第九章:细胞骨架

合集下载

09第九章细胞骨架

09第九章细胞骨架

(4)应力纤维 )应力纤维(stress fiber) 广泛存在于真核细胞。成分:肌动蛋白、肌球蛋白、 广泛存在于真核细胞。成分 :肌动蛋白、肌球蛋白、原 肌球蛋白和α 肌动蛋白。 肌球蛋白和α-辅肌动蛋白。介导细胞间或细胞与基质表面的 粘着。 细胞贴壁与粘着斑的形成相关, 粘着。(细胞贴壁与粘着斑的形成相关,在形成粘合斑的质 膜下, 微丝紧密平行排列成束, 形成应力纤维, 膜下 , 微丝紧密平行排列成束 , 形成应力纤维 , 具有收缩功 能。) (5)参与胞质分裂 ) 收缩环由大量反向平行排列的微丝组成, 收缩环由大量反向平行排列的微丝组成,其收缩机制是 肌动蛋白和肌球蛋白相对滑动。 肌动蛋白和肌球蛋白相对滑动。
三、核纤层(Nuclear Lamina) 核纤层 (1)核纤层分布与形态结构 ) 核纤层蛋白(Lamin) (2)成分 )成分——核纤层蛋白 核纤层蛋白 (3)核纤层蛋白的分子结构及其与中间纤维蛋白的关系 ) 核纤层与中间纤维之间的共同点 两者均形成10nm纤维; 两者均形成10nm纤维; 10nm纤维 两者均能抵抗高盐和非离子去垢剂的抽提; 两者均能抵抗高盐和非离子去垢剂的抽提; 某些抗中间纤维蛋白的抗体能与核纤层发生交叉反应; 某些抗中间纤维蛋白的抗体能与核纤层发生交叉反应; 两者在结构上有密切的联系, 两者在结构上有密切的联系,说明核纤层蛋白是中间纤维 蛋白。 蛋白。
是由G-actin单体形成的多聚体,肌动蛋白单体具有 单体形成的多聚体, (1)MF是由 ) 是由 单体形成的多聚体 极性, 装配时呈头尾相接, 故微丝具有极性,既正极与负极之别。 极性 装配时呈头尾相接 故微丝具有极性,既正极与负极之别。 正极与负极都能生长, (2)体外实验表明,MF正极与负极都能生长,生长快的一 )体外实验表明, 正极与负极都能生长 端为正极,慢的一端为负极;去装配时,负极比正极快。 端为正极,慢的一端为负极;去装配时,负极比正极快。由于 G-actin在正极端装配,负极去装配,从而表现为踏车行为。 在正极端装配,负极去装配,从而表现为踏车行为。 在正极端装配 呈现出动态不稳定性, (3)体内装配时,MF呈现出动态不稳定性,主要取决于 )体内装配时, 呈现出动态不稳定性 主要取决于Factin结合的 结合的ATP水解速度与游离的 水解速度与游离的G-actin单体浓度之间的关 结合的 水解速度与游离的 单体浓度之间的关 系。 动态变化与细胞生理功能变化相适应。 (4)MF动态变化与细胞生理功能变化相适应。在体内 有些 ) 动态变化与细胞生理功能变化相适应 在体内, 微丝是永久性的结构, 有些微丝是暂时性的结构。 微丝是永久性的结构 有些微丝是暂时性的结构。

细胞生物学教程第九章细胞骨架

细胞生物学教程第九章细胞骨架

+
Treadmilling
细胞中大多数微丝结构处于动态的组装和去组装过程中,并通过这种方式实现其功能。 细胞松弛素(cytochalasin)可切断微丝纤维,并结合在微丝末端抑制肌动蛋白加合到微丝纤维上,特异性的抑制微丝功能。 鬼笔环肽(phalloidin)与微丝能够特异性的结合,使微丝纤维稳定而抑制其功能。荧光标记的鬼笔环肽可特异性的显示微丝。
原肌球蛋白(tropomyosin.Tm) 每个Tm的长度相当于7个肌动蛋白,呈长杆状。组成两条平行纤维,位于肌动蛋白双螺旋的沟中,主要作用是加强和稳定肌动蛋白丝,抑制肌动蛋白与肌球蛋白结合。 肌钙蛋白(troponin,Tn), 含三个亚基,肌钙蛋白C特异地与钙结合,肌钙蛋白T与原肌球蛋白有高度亲和力,肌钙蛋白I抑制肌球蛋白的ATP酶活性,主要作用是调节肌肉收缩。
第二节 微管 Microtubule, MT
微管在胞质中形成网络结构,作为运输路轨并起支撑作用。微管是由微管蛋白组成的管状结构,对低温、高压和秋水仙素敏感。
A fluorescently stained image of cultured epithelial cells showing the nucleus (yellow) and microtubules (red)
The Orientation of Microtubules in a Cell
PART ONE
五、微管的功能
支架作用
细胞内运输 是胞内物质运输的路轨。 涉及两大类马达蛋白:驱动蛋白kinesin,动力蛋白dyenin,均需ATP供能。 Kinesin发现于1985年,是由两条轻链和两条重链构成的四聚体 ,能向着微管(+)极运输小泡 。
胶质原纤维酸性蛋白glial fibrillary acidic protein 存在于星形神经胶质细胞和许旺细胞。起支撑作用。 波形纤维蛋白vimentin 存在于间充质细胞及中胚层来源的细胞中。 神经纤丝蛋白neurofilament protein 是由三种分子量不同的多肽组成的异聚体,功能是提供弹性使神经纤维易于伸展和防止断裂。

