求函数 值域。 5x 6 4 6y
x • 解:由原函数式可得:
4 6y x 则其反函数为: 5y 3
5y 3
• • 故所求函数的值域为: , 3
5
3 x ,其定义域为: 5
五函数有界性法
直接求函数的值域困难时,可以利用已学过函数的有 界性,反客为主来确定函数的值域
3 min 3
8
七、数形结合法
当函数的解析式明显具备某种几何意义, 像两点间的 距离公式、直线斜率等时可考虑用数形结合法.
• 的值域。 y • 解:原函数可变形为: (x 3) 2 (0 2) 2 (x 2) 2 (0 1) 2 • 上式可看成x轴上的点 P(x,0)到两定点 A(3,2), B(2,1) 的距离之和, • 由图可知当点P为线段与x轴的交点时, • ymin | AB | (3 2) 2 (2 1) 2 43, • 故所求函数的值域为 [ 43,]
三判别式法
dx2+ex+f 主要适用于形如 y = 2 (a, d不同时为零)的函数(最 ax +bx+c 好是满足分母恒不为零). 2
1 x x • 求函数 y 2 1 x
的值域。
• 解:原函数化为关于x的一元二次方程
函数求值域的15种方法
函数求值域的15种方法求值域是数学中一个重要的概念,它可以用来确定函数在什么值上才能可以被定义。
它也可以用来判断函数是否具有极值以及极值在哪里。
求解函数域可以使用很多种方法,下面介绍15种求解函数域的方法。
1. 曲线图:用曲线图来求解函数域,通过分析函数的凹凸变化,以及变化的临界点来考虑函数的值域。
2. 区间法:分析函数的解析式,找出函数变量的取值范围,从而求出函数的定义域。
3. 限制法:通过限制函数的方程来求解函数域的大小,有助于函数属于哪个集合。
4. 线性变换:通过对函数值的线性变换,可以求解函数值的取值范围。
5. 积分法:根据求解函数值的积分值,来判断函数值的取值范围。
6. 求根法:通过求解函数的根,找出函数的定义域,计算出函数在一定范围内所具有的有效值。
7. 不等式法:分析函数的不等式,来求出函数的定义域。
8. 收敛法:通过检验函数的收敛性,来确定函数的定义域。
9. 极值法:通过分析函数的极值,找出函数的值域。
10. 极限法:通过求解函数的极限,来确定函数的值域。
11. 变分法:根据函数在不同变量上的变分,求出函数的定义域。
12. 拓扑法:根据不同拓扑形状,确定函数的定义域,计算出函数在一定范围内所具有的值。
13. 微分表示法:通过求解函数的微分,来确定函数的取值范围。
14. 二分法:通过分段求解函数的值,以二分的方式查找函数的值域。
15. 图解法:通过对函数的图解,计算出函数所具有的定义域。
以上就是15种求解函数域的方法。
上述15种方法都可以用来帮助我们求解函数域,可以根据不同的情况,适当选择不同的方法来解决问题。
根据实际情况,选择合适的方法,有助于我们获得更好的结果,但这也取决于我们是否能够正确掌握这些求解函数域的方法。
求函数值域的12种方法
求函数值域的12种方法函数的值域即为函数的输出值的集合。
在数学中,可以用多种方法来确定函数的值域。
1.输入法:根据函数的解析式,将不同的输入带入函数中,找出函数的输出值。
例如,对于函数$f(x)=x^2$,将不同的$x$值带入函数中,得到$f(1)=1$,$f(2)=4$,$f(3)=9$,...,通过这种方法可以找出函数的值域为正整数集合。
2. 虚拟增量法:给定函数的定义域,通过逐渐增加函数的输入值,观察函数的输出值是否有变化。
例如,对于函数$g(x) = \sqrt{x}$,可以从定义域中的最小值开始逐渐增加$x$的值,观察$\sqrt{x}$的变化,直到无法再增加$x$的值为止。
通过这种方法可以找出函数值域为非负实数集合。
3. 图像法:画出函数的图像,通过观察图像的高度范围找出函数的值域。
例如,对于函数$h(x) = \sin x$,可以画出其图像,观察图像的高度范围为$[-1, 1]$,则函数的值域为闭区间$[-1, 1]$。
4. 函数属性法:通过函数的性质推断出函数的值域。
例如,对于函数$f(x) = \frac{1}{x}$,可以通过观察函数的分母$x$的取值范围,推断出函数的值域为除去零的实数集合。
5. 求导法:对于可导函数,可以通过求导数来确定函数的值域。
