五章树和二叉树研究报告
树和二叉树的建立和遍历-数据结构试验报告
实验报告一:预习要求预习树和二叉树的存储结构、以递归为基本思想的相应遍历操作。
二:实验目的1、通过实验,掌握二叉树的建立与存储方法。
2、掌握二叉树的结构特性,以及各种存储结构的特点和适用范围。
3、掌握用指针类型描述、访问和处理二叉树的运算。
4、理解huffman编解码的算法三:实验内容以括号表示法输入一棵二叉树,编写算法建立二叉树的二叉链表结构;编写先序、中序、后序、层次遍历二叉树的算法;编写算法计算二叉树的结点数,叶子结点数,以及二叉树的深度。
四:实验原理及试验方法ADT BinaryTree{数据对象:D:D是具有相同特征的数据元素的集合数据结构:R:若D= 空集,则R=空集,称BinaryTree为空二叉树;若D不等于空集,则R={H},H是如下二元关系:(1)在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;(2)若D-{root}不等于空集,则存在D-{root}={D1,Dr},且D1∩Dr=空集;(3)若D1不等于空集,则D1中存在唯一的元素x1,<root,x1>∈H,且存在D1上的关系H1包含于H;若Dr≠空集,则Dr中存在唯一的元素xr,<root,xr>∈H,且存在Dr上的关系Hr包含于H;H={<root,x1>,<root,xr>,H1,Hr};(4) (D1,{H1})是一颗符合本定义的二叉树,称为根的左子树,(Dr,{Hr})是一颗符合本定义的二叉树,称为根的右子树。
基本操作P:CreateBiTree(&T,definition);初始条件:definition给出二叉树的定义。
操作结果:按definition构造二叉树T。
PreOrderTraverse(T);初始条件:二叉树T存在。
操作结果:先序遍历T 。
InOrderTraverse(T);初始条件:二叉树T存在。
操作结果:中序遍历T。
PostOrderTraverse(T);初始条件:二叉树T存在。
二叉树实验报告
二叉树实验报告二叉树是数据结构中最常见且重要的一种类型。
它由节点组成,每个节点最多有两个子节点,分别称为左节点和右节点。
通过连接这些节点,可以构建一个有序且具有层次结构的树形结构。
本实验报告将介绍二叉树的概念、特点以及常见的操作,同时介绍二叉树在实际应用中的一些典型案例。
一、二叉树的定义和特点二叉树是一种树形结构,它的每个节点至多只有两个子节点。
它的定义可以使用递归的方式进行描述:二叉树要么是一棵空树,要么由根节点和两棵分别称为左子树和右子树的二叉树组成。
二叉树的特点是每个节点最多只有两个子节点。
二、二叉树的创建和操作1.创建二叉树:二叉树可以通过两种方式来创建,一种是使用树的节点类来手动构建二叉树;另一种是通过给定的节点值列表,使用递归的方式构建二叉树。
2.遍历二叉树:二叉树的遍历有三种方式,分别是前序遍历、中序遍历和后序遍历。
a.前序遍历:先遍历根节点,再遍历左子树,最后遍历右子树。
b.中序遍历:先遍历左子树,再遍历根节点,最后遍历右子树。
c.后序遍历:先遍历左子树,再遍历右子树,最后遍历根节点。
3.查找节点:可以根据节点的值或者位置来查找二叉树中的节点。
4.插入节点:可以通过递归的方式在指定位置上插入一个新节点。
5.删除节点:可以通过递归的方式删除二叉树中的指定节点。
三、二叉树的应用案例二叉树在实际应用中有很多重要的用途,下面介绍几个典型的案例。
1.表示文件系统结构:文件系统可以使用二叉树来进行表示,每个文件或文件夹都可以看作是树中一个节点,节点之间的父子关系可以通过左右子树建立连接。
2.实现二叉树:二叉树是一种特殊的二叉树,它要求左子树上的节点值小于根节点的值,右子树上的节点值大于根节点的值。
这种树结构可以快速实现元素的插入、删除和查找等操作。
3.表达式求值:二叉树可以用来表示数学表达式,并且可以通过遍历来对表达式进行求值。
四、实验总结通过本次实验,我们深入了解了二叉树的定义和特点,学会了二叉树的创建和操作方法,以及了解了二叉树在实际应用中的一些典型案例。
树和二叉树的实验报告
《数据结构》实验报告题目: 树和二叉树一、用二叉树来表示代数表达式(一)需求分析输入一个正确的代数表达式, 包括数字和用字母表示的数, 运算符号+ - * / ^ =及括号。
系统根据输入的表达式建立二叉树, 按照先括号里面的后括号外面的, 先乘后除的原则, 每个节点里放一个数字或一个字母或一个操作符, 括号不放在节点里。
分别先序遍历, 中序遍历, 后序遍历此二叉树, 并输出表达式的前缀式, 中缀式和后缀式。
(二)系统设计1.本程序中用到的所有抽象数据类型的定义;typedef struct BiNode //二叉树的存储类型{char s[20];struct BiNode *lchild,*rchild;}BiTNode,*BiTree;2.主程序的流程以及各程序模块之间的层次调用关系, 函数的调用关系图:3. 列出各个功能模块的主要功能及输入输出参数void push(char cc)初始条件: 输入表达式中的某个符号操作结果: 将输入的字符存入buf数组中去BiTree Create_RTree()初始条件: 给出二叉树的定义表达式操作结果:构造二叉树的右子树, 即存储表达式等号右侧的字符组BiTree Create_RootTree()初始条件: 给出二叉树的定义表达式操作结果:构造存储输入表达式的二叉树, 其中左子树存储‘X’, 根节点存储‘:=’void PreOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:先序遍历T, 对每个节点调用函数Visit一次且仅一次void InOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:中序遍历T, 对每个节点调用函数Visit一次且仅一次void PostOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:后序遍历T, 对每个节点调用函数Visit一次且仅一次int main()主函数, 调用各方法, 操作成功后返回0(三)调试分析调试过程中还是出现了一些拼写错误, 经检查后都能及时修正。
第5章、树和二叉树解读.