第九章_细胞骨架习题及答案

第九章_细胞骨架习题及答案

第九章细胞骨架本章要点:本章阐述了细胞骨架的基本涵义、细胞中存在的几种骨架体系的结构、功能及生物学意义。

要求重点掌握细胞质骨架的结构及功能。

一、名词解释1、细胞骨架:细胞骨架(Cytoskeleton)是指存在于真核细胞质内的中的蛋白纤维网架体系。

包括狭义和广义的细胞骨架两种概念。

广义的细胞骨架包括:细胞核骨架、细胞质骨架、细胞膜骨架和细胞外基质。

狭义的细胞骨架指细胞质骨架,包括微丝、微管和中间纤维。

2、应力纤维:应力纤维是真核细胞中广泛存在的微丝束结构,由大量平行排列的微丝组成,与细胞间或细胞与基质表面的粘着有密切关系,可能在细胞形态发生、细胞分化和组织的形成等方面具有重要作用。

3、微管:在真核细胞质中,由微管蛋白构成的,可形成纺锤体、中心体及细胞特化结构鞭毛和纤毛的结构。

4、微丝:在真核细胞的细胞质中,由肌动蛋白和肌球蛋白构成的,可在细胞形态的支持及细胞肌性收缩和非肌性运动等方面起重要作用的结构。

5、中间纤维:存在于真核细胞质中的,由蛋白质构成的,其直径介于微管和微丝之间,在支持细胞形态、参与物质运输等方面起重要作用的纤维状结构。

6、踏车现象:在一定条件下,细胞骨架在装配过程中,一端发生装配使微管或微丝延长,而另一端发生去装配而使微管或微丝缩短,实际上是正极的装配速度快于负极的装配速度,这种现象称为踏车现象。

7、微管组织中心(MTOC):微管在生理状态及实验处理解聚后重新装配的发生处称为微管组织中心。

动物细胞的MTOC为中心体。

MTOC决定了细胞中微管的极性,微管的(-)极指向MTOC,(+)极背向MTOC。

8、胞质分裂环:在有丝分裂末期,两个即将分裂的子细胞之间产生一个收缩环。

收缩环是由大量平行排列的微丝组成,由分裂末期胞质中的肌动蛋白装配而成,随着收缩环的收缩,两个子细胞被分开。

胞质分裂后,收缩环即消失。

二、填空题1细胞质骨架__是一种复杂的蛋白质纤维网络状结构,能使真核细胞适应多种形状和协调的运动。

第9章 细胞骨架

第9章 细胞骨架
子发动机(分子马达)
分子马达的定义
◆肌球蛋白的结构
由重链和轻链组成,并组成三个结构域∶
●头部 含有与肌动蛋白、ATP结合的位点,负责产生力。 ●颈部 颈部通过同钙调素或类似钙调素的调节轻链亚基的结合 来调节头部的活性。 ●尾部 含有决定尾部是否同膜结合还是同其它的尾部结合的位
肌球蛋白的结构(Ⅱ型)
中心体与基体
中心体结构(电镜照片)
中 心 粒
四、微管的功能
1、支架作用:细胞中的微管就像混凝土中的 钢筋一样,起支撑作用,在培养的细胞中, 微管呈放射状排列在核外,(+)端指向质 膜。
2、影响细胞器的分布与走向
3、细胞内物质运输:微管起细胞内物质运输的路
轨作用,破坏微管会抑制细胞内的物质运输。图1 分子马达:能利用水解ATP将化学能转变为机 械能,有规则地沿微管运输货物的分子。主要有 驱动蛋白和胞质动力蛋白
微丝组装的踏车现象

体外组装过程中,当溶液中ATP-肌动蛋白 处于临界浓度时,微丝(+)端由于ATPactin添加而延长、(-)端由于ADP-actin 解离而缩短,表现出一种“踏车”现象。

微丝的蹋车现象和动态平衡
(三)作用于微丝的药物
◆细胞松弛素B(cytochalasins B) ◆鬼笔环肽(phalloidin)
第三节、中间纤维(intermediate filament,IF)(中间丝)
10nm纤维,因其直径介于肌粗丝和细丝之间, 故被命名 为中间纤维。IF几乎分布于所有动物细胞,往往形成一个网 络结构,特别是在需要承受机械压力的细胞中含量相当丰富。 如上皮细胞中。除了胞质中,在内核膜下的核纤层也属于IF。

微管的结构
微管蛋白(tubulin)

第九章细胞骨架

第九章细胞骨架

第九章细胞骨架第一篇:第九章细胞骨架第九章细胞骨架用电子显微镜观察经非离子去垢网架结构通常称为细胞骨架(cytoskeleton)。

细胞骨架包括微丝(microfilament,MF)、微管(microtube,MT)和中间丝(intermediate filament,IF)3种结构组分,他们都是由相应的蛋白亚基组装而成。

第一节微丝与细胞运动微丝又称肌动蛋白丝(actin filament)或纤维状肌动蛋白(fibrous actin,F-actin),这种直径为7nm的细胞骨架存在于所有真核细胞中。

微丝网格的空间结构与功能取决于所结合的微丝结合蛋白(miceofilament-associated proteins)的种类。

细胞内微丝的组装和去组装的动力学过程与细胞突起(微绒毛、伪足)的形成、细胞质分裂、细胞内物质运输、肌肉收缩、吞噬作用、细胞迁移等多种细胞运动过程相关。

一、微丝的组成及其组装(一)结构与成分微丝的主要结构成分是肌动蛋白(actin)。

肌动蛋白在细胞内有两种存在形式,即肌动蛋白单体(又称球状肌动蛋白,G-actin)和由单体组装而成的纤维状肌动蛋白。

肌动蛋白在生物进化过程中是高度保守的。

(二)微丝的组装及动力学特征肌动蛋白单体组装称微丝的过程大体上可以分为几个阶段:第一个阶段是成核反应,即形成至少有2~3个肌动蛋白单体组成的寡聚体,然后开始多聚体的组装。

