Ethernet与现场总线
工业以太网与现场总线技术及应用
工业以太网与现场总线技术及应用摘要:工业控制需要高速、廉价、易于集成的通信网络。
以太网就是这样的一种网络。
本文分析了工业以太网在现场总线控制系统中的应用前景,指出工业以太网的介入使现场总线能更好的满足实时控制的要求,并给出了工业以太网应用实例。
关键词:现场总线控制系统以太网 FCS一引言随着计算机和网络技术的发展,以智能化仪表和分散控制为特色的现场总线技术,把控制领域带入了一个新的时代。
它所倡导的全开放、全分散、互操作的思想,成了未来控制领域崭新的特点。
但是,目前的现场总线技术仍具有很大的局限性,在全开放、全分散控制等方面,仍存在许多需要解决的问题。
首先,在目前现场总线控制系统中,主要是低速现场总线,现场仪表和设备的计算能力和信息处理能力较低,主要用于数据采集和控制信号的输出,并实现PDI控制等一些简单的控制算法。
复杂的控制功能,如预测控制、神经网络控制、系统优化等,仍需要在PC机或工作站上实现。
其次,由于现场总线位于整个系统的最底层,只是系统的一个组成部分,仅仅现场总线仍不足以实现系统的全开放结构。
同时,目前已经出现了Profibus 、Foundation Fieldbus等几十种现场总线。
由于每种现场总线代表着不同厂商的利益,各大厂商进行了激烈的市场竞争,这些现场总线很难实现统一。
因为不同现场总线产品不能实现互操作,一旦用户选择某种现场总线,今后就会被局限于这种现场总线,再选择另一种现场总线,必须付出高昂的代价。
因此,在现场总线的迅速发展过程中,形成一个统一的协议却始终是一个争论的焦点。
为了解决以上全分散、全开放、不同协议的现场总线系统集成问题,人们开始逐步达成一个共识,即向以太网靠拢将成为今后现场总线发展的一个趋势。
二以太网进入现场总线以太网具有传输速度高、低耗、易于安装和兼容性好等方面的优势,由于它支持几乎所有流行的网络协议,所以在商业系统中被广泛采用。
它具有如下特点:(1)以太网是目前应用最广泛的计算机网络技术,它受到广泛的技术支持,因此容易获得控制领域生产厂家的认可。
现场总线、工业以太网、工业无线
现场总线、工业以太网、工业无线【前言】目前工业通信领域的三大主流技术:现场总线、工业以太网、工业无线。
综合应用趋势:将现场总线、以太网、嵌入式技术和无线通信技术融合到控制网络中,在保证系统稳定性的同时,又增强了系统的开放性和互操作性,从而有助于企业加快新品开发、降低生产成本、完善信息服务。
【现场总线】现场总线的出现不仅简化了系统的结构,还使得整个控制系统的设计、安装、投运、检修维护都大大简化,给工业自动化带来一场深层次的革命。
但现场总线技术至今还没有一个统一的标准。
事实上,从现场总线的概念提出开始,国际电工技术委员会/国际标准协会(IEC/ISA)就着手开始制定现场总线的标准,至今统一的标准仍未完成。
很多公司也推出其各自的现场总线技术,但彼此的开放性和互操作性还难以统一。
【工业以太网】正当现场总线标准大战硝烟正浓之时,以太网悄悄进入了控制领域,从而产生了一个新的名词工业以太网,并且由于以太网传输速率较现场总线更快等优势,以太网技术一出生就风华正茂,近年来其势头更是盖过了现场总线。
然而,正如当年的现场总线的标准之争一样,工业以太网也出现了多种不同的以太网技术,如Ethernet/IP,Profinet,ModbusTCP,EtherCAT,Powerlink等,而且这些网络在不同层次上基于不同的技术和协议,包括了OPC,CP,IP等,而且,每种技术的背后都有不同的厂商阵营在支持,这就决定了多种以太网技术并存的局面。
【工业无线】再说说无线技术,从复杂的布线到如今仅需要一台无线信号发射器,从依赖PC机到现在可利用任何配有无线终端适配器的设备,连接网络呈现出在任何时间、任何地域、任何设备上都畅通无阻的现状。
技术的发展同时也推动了社会的进步,无论是军用产品、工业产品,甚至民用产品,无线技术俨然成为社会发展中必不可少的一部分。
相比有线网络,无线网络具有移动性,。
EtherCAT - 以太网现场总线
EtherCAT - 以太网现场总线本文深入阐述了基于以太网现场总线系统的EtherCAT (Ethernet for Control Automation Technology)技术。
EtherCA T为现场总线技术领域树立了新的性能标准,具备灵活的网络拓扑结构,系统配置简单,和现场总线系统一样操作直观简便。
另外,由于EtherCA T实施的成本低廉,因此使系统得以在过去无法应用现场总线网络的场合中选用该现场总线。
1. 引言1.1 以太网和实时能力2. EtherCAT 运行原理3. EtherCAT 技术特征3.1 协议3.2 拓扑3.3 分布时钟3.4 性能3.5 诊断3.6 高可靠性3.7 安全性3.8 EtherCAT 取代PCI3.9 设备行规3.9.1 EtherCAT实现CAN总线应用层协议(CoE)3.9.2 EtherCAT实现伺服驱动设备行规IEC61491 (SoE)3.10 EtherCAT实现以太网(EoE)3.11 EtherCAT实现文件读取(FoE)4. 基础设施成本5. EtherCAT 实施5.1 主站5.1.1 主站实施服务5.1.2 主站样本代码5.2 从站5.2.1 EtherCAT Slave Controller5.2.2 从站评估工具包6. 小结7. 参考文献1. 引言现场总线已成为自动化技术的集成组件,通过大量的实践试验和测试,如今已获得广泛应用。
正是由于现场总线技术的普及,才使基于PC的控制系统得以广泛应用。
然而,虽然控制器CPU的性能(尤其是IPC的性能)发展迅猛,但传统的现场总线系统正日趋成为控制系统性能发展的“瓶颈”。
急需技术革新的另一个因素则是由于传统的解决方案并不十分理想。
传统的方案是,按层划分的控制体系通常都由几个辅助系统所组成(周期系统):即实际控制任务、现场总线系统、I/O系统中的本地扩展总线或外围设备的简单本地固件周期。
正常情况下,系统响应时间是控制器周期时间的3-5倍。
ControlNet和EtherNet-IP现场总线
备能在上述整个网络中实现即插即用。对象的定义是严格的,在同一种网络
