工业机器人结构设计
工业机器人机械结构模块化设计
工业机器人机械结构模块化设计工业机器人的机械结构模块化设计是指将其机械结构分为若干个模块,每个模块具有独立的功能和特点,并能够相互组装和拆卸,以适应不同的工作环境和任务要求。
其目的是提高机器人的灵活性、可扩展性和可维修性,同时降低设计和制造成本。
模块化设计一般包括机器人的基座、臂架、关节、手爪等部分。
基座是机器人的底座或平台,用于支撑机器人的其他部件。
臂架是机器人的运动部分,可以通过关节连接进行伸缩和旋转,实现机器人的多自由度运动。
关节是连接臂架和基座的枢纽部件,允许机器人进行多轴关节运动。
手爪是机器人的末端执行器,用于捕捉或操纵物体。
在实际设计中,可以根据不同的工作需求和任务特点将机器人的机械结构划分为几个模块。
每个模块都具有独立的结构和功能,可以进行自主设计和制造。
同时,这些模块之间应具有一定的标准接口和连接方式,以方便组装和更换。
模块化设计的一个重要优势是可以根据具体任务的需要对机器人的结构进行快速定制和扩展。
例如,如果一些任务需要机器人具有更大的工作范围和精度,可以通过增加臂架或关节的数量来实现。
如果需要机器人具有更强的抓取能力,可以根据任务需求更换不同类型的手爪。
另一个优势是模块化设计可以简化机器人的维修和维护工作。
由于机器人的各个模块相对独立,当一些模块发生故障或需要维修时,只需要更换或修复该模块,而不会影响其他部分的正常运行。
这大大减少了维修时间和成本。
此外,模块化设计还可以降低机器人的制造成本。
由于机器人的各个模块可以根据不同的需求进行重新组合和配置,可以实现多样化、灵活化的生产。
这样可以有效降低生产线的设备投资和维护成本。
同时,模块化设计还有利于机器人的标准化生产和批量生产,提高了生产效率和产品质量。
总之,工业机器人的机械结构模块化设计可以提高机器人的灵活性、可扩展性和可维修性,降低设计和制造成本。
它是实现机器人个性化定制和智能制造的重要手段,对于推动工业4.0的发展具有重要意义。
六自由度机器人结构设计
六自由度机器人结构设计六自由度机器人是一种具有六个独立自由度的机器人系统,允许其在六个不同的方向上进行平移和旋转运动。
这种机器人系统被广泛应用于工业自动化、医疗、航天航空等领域。
在设计六自由度机器人结构时,需要考虑机器人的运动灵活性、精度和稳定性等因素。
本文将探讨六自由度机器人的结构设计。
1.机械结构设计六自由度机器人的机械结构设计是其最基本的设计要素之一、一般而言,六自由度机器人由底座、连接杆、关节和末端执行器等部分组成。
在设计机械结构时,需要考虑机器人的工作空间要求、重量和刚度等因素。
一种常见的结构设计是将机器人分为两个连杆外部结构和四个内部关节连杆结构,以实现较高的精度和稳定性。
2.关节传动系统设计关节传动系统是六自由度机器人结构中的核心组成部分。
六自由度机器人通常使用直流电动机或步进电动机作为驱动器。
在选择驱动器时,需要考虑其扭矩、精度和响应速度等因素。
同时,传动系统也需要选择合适的减速器、链条或齿轮传动等机械传动装置来实现关节的运动。
3.传感器系统设计传感器系统是六自由度机器人结构中的关键部分,用于实现机器人对外部环境和自身状态的感知。
常用的传感器包括编码器、力/力矩传感器、视觉传感器等。
编码器可用于测量关节的位置和速度,力/力矩传感器用于感知机器人对外部环境的力或力矩作用,视觉传感器用于感知机器人周围的物体和环境。
传感器系统设计需要考虑传感器的精度、可靠性和与其他系统的配合等因素。
4.控制系统设计控制系统设计是六自由度机器人的关键环节,用于实现机器人的运动控制和路径规划。
控制系统通常采用计算机或嵌入式系统来实现。
在控制系统设计时,需要考虑机器人的动力学和运动学模型,以及相应的控制算法和控制器设计。
常见的控制算法包括PID控制算法、模糊控制算法和神经网络控制算法等。
5.安全系统设计安全系统设计是六自由度机器人结构设计的重要组成部分,用于保证机器人的运行安全。
安全系统设计包括安全门、急停按钮、碰撞检测装置等。
工业机器人机器人本体设计分析
工业机器人机器人本体设计分析声明:本文内容信息来源于公开渠道,对文中内容的准确性、完整性、及时性或可靠性不作任何保证。
本文内容仅供参考与学习交流使用,不构成相关领域的建议和依据。
一、机器人结构设计机器人的结构设计是指针对特定任务和工作环境,对机器人的外形、连接方式、关节结构等进行设计和优化的过程。
合理的机器人结构设计能够提高机器人的功能性、灵活性和稳定性,从而更好地完成各种任务。
下面将从机器人的外形设计、连接方式设计以及关节结构设计三个方面详细论述机器人结构设计相关内容。