第二个阶段是纤维的延长。

在体外组装过程中有时可见到微丝的正极由于肌动蛋白亚基的不断添加二延长,而负极则由于肌动蛋白亚基去组装而缩短,这一现象称为踏车行为(treadmilling)。

(三)影响微丝组装的特异性药物一些药物可以影响肌动蛋白的组装和去组装,从而影响细胞内微丝网格的结构。

细胞松弛素(cytochalasin),与微丝结合后可以将微丝切断,并结合在微丝末端阻抑肌动蛋白在该部位的聚合,但对微丝的解聚没有明显的影响。

鬼笔环肽(philloidin),与微丝表面有强亲和力,但不与肌动蛋白单体结合,对微丝的解聚有抑制作用。

第九章 细胞骨架

第九章 细胞骨架
1、胞质动力蛋白的结构特征: ① 胞质动力蛋白是由2条或3条重链和一系列 分子量不一的中间连和轻链构成。
② 重链上含有两个结合位点:一是ATP结合位
点;二是微管结合位点。
③ 胞质动力蛋白轻链端还结合着动力蛋白激
活蛋白复合体,介导胞质动力蛋白与需转运物质 之间的结合。
胞质动力蛋白的结构示意图
胞质动力蛋白的功能:
• 膜结合蛋白:使微丝与细胞质膜结合。
单体隔离蛋白
封端蛋白
交联蛋白
成核蛋白
成束蛋白
单体聚合蛋白
膜结合蛋白 纤维-解聚蛋白
纤维切割蛋白
各种微丝结合蛋白功能示意图
三、微丝的功能
1、维持细胞形态,赋予质膜机械强度
微丝遍及胞质各处,其中集中分布于质膜下的微丝与微 丝结合蛋白形成网络结构,维持细胞形态,赋予质膜机械强 度,如血红细胞膜内表面的膜骨架。
尾部结构域:决定肌球蛋
白的功能。
8、参与肌肉收缩
◆肌肉的细微结构(以骨骼肌为例)
◆肌小节的组成 ◆粗丝和细丝的组成 ◆肌肉收缩的滑动丝模型
第二节 微管及其功能
微管:是由微管蛋白组成的外径为24nm,内径为 15nm的中空管状结构。
一、微管的结构组成
α亚基上有GTP结合位点:该位点能结合GTP,但不能水解
2、基体的功能
形成细菌的鞭毛和纤毛,参与细菌的运动。
六、微管结合蛋白(P288) (Microtubule Associated Protein, MAP)
微管结合蛋白是一类与微管相结合的蛋白,对微 管网络的形成和功能进行调节。一般来说,MAP至 少含有两个结构域:一个是结合微管的结构域,具 有稳定微管的作用;另一个是向外突出的结构域, 负责与微管外其他细胞组分(如中间纤维、质膜等)

第九章__细胞骨架

第九章__细胞骨架

相同细胞中微管、微丝和中间纤维的荧光定位 三种不同荧光染料探针同相应的蛋白纤维结合从而使细胞内的纤维被染色。(a)含有
肌动蛋白的纤维被蘑菇毒素鬼笔环肽标记; (b)含微管蛋白的微管被微管蛋白的抗体标记; (c)中间纤维被抗波形蛋白的抗体标记。三种混合的荧光标记物, 各自的光都不强, 并且各 自的荧光波长不同。检查时, 用不同的滤光片 , 每次滤去两种光
2+ + + Ca 、低浓度Na 、K (微丝趋于解聚成actin)
纤维状肌动蛋 白(MF)
单体G-肌动蛋白和 F-肌动蛋白的结构 (a)非肌细胞中β-Actin单体的结构模型, 像是扁平的分子,由体积相等的 两个部分组成, 中间有一个裂口, 并且有四个亚结构域, 用Ⅰ-Ⅳ表示。 ATP在裂口的地方与肌动蛋白结合。N端和C末端位于亚结构域Ⅰ。(b) 电子显微镜观察的经负染的丝状肌动蛋白的形态。(c)肌动蛋白纤维亚 基的装配模型。
二、微丝网络动态结构的调节与细胞运动
(一)非肌肉细胞内微丝的结合蛋白
纯化的肌动蛋白在体外能够聚合形成肌动蛋白纤
维,但是这种纤维不具有相互作用的能力,也不 能行使某种功能, 原因是缺少微丝结合蛋白。

■ 微丝结合蛋白的种类 肌细胞和非肌细胞中都有微丝结合蛋白,至少已 分离出100多种。

1. 几类主要的微丝结合蛋白


在适宜的温度,存在ATP、K 、Mg 离子的条件下,肌动蛋白单体可自组装为纤维。
ATP-actin(结合 ATP 的肌动蛋白)对微丝纤维末端的亲和力高,ADP-actin 对纤维末端的 亲和力低,容易脱落。当溶液中 ATP-actin 浓度高时,微丝快速生长,在微丝纤维的两端 形成 ATP-actin“帽子”,这样的微丝有较高的稳定性。伴随着 ATP水解,微丝结合的 ATP 就变成了 ADP,当 ADP-actin 暴露出来后,微丝就开始去组装而变短。