上支持实时报文、组态和诊断。为了提高工业以太网的实时性能,ODVA(开
放的DeviceNet供应商协会)于2003年8月公布了IEEE1588用于EtherNet/IP
(NUI)内调节节点的传送信息机会。
Type2现场总线系统体系结构
EtherNet/IP以太网工业协议是一种开放的工业网络,它使用有源星形
拓扑结构,可以将10Mbps和100Mbps产品混合使用。该协议在TCP/UDP/IP
之上附加控制和信息协议(CIP),提供一个公共的应用层。CIP的控制部分用
于实时I/O报文,其信息部分用于报文交换。ControlNet和EtherNet/IP都使
ControlNet和EtherNet/IP现场总线
ControlNet和EtherNet/IP现场总线
由ControlNetInternaTIonal(CI)组织负责制定的Type2现场总线标准
由以下部分组成:
PhL和DLL:ControlNet;
AL:Control Net和EtherNet/IP。
实时控制应用的时钟同步标准。
Type2现场总线系统体系结构如图所示。ControlNet采用一种新的通
信模式,即生产者/客户(Producer/Consumer)模式,这种模式允许网络上的所
有节点,同时从单个数据源存取相同的数据,其主要特点是增强了系统的功
能,提高了效率和实现精确的同步。网络的媒体送取,通过限制时间存取算
法来控制,即采用并行时
现场总线与工业以太网总线知识概述
现场总线与工业以太网总线知识概述1. 简介现场总线和工业以太网总线是现代工业自动化中常用的通信协议,用于实现工业设备之间的数据交换和联网。
本文将对现场总线和工业以太网总线的基本概念、特点、应用、优缺点等进行概述。
2. 现场总线概述2.1 定义现场总线是一种用于工业现场设备之间数据交换和通信的网络协议,它通过将控制和信号传输集成到一根通信线上,实现设备的多对多通信。
2.2 特点•高可靠性:现场总线具有高抗干扰性和冗余技术,能够保证数据的可靠传输。
•简化布线:现场总线使用单根通信线连接多个设备,减少布线工作量。
•实时性强:现场总线能够实现实时数据交换和控制,满足工业自动化的要求。
•易于扩展:现场总线支持设备的插拔,方便系统的扩展和维护。
2.3 应用现场总线广泛应用于工业自动化领域,用于实现工业控制系统中各个设备之间的通信和数据交换。
常见的现场总线协议有Profibus、DeviceNet、Modbus等。
3. 工业以太网总线概述3.1 定义工业以太网总线是基于以太网技术的通信协议,用于实现工业现场设备之间的高速数据交换和通信。
3.2 特点•高带宽:工业以太网总线支持高速数据传输,满足对数据通信速度要求较高的应用场景。
•灵活可靠:工业以太网总线支持灵活的拓扑结构和冗余技术,能够满足复杂工业环境中的通信需求。
•开放性强:工业以太网总线基于标准以太网协议,具备良好的兼容性和互操作性。
•易于集成:工业以太网总线可以与现有的以太网设备和IT系统进行无缝集成。
3.3 应用工业以太网总线在工业自动化领域得到广泛应用,特别是在大规模工业控制系统中。
常见的工业以太网总线协议有Ethernet/IP、Profinet、EtherCAT等。
4. 现场总线与工业以太网总线的比较4.1 网络结构现场总线采用集线器或总线控制器连接多个设备,形成总线型拓扑结构;而工业以太网总线通常采用交换机连接设备,形成星型或树型拓扑结构。
4.2 通信速度工业以太网总线的通信速度较快,可达到千兆位级别,适用于对通信速度要求较高的场景;而现场总线的通信速度较慢,一般在10M或100M的范围内。
现场总线与工业以太网及其应用技术
“现场总线和工业以太网之间的转换是可能的,但是需要使用相应的转换设 备或者转换软件来实现。”
“在选择合适的通信协议时,需要考虑控制系统的具体需求和实际情况,包 括设备的成本、通信距离、数据传输速率、可靠性等方面的需求。”
这些摘录不仅可以帮助读者理解现场总线和工业以太网的基本概念和技术, 还可以帮助读者了解这些技术在现代工业控制网络中的应用和优势。这本书还提 供了大量的应用案例,这些案例可以帮助读者更好地理解和应用所学到的知识。
“Modbus是一种非常流行的现场总线协议,它可以支持多种不同类型的数据 传输,包括ASCII、二进制和RTU格式。”
“Profinet是一种基于以太网的工业自动化通信协议,它可以在TCP/IP网络 上实现实时的数据传输。”
“对于一个典型的工业控制系统来说,控制器、传感器和执行器之间的距离 可能会非常远,这需要使用合适的通信协议来实现远距离通信。”
《现场总线与工业以太网及其应用技术》是一本非常值得一读的书。它既提 供了关于现场总线和工业以太网的基本知识,又展示了这些技术在现代工业中的 应用现状和发展趋势。通过阅读这本书,我对这个领域有了更深入的了解,也有 了更全面的认识。这不仅丰富了我的知识库,也提升了我对现代工业自动化的理 解和分析能力。
通过阅读这本书,我对现场总线和工业以太网的应用有了更为清晰的认识。 我了解到,这两种网络技术在现代工业自动化和过程控制领域发挥着越来越重要 的作用。它们的出现,大大简化了复杂的网络结构,提高了系统的稳定性和可靠 性。特别是在实现远程监控和维护方面,这两种技术提供了极大的便利。
我也对现场总线和工业以太网的技术发展趋势有了新的认识。随着新技术的 不断发展,这两种网络技术也在不断演进和完善。例如,对于工业以太网而言, 其正在向更高速度、更远距离、更灵活的方向发展;而对于现场总线而言,其正 在追求更开放、更智能、更安全的特点。这些发展趋势,为我提供了新的视角和 思考。
现场总线有哪几种-现场总线优缺点
现场总线有哪几种?现场总线优缺点常见的现场总线有:PROFIBUS、EtherCA T、Lightbus、Interbus、CANopen、ControlNet、SERCOS interface、Ethernet、PROFINET、USB、Modbus、RS232/RS485、CC-Link、AS-Interface、LON、EIB、SNMP、QOS、CAN、MECHATROLINK。