(一)外形设计1、外形尺寸设计:机器人的外形尺寸设计需要考虑到工作空间的限制以及任务的需求。
合理的外形尺寸设计可以使机器人在狭小的空间内自由移动,并且能够达到所需的工作范围。
2、外形材料选择:机器人的外形材料选择应考虑到机器人的使用环境和任务特点。
例如,在潮湿的环境中工作的机器人可以选择防水材料,而在高温环境中工作的机器人则需要选择耐高温材料。
3、外形形状设计:机器人的外形形状设计既要满足机器人的运动需求,又要符合人类对机器人的认知和接受。
因此,外形形状设计需要考虑到机器人的动态特性和人机交互的需求。
(二)连接方式设计1、运动连接方式设计:机器人的运动连接方式包括传动装置、连接结构等。
传动装置的设计应满足机器人的工作要求,如速度、精度、承载能力等。
连接结构的设计应具有稳定性和刚度,以确保机器人在高速和大力矩下不发生松动或变形。
2、电气连接方式设计:机器人的电气连接方式包括电缆布线、接插件等。
电缆布线的设计应考虑到机器人的自由度和运动范围,并保证电缆的可靠性和耐久性。
接插件的选择和布局应方便维护和更换。
3、通讯连接方式设计:机器人的通讯连接方式包括传感器和控制系统之间的通讯方式。
合理的通讯连接方式可以提高机器人的响应速度和数据传输效率,从而提高机器人的工作效率和稳定性。
(三)关节结构设计1、关节类型选择:关节是机器人身体各部分连接起来并实现运动的重要组成部分。
工业机器人设计方案
工业机器人设计方案一、引言随着工业的发展和技术的进步,工业机器人在生产线上扮演着越来越重要的角色。
为了提高生产效率和质量,减少人力成本和劳动强度,设计一套高效稳定的工业机器人成为了当今的迫切需求。
本文将根据实际需求,提出一种工业机器人的设计方案。
二、方案概述本方案的工业机器人主要应用于组装生产线上的重复性工作,如螺丝拧紧、零件装配等。
该机器人将采用多关节设计,以实现多方向运动和灵活操作。
同时,为了实现高效稳定的工作,机器人将配置感知技术和控制系统,以及安全保护系统。
三、机器人结构设计1.机械结构设计机器人采用多关节结构设计,以实现多方向运动和灵活操作。
机器人的机械结构由支架、关节机构和工具端构成。
支架选择高强度的材料,以保证机器人的稳定性和承载能力;关节机构采用高精度的电机和减速器,以实现精确的运动控制;工具端根据实际需要设计相应的装配工具。
2.动力系统设计机器人的动力系统由电机、减速器和传动系统组成。
电机选择高性能的伺服电机,以实现快速精确的控制;减速器采用高精度的行星齿轮减速器,以提供足够的扭矩和速度;传动系统根据实际需要选择齿轮传动、皮带传动或直线传动等。
3.传感器和感知系统设计机器人配备各种传感器和感知系统,以实现环境感知和物体检测。
其中包括视觉传感器、力传感器、触觉传感器等。
视觉传感器用于检测工件的位置和姿态,力传感器用于检测工具与工件之间的受力情况,触觉传感器用于检测机器人与环境之间的接触。
四、控制系统设计1.控制算法设计机器人的控制系统采用基于模型的控制算法,以实现精确控制和运动规划。
通过对机器人模型进行数学建模和控制分析,设计合适的控制算法,以满足各种工作场景的需求。
2.控制器和接口设计机器人的控制系统采用计算机控制,通过控制器和接口与各个子系统进行通信和控制。
控制器选择高性能的工控机,具有强大的计算和控制能力;接口采用标准化的接口协议,以实现与各个子系统的连接和数据传输。
五、安全保护系统设计对于工业机器人来说,安全问题是至关重要的。
SCARA机器人结构设计与动力学分析
基于上述动力学特性分析的结果,可以进一步进行SCARA机器人的结构设计。
SCARA机器人结构设计
SCARA机器人的结构设计应该根据实际应用需求和动力学特性进行优化,以 提高机器人的性能和精度。以下是一些关键的结构设计要素:
1、机构运动副:机构运动副是连接各连杆和关节的要素,直接影响机器人 的运动精度和稳定性。应该选择低摩擦、高精度和高耐用的运动副类型,如球面 副、平面副等,以保证机器人的运动精度和长期稳定性。
5、防震设计:在机器人结构设计中,防震设计也是非常重要的一环。可以 通过在关节或连杆中加入阻尼器、优化结构设计等方法来减小机器人的震动和提 高其稳定性。
6、人机交互设计:在SCARA机器人结构设计中,还需要考虑人机交互的问题。 可以通过在末端执行器上安装安全装置、设置可视化界面等方式来提高机器人的 安全性和易用性,使机器人更加方便快捷地完成各种任务。
SCARA机器人结构设计与动力 学分析
引言