例如,对于函数$f(x) = x^3 + 1$,求导得到$f'(x) = 3x^2$,由于$f'(x)$是一个二次函数,且开口向上,因此可以推断出函数$f(x)$的值域为$(-\infty, +\infty)$。
6. 函数复合法:对于复合函数,可以通过将函数复合起来,找出函数的值域。
例如,对于函数$f(x) = \sqrt{\sin x}$,可以将其分解为$f(x) = \sqrt{g(x)}$,其中$g(x) = \sin x$,由于$\sin x$的值域为$[-1, 1]$,因此$\sqrt{\sin x}$的值域为闭区间$[0, 1]$。
求函数值域的方法大全
求函数值域的方法大全函数的值域是指函数在定义域内所有可能的输出值的集合。
找到函数的值域可以帮助我们了解函数的整体走势和性质。
下面是一些常见的方法帮助我们求函数值域。
1.用图形法求值域:使用图形来观察函数的形状和趋势,根据图形的有界性和单调性来确定函数值域的范围。
例如,如果函数是上凸的,那么它的值域可能是从函数的最小值开始一直到正无穷大。
如果函数是下凸的,那么它的值域可能是从负无穷大到函数的最大值。
2.用定义法求值域:通过函数的定义式,将自变量的范围带入函数,计算函数的输出值,从而找到函数的可能取值。
例如,对于函数f(x)=x^2,我们可以把不同的x值代入函数中,并记录下函数的输出值,得到一个可能的值域的集合。
3.用反函数法求值域:如果函数具有反函数,可以通过求反函数的定义域来求原函数的值域。
例如,对于函数f(x)=x^2,它的反函数是f^(-1)(x)=√x,定义域为非负实数,因此原函数的值域也是非负实数。
4.用导数法求值域:对于给定范围内的函数,利用导数求得函数的驻点和拐点,结合函数的单调性和图像的形状来求值域。
例如,当函数的导数为零时,这些点可能是函数的最大值或最小值,通过比较这些点的对应函数值,可以确定函数的值域的上下界。
5.用极限法求值域:当函数的定义域是无界的时候,可以利用函数的极限来求值域。
通过求函数在正无穷大和负无穷大时的极限,可以确定函数的值域的上下界。
6.用解析法求值域:对于一些特定形式的函数,可以通过解析方法求值域。
例如,对于一次函数f(x)=ax+b,其中a和b为常数,如果a>0,则函数的值域是从负无穷大到正无穷大的实数集合。
7.用二次函数求值域:对于二次函数f(x)=ax^2+bx+c,其中a>0,可以通过将二次函数转化为顶点形式来求值域。
首先通过求导数找到二次函数的极值点(即顶点),然后结合函数的开口方向和顶点的y坐标,可以确定二次函数的值域。
8.用指数和对数函数求值域:对于指数函数f(x)=a^x和对数函数f(x)=log_a(x),其中a>0且a≠1,可以利用指数和对数函数的性质来求值域。
求函数值域的12种方法
求函数值域的12种方法函数是中学数学的重要的基本概念之一,它与代数式、方程、不等式、三角函数、微积分等内容有着密切的联系,应用十分广泛。
函数的基础性强、概念多,其中函数的定义域、值域、奇偶性等是难点之一,是高考的常见的题型。
下面就函数的值域的求法,举例说如下。
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
求值域的十种方法
求函数值域的十种方法一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。
例 1 .求函数的值域。
【解析】∵ ,∴ ,∴函数的值域为。
【练习】1 .求下列函数的值域:① ;② ;③ ;,。
【参考答案】① ;② ;③ ;。
二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。
形如的函数的值域问题,均可使用配方法。
例 2 .求函数()的值域。
【解析】。
∵ ,∴ ,∴ ,∴ ,∴ 。
∴函数()的值域为。
例 3 .求函数的值域。
【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:配方得:利用二次函数的相关知识得,从而得出:。
说明:在求解值域 ( 最值 ) 时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:。
例 4 .若,试求的最大值。
【分析与解】本题可看成第一象限内动点在直线上滑动时函数的最大值。
利用两点,确定一条直线,作出图象易得:, y=1 时,取最大值。