总线优点:现场总线使自控设备与系统步入了信息网络的行列,为其应用开拓了更为广阔的领域;一对双绞线上可挂接多个控制设备,便于节省安装费用;节省维护开销;提高了系统的可靠性;为用户提供了更为灵活的系统集成主动权。
总线缺点:网络通信中数据包的传输延迟,通信系统的瞬时错误和数据包丢失,发送与到达次序的不一致等都会破坏传统控制系统原本具有的确定性,使得控制系统的分析与综合变得更复杂,使控制系统的性能受到负面影响。
总线本质不同的机构和不同的人可能对现场总线有着不同的定义,不过通常情况下,大家公认在以下六个方面:1、通信网络用于过程自动化和制造自动化的现场设备或现场仪表互连的现场通信网络。
2、设备互联依据实际需要使用不同的传输介质把不同的现场设备或者现场仪表相互关联。
3、互操作性用户可以根据自身的需求选择不同厂家或不同型号的产品构成所需的控制回路,从而可以自由地集成FCS。
4、分散功能块FCS废弃了DCS的输入/输出单元和控制站,把DCS控制站的功能块分散地分配给现场仪表,从而构成虚拟控制站,彻底地实现了分散控制。
5、通信线供电通信线供电方式允许现场仪表直接从通信线上摄取能量,这种方式提供用于本质安全环境的低功耗现场仪表,与其配套的还有安全栅。
6、开放式互联网现场总线为开放式互联网络,既可以与同层网络互联,也可与不同层网络互联,还可以实现网络数据库的共享。
现场总线与工业以太网
现场总线与工业以太网现代工业领域的通信技术在不断发展,为了满足工业自动化的需要,现场总线和工业以太网成为了两种主流的通信技术。
本文将从介绍两者的定义、特点、应用领域等方面进行论述,以帮助读者更好地理解现场总线和工业以太网的区别与联系。
一、现场总线的定义现场总线,顾名思义,是指在工业现场中用于连接各种现场设备和传感器的通信技术。
它采用串行通信方式,将各个设备连接到统一的总线上,使得各个设备可以进行数据的交互和通信。
现场总线常见的标准有Profibus、Modbus、CAN等。
二、现场总线的特点1. 高可靠性:现场总线采用多级冗余和容错技术,能够提供稳定可靠的通信环境,抵抗电磁干扰和噪声的干扰。
2. 实时性强:现场总线通信速率快,能够满足对实时性要求较高的工业自动化应用。
3. 灵活性高:现场总线支持多种拓扑结构,可根据现场设备的不同需求进行灵活搭配,具有良好的扩展性和可调整性。
4. 成本相对较低:现场总线技术成熟,设备价格相对较低,适用于中小型工业系统。
三、现场总线的应用领域现场总线广泛应用于工业自动化控制系统、传感器和执行器的连接以及数据采集等领域。
例如,在工厂生产线上,通过现场总线可以实现对各个设备的监控和控制,提高生产效率和质量。
四、工业以太网的定义工业以太网是指将以太网技术应用于工业自动化领域的通信网络。
它基于以太网标准,通过对物理层接口和网络协议的改进,使得以太网能够适应工业环境的要求,提供可靠的通信服务。
五、工业以太网的特点1. 高带宽:工业以太网支持高速数据传输,能够满足工业自动化中对大数据量的实时传输需求。
2. 网络结构灵活:工业以太网具有良好的可扩展性和灵活性,支持各种网络拓扑结构,满足不同工业场景的需求。
3. 兼容性强:工业以太网基于以太网标准,与传统以太网兼容,可以与企业内部的办公以太网进行连接。
4. 安全性高:工业以太网提供各种安全机制和协议,保护工业控制系统的安全和隐私。
六、工业以太网的应用领域工业以太网被广泛应用于诸如工厂自动化、能源管理、交通运输、智能建筑等领域。
现场总线CANopen与工业以太网总线知识概述
1 2 3 4 5 6
PROFILE POSITION MODE(标准位置模式) HOMING MODE(回原点模式) INTERPOLATED POSITION MODE(插补位置模式) PROFILE VELOCITY MODE(标准速度模式) PROFILE TORQUE MODE(标准转矩模式) VELOCITY MODE(速度模式)
SDO报文格式
*
现场总线CANopen与工业以太网总线EtherCAT
SDO报文格式
水现场总线CANopen与工业以太网总线EtherCAT *
SDO应用举例
*
现场总线CANopen与工业以太网总线EtherCAT
预定义报文或者特殊功能对象
同步(SYNC) 时间标记对象(TimeStamp) 紧急事件(Emergency) 节点/寿命保护(Node/Life guarding)
➢ PDO通讯参数:包含哪个COB-ID将被PDO使用,传输类型 ,禁止时间和定时器周期
➢ PDO映射参数:包含一个对象字典中对象的列表,这些对象 映射到PDO里,包括它们的数据长度(in bits)。生产者和 消费者必须知道这个映射,以解释PDO内容
PDO消息的内容是预定义,映射应用对象到PDO中是在 设备对象字典中描述的。
*
现场总线CANopen与工业以太网总线EtherCAT
CANopen概述
(6)可使用多种线缆和连接器; (7)数据通信可采用事件驱动、远程请求、 同步传输等多种方式; (8)采用心跳报文、节点保护、寿命保护等 多种设备监控方式,有利于节点之间的可靠通 信; (9)提供典型的预定义主/从连接组,最多可 支持127个节点; (10)提供很大的灵活性,应用非常广泛。
工业现场总线与以太网接口技术和通讯协议的研究
关键词:现场总线 工业以太网 Pobs P 接口技术 实时协议 L C rf D i u L
第1 页
江南大学硕士学位论文
Ab t a t sr C