//二叉链表类 template <class T> //类模板,T为虚拟类型 class BTree { private: Btnode<T> *BT; //二叉链表根结点指针 public: //成员函数 BTree() { BT=NULL; return; } //二叉链表初始化 void creat(T); //生成二叉链表 void pretrav(); //前序遍历(输出)二叉链表 void intrav(); //中序遍历二叉链表 void postrav(); //后序遍历二叉链表 };
森林
M棵互不相交的树的集合称为森林
2018/12/26
13
树的存储结构
双亲表示法 用一个一维数组来存储树的结点
P67:图5.1
找某个结点的双亲很方便,但是找它的孩子结点或 兄弟结点时,需要遍历整个数组,比较麻烦
2018/12/26 14
孩子表示法
用指针表示出每个结点的孩子结点。 把每个结点的孩子结点排列起来构成一个单链表 每个结点由两个域组成:数值域data和指针域 children
2018/12/26 40
//前序遍历二叉链表 template <class T> void BTree<T>::pretrav() { Btnode<T> *p; p=BT; pretravnode(p); //从根结点开始前 序遍历 cout <<endl; return; } template <class T> static pretravnode(Btnode<T> *p) 2018/12/26 { if (p!=NULL)
树和二叉树的实验报告
树和二叉树的实验报告树和二叉树的实验报告一、引言树和二叉树是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。
本实验旨在通过实际操作和观察,深入了解树和二叉树的特性和操作。
二、树的构建与遍历1. 树的概念和特性树是一种非线性的数据结构,由节点和边组成。
每个节点可以有零个或多个子节点,其中一个节点没有父节点的称为根节点。
树的特点包括层次结构、唯一根节点和无环等。
2. 树的构建在本实验中,我们使用Python语言构建了一棵树。
通过定义节点类和树类,我们可以方便地创建树的实例,并添加节点和连接节点之间的边。
3. 树的遍历树的遍历是指按照一定顺序访问树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
我们在实验中实现了这三种遍历方式,并观察了它们的输出结果。
三、二叉树的实现与应用1. 二叉树的概念和特性二叉树是一种特殊的树,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树的特点包括唯一根节点、每个节点最多有两个子节点和子节点的顺序等。
2. 二叉树的实现我们使用Python语言实现了二叉树的数据结构。
通过定义节点类和二叉树类,我们可以创建二叉树的实例,并实现插入节点、删除节点和查找节点等操作。
3. 二叉树的应用二叉树在实际应用中有很多用途。
例如,二叉搜索树可以用于实现快速查找和排序算法。
AVL树和红黑树等平衡二叉树可以用于高效地插入和删除操作。
我们在实验中实现了这些应用,并通过实际操作验证了它们的效果。
四、实验结果与讨论通过实验,我们成功构建了树和二叉树的数据结构,并实现了它们的基本操作。
通过观察和分析实验结果,我们发现树和二叉树在各种算法和应用中的重要性和灵活性。
树和二叉树的特性使得它们适用于解决各种问题,例如搜索、排序、图算法等。
同时,我们也发现了一些问题和挑战,例如树的平衡性和节点的插入和删除操作等。
这些问题需要进一步的研究和优化。
五、总结本实验通过实际操作和观察,深入了解了树和二叉树的特性和操作。
数据结构实验报告—二叉树
数据结构实验报告—二叉树数据结构实验报告—二叉树引言二叉树是一种常用的数据结构,它由节点和边构成,每个节点最多有两个子节点。
在本次实验中,我们将对二叉树的基本结构和基本操作进行实现和测试,并深入了解它的特性和应用。
实验目的1. 掌握二叉树的基本概念和特性2. 熟练掌握二叉树的基本操作,包括创建、遍历和查找等3. 了解二叉树在实际应用中的使用场景实验内容1. 二叉树的定义和存储结构:我们将首先学习二叉树的定义,并实现二叉树的存储结构,包括节点的定义和节点指针的表示方法。
2. 二叉树的创建和初始化:我们将实现二叉树的创建和初始化操作,以便后续操作和测试使用。
3. 二叉树的遍历:我们将实现二叉树的前序、中序和后序遍历算法,并测试其正确性和效率。
4. 二叉树的查找:我们将实现二叉树的查找操作,包括查找节点和查找最大值、最小值等。
5. 二叉树的应用:我们将探讨二叉树在实际应用中的使用场景,如哈夫曼编码、二叉搜索树等。
二叉树的定义和存储结构二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。
节点被表示为一个由数据和指向其左右子节点的指针组成的结构。
二叉树可以分为三类:满二叉树、完全二叉树和非完全二叉树。
二叉树可以用链式存储结构或顺序存储结构表示。
- 链式存储结构:采用节点定义和指针表示法,通过将节点起来形成一个树状结构来表示二叉树。
- 顺序存储结构:采用数组存储节点信息,通过计算节点在数组中的位置来进行访问和操作。
二叉树的创建和初始化二叉树的创建和初始化是二叉树操作中的基础部分。
我们可以通过手动输入或读取外部文件中的数据来创建二叉树。
对于链式存储结构,我们需要自定义节点和指针,并通过节点的方式来构建二叉树。
对于顺序存储结构,我们需要定义数组和索引,通过索引计算来定位节点的位置。
一般来说,初始化一个二叉树可以使用以下步骤:1. 创建树根节点,并赋初值。
2. 创建子节点,并到父节点。
3. 重复步骤2,直到创建完整个二叉树。
二叉树 实验报告
二叉树实验报告二叉树实验报告引言:二叉树是一种常见的数据结构,它由节点和边组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。
在本次实验中,我们将探索二叉树的基本概念、特性以及应用。
一、二叉树的定义与性质1.1 二叉树的定义二叉树是一种递归定义的数据结构,它可以为空,或者由一个根节点和两个二叉树组成,分别称为左子树和右子树。
1.2 二叉树的性质(1)每个节点最多有两个子节点,分别称为左子节点和右子节点。
(2)左子树和右子树也是二叉树。
(3)二叉树的子树之间没有关联性,它们是相互独立的。
二、二叉树的遍历方式2.1 前序遍历前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左子树和右子树。