【练习】2 .求下列函数的最大值、最小值与值域:① ;② ;③ ;④ ;,;。
【参考答案】① ;② ;③ ;④ ;;三.反函数法:反函数的定义域就是原函数的值域,利用反函数与原函数的关系,求原函数的值域。
适用类型:分子、分母只含有一次项的函数 ( 即有理分式一次型 ) ,也可用于其它易反解出自变量的函数类型。
例 5 .求函数的值域。
分析与解:由于本题中分子、分母均只含有自变量的一次型,易反解出,从而便于求出反函数。
反解得,故函数的值域为。
【练习】1 .求函数的值域。
2 .求函数,的值域。
【参考答案】 1 .;。
四.分离变量法:适用类型 1 :分子、分母是一次函数的有理函数,可用分离常数法,此类问题一般也可以利用反函数法。
例 6 :求函数的值域。
解:∵ ,∵ ,∴ ,∴函数的值域为。
适用类型 2 :分式且分子、分母中有相似的项,通过该方法可将原函数转化为为( 常数 ) 的形式。
例 7 :求函数的值域。
求函数值域的十种方法
求函数值域的常用方法函数的值域是指函数能够取到的所有可能的输出值。
确定一个函数的值域有很多常用的方法,下面将介绍其中一些常用的方法。
1.求极限。
当自变量趋于无穷大或无穷小时,函数的极限可以帮助确定函数的值域。
如果一个函数的极限存在,并且随着自变量的增大或减小而无限接近一些确定的值,那么该函数的值域一定包含该极限值。
2.分析函数的定义域。
函数的定义域是指函数的自变量的取值范围。
如果函数在定义域上是连续的,并且没有间断点,那么函数的值域可以通过分析函数在定义域上的取值范围来确定。
3.分析函数的图像。
函数的图像是函数在坐标平面上的表示。
通过观察函数的图像可以初步估计函数的值域。
如果函数的图像在一些区间上单调递增或递减,并且没有振荡现象,那么该函数的值域将是该区间的闭区间。
4.求函数的导数。
函数的导数描述了函数的变化趋势。
通过求函数的导数可以确定函数的极值点,从而确定函数的值域。
当函数的导数在一些点处为零,并且在该点的左侧和右侧具有不同的符号,那么该点就是函数的极值点。
函数在极值点取到最大值或最小值时,该值一定属于函数的值域。
5.利用奇偶性。
一些函数具有奇偶性,即在定义域内满足一定的对称性。
如果函数是偶函数,则函数的值域在对称轴上具有对称性,可以根据对称轴的函数值确定其值域。
如果函数是奇函数,则函数的值域在原点上具有对称性。
6.利用函数的周期性。
一些函数具有周期性,即在定义域内满足重复性。
如果函数是周期函数,那么其值域也是周期性的,可以通过分析一个周期内的函数值来确定其值域。
7.求函数的反函数。
有些函数存在反函数,通过求反函数可以确定函数的值域。
反函数的定义域是原函数的值域,反函数的值域是原函数的定义域。
8.利用已知的数学性质。
根据一些已知的数学性质来确定函数的值域,例如三角函数的取值范围是[-1,1],对数函数的定义域是正实数,指数函数的值域是正实数等。
以上是常用的一些方法来确定函数的值域。
在实际问题中,可以结合多种方法来确定函数的值域。
函数求值域15种方法
函数求值域15种方法方法一:对于已知函数,可以通过求函数的表达式来确定函数的值域。
例如对于f(x)=x^2+1需要求值域,可以将其表示为y=x^2+1,然后观察x和y的关系,可以得到y的值域为[1,+∞)。
方法二:对于一些简单的函数,可以使用数学知识来确定其值域。
例如对于 f(x) = sin(x),由于正弦函数的值域为[-1, 1],因此 f(x) 的值域也是[-1, 1]。
方法三:对于复合函数,可以通过将内部函数的值域代入外部函数中来确定整个函数的值域。
例如对于f(x)=√(x^2+1),内部函数g(x)=x^2+1的值域为[1,+∞),将值域代入外部函数,可以得到f(x)的值域也是[1,+∞)。
方法四:对于分段函数,可以分别求解不同区间上函数的值域,然后将这些值域合并得到整个函数的值域。
例如对于f(x)={x,x<0;x^2,x≥0},可以分别求解x<0和x≥0的情况,得到f(x)的值域为(-∞,0]∪[0,+∞)。
方法五:利用函数的奇偶性来确定函数的值域。
如果函数是奇函数,即f(-x)=-f(x),那么函数的值域关于原点对称;如果函数是偶函数,即f(-x)=f(x),那么函数的值域关于y轴对称。
根据函数的奇偶性可以推断出函数的值域。
方法六:利用函数的周期性来确定函数的值域。
如果函数有周期T,那么函数的值域在一个周期内是相同的。