A eh ft o1ui tnt ho g ni uta at ao sal r Po h e s d a i ecnnn ao e nl yi n s l o tn I ci c o dr u mi i dm i F l utho g hs】ay e wdlu dP i l y t eo e o ni d s cnl y aaed be i y s ,a c a at l s a , e一 e o r n e e T u t r l h wt l eo t i u cn le o ,a ldv eee H w v m l itad e lf en s ot nt r nm y ei l l o ee ui cy v h dt y r o r wk e c v. , r t in l P i o PlloF d u s d hs ne dtf edvl m n ao as n m ab f e 一 st a ah d e i u r ee P e ,l c e c iy i b a r l n d i r sr h t o t s us h y e n i 刀tnn g tns c g ay i l s t ssmadn n ao ie ao if i m n d u e. t a t o f i t i an r 衍c t i n s l h n h P ii I uta t r t t a lao f t r tna o t fl ia o tn E e e一 e Pctno E e ei ut ac e ss sli dr i hn m id i uo o h r l b eI t l t r t a 1a yt s n n m t n t t p b I a v n s a E e e h ae ysn e 韶 i i r ao e o e 0 n ui dr hn s r d hi z o f i a ae te l r e oirgl l f e n r s at ao s t sI m ngm nl e P csm non eeo t et re u m tn sm . e v ,o s t i v h ei p o i ye t h bc sce f l iP m n t tt ier o bten h h l e s a en ucs l m l et h h n g tn e e i e l s y u e e a et a d i w g v i r ao e o ndl l e cn o n w r A e rsl n o ec c n m t nntr o f i w ka o e l o l e o wv r t t k fr o i m r i t e v gs u a l Pol s f Pc i ,uha r 一m cn u ctn c d it o dtads rb m o a lao sc s at o u ao,r i ly f a n o e p i n t e i l e u l i e bi a n I utl t t a e s aPe wd y h l s e l e c el o, ds aEh ec b a o P1d ie ateo e l e d i l e n r i n r e n l i 1t w t v ,v ev . lia o n t dny fot nt r e l m t af ay az i ad nec o cn le o d e P nt t n lr i tn s ga e l o r w k v oe h i l e ao l o t cm r eses me i rao on tnadierl r mdv e f e o P hn v e 1sn m tncne i n n g 它nf h c i a s f i o co t ao o ei c l etm ae etee T e f , e sa h d x1 i o ie onco e lo a gm nl l r o t r e a eP r o fn r netn v n v. h e rh e r n c o n t a t c i n e r u o t e id u n t r a h r r gP cc add叩e f i e enF lbsadE e e hst e tn r ta s nb w e一 hn t ev ys O a l i s ic c ad e Pc i v u. i fa e t a1 ao a e n g in n h p i tn l o he a n i u i e B tr e a d c s na r n di t P r o h t cl r e h d s so r Peet n s ae f tsoi I e c sr c s e h p r i P: f i t a e nl yr a , o ul c nP o l ius n一 ei P vm n o a t ho g e e h C Inn ao rt o ds s o t m r e et f c o s c r T 1t ii o c c i h o
超详细的工业以太网与现场总线分析
超详细的工业以太网与现场总线分析导读随着“工业4.0”战略的展开,计算机技术、通讯技术、IT技术的发展已经渗入到工控领域,其中最主要的表现就是工业现场总线技术和工业以太网技术。
其中工业现场总线技术,特别是以太网技术的广泛使用,为自动化技术带来了深刻变革。
随着“工业4.0”战略的展开,计算机技术、通讯技术、IT技术的发展已经渗入到工控领域,其中最主要的表现就是工业现场总线技术和工业以太网技术。
其中工业现场总线技术,特别是以太网技术的广泛使用,为自动化技术带来了深刻变革。
现场总线现场总线是应用在生产现场,用于连接智能现场设备和自动化测量控制系统的数字式、双向传输、多分支结构的通信网络。
它是一种工业数据总线,是自动化领域中底层数据通信网络。
控制组成01、现场总线控制系统它的软件是系统的重要组成部分,控制系统的软件有组态软件、维护软件、仿真软件、设备软件和监控软件等。
首先选择开发组态软件、控制操作人机接口软件MMI。
通过组态软件,完成功能块之间的连接,选定功能块参数,进行网络组态。
在网络运行过程中系统实时采集数据、进行数据处理、计算。
优化控制及逻辑控制报警、监视、显示、报表等。
02、现场总线的测量系统其特点为多变量高性能的测量,使测量仪表具有计算能力等更多功能,由于采用数字信号,具有高分辨率、高准确性、抗干扰畸变能力强等特点,同时还具有仪表设备的状态信息,可以对处理过程进行调整。
03、设备管理系统可以提供设备自身及过程的诊断信息、管理信息、设备运行状态信息(包括智能仪表)、厂商提供的设备制造信息。
04、总线系统计算机服务模块以客户机/服务器模式是目前较为流行的网络计算机服务模式。
服务器表示数据源(提供者),应用客户机则表示数据使用者,它从数据源获取数据,并进一步进行处理。
客户机运行在PC机或工作站上。
服务器运行在小型机或大型机上,它使用双方的智能、资源、数据来完成任务。