第九章 细胞骨架

第九章 细胞骨架

维以十分有序的方式组装在一起。
粗肌丝的成分是肌球蛋白,细肌丝的成分主要是肌动 蛋白,辅以原肌球蛋白和肌钙蛋白。
• 肌肉收缩是由肌动蛋白丝与肌球蛋白丝的相对滑 动所致。
原肌球蛋白(tropomyosin, Tm)由两条平行的多肽链形
成α-螺旋构型,位于肌动蛋白螺旋沟内,一个Tm分子 的长度相当于7个肌动蛋白。Tm结合于细肌丝,调节肌 动蛋白与肌球蛋白头部的结合 肌钙蛋白 (Troponin, Tn)为复合物,包括三个亚基: Tn-C (Ca2+ 敏感性蛋白)能特异与Ca2+结合,Tn-T与原肌 球蛋白结合;Tn-I抑制肌球蛋白ATPase活性。细肌丝中
组分的相互作用来实现。
迁移过程:前端伸出突起 →
突起与基质之间形成锚定
位点使突起附着在基质表面 → 以附着点为支点向前移动 → 后部的附着点与基质脱离,细胞的尾部前移。 在此过程中,都涉及肌动蛋白以多种方式发挥作用。 在迁移细胞的前缘,肌动蛋白的聚合使细胞伸出宽而扁
平的片状伪足,内部充满正向排列的微丝束,正极通常位于
和依赖于微丝的肌球蛋白(myosin)这三类蛋白质
超家族成员。 它们既能与微管/微丝结合,又能与一些细胞器 或膜状小泡特异性结合,利用水解ATP所产生的能量 有规则地沿微管或微丝等细胞骨架纤维运输所携带
的货物。
1. II型肌球蛋白
II型肌球蛋白存在于多种细胞,由2条重链和4 条轻链组成高度不对称分子。 • 在肌细胞中,II型肌 球蛋白组装成肌原纤维 的粗丝,其含量约占肌 细胞总蛋白的一半。 • 在非肌细胞中,II型 肌球蛋白参与胞质分裂 环和张力纤维的活动及 介导物质的运输。
(五)微绒毛(microvillus)
小肠上皮细胞微绒毛的轴心微丝是非肌肉细胞中

第9章细胞骨架-精品文档54页

第9章细胞骨架-精品文档54页
◆参与细胞连接
◆维持细胞核的形态
第2部分 核骨架(nuclear skeleton)
• (一) 核基质
• 1、核骨架又称核基质(nuclear matrix) : 狭义的核基质是指细胞核内除 去核膜、核纤层、染色质、核仁和核孔 复合体以外的部分,由多种蛋白质构成 的核内网架结构.
• 广义的核骨架包括核基质、核纤层和核 孔复合体.
• 动态微管、稳定微管 • 中心粒、中心体、纤毛、鞭毛
5.微管的功能
• 5·1 构成真核细胞胞质的网状支架,维 持细胞的形态.
5·2 纤毛和鞭毛的基本结构。
纤毛运动中微管的滑动机制
• 5·3 参与细胞分裂
微管组织中心与中心体
5·4 参与细胞内的物质运输
一、微丝(microfilament)
• 4.3 细胞内物质转运及与膜的活动相关的 功能
a-细胞的运动.mov b-细胞运动.mov • 4.4 受精作用
授精.gif
三、中间纤维(intermediate filament)

2.中间纤维的化学组成
• 按组织来源和免疫原性分: • 2·1 角蛋白Keratin,上皮细胞 • 2·2 神经丝蛋白(neurofilament
13根原丝 一段小管 延长 • 微管的GTP帽与GDP帽:
微管的GTP帽有利于微管的延长
微管 GDP帽暴露后微管解聚
• 微管的极性: 正极与负极
• 踏车行为: 在一定条件下, 微管的正极发生聚合
而延长,负极发生解聚而缩短的现象.
4. 微管的类型:
• 单管、二联管(A、B)三联管(A、B、C)
换, b球蛋白结合的GTP可发生水解或交 换.
• 2.2 微管结合蛋白:微管相关蛋白MAPs 微管聚合蛋白Tau • 2.3 动力蛋白(kinesin, dynein)

第九章 细胞骨架

第九章 细胞骨架

(4) 组成鞭毛、纤毛 ) 组成鞭毛、
9.1.2 微丝 微丝(microfilament)
1 .微丝的形态及化学组成 微丝的形态及化学组成 (1)形态 )
为实心的纤维状结构,直径约 为实心的纤维状结构 直径约5 - 8nm。 直径约 。
电镜下显示微丝
(2)微丝的化学组成 )
肌动蛋白( 根据等电点分3类 分布于肌细胞; 和 分布 肌动蛋白(actin )根据等电点分 类:α-actin分布于肌细胞;β-和γ-分布 根据等电点分 分布于肌细胞 于所有细胞。单体呈哑铃形, 于所有细胞。单体呈哑铃形,称G-actin;多聚体称 ;多聚体称F-actin。 。 肌动蛋白结合蛋白: 多种, 肌动蛋白结合蛋白:有100多种,微丝解聚蛋白,交联蛋白等。 多种 微丝解聚蛋白,交联蛋白等。 肌球蛋白(myosin) 、原肌球蛋白等 (tropmyosin,Tm) 肌球蛋白
微管组织中心(MTOC):是微管装配的发生处,能调节微管 :是微管装配的发生处, 微管组织中心 蛋白的聚合和解聚,使微管加长或缩短。包括中心粒、 蛋白的聚合和解聚,使微管加长或缩短。包括中心粒、动粒和 鞭毛基体等。 鞭毛基体等。 微管敏感的药物:秋水仙素、长春花碱等抑制微管的聚合, 微管敏感的药物:秋水仙素、长春花碱等抑制微管的聚合 紫杉酚能促进微管的装配, 并使已形成的微管稳定。 紫杉酚能促进微管的装配 并使已形成的微管稳定。
9.1 细胞质骨架的结构与化学组成 . 9.1.1 微管(microtubule) . . 微管(
电镜下的微管
• 光镜下显示细胞骨架 微管 光镜下显示细胞骨架—微管
1.微管的超微结构和化学组成 . 形态: 根微管蛋白原纤维微管为中空的管状纤维 根微管蛋白原纤维微管为中空的管状纤维。 形态:13根微管蛋白原纤维微管为中空的管状纤维。 化学组成:微管蛋白(α、 ) 微管关联蛋白、达因蛋白。 化学组成:微管蛋白 、β)、微管关联蛋白、达因蛋白。 2. 微管的组装 微管蛋白 异二聚体 微管蛋白原纤维 微管