SCARA(Selective Compliance Assembly Robot Arm)机器人是一种常见 的工业机器人,因其具有良好的空间运动能力和高精度定位而被广泛应用于电子 装配、玩具制造、医药包装等领域。SCARA机器人的结构与动力学分析是提高其 性能和精度的重要基础。本次演示将详细介绍SCARA机器人的结构,分析其动力 学特性,并进行结构设计。
21、惯性张量:惯性张量是描述机器人惯性特性的重要参数,包括绕三个轴 的旋转惯量和质量分布等信息。惯性张量的准确计算和控制对于实现SCARA机器 人的稳定运动和精确定位具有重要意义。
211、动力传递:动力传递是SCARA机器人运动的重要环节。通过合理的动力 传递路径和机构设计,可以实现机器人各关节的协调运动,提高机器人的整体性 能和精度。同时,还需要考虑驱动器的选择和优化,以提高机器人的动力输出和 效率。
工业机器人设计方案
工业机器人设计方案一、项目背景随着制造业的发展和工业自动化的推进,工业机器人在生产线上扮演着越来越重要的角色。
机器人的运用可以提高生产效率、降低劳动成本、减少人力资源浪费等,在制造业中具有广阔的应用前景。
二、项目概述本设计方案旨在设计一种具有自动化操作能力的工业机器人。
该机器人具备运动控制、视觉检测、感知能力等多种功能,可以适应不同工作场景中的操作需求。
三、设计方案1.机械结构设计根据所需的操作能力和工作场景的特点,机械结构应具备稳定性、灵活性和可调节性。
可以采用机械臂的设计,具备多个关节,可进行多轴运动控制。
机械结构材料应选用轻量化、高强度的材料,以保证操作的稳定性和耐久性。
2.运动控制系统设计运动控制系统是机器人的核心,可以通过控制机器人的运动来实现不同的操作需求。
该系统应具备高精度、高速度的运动控制能力。
可以采用伺服电机或步进电机作为驱动装置,结合运动控制算法实现精确的运动。
3.视觉检测系统设计为了实现对环境的感知和对目标对象的识别,可以设计一个视觉检测系统。
该系统可以通过摄像头或传感器获取环境信息,并通过图像处理算法进行处理和分析。
可以使用OpenCV或其他视觉处理库进行图像处理和目标识别,以实现对工作场景和目标的感知。
4.传感器系统设计为了增加机器人的感知范围和感知能力,可以设计一个传感器系统。
该系统可以通过传感器获取环境中的各种参数和数据,以便在处理和决策过程中使用。
常用的传感器包括温度传感器、压力传感器、光传感器等,可以根据实际需求进行选择和配置。
5.控制系统设计控制系统是机器人的大脑,可以根据传感器获取的数据和图像处理结果进行处理和决策,控制机器人的运动和操作。
该系统应具备实时性、稳定性和可靠性,能够适应复杂的工业环境。
可以采用嵌入式系统或工控机等设备作为控制器,结合控制算法实现对机器人的控制。
6.安全保护系统设计为了确保机器人的安全运行,可以设计一个安全保护系统。
该系统可以通过安全传感器、急停按钮等装置,实时监测机器人的状态,当检测到异常情况时,及时采取相应的措施,保障生产和工作人员的安全。
工业机器人结构设计方案材料
工业机器人结构设计方案材料1.机身结构材料:机身是机器人的主要支撑部分,需要具备足够的强度和刚性。
常见的材料选择包括铝合金、碳纤维等。
铝合金具有良好的机械性能和可塑性,重量轻且具备良好的散热性能,非常适合机器人的结构设计。
碳纤维则具有很高的比强度和比刚度,同时具备良好的抗腐蚀性能和疲劳寿命,适合用于制造复杂结构的机器人。
2.关节材料:关节是机器人运动灵活性的保证,需要选择具备一定强度和刚性的材料。
常见的关节材料包括钢和铝合金。
钢具有良好的强度和耐磨性能,适合用于制造高负荷和高速运动的关节。
铝合金则具有较低的密度和良好的机械性能,适合用于制造较为轻量级的关节。
3.推进器材料:推进器是机器人的移动部分,需要选择具备一定强度和耐磨性的材料。
常见的推进器材料包括橡胶和塑料。
橡胶具有良好的弹性和耐磨性,适合用于制造轮胎和履带等移动部件。
塑料则具有较低的密度和良好的耐腐蚀性能,适合用于制造轻量级的推进器。
4.传感器材料:传感器是机器人感知环境的重要部分,需要选择具备高灵敏度和良好的稳定性的材料。
常见的传感器材料包括硅、光电材料和陶瓷。
硅具有良好的机械性能和灵敏度,适合用于制造压力传感器和力传感器等。
光电材料则具有良好的光学性能和稳定性,适合用于制造光电传感器和摄像头等。
陶瓷具有较高的硬度和耐蚀性,适合用于制造温度传感器和湿度传感器等。
5.控制电路板材料:控制电路板是机器人的大脑,需要选择具有良好导电性和耐高温性的材料。
常见的控制电路板材料包括玻璃纤维增强聚酰亚胺(FR4)和铜基板。
FR4具有良好的绝缘性能和耐高温性,同时导电性能稳定可靠,适合用于制造多层印刷电路板。
铜基板则具有良好的导热性和导电性,适合用于制造高功率控制电路板。
6.外壳材料:外壳是机器人的外部保护层,需要选择具备良好的抗冲击性和防护性的材料。