可以通过观察函数的图像或者函数的性质来确定函数的周期,并进一步确定函数的值域。
方法七:利用函数的极限来确定函数的值域。
可以求函数在正无穷和负无穷的极限,根据极限的性质来确定函数的值域。
如果函数在正无穷的极限是一个确定的值,那么函数的值域是有界的;如果函数在正无穷的极限趋近于正无穷,那么函数的值域是无界的。
方法八:利用函数的导数来确定函数的值域。
可以求函数的导数,然后分析导函数的正负性和极值点,从而确定函数的值域。
如果导函数在一些区间内始终大于零,那么函数在该区间上是单调递增的,可以确定函数的值域;如果导函数在一些区间内始终小于零,那么函数在该区间上是单调递减的,可以确定函数的值域。
求函数值域的十三种方法
求函数值域的十三种方法求函数值域是数学中常见的问题,通过求函数值域可以了解函数的取值范围,对于解决实际问题和理论分析都有重要意义。
下面将介绍求函数值域的十三种方法。
一、观察法观察法是最直观的方法,通过观察函数的定义域和性质,可以初步确定函数的值域。
例如,对于一个关于实数的二次函数,如果其开口向上,则可以判断其值域为大于等于最低点的y坐标的实数集合。
二、代数法代数法是通过运用代数运算的方法求函数值域。
例如,对于一个有理函数,可以通过求其对应的分式函数的极限来确定函数的值域。
三、图像法图像法是通过绘制函数的图像来求函数值域。
通过观察图像的变化趋势,可以确定函数的值域。
例如,对于一个周期函数,可以通过绘制其一个周期内的图像,然后根据图像的波动范围确定函数的值域。
四、导数法导数法是通过求函数的导数来求函数值域。
通过分析导数的增减性和极值点,可以确定函数的值域。
例如,对于一个单调递增函数,其值域为整个定义域;对于一个有界函数,其值域为一个闭区间。
五、反函数法反函数法是通过求函数的反函数来求函数值域。
通过求反函数的定义域,可以得到函数的值域。
例如,对于一个严格单调增函数,其反函数的定义域即为函数的值域。
六、极限法极限法是通过求函数的极限来求函数值域。
通过分析函数的极限可以确定函数的趋势和边界,从而确定函数的值域。
例如,对于一个无界函数,可以通过求其极限来确定函数的值域。
七、积分法积分法是通过求函数的积分来求函数值域。
通过分析函数的积分可以确定函数的曲线下面积,从而确定函数的值域。
例如,对于一个连续非负函数,可以通过求其积分来确定函数的值域。
八、级数法级数法是通过求函数级数的和来求函数值域。
通过分析级数的收敛性和和的性质,可以确定函数的值域。
例如,对于一个幂级数函数,可以通过求级数的收敛域来确定函数的值域。
九、微分方程法微分方程法是通过求函数满足的微分方程来求函数值域。
通过求微分方程的解析解或数值解,可以确定函数的值域。
求函数值域的8种方法带例题
求函数值域的8种方法带例题嘿,伙计们!今天我们来聊聊一个很有趣的话题——求函数值域的8种方法。
你们知道吗,学习数学的时候,我们经常会遇到一些让我们头疼的问题,比如求一个函数的值域。
别着急,我今天就来教你们8种简单易懂的方法,让你轻松搞定这个难题。
我们来看第一种方法:观察法。
这种方法很简单,就是直接观察函数在哪些区间内取值。
比如,我们来看一个例子:求函数f(x) = x^2在区间[-1, 2]内的值域。
我们可以看到,当x = 0时,f(x) = 0;当x = 1时,f(x) = 1;当x = 2时,f(x) = 4。
所以,这个函数在这个区间内的值域是[0, 4]。
接下来,我们来看第二种方法:图像法。
这种方法需要用到一些图形工具,比如Excel或者Python的matplotlib库。
我们可以通过绘制函数的图像来直观地看到函数在哪些区间内取值。
比如,我们还是以f(x) = x^2为例。
我们可以在Excel中输入x和f(x)的值,然后通过“插入”->“散点图”功能绘制出函数图像。
从图像中,我们可以看出函数在[-1, 0]和[2, +\infty)内都单调递增,所以这两个区间都是函数的值域。
而在[0, 2]内,函数是先单调递减再单调递增的,所以这个区间也是函数的值域。
因此,这个函数的值域是[0, 4]。
第三种方法:分段法。
这种方法适用于那些在某个区间内单调递增或单调递减的函数。
比如,我们还是以f(x) = x^2为例。
我们可以发现,当x在[-1, 0]和[2, +\infty)内时,函数都是单调递增的;而当x在[0, 2]内时,函数是先单调递减再单调递增的。