05、数据库它能有组织的、动态的存储大量有关数据与应用程序,实现数据的充分共享、交叉访问,具有高度独立性。
现场总线技术及其应用
案例三:城市交通信号控制系统应用
总结词
利用现场总线技术实现城市交通信号的智能控制,提高 交通流畅度和安全性。
详细描述
在城市交通管理中,采用现场总线技术构建交通信号控 制系统,实现各个路口信号灯的实时通信和控制。通过 实时数据采集和智能算法,优化信号灯的配时方案,提 高交通流畅度和安全性,缓解城市交通拥堵问题。
在工业自动化领域,常见的现场总线 技术包括PROFIBUS、Modbus、 EtherNet/IP等。
智能建筑
智能建筑是现场总线技术的另一个重 要应用领域。通过现场总线,可以实 现建筑物内各种设备(如照明、空调 、安防等)的集中控制和管理,提高 建筑物的能源利用效率和舒适度。
VS
在智能建筑领域,常见的现场总线技 术包括LonWorks、CAN等。
智能交通系统
智能交通系统是现场总线技术的重要应用方 向之一。通过现场总线,可以实现交通信号 灯、监控摄像头等交通设施的集中控制和数 据传输,提高交通效率和安全性。
在智能交通系统领域,常见的现场总线技术 包括FlexRay、TTCAN等。
医疗设备
医疗设备是现场总线技术的重要应用 领域之一。通过现场总线,可以实现 医疗设备的集中控制和数据传输,提 高医疗设备的可靠性和安全性。
02
现场总线技术种类
PROFIBUS
德国标准总线
PROFIBUS是一种用于工业自动化的现场总线标准,由德国标准委员会制定。它 支持多种通信协议,广泛应用于制造业、过程控制和楼宇自动化等领域。
CAN总线
控制器局域网
CAN总线是一种用于汽车和工业自动化领域的现场总线标准。它支持分布式实时控制,具有高可靠性和灵活性,广泛应用于 汽车电子、智能交通和工业自动化等领域。
广义现场总线标准与工业以太网
由于CAN没有规定应用层和物理接口,一些组织给它制定了不同的应用层和物理接口标准构成了几种完整的现场总线协议,其中比较有名的有下文提到的DeviceNet、SDS以及CANopen等。
(2) 1999年9月IEC TC9(铁路电气设备技术委员会)发布的国际标准IEC 61375列车通信网(TCN)[5]。
WTB用于车辆之间的连接,每一车辆一个节点,WTB可有32个节点(最大62个),860m,媒体冗余,采用有护层的屏蔽双绞线、变压器隔离、曼彻斯特(Manchester)编码,速率1.5Mb/s。
由于总线长,接收信号动态范围大,解码器采用SDSP(统计数字信号处理器)。媒体访问采用主从方式,主站固定,但所有节点均有作为主站的能力,必要时(如主站失效、列车重组等)可改变主站节点。
ISO 11898 3的特点是具有总线管理功能和容错性能。在总线CAN H和CAN L之一断线、CAN H和CAN L之一对电源短路或对地短路、CAN H和CAN L相互短路及线路与终端电阻断开时均能给出指示。总线在正常状态时为差分传输,故障时转为单线传输,故障消除后又自动转为差分传输。
Type1,IEC 61158技术规范。这是由IEC/ISA负责制订的,曾试图使之成为统一的国际标准的一个技术规范,基金会现场总线FF的H1(低速现场总线)是它的一个子集。
Type2,ControlNet现场总线。美国AB公司、Rockwell开发,ControlNet International(CI)组织支持。
除了IEC 61158外,IEC及ISO还制定了一些特殊行业的现场总线国际标准。
(1) 1993年ISO/TC22/SC3(公路车辆技术委员会电气电子分委员会)发布的ISO 11898公路车辆—数字信息交换—用于高速通信的CAN以及低速标准ISO 11519。
基于EtherNet和Profibus现场总线水产养殖环境控制系统
现场总 线 ・
低压 电器 (0 0 Q 8 21N1 )
基 于 Ete Ne 和 P o b s 场 总 线 hr t rf u 现 i 水 产 养殖 环 境 控 制 系统 米
马 从 国 , 赵 德 安
( . 阴工 学院 ,江苏 淮安 1淮
摘
2 3 0 2 江 苏大 学 ,江 苏 镇 江 2 0 2;
22 1 1 0 3)
要 : 据水产 养殖的特点 , 根 提 了 Eh r e 和 Po b s P现 场 总 线 技 术 相 结 teN t rf u— i D
码 从 罔 ( 9 9 ) 16 一 ,
合 的水产养殖 环境 自动化控制 系统 。介绍 了基于工 业以 / 网和 Po b s总线 通信 议 6 = = rf u i
的 自动 化 系 统 的 组 成 方 式 和 系统 配 置 方 案 。通 过 对 水 产 养 殖 过 程 溶 解 氧 自动控 制 领 域 现 状 的分 析 , 出 了通 过 模 糊 PD控 制 算 法 控 制 养 殖 池 塘 的 溶 解 氰 含 量 。系 统 实 际 运 提 I 行 表 明 , 案 合 理 可 行 , 高 了养 殖 池 塘 的 经 济 效 益 。 方 提 关 键 词 : 产 养 殖 ; 业 以太 网 ; rf u 现 场 总 线 ;模 糊 P D 水 工 Po b s i I 中 图分 类 号 :F 3 文 献 标 志 码 :B 文 章 编 号 :10 —5 1 2 1 )80 2 —3 P36 0 1 3 ( 0 0 1 -0 30 5 -
m u i ai n prt c lwee i r d e F u z — D o r la g rt n e to o o o r nto uc d. he f z y PI c nto l o i hm o e n r ]dis le x g n o t n h o g t o to s ov d o y e c n e tt r u h
JA_70335《工业以太网与现场总线 》_李正军(教案大纲)吉玲[5页]
XX大学XXXX 学院《工业以太网与现场总线》课程教学大纲编写人:XXX 审定人:XXX编制时间:2022.5.26 审定时间:2022.6.6一、课程基本信息:二、课程描述本课程跨越多个学科方向,包括控制理论和技术、电子技术、计算机网络和计算机技术等,是一门理论基础扎实、知识面广、应用性强、对学生水平要求较高的课程。