9第九章细胞骨架

9第九章细胞骨架

第九章细胞骨架(Cytoskeleton)细胞骨架的概念细胞骨架是指存在于真核细胞中的蛋白纤维网架体系•有狭义和广义两种概念(1)在细胞质基质中包括微丝、微管和中间纤维。

(2 )在细胞核中存在核骨架-核纤层体系。

核骨架、核纤层与中间纤维在结构上相互连接,形成贯穿于细胞核和细胞质的网架体系。

第一节微丝(microfilament, MF)又称肌动蛋白纤维(actin filament),是指真核细胞中由肌动蛋白(actin)组成、直径为6-7nm的骨架纤维。

是由两条线性排列的肌动蛋白链形成的螺旋,形状如双线捻成的绳子。

一、微丝的组成与装配肌动蛋白(actin)是微丝的结构成分,大小为43KDa,外观呈哑铃状,这种actin又叫G-actin,由G-actin形成的微丝又称为F-actin。

(一)肌动蛋白的种类在哺乳动物和鸟类中,已至少发现6种肌动蛋白,其中4种称为-肌动蛋白,分布于横纹肌、心肌、血管平滑肌和肠道平滑肌。

另两种为-actin和-actin ,普遍存在于所有真核细胞中。

(二)肌动蛋白的存在形式与装配1、在缺乏离子时(Na+、K+),肌动蛋白成球形单体存在,球形肌动蛋白单体称为G-肌动蛋白。

2、在含有Mg2+和高浓度的Na+、K+的中性盐溶液中,G-actin装配成纤维状肌动蛋白,纤维状肌动蛋白也称为F-actin。

3、微丝的装配(1 )肌动蛋白单体具有极性,装配时单体呈头尾相接,成为具极性的微丝,既正极与负极之别。

(2)体外实验表明,具有极性的微丝在装配时,新的肌动蛋白单体加到微丝两端的速度不同,速度快的一端为正极,慢的一端为负极;去装配时,负极比正极快。

由于G-actin 在正极端装配,负极去装配,从而表现为踏车行为。

(3)体内装配时,MF呈现出动态不稳定性,主要取决于F-actin结合的ATP水解速度与游离的G-actin单体浓度之间的关系。

在一定条件下,微丝表现为一端因加上肌动蛋白单体而延长,另一端因肌动蛋白单体脱落而缩短,形成一种踏车现象。

细胞生物学第九章细胞骨架

细胞生物学第九章细胞骨架

四、肌细胞的收缩运动
3、肌肉收缩的过程
动作电位产生 原肌球蛋白位移
肌动蛋白丝与肌球 蛋白丝的相对滑动
Ca2+的释放
Ca2+的回收
肌肉收缩
①肌球蛋白结合ATP,引起头部与肌动蛋白纤 维分离; ②ATP水解,引起头部与肌动蛋白弱结合; ③Pi释放,头部与肌动蛋白强结合,头部向M 线方向弯曲,引起细肌丝向M线移动; ④ADP释放ATP结合上去,头部与肌动蛋白纤 维分离。 如此循环。
条轻链和中间链。马达结构域位于重链C端。 (2)功能: 细胞内介导沿微管从正极向负极的膜泡运 输。 与有丝分裂纺锤体的定位及后期染色体的 分离有关。
神 经 元 内 部 的 物 质 运 输
神经元内部的物质运输
鱼色素细胞颗粒的运输
(三)纤毛和鞭毛的结构与功能
1、纤毛和鞭毛的结构
第九章 细胞骨架(Cytoskeleton)
第一节 微丝与细胞运动
第二节 微管及其功能
第三节 中间丝
Microbubules
Microfilamemts
Intermediate filaments
第九章 细胞骨架
细胞骨架的发现 细胞骨架的概念:真核细胞内由蛋白质组成
的纤维状网架结构体系。 细胞骨架的基本类型: 1、微丝(microfilament MF) 2、微管(microtubule MT) 3、中间丝(intermediate filament IF)
(二)微管特异性药物
秋水仙素阻断微管的装配,使细胞分裂停 止在中期。 紫杉酚、D2O促进微管的装配,稳定微管, 但破坏了微管的平衡,使细胞停止在有丝 分裂期。
三、微管组织中心(MTOC) 在活细胞内,能够起始微管的成核作用,

第九章-细胞骨架(cytoskeleton)

第九章-细胞骨架(cytoskeleton)

第九章-细胞骨架(cytoskeleton)细胞骨架(cytoskeleton)是一种支持细胞形态并参与细胞运动、细胞分裂等生命活动的网络结构。

细胞骨架由细胞内的微丝(filament)、中间纤维(intermediate filament)和微管(microtubule)三种不同类型的蛋白纤维组成。

本文将分别介绍这三种蛋白纤维及其生物学功能。

微丝(filament)微丝是由直径约为0.7纳米的轻链和重链蛋白依序排列而成的,其长度可达几微米到数十微米。

微丝参与了许多细胞的活动,如细胞的贴附和收缩、细胞的定向运动、细胞分裂时的细胞质分裂等。

微丝在细胞内分布广泛,在细胞膜下、学问边缘、细胞质中均可看到它们的存在。

微丝的结构在细胞内具有动态性,微丝的动态平衡是在微丝生长和微丝解聚之间达到的。

微丝的生长是指微丝单元向氨基末端添加新的单元,微丝解聚剂解聚是指微丝单元从氨基末端依次解离。

微丝结构的多样性,使其在不同的细胞和组织中具有不同的生理和生理功能,其功能包括:1.细胞形态维持2.细胞内运动3.细胞分裂4.细胞外运动中间纤维(intermediate filament)中间纤维是由多种蛋白质复合物组成的、直径约为10纳米的蛋白质纤维,是细胞骨架中最稳定的一种类型。