常见的外壳材料包括聚碳酸酯(PC)、聚丙烯(PP)和聚苯乙烯(PS)。
聚碳酸酯具有良好的抗冲击性和透明性,适合用于制造机器人外壳的透明窗户。
(完整word版)工业机器人机械结构设计.
河南理工大学本科毕业设计(论文开题报告题目名称工业机器人机械结构设计一、选题的目的和意义:工业机器人在工业生产中能代替人做某些单调、频繁和重复的长时间作业,或是危险、恶劣环境下的作业,例如在冲压、压力铸造、热处理、焊接、涂装、塑料制品成形、机械加工和简单装配等工序上,以及在原子能工业等部门中,完成对人体有害物料的搬运或工艺操作。
广泛采用工业机器人,不仅可提高产品的质量与产量,而且可以保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本。
因此,研究和设计各种用途的机器人特别是工业机器人、推广机器人的应用是有现实意义的。
由于工业机器人具有一定的通用性和适应性,能适应多品种中、小批量的生产, 70年代起,常与数字控制机床结合在一起,成为柔性制造单元或柔性制造系统的组部分。
二、国内外研究综述:20世纪50年代末,美国在机械手和操作机的基础上,采用伺服机构和自动控制等技术,研制出有通用性的独立的工业用自动操作装置,并将其称为工业机器人; 60年代初,美国研制成功两种工业机器人,并很快地在工业生产中得到应用; 1969年,美国通用汽车公司用21台工业机器人组成了焊接轿车车身的自动生产线。
此后,各工业发达国家都很重视研制和应用工业机器人。
我国工业机器人起步于70年代初期,经过20多年的发展,大致经历了3个阶段: 70年代的萌芽期, 80年代的开发期和90年代的适用化期。
我国工业机器人经过20多年的发展已经初具规模。
目前我国已生产出部分机器人关键元器件,开发出弧焊、点焊、码垛、装配、搬运、注塑、冲压、喷漆等工业机器人。
一批国产工业机器人已服务于国内诸多企业的生产线上;一批机器人技术的研究人才也涌现出来。
一些相关科研机构和企业已掌握了工业机器人操作机的优化设计制造技术;工业机器人控制、驱动系统的硬件设计技术;机器人软件的设计和编程技术;运动学和轨迹规划技术;弧焊、点焊及大型机器人自动生产线与周边配套设备的开发和制备技术“乘机安全小贴士”安全出行要重视等。
机器人结构设计
3.模块化工业机器人所存在的问题
(1) 模块化工业机器人整个机械系统的刚度比较差。因为
模块之间的结合是可方便拆卸的,尽管在设计上已经注意到了
标准机械接口的高精度要求,但实际制造仍会存在误差,所以 与整体结构相比刚度相对地差些。 (2)因为有许多机械接口及其它连接附件,所以模块化工业 机器人的整体重量有可能增加。 (3)虽然功能模块的形式有多种多样,但是尚未真正做到根 据作业对象就可以合理进行模块化分析和设计。
3
2、技术设计
(1)机器人基本参数的确定。臂力、工作节拍、工作范围、 运动速度及定位精度等。
举例:定位精度的确定
机器人或机械手的定位精度是根据使用要求确定的,而机器人或机械 手本身所能达到的定位精度取决于定位方式、运动速度、控制方式、臂 部刚性、驱动方式、缓冲方式等。 工艺过程的不同,对机器人或机械手重复定位精度的要求也不同,不 同工艺过程所要求的定位精度如下:
传动方式选择
(1)选择驱动源和传动装臵与关节部件的连接、驱动方式 (2)工业机器人的传动形式
传动形式 直接连结传动 特征 优点 缺点 需考虑电机自重,转 动惯量大,能耗大
直接装在关节上 结构紧凑
远距离连结传动
经远距离传动装 不需考虑电机自重, 额外的间隙和柔性, 臵与关节相连 平衡性良好 结构庞大,能耗大
齿轮链机构
使用齿轮链机构应注意的问题
齿轮链的引入会改变系统的等效转动惯量 , 从而使驱动电机 的响应时间减小, 这样伺服系统就更加容易控制。 输出轴转动惯量转换到驱动电机上 , 等效转动惯量的下降与
减速比远 >1 的传 经济、对载荷变化不 传动精度低、结构不 动装臵与关节相 敏感、便于制动设计、 紧凑、引入误差,降 连 方便一些运动转换 低可靠性 不经中间关节或 传动精度高,振动小, 控制系统设计困难, 经速比 =1 的传动 传动损耗小,可靠性 对传感元件要求高, 装臵与关节相连 高,响应快 成本高
工业机器人集成应用(机构设计篇)
工业机器人集成应用(机构设计篇)1. 引言1.1 概述工业机器人是指具备自主控制能力、用于执行各类操作任务的智能化设备,广泛应用于制造业领域。
随着科技的不断进步和工业自动化水平的提高,工业机器人集成应用在生产线上扮演着越来越重要的角色。
机构设计作为其中至关重要的一环,对机器人的运动性能和功能实现起着决定性作用。