所以,我们可以将这个问题分成两个子问题:求f(x)在区间[-1, 0]和[2, +\infty)内的值域;以及求f(x)在区间[0, 2]内的值域。
通过分段法,我们可以分别求出这两个子问题的解,然后将它们合并起来得到原问题的解。
因此,这个函数的值域是[0, 4]。
函数值域的求法大全
函数值域的求法大全题型一 求函数值:特别是分段函数求值例1 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f [g (3)]=f (11)=11+11=112.反思与感悟 求函数值时,首先要确定出函数的对应关系f 的具体含义,然后将变量代入解析式计算,对于f [g (x )]型的求值,按“由内到外”的顺序进行,要注意f [g (x )]与g [f (x )]的区别. 跟踪训练4 已知函数f (x )=x +1x +2. (1)求f (2);(2)求f [f (1)].解 (1)∵f (x )=x +1x +2,∴f (2)=2+12+2=34.(2)f (1)=1+11+2=23,f [f (1)]=f (23)=23+123+2=58.5.已知函数f (x )=x 2+x -1. (1)求f (2),f (1x );(2)若f (x )=5,求x 的值. 解 (1)f (2)=22+2-1=5, f (1x )=1x 2+1x -1=1+x -x 2x 2. (2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0, ∴x =2,或x =-3. (3)4.函数f (x )对任意自然数x 满足f (x +1)=f (x )+1,f (0)=1,则f (5)=________. 答案 6解析 f (1)=f (0)+1=1+1=2,f (2)=f (1)+1=3,f (3)=f (2)+1=4,f (4)=f (3)+1=5,f (5)=f (4)+1=6.二、值域是函数y=f(x)中y 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的值域题型一:二次函数的值域例1. 求6a )(2+-=x x x f 的值域解答:配方法:4a 64a 62a 6a )(2222-≥-+⎪⎭⎫ ⎝⎛-=+-=x x x x f 所以值域为⎥⎦⎤⎢⎣⎡∞+-,4a 62例2. 求6)(2+-=x x x f 在[]11,-上的值域解答:函数图像法:423216)(22+⎪⎭⎫ ⎝⎛-=+-=x x x x f画出函数的图像可知,,6)(2+-=x x x f 在21=x 时取到最小值423,而在1-=x 时取到最大值8,可得值域为⎥⎦⎤⎢⎣⎡8423,。
例3. 求6a )(2+-=x x x f 在[]11,-上的值域解答:由函数的图像可知,函数的最值跟a 的取值有关,所以进行分类讨论: ① 当2a-≤时,对称轴在1-=x 的左侧,所以根据图像可知,a 7)1(max -==f f ,a 7)1(min +=-=f f所以此时的值域为[]a 7a 7-+,② 当0a2≤≤-时,对称轴在1-=x 与y 轴之间,所以根据图像可知,a 7)1(max -==f f ,4a 6)2a (2min-==f f所以此时的值域为⎥⎦⎤⎢⎣⎡--a 74a 62, ③ 当2a0≤≤时,对称轴在y 轴与1=x 之间,所以根据图像可知,a 7)1(max +=-=f f ,4a 6)2a (2min-==f f所以此时的值域为⎥⎦⎤⎢⎣⎡+-a 74a 62, ④ 当a 2≤时,对称轴在1=x 的右侧,所以根据图像可知,a 7)1(max +==f f ,a 7)1(min -=-=f f所以此时的值域为[]a 7a 7+-,题型二:指数、对数函数的值域例4. 求()62log )(22+-=x x x f 的值域解答:复合形式用换元:令622+-=x x t,则由例1可知,[)+∞∈,5t根据单调性,可求出t 2log 的值域为[)+∞,5log 2例5. 求624)(1++=+x x x f 的值域解答:因为()224x x=,所以,采用换元发,令xt 2=,则()+∞∈,0t则原函数变为622++t t ,可以根据二次函数值域的求法得到值域为()+∞,6题型三:分式函数的值域例6. 求函数132)(++=x x x f 的值域解法一:分离变量法,将分式中分子部分的变量分离出去。