与微丝相比,在细胞内时间较长,主要定位于细胞内稳定形态和细胞间连接等功能。

中间纤维具有多样性的物种、组织和细胞类型,它们的功能也很多,常见的包括:1.细胞特异性标记物2.相关细胞黏着3.细胞内物质运输4.参与细胞质形态维持5.参与细胞分裂过程微管(microtubule)微管是细胞骨架中直径最大的一类蛋白纤维,直径约为25纳米。

由两种蛋白质复合物丝状蛋白(tubulin)组成,是由 alpha 和 beta 两种 tubulin 蛋白以β特定的方向相互堆叠形成。

微管是一个高度动态的结构,依据其在细胞间操纵某些重要的细胞内形态变化,对于微管动态的研究成为细胞骨架领域的一个重要方向。

第九章 细胞骨架

第九章 细胞骨架

第九章细胞骨架细胞骨架:真核细胞中的蛋白质纤维网架体系。

具有弥散性、整体性、变动性。

广义:细胞核骨架、细胞质骨架、细胞膜骨架和细胞外基质。

狭义:细胞质骨架由微丝、微管、中间丝组成,它们由相应的蛋白亚基组装而成。

功能:结构与支持、胞内运输、收缩与运动、空间组织。

第一节微丝与细胞运动微丝:肌动蛋白丝或纤维状肌动蛋白,直径7nm存在所有真核细胞中。

一、微丝的组成及其组装(一)结构与成分1.微丝的主要结构成分是肌动蛋白。

2.肌动蛋白的2种存在形式:①肌动蛋白单体(球状肌动蛋白,G-actin):单个肽链折叠而成,蝶状,中央一个裂口,裂口内部有ATP结合位点和镁离子结合位点;②纤维状肌动蛋白。

3.肌动蛋白高度保守。

6种:4种为α-肌动蛋白,分别为横纹肌、心肌、血管平滑肌、肠道平滑肌,均组成细胞的收缩性结构;2种为ß-肌动蛋白(位于细胞边缘)和γ-肌动蛋白(与张力纤维有关)。

4.微丝直径7nm的扭链,双股螺旋。

每条丝由肌动蛋白单体头尾相连呈螺旋状排列,螺距36nm。

纤维内部,每个肌动蛋白单体都有4个单体,上下各一个,另外2个位于一侧。

肌动蛋白分子上的裂口使得该蛋白本身在结构上不对称,在整根微丝上每一个单体上的裂口都朝向同一端,使微丝具有极性。

裂口一端为负极,另一端是正极。

(二)组装及动力学特性1.只有结合ATP的肌动蛋白单体才能参与微丝的组装。

解聚:溶液中含有适当浓度的钙离子,钠离子、钾离子浓度很低时,微丝趋向于解聚成G-actin;组装:溶液中含有ATP、镁离子以及较高浓度的钠钾离子时,溶液中的G-actin组装成F-actin,即新的G-actin加到微丝末端,微丝延伸,通常是正极的组装速度较负极快。

溶液中携带ATP的G-actin处于临界浓度时,组装与去组装达到平衡。

2.过程:①成核反应:Arp2和Arp3等蛋白质相互作用,形成起始复合物,至少有2-3个肌动蛋白单体与起始复合物结合,形成一段可供肌动蛋白单体继续组装的寡聚体。

第九章_细胞骨架

第九章_细胞骨架
1. 微管结构与组成
2. 装配
3. 微管特异性药物
4. 微管组织中心(MTOC)
5. 微管结合蛋白(MAP) 6. 微管功能
1.微管结构与组成
微管可装配成单管, 二联管(纤毛和鞭毛 中),三联管(中心粒 和基体中)。
2. 装配
① 装配方式 ② 所有的微管都有确定的极性 ③ 微管装配是一个动态不稳定过程
成核蛋白(nucleating protein),使游离的actin核化开始组装 单体聚合蛋白-------使肌动蛋白单体组装到纤维。如:profilin 微丝解聚蛋白-------使微丝快速解聚,例如:cofilin 此外,封端蛋白、隐蔽蛋白、纤维切断蛋白
成束 成网
封端蛋白
交联蛋白
单体隐蔽蛋白
核化蛋白
③ 中心体(centrosome)
④ 基体(basal body)
① 微管组织中心(MTOC): 微管在生理状态或实 验处理解聚后重新装配的发生处称为微管组 织中心(microtubule organizing center, MTOC)。 ② 常见微管组织中心 a) 间期细胞MTOC: 中心体(动态微管) b) 分裂细胞MTOC: 有丝分裂纺锤体极 (动态 微管) c) 鞭毛纤毛细胞MTOC:基体(永久性结构)
(五) 微绒毛
微丝束
肌动蛋白纤维 绒毛蛋白 作为横桥起稳定、维持微丝束, 使微丝束与细胞膜连接起来。 毛缘蛋白
端网结构
(六)胞质分裂环: 有丝分裂末期,两个即将分离的子细胞内产生收缩 环,收缩环由平行排列的微丝和myosin II组成。随 着收缩环的收缩,两个子细胞的胞质分离,在细胞松 驰素存在的情况下,不能形成胞质分裂环,因此形 成双核细胞。
ATP- G-actin与F-actin末端亲和力强 V(+)大于V(-) ADP- G-actin与F-actin末端亲和力弱

第9章 细胞骨架

第9章 细胞骨架

§9.1 细胞骨架概述一、细胞骨架的概念细胞骨架是指细胞中由纤维蛋白构成的空间网络结构。

广义的细胞骨架包括:细胞核骨架、细胞质骨架、质膜骨架以及胞外基质。

狭义的细胞骨架包括:细胞质骨架(微管、微丝、中间丝)细胞中同时存在多种类型的细胞骨架并非物质能量的浪费,每种细胞骨架及其组成成分均行使不同的功能,多种组分间分工协作,功能互补,对细胞完成正常的生理功能至关重要。