现场总线技术在军事、航空航天、工业、农业、社会和经济等领域都有重要应用。
该课程将介绍计现场总线技术中最基本、最重要、最成熟的内容。
通过课程学习,学生将巩固前期所学的基础课程,并能予以深入理解和应用,能开拓视野提升设计和应用现场总线控制系统的能力。
三、课程教学内容及学时分配第1章绪论(2学时)1.1 现场总线概述1.2 工业以太网概述1.3 现场总线简介1.4 工业以太网简介习题第2章CAN FD现场总线(4学时)2.1 CAN的特点2.2 CAN的技术规范2.3 CAN FD通信协议2.4 内嵌CANFD的微控制器LPC546xx2.5 具有集成收发器的CAN FD控制器TCAN4550习题第3章CAN FD应用系统设计(4学时)3.1 CAN FD高速收发器3.2 CAN FD收发器隔离器件3.3 TCAN4550的应用程序设计3.4 USB转CAN FD接口卡习题第4章CC-Link现场总线与开发应用(4学时)4.1 CC-Link现场网络概述4.2 CC-Link/CC-Link/LT通信规范4.3 CC-Link通信协议4.4 CC-Link IE网络4.5 CC-Link产品的开发流程4.6 CC-Link产品的开发方案4.7 CC-Link现场总线的应用习题第5章PROFIBUS-DP现场总线与应用系统设计(4学时)5.1 PROFIBUS概述5.2 PROFIBUS的协议结构5.3 PROFIBUS-DP现场总线系统5.4 PROFIBUS-DP的通信模型5.5 PROFIBUS-DP的总线设备类型和数据通信5.6 PROFIBUS通信用ASICs5.7 PROFIBUS-DP从站通信控制器SPC35.8 主站通信控制器ASPC2与网络接口卡5.9 PROFIBUS-DP从站的系统设计习题第6章PROFINET与工业无线以太网(4学时)6.1 PROFINET概述6.2 PROFINET通信基础6.3 PROFNET运行模式6.4 PROFINET端口的MAC地址6.5 PROFINET数据交换6.6 PROFINET诊断6.7 PROFINET IRT通信6.8 PROFINET控制器6.9 PROFINET 设备描述(GSD 文件)与应用行规6.10 PROFINET的系统结构6.11 工业无线以太网6.12 SIEMENS工业无线通信6.13 SCALANCE X工业以太网交换机习题第7章EtherCAT工业以太网(4学时)7.1 EtherCAT通信协议7.2 EtherCAT从站控制器概述7.3 EtherCAT数据链路层7.4 EtherCAT从站控制器的应用层控制7.5 EtherCAT从站控制器的存储同步管理7.6 EtherCAT从站信息接口(SII)7.7 EtherCAT从站控制器LAN9252习题第8章EtherCAT主站与从站应用系统设计(4学时)8.1 EtherCAT主站分类8.2 TwinCAT3 EtherCAT主站8.3 基于LAN9252的EtherCAT从站硬件电路系统设计8.4 基于LAN9252的EtherCAT从站驱动和应用程序代码包架构8.5 基于LAN9252的EtherCAT从站驱动和应用程序的设计实例8.6 EtherCAT通信中的数据传输过程8.7 EtherCAT主站软件的安装与从站的开发调试习题第9章工业互联网技术(2学时)9.1 工业互联网概述9.2 工业互联网的内涵与特征9.3 工业互联网发展现状9.4 工业互联网技术体系9.5 工业互联网体系架构9.6 工业互联网标准体系9.7 无源光纤网络技术(PON)与工业PON技术9.8 工业互联网与CPS的关系9.9 国内外主流工业互联网平台习题四、教学方法在教学方式上,以目前的授课资源为基础,不断丰富教学内容,积极采用启发和研讨式教学方法,促进课堂的生动性,提高学生的学习的主动性和应用的积极性,从而提高教学的质量。
现场总线与工业以太网基金会现场总线
一种经典旳工程实例
• FF总线在拜耳漕泾工厂旳应用
•
上海拜耳漕泾园区(Bayer Material
Science)下属工厂旳涂料厂、公用工程厂和
聚酯厂已于2023年建成投产,该项目选用了
FF基金会现场总线,在仪表选型和安装调试
方面有自己旳特色,尤其是聚酯厂,使用旳
FF现场总线仪表较多,系统设置明朗、可靠
FF-H1主要用于过程工业(连续控制)旳自动化。FFHSE则采用基于Ethernet (IEEE802.3) +TCP/IP旳六层构造, 其通信距离为750m和500m。物理传播介质可支持双绞线、 光缆和无线发射,协议符合IEC61158-2原则。FF-HSE主要 用于制造业(离散控制)自动化以及逻辑控制、批处理和高级 控制等场合。
3.基金会现场总线这一开放、可互操作旳技术已经成为全球 范围内领先旳数字化控制系统处理方案。近年来,越来越多旳 最终顾客采纳了基金会现场总线技术。该技术已广泛应用在石 油、天然气、石油化工、化工食品、制药、电力、水处理、钢 铁矿山、造纸、水泥等行业有着广泛应用,其中石化领域目前 是FF总线最主要旳应用领域。
(6)系统测试技术。
它涉及通信系统旳一致性与互可操作性测试技术、总线监 听分析技术、系统旳功能和性能测试技术。一致性与互可操作 性测试是为确保系统旳开放性而采用旳主要措施。一般要经授 权过旳第三方认证机构作专门测试,验证符合统一旳技术规范 后,将测试成果交基金会登记注册,授予FF标志。只有具有 了FF标志旳现场总线产品,才是真正旳FF产品,其通信旳一 致性与系统旳开放性才有相应保障。有时,对由具有FF标志 旳现场设备所构成旳实际系统,还需进一步进行互可操作性测 试和功能性能测试,以确保系统旳正常运转,并到达所要求旳 性能指标。总线监听分析用于测试判断总线上通信信号旳流通 状态,以便于通信系统旳调试、诊疗与评价。
什么是现场总线,什么是工业以太网
在工作中,很多新人问我究竟什么是现场总线,什么是工业以太网,对于刚入行的新人来说是比较难理解,我这里尽量采用通俗的讲法给大家解释一下现场总线和工业以太网。
现场总线技术是20世纪80年代中期在国际上发展起俩的一种工业控制技术。