2.2 中序遍历中序遍历是指先遍历左子树,然后访问根节点,最后遍历右子树。
2.3 后序遍历后序遍历是指先遍历左子树,然后遍历右子树,最后访问根节点。
2.4 层次遍历层次遍历是指按照从上到下、从左到右的顺序遍历二叉树的每个节点。
三、二叉树的应用3.1 二叉搜索树二叉搜索树是一种特殊的二叉树,它的每个节点的值大于其左子树的所有节点的值,小于其右子树的所有节点的值。
这种特性使得二叉搜索树可以高效地进行查找、插入和删除操作。
3.2 哈夫曼树哈夫曼树是一种带权路径长度最短的二叉树,它常用于数据压缩中。
哈夫曼树的构建过程是通过贪心算法,将权值较小的节点放在离根节点较远的位置,从而实现最优编码。
3.3 表达式树表达式树是一种用于表示数学表达式的二叉树,它的叶节点是操作数,而非叶节点是操作符。
通过对表达式树的遍历,可以实现对表达式的求值。
结论:通过本次实验,我们对二叉树的定义、性质、遍历方式以及应用有了更深入的了解。
二叉树作为一种重要的数据结构,在计算机科学和算法设计中发挥着重要的作用。
在今后的学习和工作中,我们应该进一步探索二叉树的高级应用,并灵活运用于实际问题的解决中。
二叉树实验报告
二叉树实验报告1. 引言二叉树是一种常用的数据结构,广泛应用于计算机科学和信息技术领域。
本实验旨在通过对二叉树的理解和实现,加深对数据结构与算法的认识和应用能力。
本报告将介绍二叉树的定义、基本操作以及实验过程中的设计和实现。
2. 二叉树的定义二叉树是一个有序树,其每个节点最多有两个子节点。
树的左子节点和右子节点被称为二叉树的左子树和右子树。
3. 二叉树的基本操作3.1 二叉树的创建在实验中,我们通过定义一个二叉树的节点结构来创建一个二叉树。
节点结构包含一个数据域和左右指针,用于指向左右子节点。
创建二叉树的过程可以通过递归或者迭代的方式来完成。
3.2 二叉树的插入和删除二叉树的插入操作是将新节点插入到树中的合适位置。
插入时需要考虑保持二叉树的有序性。
删除操作是将指定节点从树中删除,并保持二叉树的有序性。
在实验中,我们可以使用递归或者循环的方式实现这些操作。
3.3 二叉树的遍历二叉树的遍历是指按照某种次序访问二叉树的所有节点。
常见的遍历方式包括前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,然后按照左孩子-右孩子的顺序递归遍历左右子树。
中序遍历按照左孩子-根节点-右孩子的顺序递归遍历左右子树。
后序遍历按照左孩子-右孩子-根节点的顺序递归遍历左右子树。
3.4 二叉树的查找查找操作是指在二叉树中查找指定的值。
可以通过递归或者循环的方式实现二叉树的查找操作。
基本思路是从根节点开始,通过比较节点的值和目标值的大小关系,逐步向左子树或者右子树进行查找,直到找到目标节点或者遍历到叶子节点。
4. 实验设计和实现在本实验中,我们设计并实现了一个基于Python语言的二叉树类。
具体实现包括二叉树的创建、插入、删除、遍历和查找操作。
在实验过程中,我们运用了递归和迭代的方法实现了这些操作,并进行了测试和验证。
4.1 二叉树类的设计我们将二叉树的节点设计为一个类,其中包括数据域和左右子节点的指针。
另外,我们设计了一个二叉树类,包含了二叉树的基本操作方法。
数据结构二叉树实验报告总结
数据结构二叉树实验报告总结一、实验目的本次实验的主要目的是通过对二叉树的学习和实践,掌握二叉树的基本概念、性质和遍历方式,加深对数据结构中树形结构的理解。
二、实验内容1. 二叉树的基本概念和性质在本次实验中,我们首先学习了二叉树的基本概念和性质。
其中,二叉树是由节点组成的有限集合,并且每个节点最多有两个子节点。
同时,我们还学习了二叉树的高度、深度、层数等概念。
2. 二叉树的遍历方式在了解了二叉树的基本概念和性质之后,我们开始学习如何遍历一个二叉树。
在本次实验中,我们主要学习了三种遍历方式:前序遍历、中序遍历和后序遍历。
其中,前序遍历指先访问节点自身再访问左右子节点;中序遍历指先访问左子节点再访问自身和右子节点;后序遍历指先访问左右子节点再访问自身。
3. 二叉搜索树除了以上内容之外,在本次实验中我们还学习了一种特殊的二叉树——二叉搜索树。
二叉搜索树是一种特殊的二叉树,它的每个节点都满足左子节点小于该节点,右子节点大于该节点的性质。
由于这个性质,二叉搜索树可以被用来进行快速查找、排序等操作。
三、实验过程1. 实现二叉树的遍历方式为了更好地理解和掌握二叉树的遍历方式,我们首先在编程环境中实现了前序遍历、中序遍历和后序遍历。
在代码编写过程中,我们需要考虑如何递归地访问每个节点,并且需要注意访问顺序。
2. 实现二叉搜索树为了更好地理解和掌握二叉搜索树的特性和操作,我们在编程环境中实现了一个简单的二叉搜索树。
在代码编写过程中,我们需要考虑如何插入新节点、删除指定节点以及查找目标节点等操作。
3. 实验结果分析通过对代码运行结果进行分析,我们可以清晰地看到每个遍历方式所得到的结果以及对应的顺序。
同时,在对二叉搜索树进行操作时,我们也可以看到不同操作所产生的不同结果。
四、实验总结通过本次实验,我们进一步加深了对二叉树的理解和掌握,学习了二叉树的遍历方式以及二叉搜索树的特性和操作。
同时,在编程实践中,我们也进一步熟悉了代码编写和调试的过程。
树和二叉树——数据结构实验报告
精品文档实习报告题目:编写一个实现基于二叉树表示的算术表达式Expression 操作程序班级:姓名:学号:完成日期//一、需求分析算术表达式 Expression 内可以含有变量( a~ z)、常量( 0~9)和二元算术符( +,-,*,/, ∧(乘幂))。
实现以下操作:(1)ReadExpr(E) ――以字符序列的形式输入语法正确的前缀表达式并构造表达式 E。
(2) WriteExpr(E) ――用带括号的中缀表达式输出表达式 E。
(3) Assign(V ,c) ――实现对变量 V 的赋值( V=c),变量的初值为 0。
(4) Value(E) ――对算术表达式 E 求值。
(5) CompoundExpr(p,E1,E2)――构造一个新的复合表达式( E1)p(E2)。
二、概要设计1、数据类型的声明:在这个课程设计中,采用了链表二叉树的存储结构,以及两个顺序栈的辅助存储结构/* 头文件以及存储结构 */#include<stdio.h>#include<conio.h>#include<stdlib.h>#include<string.h>#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define OVERFLOW 0typedef int Status;2、表达式的抽象数据类型定义ADT Expression {数据对象 D:D 是具有数值的常量 C 和没有数值的变量V;数据关系: R={<(V 或者 C)P(V 或者 C)>|V,C ∈D, <(V 或者 C)P(V 或者 C)> 表示由运算符 P 结合起来的表达式 E}基本操作:Status Input_Expr(&string,flag)操作结果:以字符序列的形式输入语法正确的前缀表达式,保存到字符串 string ;参数 flag 表示输出的提示信息是什么,输入成功返回 OK,否则,返回 ERROR。