二、细胞骨架的特点1.细胞骨架由相应的蛋白亚基构成,在组装与解聚间二者达到平衡。

2.细胞骨架具有动态不稳定性,即一定条件下存在组装与去组装现象,在细胞生命活动中起到重要作用。

(1)细胞周期中,细胞骨架经历动态的组装与去组装,周期性的重塑,在分裂期与分裂间期,其分布与组织形式不同。

(2)踏车行为能够改变微管或微丝在细胞中的分布,可能与细胞运动有关。

(3)细胞分裂伴随着纺锤体的形成于分解。

(4)细胞胞质环流伴随着细胞骨架的形成于解聚。

3.细胞骨架是三维的空间网状结构。

三、细胞骨架的功能特点1.细胞骨架构成多种细胞结构。

(1)微管:鞭毛、纤毛、中心体、纺锤体(2)微丝:微绒毛、收缩环、应力纤维、黏合斑、黏合带(3)中间丝:桥粒、半桥粒2.细胞骨架为细胞提供结构支撑,维持细胞形态。

3.细胞骨架介导细胞内物质运输、细胞器运输。

4.细胞骨架介导细胞运动。

5.细胞骨架对细胞分裂起到重要作用。

6.细胞骨架是细胞内结构与功能的空间组织者。

细胞内生物大分子或细胞器的分布具有不对称性,这与细胞骨架的不同组织方式有关,其结构与功能相适应。

四、细胞骨架的研究方法1.荧光显微镜细胞骨架的蛋白亚基可与相应的荧光染料或荧光抗体特异性结合,从而通过荧光显微镜观察其在活细胞中的组织、分布、功能与行为模式。

2.电子显微镜细胞经非离子型去污剂处理后,可溶性物质与膜被抽离,留下不溶的细胞骨架结构,经金属复型后可在电镜下观察细胞骨架的结构。

3.特异性药物处理微管:秋水仙素、长春花碱、紫杉醇微丝:细胞松弛素、鬼笔环肽微管微丝中间丝单体α/β-微管蛋白肌动蛋白杆状蛋白分子量50×10343×10340~200×103结合核苷酸GTP ATP无直径内径 15nm7nm10nm外径 24nm结构13 根原纤维构成的肌动蛋白单体首尾相8 个四聚体或 4 个八空间空心管状结构连构成的双股螺旋聚体构成的螺旋结构极性有有无组织特异性无无有单体库有有无踏车行为有有无结合蛋白动力蛋白肌球蛋白无驱动蛋白特异性药物秋水仙素细胞松弛素未发现长春花碱鬼笔环肽紫杉醇§9.2 微管一、微管的组成与结构1.微管蛋白微管是中空管状的细胞骨架,外径约 24nm,内径约 15nm,由α、β两种球状蛋白形成的异二聚体,即微管蛋白亚基构成,微管蛋白亚基是微管组装的结构单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式增长,不过由于极性,两端的速度不同,速度 快的一端为正端,速度慢的一端为负端,表现为 踏车现象。 • 当到达平衡期,肌动蛋白分子添加到肌动蛋白丝 上的速度正好等于肌动蛋白分子从肌动蛋白上失 去的速度,微丝的净长度没有改变,这种过程称
为微丝的踏车行为。
微丝特异性药物
细胞松弛素B(cytochalasin B)
由肌动蛋白和肌球蛋白-II 组成
应力纤维结构模型
Myosin I和Myosin II 的功能
(5) 收缩环
(6) 胞质环流
(7) 肌肉收缩
肌球蛋白(myosin)
组成
• 两条重链 • 四条轻链ຫໍສະໝຸດ 结构特点• 两个头部
• 与肌动蛋白纤维结合,水解 ATP
• 一个尾部
• 装配成粗丝
肌球蛋白分子结构
为什么中心体是微管的组织中心
结构 在植物中没 有中心体
中心体
微管的成核反应与 -tubulin蛋白有关
The centrosome is the major MTOC of animal cells
基体的结构
微管特异性药物
(1) 秋水仙素(Colchicine)
与微管二聚体结合, 阻止微管的聚合
各种微丝结合蛋白
末端阻断蛋白 单体隔离蛋白
交联蛋白
膜结合蛋白
去聚合蛋白
纤维切割蛋白
微丝的功能
(1) 维持细胞形态
(2) 细胞迁移
细胞迁移分为四步:
①:微丝纤维生长,使细胞表面突出,形成片
足(lamellipodium);
②在片足与基质接触的位置形成粘着斑;
③在myosin的作用下微丝纤维滑动,使细胞主
不同的动力蛋白沿着微管向不同的方向运输货物
动力蛋白的移动于ATP和ADP的转化相关.
轴突运输
色素颗粒的运输
色素颗粒的运输
C. 细胞器的定位
D. 纤毛和鞭毛的运动
D. 纤毛和鞭毛的运动
鞭毛和纤毛的结构
D. 纤毛和鞭毛的运动
滑动模型
E. 纺锤体和染色体的移动
中间纤维(Intermediate filaments, Ifs)
(2) 紫杉醇(Taxol)
与微管结合, 稳定微管
微管相关蛋白
• 微管相关蛋白(microtubule associated proteins MAPs)分子至少包含一个结合微管的结 构域和一个向外突出的结构域。突出部位伸到微 管外与其它细胞组分(如微管束、中间纤维、质 膜)结合。 • 主要功能是
Intermediate filaments
光镜下显示细胞骨架:红色荧光显示微丝黄色显示微管兰色显示细胞核
细胞骨架构成
微丝(microfilament)
微管(microtubule) 中间纤维(intemediate filament)
广义的细胞骨架还包括
核骨架(nucleoskeleton) 核纤层(nuclear lamina) 细胞外基质(extracellular matrix)
• ①促进微管聚集成束;
• ②增加微管稳定性或强度;
• ③促进微管组装。
微管结合蛋白
• 与微管结合,调节微管活性的一类蛋白。
– – – – MAP-1 MAP-2 tau MAP-4
微管的功能
A.维持细胞形态 B.细胞内物质运输 C. 细胞器定位 D. 纤毛与鞭毛的运动
E. 纺锤体与染色体的形成
第九章:细胞骨架 (Cytoskeleton)
• 细胞骨架(Cytoskeleton)是真核细胞中的蛋白质纤