通俗地讲,现场总线就是用在现场的总线技术,和计算机内部的总线概念一样,但是由于现场的特殊环境(如温度,安装条件,干扰等等),不同余计算机通常用于室内,为了区别,所以我们把这种总线称为现场总线。
做过PLC的人都知道,如果现场有100个I/0点,我们就需从PLC柜引超过100根的电线到现场,如果是1000个呢??所以有人就想,能不能把这些所有的点用一根电缆都连接起来呢?不错,现场总线就实现了这种功能。
它及大方便了布线。
还有一点,现场总线把原先PLC要实现的功能分散到了现场设备/仪表。
还有一点很重要:现场总线采用的数字传输。
数字化是各行各业普遍的趋势。
我们的电视现在都数字化了。
工业控制也要数字化!!数字传输比较模拟量传输就很大的优势!世界就是这么奇怪,当人类自以为聪明,把问题复杂话的时候惊奇的发现0和1才是世界的本质。
现场总线技术实际上是次采用串行数据传输和连接方式代替传统的并联信号和连接方式,它依次实现了控制层和现场总线设别之间的数据传输,同时保证传输实时性的情况下实现信息的可靠性和开放性。
一般的现场总线具有以下几个特点:1、布线简单2、开放性3、实时性4、可靠性对于上面几个概念应该都比较好理解,深入的了解,大家可以参考相关资料。
工业以太网,所谓工业以太网通俗地讲就是应用于工业的以太网。
以太网是目前计算机局域网最常见的通信协议标准,但它是为办公自动化的应用而设计的,并没有考虑到工业现场环境的需求,比如高温、低温、防尘等,所以以太网不能直接应用于环境恶劣的工业现场。
所以工业以太网就随之产生了。
还有一个问题,很多人常问:为什么有那么多的现场总线协议,那么多的工业以太网协议呢?工业网络的发展经历了20多年,由于对未来的自动化控制的战略意义重大,市场潜力巨大,国际上著名的自动化设备制造商都千方百计地研发有自己特色的工业网络,各种现场总线和工业以太网相继产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ethernet与现场总线引言随着以知识经济为特征的信息时代的到来和现代工业文明的发展,企业综合自动化在现代工业大生产中的作用也越来越重要,它把工厂内各个孤立的局部自动化子系统在新的管理模式与工艺指导下,综合运用信息技术、自动化技术、计算机网络及其支持软件技术等有机地结合起来,构成一个完整的系统,对生产过程的物质流、管理过程的信息流、决策过程的决策流进行有效的控制和协调,以适应新的竞争形势下市场对生产管理过程提出的高质量、高速度、高灵活性和低成本的要求。
工业控制网络作为工业企业综合自动化系统的基础,从结构上看可分为三个层次:即管理层、监控层和现场设备层。
如图1所示。
其中,最上层的企业管理层网络,主要用于企业的计划、销售、库存、财务、人事以及企业的经营管理等方面信息的传输。
管理层上各终端设备之间一般以发送电子邮件、下载网页、数据库查询、打印文档、读取文件服务器上的计算机程序等方式进行信息的交换,数据报文通常都比较长,吞吐量较大,而且数据通信的发起是随机的、无规则的,因此要求网络必须具有较大的带宽。
管理层层网络主要由快速Ethernet(100M、1G、10G等)组成。
中间的制造执行层网络主要用于监控、优化、调度等方面信息的传输,其特点是信息传输具有一定的周期性和实时性,数据吞吐量较大,因此要求网络具有较大的带宽,以前由专用网络如令牌网组成,如今这一层网络则主要由传输速率较高的网段(如10M、100M Ethernet 等)组成。
而最底层的现场设备层网络则主要用于变送器、执行机构等现场设备之间、以及现场设备与控制室仪表之间的信息传输。
它具有以下特点:(1)传输的信息长度较小。
这些信息包括生产装置运行参数的测量值、控制量、开关与阀门的工作位置、报警状态、设备的资源与维护信息、系统组态、参数修改、零点与量程调校信息等。
其长度一般都比较小,通常仅为几位(bit)或几个、十几、几十个字节(byte),对网络传输的吞吐量要求不高。
(2)通信响应实时性要求较高。
工业控制对实时性的要求是“硬”的,因为它往往涉及安全,所以必须在任何时间都及时响应,不允许有不确定性。
它包括两方面的要求,一是传输速度要快,即网络通信速率要高,二是响应时间要短,响应时间可由4个方面决定:仪表或执行器控制中断的能力;信息在通信协议的应用层与物理层之间的传输时间;等待网络空闲的时间;避免信息在网络上碰撞的时间。
由于这个时间对大多数通信协议是一个随机数,过程控制系统通常并不要求这个时间达到最短,但它要求最大值是预先可知的,并小于一定值。
另外,通信响应实时性还与系统的巡回时间有关,通常最长巡回时间是预先可知的,并小于一定值。
(3)较强的可靠性与安全性。
对于工作在环境恶劣的工业生产现场的通信网络,必须解决环境适应性问题,它包括电磁环境适应性(传输时不要干扰别人,也不要被别人干扰)、气候环境适应性(要耐温、防水、防尘)、机械环境适应性(要耐冲击、耐振动)。
而安全性要求则是指网络传输媒体上所传输的能量要小,在正常工作或出现故障时,均不致引发灾难事故。
(4)总线供电,即工业现场控制网络不仅能传输通信信息,而且要能够为现场设备传输工作电源。
这主要是从线缆铺设和维护方便考虑,同时总线供电还能减少线缆,降低布线成本。
正是由于以上特点和特殊性,目前现场设备层网络主要由低速现场总线网络组成。
1.现场总线的产生回顾所谓现场总线,按照国际电工委员会IEC/SC65C的定义,是指安装在制造或过程区域的现场装置之间、以及现场装置与控制室内的自动控制装置之间的数字式、串行和多点通信的数据总线。
以现场总线为基础而发展起来的全数字控制系统称作现场控制系统(FCS)。
现场总线的产生是多方面因素共同作用的结果。
首先,现场总线的产生反映了仪器仪表发展的需要。
仪器仪表的发展经历了全模拟式仪表、智能仪表、具有通信功能的智能仪表、现场总线仪表等几个阶段。
其中,全模拟式仪表是将传感器信号进行调理放大后,经过V/I电路转换,输出4~20mA或0~5V的模拟信号,(如图2a所示)。
其后随着计算机技术的发展,微处理器在仪器仪表中得到了广泛应用,过程变量经调理放大、A/D采样,转换为数字信号,并经过微处理器的运算、补偿等处理后,再通过D/A、V/I等电路,仍然以4~20mA或0~5V的模拟信号输出(如图2b所示),这种智能仪表相对于全模拟仪表来讲,测量精度得到大大提高,但信号传输过程仍然容易受到外界电磁干扰,传输精度和可靠性都不高。