1.2 文章结构本文将围绕工业机器人集成应用中的机构设计展开论述。
首先介绍了引言部分,然后在接下来的章节中逐步深入探讨了机构设计理论、设计方法与标准以及常见案例分析等内容。
最后,通过总结已经探讨的主题点和结果展示,并对未来发展进行展望和建议。
1.3 目的本文旨在全面而系统地介绍工业机器人集成应用中机构设计理论与方法,并结合实际案例进行分析。
通过深入研究不同类型工业机器人的结构设计,可以帮助读者更好地理解机器人运动学和动力学基础,并提供一些标准化与规范化的要求。
此外,本文将对常见的工业机器人案例进行具体分析,以提供读者关于不同机构设计方案实际应用的启示。
通过本文的阅读,读者将能够更好地理解工业机器人集成应用中机构设计的重要性和挑战,并为未来该领域的发展提供有益参考。
2. 机构设计理论:2.1 功能需求分析:在进行工业机器人的机构设计之前,首先需要进行功能需求分析。
这包括确定机器人所需具备的基本功能,例如运动范围、负载能力、精度要求以及速度等。
通过对工作环境和任务要求的全面了解,可以确定机器人需要哪些关键性能指标。
功能需求分析为后续的机构设计提供了重要依据。
2.2 运动学基础:运动学是研究物体在空间中运动状态的学科。
在工业机器人的机构设计中,必须深入了解运动学基础知识。
这包括旋转和平移的数学描述方法、坐标系与坐标变换理论等内容。
掌握这些基础知识可以帮助我们更好地理解和描述机器人在三维空间中的姿态和位置变化。
2.3 动力学基础:动力学是研究物体受到力或力矩作用下产生加速度和角加速度变化规律的学科。
简述工业机器人的设计内容与步骤
简述工业机器人的设计内容与步骤工业机器人是一种用于自动化生产的机械设备,它能够完成各种复杂的操作任务,提高生产效率和质量。
设计工业机器人需要考虑多个方面,包括机器人的结构、控制系统、传感器和执行器等。
下面将详细介绍工业机器人的设计内容与步骤。
一、机器人的结构设计机器人的结构设计是工业机器人设计的重要部分,它决定了机器人的运动范围和负载能力。
在结构设计中,需要考虑机器人的关节数量、关节类型、关节传动方式等。
关节数量决定了机器人的自由度,关节类型可以根据应用需求选择,关节传动方式可以采用齿轮传动、带传动等。
二、机器人的控制系统设计机器人的控制系统设计是工业机器人设计的关键环节,它包括机器人的控制器和编程软件。
控制器是机器人的大脑,它接收传感器反馈的信号,并根据程序指令控制机器人的运动。
编程软件用于编写机器人的控制程序,实现各种操作任务。
在控制系统设计中,需要考虑机器人的运动规划、轨迹控制、碰撞检测等功能。
三、机器人的传感器设计机器人的传感器设计是工业机器人设计的重要组成部分,它能够感知周围环境的信息,为机器人的自主决策提供数据支持。
常见的传感器包括视觉传感器、力传感器、位置传感器等。
视觉传感器可以用于目标识别和定位,力传感器可以用于力控制和安全保护,位置传感器可以用于位置反馈和运动控制。
四、机器人的执行器设计机器人的执行器设计是工业机器人设计的重要组成部分,它负责机器人的运动执行。
常见的执行器包括电机、气缸、液压缸等。
电机可以用于驱动机器人的关节运动,气缸可以用于实现机器人的夹持和释放动作,液压缸可以用于实现机器人的重载操作。
工业机器人的设计步骤如下:1.需求分析:确定机器人的应用领域和工作任务,明确设计目标和要求。
2.结构设计:根据机器人的应用需求,设计机器人的结构,包括关节数量、关节类型、关节传动方式等。
3.控制系统设计:根据机器人的运动规划和控制要求,设计机器人的控制系统,包括控制器和编程软件。
SCARA机器人装配及结构设计
SCARA机器人装配及结构设计一、引言随着自动化和智能制造的快速发展,机器人技术在许多领域得到了广泛应用。
其中,SCARA(Selective Compliance Assembly Robot Arm)机器人是一种常见的装配机器人,具有高精度、高速度和高灵活性等优点。
本文将探讨SCARA机器人的装配及结构设计。
二、SCARA机器人装配1、准备工作在开始装配之前,需要做好以下准备工作:1、检查零件的完整性,确保所有零部件都已准备就绪。
2、清理工作表面,确保工作表面干净整洁。
3、准备好工具和设备,例如螺丝刀、扳手、电动工具等。
2、装配流程SCARA机器人的装配流程如下:1、将基座安装在工作台上,并固定好。
2、将电机安装在基座上,并连接好电源线和信号线。
3、安装丝杆、齿轮、轴承等传动部件,确保传动部件的精度和稳定性。
4、安装手臂和夹具,确保手臂的灵活性和夹具的牢固性。
5、调试机器人的运动轨迹和速度,确保机器人的运动符合设计要求。