维网架体系,它对于维持细胞的形状、细胞的运动、
细胞内的物质运输、染色体的分离和细胞的分裂起
着重要的作用。
细胞骨架
微管
微丝
中间纤维
Microbubules
Microfilamemts
鞭毛轴丝的结构
分布
• 真核细胞中普遍存在(脊椎动物脑组织)
• 主要位于细胞质中,控制着膜性细胞器的定位和
胞内物质运输
• 细胞特殊结构 – 纤毛、鞭毛、基体、中心体、纺锤体
微管组装
成核期(nucleation phase) 聚合期(polymerization phase)
稳定期(steady phase)
中间纤维分类
角蛋白纤维(keratin filament,上皮细胞) 结蛋白纤维(desmin filament,肌细胞) 神经胶质纤维(neuroglial filament,神经胶质 细胞) 波形纤维(vimentin filament,间质细胞) 神经元纤丝(neurofilament ,神经元),此外细胞 核中的核纤肽(lamin)也是一种中间纤维。
微管的装配和GTP帽
微管装配的特点
踏车模型(Treading milling)
微管组织中心 microtubule-organizing centers (MTOCs)
(1) 间期: 中心体
动态不稳定性
(2) 正在分裂的细胞:
有丝分裂纺锤体
动态不稳定性
(3) 鞭毛和纤毛基部: 基体
稳定
体前移;
④解除细胞后方的粘和点。如此不断循环,细
胞向前移动。阿米巴原虫、白细胞、成纤维细
胞都能以这种方式运动。
amoeba
(3) 微绒毛: 在上皮细胞中的支持作用
冷冻蚀刻电镜技术显示上皮细胞中的微绒毛结构
绒毛蛋白 毛缘蛋白
肌球蛋白Ⅰ 钙调蛋白
(4) 张力纤维(Stress fibers)
成束蛋白(fascin protein)
末端阻断蛋白(end blocking protein) 纤维切割蛋白(filament-severing protein) 去聚合蛋白(actin filament depolymerization protein) 膜结合蛋白(membrane-binding protein)
• 真菌-生物碱 • 微丝+端结合 鬼笔环肽 (phalloidin) • 毒蘑菇(Amanita)-毒素 • 与聚合的微丝结合 • 抑制肌动蛋白纤维的解聚
非肌肉细胞的微丝相关蛋白
分类:
单体隔离蛋白(monomer-sequenstering protein) 成核蛋白(nucleation protein)
微丝组成
MFs are made of actin and involved in cell motility.
微丝结构
• 由肌动蛋白单体聚合形成双螺旋
微丝的组装(assembly)
组装:
条件: ATP 盐浓度 K+ Mg++
过程(三个阶段):
• 成核期 — 微丝组装的限速过程 • 延长期 — 肌动蛋白在核心两端聚合 • 稳定期 — 聚合速度与解离速度
微管的功能
A. 维持细胞形态
B. 细胞内物质运输
马达蛋白(Motor proteins) 驱动蛋白(kinesin) : 向微管正极移动货物. 细胞质动力蛋白(cytoplasmic dynein): 向微
管负极移动货物.
鱼类表皮细胞中色素分子的运动
驱动蛋白(kinesin)
细胞质动力蛋白(cytoplasmic dynein)
微管组织中心
微管组织中心(microtubule organizing center MTOCs)是微管进行组装的区域,着丝粒、成膜体、 中心体、基体均具有微管组织中心的功能。所有微管 组织中心都具有γ微管球蛋白,这种球蛋白的含量很
低,可聚合成环状复合体,像模板一样参与微管蛋白
的核化,帮助α和β球蛋白聚合为微管纤维。
中间纤维的主要结构域.
中间纤维蛋白分子结构和种类
中间纤维的组装
中间纤维装配的一个模型.
电镜观察到的中间纤维.
中间纤维的功能 :
细胞骨架系统
总结: 骨架的功能
微管的结构(microtubule structure)
结构
(1)微管蛋白(tubulin)
• α管蛋白 异二聚体→原丝→微管(极性结构)
• β管蛋白
• γ微管蛋白-微管组织中心(MTOC)
(2)微管 (tubule)
• 单微管(13)
• 二联微管(13+10)(纤毛、鞭毛) • 三联微管(13+10+10)(基体、中心粒)
第一节 微丝与细胞运动
微丝(microfilament,MF) – 是由肌动蛋白(actin)组成的直径约7nm的骨架纤
维,又称肌动蛋白纤维(actin filament)或纤维
状肌动蛋白。
微丝的组成及组装
(1)肌动蛋白(actin)
存在形式 • 游离 球状肌动蛋白(G-actin) • 纤维状肌动蛋白(F-actin) 肌动蛋白在进化过程中高度保守
Microtubule, MT
微管结构
细胞内的微管有三种类型:单管( singlet), 二联管(double), 三联管( triplet )
Singlet Double
A B In cilia and flagella
Triplet
A B C
In centrioles and basal bodies
肌节(Sarcomere)
肌丝滑动模型(Thick and thin filaments sliding model)
由神经冲动诱发的肌肉收缩基本过程
(1)动作电位的产生 (2)钙离子的释放 (3)原肌球蛋白位移 (4)肌动蛋白丝与肌球蛋白丝的相对滑动
肌肉收缩图解
第二节 微管(Microtubule ,MT)
所有的微丝都是有极性的
微丝的动力学特性
踏车模型(treadmilling model)
相关文档
最新文档