于是,人们在仪器仪表中增加了通信接口(如RS232/485等),以数字通信的方式代替模拟信号传输(如图2c所示)。
但由于这些通信标准只规定了物理层上的电气特性,而对于数据链路层及其以上各通信层次,则没有统一定义,致使不同仪表所使用的通信协议可能各不相同,不同生产厂家生产的仪器仪表也会由于通信协议的专有与不兼容而无法实现相互之间的通信,并严重束缚了工厂底层网络的发展。
为解决这个问题,必须使这些网络的通信标准进行统一,组成开放互连系统,于是就产生了现场总线。
其次,现场总线的产生反映了企业综合自动化、信息化要求。
为了适应越来越激烈的市场竞争需要,逐步形成了计算机集成制造系统(CIMS)。
它采用系统集成、信息集成的观点来组织工业生产,把市场、生产计划、制造过程、企业管理、售后服务看作要统一考虑的生产过程,并采用计算机、自动化、通信等技术来实现整个过程的综合自动化,在信息采集、加工的基础上,运用网络和数据库技术,实现信息集成,并进一步优化生产与操作,增加产量,提高产品质量,降低成本。
因而信息技术成为工业生产制造过程的重要因素,必须设计出一种能在工业现场环境运行的、性能可靠、造价低廉的通信系统,以实现现场自动化智能设备之间的多点数字通信,形成工厂底层网络系统,实现底层现场设备之间以及生产现场与外界的信息交换。
因此,从20世纪80年代开始,各种现场总线相继产生,其中主要的有:基金会现场总线FF(Foundation Fieldbus)、控制局域网络CAN(Controller Area Network)、局部操作网络LonWorks(Local Operating Network )、过程现场总线PROFIBUS(Process FieldBus)和HART协议(Highway Addressable Remote Transducer)以及DeviceNet、ControlNet、P-NET,等等。
面对如此之多的现场总线,用户如何选择?为解决这个问题,国际电工委员会IEC在1984年就开始筹备制定单一现场总线国际标准。
然而,由于行业与地域发展等历史原因,加上各公司和企业集团受自身利益的驱使,围绕着现场总线技术的标准进行了一场大战,最后经过多方妥协,于1999年年底通过了包含FF、Profibus、DeviceNet、P-NET、Interbus等八种总线在内的IEC61158,而没有实现制定单一标准的目标。
许多人也因此对制定单一国际现场总线标准已失去信心,致使2000年之后的标准混战明显降温。
这个结局也在向世人表明,在相当长一段时间内多种现场总线将并存,控制网络的系统集成与信息集成会面临困难的复杂局面。
无论是最终用户还是制造商,普遍都在关注现场总线技术的发展新动向,都有在寻求高性能低成本的解决方案。
与此同时,人们也纷纷发现,在现场总线标准制定过程中,过多强调了现场总线的特殊性,而忽视了与信息网络技术(如Ethernet技术)的结合。
2.为什么以前不用Ethernet作现场总线?Ethernet最初是在1973年由Dr Robert Metcacfe 领导的小组在Xerox Palo Alto Research Park研制出来的,应用于微型计算机系统商业网络终端。
后几经修改,1983年出版了的IEEE802.3标准,它和1985年发布的ISO8802.3标准是相同的。
Ethernet采用星型或总线型结构,传输速率为10M、100M、1000M甚至更高,传输介质为屏蔽(非屏蔽)双绞线、光纤、同轴电缆等。
Ethernet区别于其他网络(如令牌网、令牌环网、主从式网络等)的重要特点是,它采用的介质访问控制方法——CSMA/CD (Carrier Sense Multiple Access with Collision Detection,冲突检测载波监听多点访问)是一种非确定性或随机性通信方式。
其基本工作原理是:某节点要发送报文时,首先监听网络,如网络忙,则等到其空闲为止,否则将立即发送,并同时继续监听网络;如果两个或更多的节点监听到网络空闲并同时发送报文时,将发生碰撞,同时节点立即停止发送,并等待一段随机长度的时间后重新发送。
16次碰撞后,控制器将停止发送并向节点微处理器回报失败信息。
在网络负荷较高时,Ethernet上存在的这种碰撞成了主要问题,因为它极大地影响了Ethernet的数据吞吐量和传输延时,并导致Ethernet实际性能的下降。
由于在一系列碰撞后,报文可能会丢失,因此节点与节点之间的通信将无法得到保障。
Ethernet的这种CSMA/CD介质访问机制导致了网络传输延时和通信响应的“不确定性”。
而对于工业现场控制网络,Ethernet的这种通信“不确定性”会导致通信延迟的“不确定性”,并导致系统控制性能下降,控制效果不稳定,甚至会引起系统振荡;在有紧急事件信息需要发送时,还会因报警信息不能及时得到响应,而导致灾难事件的发生,并成了它应用于工业控制网络的主要障碍。
Ethernet没有用于现场总线的另外一个重要原因是,作为工业现场智能设备的核心组成部分——微处理器,在20世纪80年代时还处于初期发展阶段,功能简单,数字处理能力不强,不能处理Ethernet上“捆绑”使用的TCP/IP协议。
3.Ethernet正逐渐进入工业控制领域尽管Ethernet是一种随机性网络,但由于其技术比较简单、完全公开,能很快被大家接受,通过不断改进、提升,市场占有率(特别是办公自动化OA领域的市场占有率)越来越大,而成本却越来越低,进而变成主流,即使IBM力推Token Ring(令牌环网)架构也已难挡此潮流。
据VDC调查报告,如今已有约93%以上的网络节点具有Ethernet接口。
那么,Ethernet能不能应用于工业控制领域呢?我们知道,令牌总线控制方式在工业控制领域应用得较多,其特点是,网络上各工作站对总线的控制权是由令牌来控制的。
收到令牌的节点在一段规定时间内拥有网络传输介质的控制访问权,并向网络上发送一帧或多帧信息,当该站传输已经完成或它占用网络的规定时间到时,它就将令牌传递到下一逻辑站。
因此,传输过程就是由交替进行的数据传输阶段和令牌传送阶段组成。