树和二叉树实验报告
●实验内容:实验三树和二叉树1.编写函数,输入字符序列,建立二叉树的二叉链表。
2.编写函数,实现二叉树的中序递归遍历算法。
(最好也能实现前缀和后缀遍历算法)3.编写函数,实现二叉树的中序非递归遍历算法。
4.编写函数,借助队列实现二叉树的层次遍历算法。
5.编写函数,求二叉树的高度。
6.编写函数,求二叉树的结点个数。
7.编写函数,求二叉树的叶子个数。
8.编写函数,交换二叉树每个结点的左子树和右子树。
9.编写一个主函数,在主函数中设计一个简单的菜单,分别调试上述算法。
●实验目的及要求:1.掌握二叉树的存储实现2.掌握二叉树的遍历思想3.掌握二叉树的常见算法的程序实现●实验内容、方法与步骤:(使用附页填写并附在本页后)见附页●实验结果:见附页●小结:通过本次实验,我基本掌握了二叉树的存储实现和二叉树的遍历思想,并且实现了二叉树的几种常见算法。
分数:批阅老师:200 年月日第 1 页/ 共13 页实验报告(附页)#include <stdio.h>#include <stdlib.h>#define OK 1#define ERROR 0#define OVERFLOW -2typedef int status;typedef struct BiNode//二叉链表{char Data;struct BiNode* lChild;struct BiNode* rChild;}BiNode,*pBiNode;typedef struct SNode/*链栈的结点类型*/{pBiNode elem; /*栈中的元素是指向二叉链表结点的指针*/struct SNode *next;}SNode;struct link //队列链表{struct BiNode *p;struct link *next;};status CreateTree(BiNode** pTree);status PreOrderTraval(BiNode* pTree);//前序递归status InOrderTraval(BiNode* pTree);//中序递归status PostOrderTraval(BiNode* pTree);//后序递归status st_InOrderTraverse(BiNode* pTree);//中序非递归遍历void TreeLink(BiNode* pTree); //队列实现层次遍历int TreeHeight (BiNode* pTree);//二叉树的高度int Count(BiNode* pTree);//结点个数int TreeNumber(BiNode* pTree);//叶子个数void Exchange (BiNode* pTree);//交换左右子树status Visit(char Data);void Display(BiNode* pTree,int Level);BiNode *pRoot=NULL;status CreateTree(BiNode** pTree) /*Input Example: abd##e##cf##g##*/ {char ch;scanf("%c",&ch);if(ch=='#'){(*pTree)=NULL;}else{if(!((*pTree)=(BiNode*)malloc(sizeof(BiNode)))) {exit(OVERFLOW);}(*pTree)->Data=ch;CreateTree(&((*pTree)->lChild));CreateTree(&((*pTree)->rChild));}return OK;}status PreOrderTraval(BiNode* pTree)//前序递归{if(pTree){if(Visit(pTree->Data)){if(PreOrderTraval(pTree->lChild)){if(PreOrderTraval(pTree->rChild)){return OK;}}}return ERROR;}else{return OK;}}status InOrderTraval(BiNode* pTree)//中序递归{if(pTree){if(InOrderTraval(pTree->lChild)){if(Visit(pTree->Data)){if(InOrderTraval(pTree->rChild)){return OK;}}return ERROR;}return ERROR;}else{return OK;}}status PostOrderTraval(BiNode* pTree)//后序递归{if(pTree){if(PostOrderTraval(pTree->lChild)){if(PostOrderTraval(pTree->rChild)){if(Visit(pTree->Data)){return OK;}return ERROR;}}return ERROR;}else{return OK;}}status st_InOrderTraverse(BiNode* pTree)//中序非递归遍历{BiNode *p;SNode *q,*Stop=NULL; /*用不带头结点的单链表作为栈的存储结构*/ p=pTree;while(p!=NULL||Stop!=NULL) /*不是空树*/{if(p!=NULL){q=(SNode*)malloc(sizeof(SNode));if(q==NULL)return ERROR;q->next=Stop;q->elem=p;Stop=q; /*根结点指针入栈*/p=p->lChild; /*进入根的左子树*/}else{q=Stop;Stop=Stop->next; /*栈顶元素出栈*/printf("%c ",q->elem->Data);/*访问根结点*/p=q->elem->rChild; /*进入根的右子树*/free(q); /*释放原栈顶元素的结点空间*/}}return OK;}void TreeLink(BiNode* pTree) //队列实现层次遍历{struct link *head,*rear,*temp;head=(struct link *)malloc(sizeof(struct link));head->p=pTree;head->next=NULL;rear=head;do{if(head->p->lChild!