则可以换元,令1+=x t ,原函数变为tt t 1212+=+,由反比例函数的性质可知,值域为()()+∞∞-,22,解法二:反函数法,利用原函数的值域就是反函数的定义域,来求值域。
令132)(++==x x x f y ,则32+=+x y yx ,得到23--=y y x ,可知2≠y解法三:解析几何法。
考虑数形结合,联想到分式2121x x y y --表示两点间连线的斜率,则讲原函数写为()()132----x x ,可以看成是()()x x 2,,3,1--两点连线的斜率,其中()x x 2,是动点,构成x y 2=直线轨迹,则连线必须与x y 2=相交,所以连线斜率不能是2,得到值域。
例7. 求函数132)(++=x x x f 在[]10,的值域 解法一:分离变量之后采用函数图像法,令1+=x t,[]2,1∈t ,原函数变为t t t 1212+=+,可以画出t 12+的图像,或者根据单调性直接可以得到值域为⎥⎦⎤⎢⎣⎡325, 解法二:反函数法,将23--=y y x 代入[]10,中,求解1230≤--≤y y不等式,可以得到值域范围⎥⎦⎤⎢⎣⎡325,。
解法三:解析几何法。
()()132----x x ,可以看成是()()x x 2,,3,1--两点连线的斜率,其中()x x 2,是动点,不在构成直线,而是构成x y 2=在[]10,区间的线段,画出图像后观察可得斜率的范围为⎥⎦⎤⎢⎣⎡325,例8.求函数133)(2+++=x x x x f 的值域解法一:分离变量法,令1+=x t ,原函数变为1112++=++tt t t t 由均值不等式可知当21,0≥+>t t t ,当21,0-≤+<tt t ,可以得到原函数的值域为(][)+∞-∞-,31,解法二:判别式法,令133)(2+++==x x x x f y ,则332++=+x x y yx ,整理得关于x 的一元二次方程()0332=-+-+y x y x ,满足方程有解,该方程的判别式()()03432≥---=∆y y 可得31≥-≤y y 或,即函数的值域为(][)+∞-∞-,31,解法三:解析几何法,())1(033133)(22---++=+++=x x x x x x x f ,可以看成是两点()()0,1,33,2-++x xx 之间连线的斜率,而()33,2++x x x 是动点,恰好构成332++=x x y 的轨迹,由图像可以看出,连线斜率的范围从而得到函数的值域。
例9.求函数133)(2+++=x x x x f 在[]10,的值域 解答:此题限制了定义域,导致判别式法失效,采用分离变量法,画出函数图像来求函数的值域。
令1+=x t ,[]2,1∈t ,原函数变为1112++=++tt t t t 画出对勾函数的图像,可以得到t t 1+的值域范围是⎥⎦⎤⎢⎣⎡252,,则最后函数的值域为⎥⎦⎤⎢⎣⎡273,题型四:三角函数的值域例10. 求函数2cos 4sin 3)(++=x x x f 的值域解答:使用辅助角公式,()2sin 52cos 4sin 3)(++=++=ϕx x x x f ,可知函数的值域为[]73,例11. 求函数2cos 4sin23)(2++=x x x f 的值域解答:先化简,都转为一次三角函数后使用辅助角公式,()42sin 13222cos 22sin 32cos 4sin23)(2++=+++=++=ϕx x x x x x f 可知函数的值域为[]134134+-,例12. 求函数2cos 4cos2)(++=x x x f 的值域解答:先化为同角的三角函数,再换元为二次函数求解值域。
1cos 4cos 22cos 41cos 22cos 4cos2)(22++=++-=++=x x x x x x x f 令[]1,1,cos -∈=t x t ,则原函数化为()11214222-+=++t t t ,则按前面的例题可得函数的值域为[]31,-,例13. 求函数x x x x f sin 2cos 2sin2)(-+=的值域解答:利用()()2cos sin 121cos sin cos sin 22x x x x x x --=-+=来换元。