三、SCARA机器人结构设计1、基座设计基座是SCARA机器人的基础,需要承受整个机器人的重量和负载。
因此,基座设计需要考虑到强度、刚度和稳定性等因素。
常用的基座材料包括铸铁、钢板和铝合金等。
2、电机设计电机是SCARA机器人的核心部件之一,需要提供足够的扭矩和精度。
因此,电机设计需要考虑到功率、速度和精度等因素。
常用的电机类型包括伺服电机、步进电机和直流电机等。
3、传动部件设计传动部件包括丝杆、齿轮和轴承等,需要确保传动部件的精度和稳定性。
因此,传动部件设计需要考虑到传动比、摩擦系数和耐磨性等因素。
常用的传动部件材料包括不锈钢、合金钢和塑料等。
4、手臂和夹具设计手臂是SCARA机器人的工作部分,需要具备高灵活性和高精度等特点。
夹具是用来固定工件的,需要确保夹具的牢固性和精度。
因此,手臂和夹具设计需要考虑到结构、材料和加工工艺等因素。
常用的手臂和夹具材料包括铝合金、不锈钢和合金钢等。
垂直多关节型工业机器人设计
垂直多关节型工业机器人设计引言工业机器人作为现代制造业的重要组成部分,在提高生产效率和质量方面发挥着关键作用。
垂直多关节型工业机器人是一种常用的机器人类型,其具备多个关节,可实现复杂的动作和灵活的操作。
本文将围绕垂直多关节型工业机器人的设计展开讨论,包括机械结构、电气控制系统、运动学和碰撞检测等方面。
机械结构设计关节类型垂直多关节型工业机器人通常采用旋转关节和直线关节的组合。
旋转关节可实现机器人的转动和旋转,而直线关节则可以实现机器人的伸缩和上下运动。
在设计过程中,需要根据具体的工作需求确定关节类型和数量,以实现所需的运动范围和载荷。
驱动方式垂直多关节型工业机器人的驱动方式一般包括电机和传动系统。
电机可通过电流或脉冲信号控制机器人的运动,而传动系统则用于将电机的转动转化为关节的实际运动。
常见的传动方式包括齿轮传动、带传动和蜗轮蜗杆传动等,选择合适的传动方式可有效提高机器人的精度和稳定性。
结构材料垂直多关节型工业机器人的结构材料通常采用高强度金属材料,如铝合金或钢材。
这些材料具有良好的刚性和耐磨性,可以保证机器人在较大载荷下的稳定性和工作寿命。
此外,机器人的关节部分通常采用精密轴承和联轴器等零部件,以确保机器人的精确度和可靠性。
电气控制系统设计控制器选型垂直多关节型工业机器人的电气控制系统需要选用适合的控制器。
常见的控制器包括PLC、PC或嵌入式控制器等。
选择合适的控制器可以满足机器人的运动控制和数据处理需求,并提供良好的接口和通信功能。
传感器应用传感器在垂直多关节型工业机器人中起着至关重要的作用。
通过安装传感器,可以实时检测机器人的位置、速度和姿态等信息,以实现精确的运动控制和安全保护。
常用的传感器包括编码器、陀螺仪和力传感器等,选择合适的传感器类型和数量可根据具体的应用需求。
电源供应垂直多关节型工业机器人的电源供应需要保证稳定和可靠。
一般情况下,机器人的电源供应包括直流电源和交流电源。
在设计电源系统时,需要考虑机器人的功率需求和电源容量,并采取相应的措施来确保电源质量和电路安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1绪论1.1工业机器人概述工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。
特别适合于多品种、变批量的柔性生产。
它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。
机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。
机器人应用情况,是一个国家工业自动化水平的重要标志。
机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力。
从某种意义上说它也是机器进化过程的产物,它是工业以及非工业领域的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。
机械手是模仿人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。
在工业生产中应用的机械手被称为“工业机械手”。
工业机械手可以提高生产的自动化水平和劳动生产率;可以减轻劳动强度、保证产品质量、实现安全生产,尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,由它代替人进行正常的工作,意义更为重大。
因此,工业机械手在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的应用。