=NULL){temp=(struct link *)malloc(sizeof(struct link));temp->p=head->p->lChild;temp->next=NULL;rear->next=temp;rear=temp;}if(head->p->rChild!=NULL){temp=(struct link *)malloc(sizeof(struct link));temp->p=head->p->rChild;temp->next=NULL;rear->next=temp;rear=temp;}temp=head;printf("%c ",head->p->Data);head=head->next;free(temp);}while(head!=NULL);}int TreeHeight(BiNode* pTree)//二叉树的高度{int hl ,hr ; //左右子树的高度if (pTree == NULL)return 0 ;elsehl = TreeHeight(pTree-> lChild);hr = TreeHeight (pTree-> rChild);if (hl>hr)return (hl +1);elsereturn (hr +1);}int Count(BiNode* pTree)//结点个数{return pTree == NULL ? 0 : Count(pTree->lChild) + Count(pTree->rChild) + 1;}int TreeNumber(BiNode* pTree)//叶子个数{if (pTree==NULL)return 0;if (pTree->lChild ==NULL && pTree->rChild == NULL)return 1;return TreeNumber(pTree->lChild)+TreeNumber(pTree->rChild);//+1就可以求出结点个数}void Exchange (BiNode* pTree )//交换左右子树{BiNode* temp;if ( pTree->lChild != NULL || pTree->rChild != NULL ){temp = pTree->lChild;pTree->lChild = pTree->rChild;pTree->rChild = temp;Exchange ( pTree->lChild );Exchange ( pTree->rChild );}}status Visit(char Data){printf("%c ",Data);return OK;}void Display(BiNode* pTree,int Level)//显示整个树{int i;if(pTree==NULL) return;Display(pTree->rChild,Level+1);for(i=0;i<Level-1;i++){printf(" ");}if(Level>=1){printf("--");}printf("%c\n",pTree->Data);Display(pTree->lChild,Level+1);}void CmdList() //显示命令列表{printf("\n_____________________________________________\n");printf(" 请选择操作: \n");printf(" 1.前序递归遍历\n"); //前序递归遍历printf(" 2.中序递归遍历\n"); //中序递归遍历printf(" 3.后序递归遍历\n"); //后序递归遍历printf(" 4.中序非递归遍历\n"); //中序非递归遍历printf(" 5.层次遍历\n"); //层次遍历printf(" 6.求二叉树高度\n"); //二叉树高度printf(" 7.求结点个数\n"); //二叉树的结点个数printf(" 8.求叶子个数\n"); //二叉树的叶子个数printf(" 9.交换左右子树\n"); //交换左右子树printf(" 0.退出程序\n"); //退出printf("\n______________________________________________\n");}void init(){system ("cls");printf("* * * * * * * * * * * * * * * * * * * * * * * * *\n");printf("实验三树和二叉树\n");printf("03计本3班\n");printf("樊海军 2B0324151138\n");printf("* * * * * * * * * * * * * * * * * * * * * * * * *\n");printf("本程序实现二叉树的常见算法。
树和二叉树实验报告.pdf
树和二叉树一、实验目的1.掌握二叉树的结构特征,以及各种存储结构的特点及适用范围。
2.掌握用指针类型描述、访问和处理二叉树的运算。
二、实验要求1.认真阅读和掌握本实验的程序。
2.上机运行本程序。
3.保存和打印出程序的运行结果,并结合程序进行分析。
4.按照二叉树的操作需要,重新改写主程序并运行,打印出文件清单和运行结果。
三、实验内容1.输入字符序列,建立二叉链表。
2.按先序、中序和后序遍历二叉树(递归算法)。
3.按某种形式输出整棵二叉树。
4.求二叉树的高度。
5.求二叉树的叶节点个数。
6.交换二叉树的左右子树。
7.借助队列实现二叉树的层次遍历。
8.在主函数中设计一个简单的菜单,分别调试上述算法。
为了实现对二叉树的有关操作,首先要在计算机中建立所需的二叉树。
建立二叉树有各种不同的方法。
一种方法是利用二叉树的性质5来建立二叉树,输入数据时要将节点的序号(按满二叉树编号)和数据同时给出:(序号,数据元素0)。
另一种方法是主教材中介绍的方法,这是一个递归方法,与先序遍历有点相似。
数据的组织是先序的顺序,但是另有特点,当某结点的某孩子为空时以字符“#”来充当,也要输入。
若当前数据不为“#”,则申请一个结点存入当前数据。
递归调用建立函数,建立当前结点的左右子树。
四、解题思路1、先序遍历:○1访问根结点,○2先序遍历左子树,○3先序遍历右子树2、中序遍历:○1中序遍历左子树,○2访问根结点,○3中序遍历右子树3、后序遍历:○1后序遍历左子树,○2后序遍历右子树,○3访问根结点4、层次遍历算法:采用一个队列q,先将二叉树根结点入队列,然后退队列,输出该结点;若它有左子树,便将左子树根结点入队列;若它有右子树,便将右子树根结点入队列,直到队列空为止。
