圆柱坐标型工业机器人设计

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱坐标型工业机器人设计

1.1工业机器人研究的目的和意义

工业机器人是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的现代制造业重要的自动化装备。自从1962年美国研制出世界上第一台工业机器人以来,机器人技术及其产品发展很快,已成为柔性制造系统( FMS) 、自动化工厂( FA) 、计算机集成制造系统(CIMS)的自动化工具。广泛采用工业机器人,不仅可提高产品的质量与数量,而且保障人身安全、改善劳动环境、减轻劳动强度、提高劳动生产率、节约材料消耗以及降低生产成本有着十分重要的意义。和计算机、网络技术一样,工业机器人的广泛应用正在日益改变着人类的生产和生活方式。

20世纪80年代以来,工业机器人技术逐渐成熟,并很快得到推广,目前已经在工业生产的许多领域得到应用。在工业机器人逐渐得到推广和普及的过程中,下面三个方面的技术进步起着非常重要的作用。

1.驱动方式的改变

20世纪70年代后期,日本安川电动机公司研制开发出了第一台全电动的工业机器人,而此前的工业机器人基本上采用液压驱动方式。与采用液压驱动的机器人相比,采用伺服电动机驱动的机器人在响应速度、精度、灵活性等方面都有很大提高,因此,也逐步代替了采用液压驱动的机器人,成为工业机器人驱动方式的主流。在此过程中,谐波减速器、R V减速器等高性能减速机构的发展也功不可没。近年来,交流伺服驱动已经逐渐代替传统的直流伺服驱动方式,直线电动机等新型驱动方式在许多应用领域也有了长足发展。

2.信息处理速度的提高

机器人的动作通常是通过机器人各个关节的驱动电动机的运动而实现

的。为了使机器人完成各种复杂动作,机器人控制器需要进行大量计算,并在此基础上向机器人的各个关节的驱动电动机发出必要的控制指令。随着信息技术的不断发展,C P U的计算能力有了很大提高,机器人控制器的性能也有了很大提高,高性能机器人控制器甚至可以同时控制20多个关节。机器人控制器性能的提高也进一步促进了工业机器人本身性能的提高,并扩大了工业机器人的应用范围。近年来,随着信息技术和网络技术的发展,已经出现了多台机器人通过网络共享信息,并在此基础上进行协调控制的技术趋势。

3.传感器技术的发展

机器人技术发展初期,工业机器人只具备检测自身位置、角度和速度的内部传感器。近年来,随着信息处理技术和传感器技术的迅速发展,触觉、力觉、视觉等外部传感器已经在工业机器人中得到广泛应用。各种新型传感器的使用不但提高了工业机器人的智能程度,也进一步拓宽了工业机器人的应用范围。

1.2工业机器人在国内外的发展现状与趋势

目前,工业机器人有很大一部分应用于制造业的物流搬运中。极大的促进物流自动化,随着生产的发展,搬运机器人的各方面的性能都得到了很大的改善和提高。气动机械手大量的应用到物流搬运机器人领域。在手爪的机械结构方面根据所应用场合的不同以及对工件夹持的特殊要求,采取了多种形式的机械结构来完成对工件的夹紧和防止工件脱落的锁紧措施。在针对同样的目标任务,采取多种运动方式相结合的方式来达到预定的目的。驱动方面采用了一台工业机器人多种驱动方式的情况,有液压驱动,气压驱动,步进电机驱动,伺服电机驱动等等。愈来愈多的搬运机器人是采用混合驱动系统的,这样能够更好的发挥各驱动方式的优点,避免缺点。并且在它的控制精度方面和搬运效率方面有了很大的提高。在搬运机械手的控制方面,出现了多种控制方式。如:由原始的电控的机械手,