工业机械手的结构形式开始比较简单专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。
随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。
由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的应用。
1.2工业机器人的组成和分类1.2.1工业机器人的组成机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等组成。
各系统相互之间的关系如方框图1.1所示。
图1.1机器人组成系统1、执行机构包括手部、手腕、手臂和立柱等部件,有的还增设行走机构。
(1)手部即与物件接触的部件。
由于与物件接触的形式不同,可分为夹持式手部和吸附式手部。
在本课题中我们采用夹持式手部结构。
夹持式手部由手指(或手爪)和传动机构所构成。
手指是与物件直接接触的构件,常用的手指运动形式有回转型和平移型。
回转型手指结构简单,制造容易,故应用较广泛。
平移型手指应用较少,其原因是结构比较复杂,但平移型手指夹持圆形零件时,工件直径变化不影响其轴心的位置,因此适宜夹持直径变化范围大的工件。
手指结构取决于被抓取物件的表面形状、被抓部位(是外廓或是内孔)和物件的重量及尺寸。
常用的指形有平面的、V形面的和曲面的,手指有外夹式和内撑式,指数有双指式、多指式和双手双指式等。
而传动机构则是向手指传递运动和动力。
传动机构型式较多常用的有:滑槽杠杆式、连杆杠杆式、斜面杠杆式、齿轮齿条式、丝杠螺母弹簧式和重力式等。
(2)手腕手腕是连接手部和手臂的部件,并可用来调整被抓取物件的方位(即姿势)。
(3)手臂手臂是支承被抓物件、手部、手腕的重要部件。
手臂的作用是带动手指去抓取物件,并按预定要求将其搬运到指定的位置。
工业机械手的手臂通常由驱动手臂运动的部件(如油缸、气缸、齿轮齿条机构、连杆机构、螺旋机构和凸轮机构等)与驱动源(如液压、气压或电机等)相配合,以实现手臂的各种运动。
(4)立柱立柱是支承手臂的部件,立柱也可以是手臂的一部分,手臂的回转运动和升降(或俯仰)运动均与立柱有密切的联系。
机械手的立柱因工作需要,有时也可作横向移动,即称为可移式立柱。
(5)行走机构当工业机械手需要完成较远距离的操作或扩大使用范围时,可在机座上安滚轮式行走机构可分装滚轮、轨道等行走机构,以实现工业机械手的整机运动。
滚轮式分为有轨的和无轨的两种。
驱动滚轮运动则应另外增设机械传动装置。
(6)机座机座是机械手的基础部分,机械手执行机构的各部件和驱动系统均安装于机座上,故起支撑和连接的作用。
2、驱动系统驱动系统是驱动工业机械手执行机构运动的动力装置调节装置和辅助装置组成。
常用的驱动系统有液压传动、气压传动、机械传动。
现在工业机械手的驱动系统大多采用液压传动。
3、控制系统控制系统是支配着工业机械手按规定的要求运动的系统。
目前工业机械手的控制系统一般由程序控制系统和电气定位(或机械挡块定位)系统组成。
控制系统有电气控制和射流控制两种,它支配着机械手按规定的程序运动,并记忆人们给予机械手的指令信息(如动作顺序、运动轨迹、运动速度及时间),同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。
4、位置检测装置控制机械手执行机构的运动位置,并随时将执行机构的实际位置反馈给控制系统,并与设定的位置进行比较,然后通过控制系统进行调整,从而使执行机构以一定的精度达到设定位置。
1.2.2机械手的分类工业机械手的种类很多,关于分类的问题,目前在国内尚无统一的分类标准,在此暂按使用范围、驱动方式和控制系统等进行分类。
1、按用途分(1)专用机械手它是附属于主机的、具有固定程序而无独立控制系统的机械装置。
专用机械手具有动作少、工作对象单一、结构简单、使用可靠和造价低等特点,适用于大批量的自动化生产的自动换刀机械手,如自动机床、自动线的上、下料机械手。
(2)通用机械手它是一种具有独立控制系统的、程序可变的、动作灵活多样的机械手。
在其性能范围内,其动作程序是可变的,通过调整可在不同场合使用,驱动系统和控制系统是独立的。
通用机械手的工作范围大、定位精度高、通用性强,适用于不断变换生产品种的中小批量自动化的生产。
通用机械手按其控制定位的方式不同可分为简易型和伺服型两种:简易型以“开一关”式控制定位,只能是点位控制;伺服型可以是点位的,也可以实现连续轨迹控制,伺服型具有伺服系统定位控制系统,一般的伺服型通用机械手属于数控类型。
2、按驱动方式分(1)液压传动机械手液压传动机械手是以液压的压力来驱动执行机构运动的机械手。