因为队列的特点是先进后出,所以能够达到按层次遍历二叉树的目的。
五、程序清单#include<>#include<>#define M 100typedef char Etype; 立二叉树方法1");printf("\n\n 2.建立二叉树方法2");printf("\n\n 3.先序递归遍历二叉树");printf("\n\n 4.中序递归遍历二叉树");printf("\n\n 5.后序递归遍历二叉树");printf("\n\n 6.层次遍历二叉树");printf("\n\n 7.计算二叉树的高度");printf("\n\n 8.计算二叉树中叶结点个数");printf("\n\n 9.交换二叉树的左右子树");printf("\n\n 10.打印二叉树");printf("\n\n 0.结束程序运行");printf("\n============================================");printf("\n 请输入您的选择(0,1,2,3,4,5,6,7,8,9,10)");scanf("%d",&k);switch(k){case 1:t=creat_bt1( );break;立二叉树方法12.建立二叉树方法23.先序递归遍历二叉树4.中序递归遍历二叉树5.后序递归遍历二叉树6.层次遍历二叉树7.计算二叉树的高度8.计算二叉树中叶结点个数9.交换二叉树的左右子树10.打印二叉树0.结束程序运行============================================请输入您的选择(0,1,2,3,4,5,6,7,8,9,10) 1请输入二叉树各结点的编号和对应的值(如1,a):1,a请继续输入二叉树各结点的编号和对应的值:2,b请继续输入二叉树各结点的编号和对应的值:3,c。
树和二叉树实验报告_2
实验报告班级: 软本101 学号: 2010417133姓名: 张明宇日期: 10月20号1.实验题目2.编辑一个程序, 用来演示树和二叉树的建立、遍历等操作。
3.需求分析本演示程序在Microsoft Visual C++ 6.0环境下编写调试, 完成二叉树的建立、遍历、深度求解等。
(1)建立二叉树: 进入程序运行界面后, 提示我们输入要建立的二叉树, 并默认以先序序列输入。
若第一个输入为“#”, 则为空树。
否则按照从左子树到右子树的顺序建立该二叉树, 用#代表虚结点, 如ABD###CE##F##。
建立完二叉树后按“ENTER”键自动进入下一个功能模块的实现。
(2)实现各个遍历递归算法: 实现该二叉树的先序遍历、中序遍历和后序遍历递归算法, 逐个访问该二叉树的左右子树, 并输出各遍历序列。
(3)统计出该二叉树中叶子节点个数和高度:只要该二叉树的移动指针t 所指向的节点非空, 进一步判断其左右子树是否也都为空, 让表示节点的变量能够记录叶子节点个数和深度。
(4)实现层次遍历算法:利用队列“先进先出”的原则, 按照“根左右”的顺序前后将整棵树入队, 并输出。
概要设计(1)为了实现上述程序功能, 需要定义二叉树的数据结构。
二叉树单个元素的结构如图1.1所示。
图1.1 二叉树元素的数据结构(2)本程序包含7个函数:①主函数main()。
②树的建立函数CreatBinTree()。
③先序遍历函数Preorder()。
④中序遍历函数Inorder()。
⑤后序遍历函数Postorder()。
⑥求叶子深度和二叉树深度函数TreeDepth()。
⑦层次遍历函数Levelorder()。
各函数间的关系如图1.2所示。
图1.2 程序所包含各函数之间的关系4.详细设计(1)实现概要设计中定义的所有的数据类型, 对每个操作给出具体的算法;对主程序和其他模块也都需要写出具体算法。
数据类型。
用C语言描述如下:typedef struct BinTNode{char data;struct BinTNode *lchild,*rchild;}BinTNode,*BinTree;(2)线性表的基本操作函数的具体算法。
二叉树实验报告总结(共10篇)
二叉树实验报告总结(共10篇)二叉树实验报告实验报告课程名称算法与数据结构专业学号姓名实验日期算法与数据结构实验报告一、实验目的1.了解二叉树的结构特点及有关概念,掌握二叉树建立的基本算法2.了解二叉树遍历的概念,掌握遍历二叉的算法3.进一步掌握树的结构及非线性特点,递归特点和动态性。
二、实验内容二叉树的实现和运算三、实验要求1.用C++/C完成算法设计和程序设计并上机调试通过。
2.撰写实验报告,提供实验结果和数据。
3.分析算法,并简要给出算法设计小结和心得。
四、算法步骤用户以三元组形式输入二叉树的结点元素及其位置关系,建立二叉树,并打印输出该二叉树。
用户输入选择结点,程序调用BiTNode* Find Node(char tag, BiTNode* node)函数,返回子树的根结点,然后调用BiTreeDepth(BiTree T)函数,求出子树的深度,并输出该值。
3.用户可以选择是否继续执行程序,若继续,则输入1,否则输入0,结束程序。
五、主程序代码:int main(void){BiTree T;TElemType e1;char node; // node为用户选择输入的结点//int b,choose; // b为以选定结点为子树的深度,choose为实现多次选择输入的标志//BiTNode* a; // a为选定结点为子树的根结点//choose=1; // 多次选择的标志,当choose为1时运行程序,为0时结束程序// InitBiTree(T);printf(构造空二叉树后,树空否?%d(1:是0:否), 树的深度=%d\n,BiTreeEmpty(T),BiTreeDepth(T));e1 = Root(T);if(e1 != Nil)#ifdef CHARprintf(二叉树的根为: %c\n,e1);#endif#ifdef INTprintf(二叉树的根为: %d\n,e1);#endifelseprintf(树空,无根\n); //三元组构建二叉树striile(x!=end){AddNode(T, x[0], x[1], x[2]);GetUserWord(x);} //输出树PrintTreeLevel( T );//以三元组形式输入任意二叉树(以大写字母表示结点),求以任意一选定结点为子树的深度。
c语言二叉树实验报告
C语言二叉树实验报告摘要本实验报告旨在详细介绍C语言中二叉树的实现方法,并深入探讨二叉树在计算机科学中的应用。