较先进的基于工控机控制的,基于PC控制的,进一步的嵌入式PC控制技术,还有采用PLC可编程控制的。

在物料搬运方面近年来呈现出的趋势就是系统化。无论是我国还是国外,物料搬运的发展都是由单一设备走向成套设备,由单机走向系统。在制造业方面,随着JIT, FMS, CIMS等现代制造技术的发展,对物料搬运系统也提出了新的要求。其特点是力求减少库存、压缩等待和辅助时间,使多品种、少批量的物料准时到达要求的地点。这一趋势在机械工业方面得到了很大的应用。其中采用了机器人等先进的物料搬运技术,促进了机械工业的技术进步和生产水平提高。

当代工业机器人技术发展一方面表现在工业机器人应用领城的扩大和机器人种类的增多。另一方面表现在机器人机械系统性能的提高和控制系统的智能化。前者是指应用领域的横向拓宽,后者是在性能及水平上的纵向提高。机器人应用领城的拓宽和性能水平的提高二者相辅相承、相互促进。应用领城的扩大对机器人不断提出断的要求,推动机器人技术水平的提高.反过来,机器人性能与智能水乎的提高,又使扩大机器人应用领域成为可能。

1.工业机器人机械系统性能的提高。

进一步提高业机器人的运动精度。机器人是一种多关节开链式结构,因此,机器人手臂的刚度一般都不高。另外由于构件的尺寸误差和传动间隙的存在,以及机器人手臂末端误差的放大作用,使当前机器人的定位与运动还不能达到很高的精度。度大.精度高的数控机床相比,机器人在工作精度上大为逊色。因此,至今工业机器人在精密装配及其它精密作业中的应用仍受到了很大的限制。除了精密作业要求高精度机器人以外.采用离线编程的工业机器人系统也要求该机器人要具有足够高的定位精度和运动精度。

进一步提高机器人工作精度的主要办法是:提高机器人的加工精度与装配精度,采用无隙传动的减速机构,采用直接驱动电机,通过标定进行

机器人的

2.误差补偿,通过实时检侧对机器人运动误差进行实时修正。提高机器人手的灵活度和避障能力:当前常用的机器人手肴的灵活度的都不够高,即手臂末端达到某一工作点时。手臂可能采取的姿态是有限的,有时要有很大的灵活度和很强的避障能力.例如。当用喷涂机器人喷涂车身内表面时,要求机器人能将车身内表面的各个角落都喷上漆,必须要有高灵活度机器人手有才行。另外,在有限空间及有障碍的复杂环境中作业的机器人,例如在核电站工作的机器人,也要求其具有高灵活度的机器人手臂。为了提工业机器人手臂的灵活度,主要是采用具有冗余自由度的机器人手臂和在机器人手臂机构上采用膨铰关节及可双向弯曲的手臂。

3.提高机器人的运动速度和响应频率:为了提高机器人作业效率,以及提高具有感知功能机器人的反应速度,就必须提高机器人运动速度和响应频率,这一点,对装配机器人来说尤为重要。为此,一方面可以通过采用高强度材料或轻质材料(如碳纤维复合材料)制造机器人手臂,以达到减轻手臂重量和提高手臂动态特性的目的,另一方面,也可以通过采用直接驱动电机或其它高性能驱动电机,从控制和驱动方面提高机器人系统的运动速度与响应频率。

4.提高机器人手爪或手腕的操作能力、灵活性与快速反应能力:为了使机器人能像人一样进行各种复杂作业,如装配作业、维修作业及设备操作,机器人就必须有一个运动灵活和动作灵敏的手腕和手爪。这一点对装配作业机器人、核工业机器人和在空间站上作业的空间机器人来说是特别重要的。

5.采用模块化组合式机器人结构,提高机器人快速维修性能:根据优化设计,制造出多种不同尺寸和规格的手臂和连接器模块。用少量的模块可组合成多种机器人配置。这种机器人能进行快速维修,可以实现自动修复。所以,这种机器人结构最适用于空间机器人、核工业机器人等。如这种积

相关文档
最新文档