其主要特点是:抓重可达几百公斤以上、传动平稳、结构紧凑、动作灵敏。
但对密封装置要求严格,否则液压油的泄漏对机械手的工作性能有很大的影响,且不宜在高温、低温下工作。
若机械手采用电液伺服驱动系统,可实现连续轨迹控制,使机械手的通用性扩大,但是电液伺服阀的制造精度高,油液过滤要求严格,成本高。
(2)气压传动机械手气压传动机械手是以压缩空气的压力来驱动执行机构运动的机械手。
其主要特点是:介质源极为方便,输出力小,气动动作迅速,结构简单,成本低。
但是,由于空气具有可压缩的特性,工作速度的稳定性较差,冲击大,而且气源压力较低,抓重一般在30公斤以下,在同样抓重条件下它比液压机械手的结构大,所以适用于高速、轻载、高温和粉尘大的环境中进行工作。
(3)机械传动机械手机械传动机械手即由机械传动机构(如凸轮、连杆、齿轮和齿条、间歇机构等)驱动的机械手。
它是一种附属于工作主机的专用机械手,其动力是由工作机械传递的。
它的主要特点是运动准确可靠,用于工作主机的上、下料。
动作频率大,但结构较大,动作程序不可变。
(4)电力传动机械手电力传动机械手即有特殊结构的感应电动机、直线电机或功率步进电机直接驱动执行机构运动的机械手,因为不需要中间的转换机构,故机械结构简单。
其中直线电机机械手的运动速度快和行程长,维护和使用方便。
此类机械手目前还不多,很有发展前途。
3、按控制方式分(1)点位控制它的运动为空间点到点之间的移动,只能控制运动过程中几个点的位置,不能控制其运动轨迹。
若欲控制的点数多,则必然增加电气控制系统的复杂性。
目前使用的专用和通用工业机械手均属于此类。
(2)连续轨迹控制它的运动轨迹为空间的任意连续曲线,其特点是设定点为无限的,整个移动过程处于控制之下,可以实现平稳和准确的运动,并且使用范围广,但电气控制系统复杂。
这类工业机械手一般采用小型计算机进行控制。
1.3国内外发展状况国外机器人领域发展近几年有如下几个趋势:(1)工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的6.5万美元。
(2)机械结构向模块化、可重构化发展。
例如关节模块中的伺服电机、减速机、检测系统三位一体化。
由关节模块、连杆模块重组方式构造机器人整机,国外已有模块化装配机器人产品问市。
(3)工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化。
器件集成度提高,控制柜日见小巧,且采用模块化结构,大大提高了系统的可靠性、易操作性和可维修性。
(4)机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制。
多传感器融合配置技术在产品化系统中已有成熟应用。
(5)虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制,如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。
(6)当代遥控机器人系统的发展特点不是追求全自动化系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。
美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最著名实例。
(7)机器人化机械开始兴起。
从94年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。
我国的工业机器人从80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科技攻关,目前己基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人,其中有130多台套喷漆机器人在二十余家企业的近30条自动喷漆生产线(站)上获得规模应用,弧焊机器人己应用在汽车制造厂的焊装线上。
但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如:可靠性低于国外产品,机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距。
在应用规模上,我国己安装的国产工业机器人约200台,约占全球已安装台数的万分之四。
以上原因主要是没有形成机器人产业,当前我国的机器人生产都是应用户的要求,“一客户,一次重新设计”,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。