报告内容包括二叉树的定义、创建与遍历方法、二叉树的特性、二叉树的应用领域等方面的内容。
通过对二叉树的学习和实践,我们可以加深对数据结构的理解和应用能力。
1. 引言在计算机科学中,二叉树是一种重要的数据结构,被广泛应用于各种算法和实际问题的解决。
二叉树由节点组成,每个节点最多有两个子节点,分别为左子节点和右子节点。
本实验旨在通过使用C语言来实现二叉树,加深对二叉树的理解和运用能力。
2. 二叉树的定义与创建2.1 二叉树的定义二叉树是一种树形数据结构,在计算机科学中具有广泛的应用。
二叉树由节点组成,每个节点最多有两个子节点,分别为左子节点和右子节点。
根节点是二叉树的起点,也是唯一没有父节点的节点。
2.2 创建二叉树可以通过以下步骤创建一个二叉树:1.定义二叉树的节点结构,包括数据域和左右子节点指针域。
2.使用动态内存分配函数malloc为根节点分配内存空间。
3.输入根节点的值,并将左右子节点指针指向NULL。
4.递归地创建左子树和右子树。
3. 二叉树的遍历方法二叉树的遍历是指以某种顺序访问二叉树中的节点,可以分为前序遍历、中序遍历和后序遍历三种方式。
3.1 前序遍历前序遍历是指先访问根节点,然后递归地遍历左子树和右子树。
在前序遍历中,根节点总是最先被访问。
算法的伪代码如下所示:preorderTraversal(node) {if (node is not NULL) {print node.valuepreorderTraversal(node.left)preorderTraversal(node.right)}}3.2 中序遍历中序遍历是指先递归地遍历左子树,然后访问根节点,最后再递归地遍历右子树。
在中序遍历中,根节点总是被访问在中间位置。
算法的伪代码如下所示:inorderTraversal(node) {if (node is not NULL) {inorderTraversal(node.left)print node.valueinorderTraversal(node.right)}}3.3 后序遍历后序遍历是指先递归地遍历左子树和右子树,最后访问根节点。
实验报告二叉树
实验报告二叉树篇一:二叉树实验报告山东工商学院《数据结构》实验指导及报告书XX / XX 学年姓名:学号:班级:指导教师:Xx学院XX年11月25日第一学期实验三二叉树一、实验目的1、掌握二叉树的基本特性2、掌握二叉树的先序、中序、后序的递归遍历算法3、理解二叉树的先序、中序、后序的非递归遍历算法4、通过求二叉树的深度、叶子结点数和层序遍历等算法,理解二叉树的基本特性二、实验预习说明以下概念1、二叉树:是另一种树型结构,它的特点是每个结点至多只有两棵子树,并且二叉树有左右之分,其次序不能任意颠倒。
2、递归遍历:1、非递归遍历:4、层序遍历:三、实验内容和要求1、阅读并运行下面程序,根据输入写出运行结果,并画出二叉树的形态。
#include #include#define MAX 20typedef struct BTNode{ /*节点结构声明*/char data ;/*节点数据*/ struct BTNode *lchild;struct BTNode *rchild ; /*指针*/ }*BiTree;BiTree createBiTree(BiTree t){ /* 先序遍历创建二叉树*/ char s;printf("\nplease input data:(exit for #)"); s=getche();if(s=='#'){t=NULL; return t;}t=(BiTree)malloc(sizeof(struct BTNode));if(t==NULL){printf("Memory alloc failure!"); exit(0);} t->data=s;t->lchild=createBiTree(t->lchild); /*递归建立左子树*/ t->rchild=createBiTree(t->rchild); /*递归建立右子树*/ return t; }void PreOrder(BiTree p){ /* 先序遍历二叉树*/ if ( p!= NULL ) {printf("%c", p->data);PreOrder( p->lchild ) ;PreOrder( p->rchild ) ; } }void InOrder(BiTree p){ /* 中序遍历二叉树*/ if( p!= NULL ) {InOrder( p->lchild ) ;printf("%c", p->data);InOrder( p->rchild) ; } }void PostOrder(BiTree p){ /* 后序遍历二叉树*/ if ( p!= NULL ) {PostOrder( p->lchild ) ;PostOrder( p->rchild) ;printf("%c", p->data); } }void Preorder_n(BiTree p){ /*先序遍历的非递归算法*/ BiTree stack[MAX],q; int top=0,i;for(i=0;i while(q!=NULL){printf("%c",q->data);if(q->rchild!=NULL) stack[top++]=q->rchild;if(q->lchild!=NULL)q=q->lchild;elseif(top>0) q=stack[--top]; else q=NULL; } }void release(BiTree t){ /*释放二叉树空间*/ if(t!=NULL){release(t->lchild); release(t->rchild);free(t); } }int main(){BiTree t=NULL; int e,m,g;t=createBiTree(t);printf("\n\nPreOrder the tree is:"); PreOrder(t);printf("\n\nInOrder the tree is:"); InOrder(t);printf("\n\nPostOrder the tree is:"); PostOrder(t);printf("\n\n先序遍历序列(非递归):");Preorder_n(t);printf("\n\n输出结点总数:"); e=PreOrder_num(t); printf("%d",e);printf("\n\n输出树的深度:"); m=BTNodeDepth(t); printf("%d\n",m);printf("\n\n输出树叶子总数:"); g=LeafNodes(t); printf("%d\n",g); release(t); return 0; }?运行程序输入:ABC##DE#G##F### 运行结果:画出该二叉树的形态:2、在上题中补充求二叉树中求结点总数算法(提示:可在某种遍历过程中统计遍历的结点数),并在主函数中补充相应的调用验证正确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/6/12