()()()x x x x x x x x f cos sin 2cos sin 1cos sin 2cos sin 2)(2----=--=令[]2,2,cos sin -∈-=t x x t ,则原函数化为122+--t t ,同理,按二次函数的值域求法,可得结果[]221,--。
例14. 求函数3cos sin )(+=x xx f 的值域解法一:辅助角公式法。
类似于二次分式的判别式法,令3cos sin +=x xy ,则可得x y x y x y x y cos sin 3,sin 3cos -==+,利用辅助角公式后()()ϕϕ+=+++=x yy x y y sin 13,sin 1322,则要求1132≤+yy ,可解出值域范围⎥⎦⎤⎢⎣⎡-2222, 解法二:解析几何法。
三角分式也可以看为()3cos 0sin ---x x ,即两点()()x x sin ,cos ,0,3-连线的斜率,其中()x x sin ,cos 是动点,构成的轨迹是圆心在原点,半径为1的圆,根据图像可知,连线与圆相切时分别取到最大值和最小值,可得函数的值域⎥⎦⎤⎢⎣⎡-2222, 例15. 求函数3cos sin )(+=x x x f 在⎥⎦⎤⎢⎣⎡-22ππ,上的值域解答:此时无法使用辅助角公式法,只能用解析几何法,动点()x x sin ,cos 构成的轨迹为右半圆,这样,可得结果⎥⎦⎤⎢⎣⎡-3333, 题型五:绝对值函数的值域例16. 求函数15)(--+=x x x f 的值域解法一:零点分类讨论法。
当1≥x 时,6)(=x f ;当5-≤x 时,6)(-=x f ;当15≤≤-x 时,42)(+=x x f 。
所以函数的值域为[]66,- 解法二:利用绝对值的几何意义,画出数轴,15-+x x 与分别表示x 到-5与1的距离,根据数轴图像,可以直接得到值域为[]66,-例17. 求函数322)(22-+-+=x x x x x f 的值域解答:零点分类法将十分麻烦,利用换元法,令[)+∞-∈+=,1,22t x x t,则原函数化为3--t t ,则根据数轴法,可以得到函数的值域为[]33,-题型六:根式函数的值域例18. 求函数x x x f -+=1)(的值域解法一:换元法,令[)+∞∈-=,0,1t x t,则原函数化为12++-t t ,根据二次函数值域的求法,可得原函数值域为⎪⎭⎫⎢⎣⎡+∞,45。
解法二:解析几何法,令[)+∞∈-=,0,1y x y ,y x x f z +==)(,可得zx y +-=,即函数的值可以看成是直线的截距,而直线必须通过[)+∞∈-=,0,1y x y 上的点,画出图像可知相切时截距最小,可得函数的值域⎪⎭⎫⎢⎣⎡+∞,45 例19. 求函数x x x f ++=1)(的值域解法一解法二同上一例题,注意换元时的等价性,结果[)+∞-,1解法三:单调性法,题目中函数为单调递增,根据函数的定义域[)+∞-,1,代入可得函数的值域[)+∞-,1。
例20. 求函数21)(x x x f -+=的值域解法一:三角换元法,令⎥⎦⎤⎢⎣⎡-∈=2,2,sin ππθθx ,这样换元既可以保证换元的等价性,同时可以使得开方后的表达式去掉绝对值符号,⎪⎭⎫ ⎝⎛+=+=+=-+=-+4sin 2cos sin cos sin sin 1sin 122πθθθθθθθx x 注意⎥⎦⎤⎢⎣⎡-∈2,2ππθ,画出三角函数图像可得值域为[]2,1-。
解法二:解析几何法,令[]1,0,12∈-=y x y ,y x x f z +==)(,可得zx y +-=,即函数的值可以看成是直线的截距,而直线必须通过[]1,0,12∈-=y x y ,通过作图可以得到截距的范围,也就是函数的值域[]2,1-例21. 求函数212)(x x x f ++=的值域解法一:三角换元,类似于上一道题,令⎪⎭⎫⎝⎛-∈=2,2,tan ππθθx ,这样可以得到θθθθθθcos 2sin cos 2tan tan 12tan 1222+=+=++=++x x ,化为三角分式,在利用解析几何法将其转化为两点的斜率可以做出图像得到值域为[)+∞,3解法二:解析几何法,类似于上一道题,令[)+∞∈+=,1,12y x y ,y x x f z 2)(+==,可得2zx y +-=,即函数的值可以看成是直线的截距的2倍,而直线必须通过[)+∞∈+=,1,12y x y 即双曲线的上半支,通过作图可知相切时取得截距的最小值,得到值域[)+∞,3。