2
线索二叉树结点的描述 typedef int datatype; typedef struct node { int ltag,rtag;
datatype data; struct node *lchild,*rchild; } bithptr; bithptr *pre;
lchild ltag data rtag rchild
标志位如果为0,表示指针指向孩子
2020/6/结12 点,为1表示指针为线索
3
t
0A0
0B0
1C1
NULL
1D1
0E1
NULL
1F0
0G0
2020/6/12
1H1
1I1
4
中序线索二叉树中,查找指定结点*p的中序后继结点
1、若 *p 的右子树为空,则 p->rchild 为右线 索,直接指向 *p 的中序后继结点。
do
{ printf(“\t%d\n”,p->data); p=INORDERNEXT(p);
} while(p!=NULL);
}
}
2020/6/12
11
线索二叉树的结点插入算法
INSERTRIGHT(bithptr *p,bithptr *q)
{ bithptr *s; s=INORDERNEXT(p); q->ltag=1; q->lchild=p; q->rtag=p->rtag; q->rchild=p->rchild;
16
二叉排序树的生成
void CREAT(bitree *b)
{ int x;
bitree *s;
b=NULL;
do{
scanf(“%d”,&x);
// 读入一个整数
s=(bitree *)malloc(sizeof(bitree)); // 产生一个树结点
s->data=x;
s->lchild=NULL; s->rchild=NULL;
2、若 *p 的右子树非空,则 *p 的中序后继必是 其右子树中第一个遍历到的结点,也就是从 *p的右孩子开始,沿左指针链往下查找,直 到找到一个没有左孩子的结点为止。
2020/6/12
6
最左下结点 Rk
p R1
R2
2020/6/12
7
中序线索二叉树中求中序后继结点的算法
bithptr *INORDERNEXT(bithptr *p)
{ bithptr *q;
if (p->rtag==1) return(p->rchild);
else { q=p->rchild;
while (q->ltag==0) q=q->lchild;
return(q);
}
}
2020/6/12
8
中序线索二叉树中,查找指定结点*p的中序前驱结点
1、若 *p 的左子树为空,则 p->lchild 为左线 索,直接指向 *p 的中序前驱结点。
2、若 *p 的左子树非空,则从 *p 的左孩子出发 ,沿右指针链往下查找,直到找到一个没有右 孩子的结点为止。
2020/6/12
9
p
R1 R2
最右下结点
Rk
2020/6/12
10
线索二叉树的遍历算法
TRAVERSEINTHREAD(bithptr *p)
{ if (p!=NULL) { while (p->ltag==0) p=p->lchild;
p->rtag=0; p->rchild=q;
if ((s!=NULL)&&(s->ltag==1)) s->lchild=q;
}
2020/6/12
12
二、二叉排序树
二叉排序树又称为二叉查找树,其定义为: 二叉排序树或者是一棵空树,或者是具有如下性 质的二叉树: 1、若它的左子树非空,则左子树上所有结点的值
INSERT(b,s);
// 插入该结点
}while(x!=-1);
}
2020/6/12
17
关键字输入顺序:45,24,53,12 ,28,90
45
24
53
12
28
90
2020/6/12
18
二叉排序树的结点删除(被删除结点无左孩子)
q p
q p
p是左孩子
2020/6/12
p是右孩子
19
二叉排序树的结点删除(被删除结点有左孩子)
struct node *lchild,*rchild; } bitree;
2020/6/12
15
二叉排序树的结点插入
// 向一个二叉排序树中插入一个结点s
void INSERT(bitree *b, bitree *s)
{
if ( b == NULL ) b=s;
else if ( s->data == b->data )
while (p!=NULL && p->data!=x)
{ if (x < p->data) { q=p; p=p->lchild; }
else { q=p; p=p->rchild; }
} if (p==NULL) printf(“未发现数据域为%d的结点\n”, x);
第五章 树和二叉树
2020/6/12
1
一、线索二叉树
二叉树在一般情况下无法直接找到某结点在 某种遍历序列中的前驱和后继结点。若增加指针 域来存放前驱和后继结点信息,将大大降低存储 空间的利用率(密度)。考察 n 个结点的二叉树, 其中有 n+1 个空指针域,它们可以被用来存放“线 索”加了线索的二叉树称为线索二叉树。
q
q
p
p
p是左孩子
2020/6/12
p是右孩子
20
二叉排序树的结点删除算法
// 在二叉排序树b中删除一个数据域为x的结点的算法函数
void DELNODE(bitree *b, int x)
{ bitree *p, *q, *r, *t;
p=b;
// p指向待比较的结点
q=NULL; // q指向p的前驱结点
均小于根结点; 2、若它的右左子树非空,则右子树上所有结点的
值均大于根结点; 3、左、右子树本身又各是一棵二叉树。
2020/6/12
13
cao
zhao ding
chen
wang
ma
xia
du
ni
2020/6/12
14
二叉排序树结点的结构描述 typedef struct node { datatype data;
return;
// 不做任何插入操作
else if ( s->data < b->data )
INSERT(b->lchild, s); // 将s插入到左子树中 else if ( s->data > b->data )
INSERT(b->rchild, s); // 将s插入到右子树中
}ቤተ መጻሕፍቲ ባይዱ
2020/6/12