现代信号处理-课后思考题(2016)
现代信号处理复习题
同时,信号与噪声不相关,即 E{s(t )n(t )} 0, ,试求因果 Weiner 滤波器的传递函数。 7.信号的函数表达式为:
x(t ) 0.001cos(2 100t 1 ) cos(2 50t 2 ) 0.1cos(2 150t 3 ) 0.002 cos(2 210t 4 ) (t )
2 是一零均值、方差为 w 的白噪声。证明 x ( n) 的功率谱为
Px ( f )
2 w 2 2 1 a1 a2 2a1 (1 a2 ) cos(2 f ) 2a2 cos(4 f )
6.令 s (t ) 是一平稳的随机过程,并且
1 e 2 1, 0 Rnn ( ) E{n(t )n(t )} 0, 0 Rss ( ) E{s(t ) s(t )}
现代信号处理技术及应用课程期末考核题目及要求
任课教师:电气工程学院 何正友、符玲 2016-06-14 (1)课程作业:作业共8个题目,作业中的每个题目应给出求解过程、程序和 最终结果(数据和曲线) ,不得抄袭,否则为零分。 (40分)
1. 为 何 对 于 最 大 似 然 估 计 , 对 于 大 的 N , ML 是 均 值 为 , 方 差 为
其中, 1 , 2 , 3 , 4 为不同初相角, (t ) 为高斯白噪声,采样频率 1kHz,采样时间 2.048s。 (1) 利用现代信号处理知识进行信号的谱估计; (2) 利用现代信号处理知识进行信号的频率提取; (3) 分别利用 Wiener 滤波和 Kalman 滤波进行去噪。 8.利用小波分析方法对上述信号进行频率提取和时频分析。
1 N 2 E ln f ( x1 , , xN | ) 的高斯分布。
现代数字信号处理课后习题解答
现代数字信号处理课后习题解答习题二1、求证:,()(,)x i j x i j xi xj R t t C t t m m =+。
证明:(,)(,)(,,,)xi j i j i jijijijR t t E x x x x p x x t t dx dx==(,)[(),()](),()(,,,)()(,,,)(,)(,)i j i j j i i j i j j i i j i jx i j i x j x i x j x i j i j i ji j i x j x x x i j i j i j x i j x x x x x x x i j x x C t t E x m x m x m x m p x x t t dx dx x x x m x m m m p x x t t dx dx R t t m m m m m m R t t m m =--=--=--+=--+=- 2、令()x n 和()y n 不是相关的随机信号,试证:若()()()w n x n y n =+,则w x ym m m =+和222w x y σσσ=+。
证明:(1)[()][()()][()][()]x ym E n E x n y n E x n E y n m m ωω==+=+=+ (2)2222222222[(())]{[()()()]}[(())(())][(())][(())]2[(())(())]2[]x y x y x y x y x y x y x y x y x y x yE n m E x n y n m m E x n m y n m E x n m E y n m E x n m y n m m m m m m m m m ωωσωσσσσ=-=+-+=-+-=-+-+--=++--+=+即222x y ωσσσ=+3、试证明平稳随机信号自相关函数的极限性质,即证明:①当0τ=时,2(0),(0)x x x x R D C σ==;②当τ=∞时,2(),()0x x x R m C ∞=∞=。
【现代信号处理】第二章 现代信号处理基础
S () | H () |2 S () S (s) H (s)H (s)S (s)
y
x
y
x
s j
2. 输入与输出的互功率谱
Rxy ( ) h( )* Rx ( )
LT ILT
S (s) H(s)S (s)
xy
x
S () H ()S () S (s) H (s)S (s)
xy
x
xy
x
s j
y
E[
x
T
x
]
0
0
E[
y
T
y
]
x
0
0
y
T
y
]T
随机矢量及其统计特性
z x 的概率密度函数即
和 y 的联合概率密度函数:
T
p(z) p{[x
T
y
]T
}
1
NM
(2 ) 2
1T exp( z
1z)
1
2
z
2zx来自1NM1
(2 ) 2 x 2
exp{
1
[
T
x
T
y ]
1
2
2
即从N个数据所得估计量的集平均等于待估计量的真值。
若
lim
N
E[
xˆN
]=x,则称xˆN
是x的渐进无偏估计。
2. 有效性(方差)
D(xˆN ) E[(xˆN E(xˆN ))2 ]
表明估计值偏离均值(对无偏估计即为真值)的分散程度。
随机信号的估计评价
E(xˆN )
b
x
(a)
x
(b) 方差小,偏差大
x
(c) 偏差小,方差大
现代信号处理思考题(含答案)
现代信号处理思考题(含答案)第一章绪论1、试举例说明信号与信息这两个概念的区别与联系。
信息反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。
信号是传载信息的物理量是信息的表现形式,如文字、语言、图像等。
如人们常用qq 聊天,即是用文字形式的信号将所要表达的信息传递给别人。
2、什么是信号的正交分解?如何理解正交分解在机械故障诊断中的重要价值?P9 正交函数的定义信号的正交分解如傅里叶变换、小波分解等,即将信号分解成多个独立的相互正交的信号的叠加。
从而将信号独立的分解到不同空间中去,通常指滤波器频域内正交以便于故障分析和故障特征的提取。
傅里叶变换将信号分解成各个正交的傅里叶级数,将信号从时域转换到频域从而得到信号中的各个信号的频率。
正交小波变换能够将任意信号(平稳或非平稳)分解到各自独立的频带中;正交性保证了这些独立频带中状态信息无冗余、无疏漏,排除了干扰,浓缩了了动态分析与监测诊断的信息。
3、为什么要从内积变换的角度来认识常见的几种信号处理方法?如何选择合适的信号处理方法?在信号处理各种运算中内积变换发挥了重要作用。
内积变换可视为信号与基函数关系紧密程度或相似性的一种度量。
对于平稳信号,是利用傅里叶变换将信号从时域变为频域函数实现的方式是信号函数 x( t)与基函数 e i t通过内积运算。
匹配出信号x( t )中圆频率为 w 的正弦波 .而非平稳信号一般会用快速傅里叶变换、离散小波变换、连续小波变换等这些小波变换的内积变换内积运算旨在探求信号x(t )中包含与小波基函数最相关或最相似的分量。
“特征波形基函数信号分解”旨在灵活运用小波基函数a, b (t)去更好地处理信号、提取故障特征。
用特定的基函数分解信号是为了获得具有不同物理意义的分类信息。
不同类型的机械故障会在动态信号中反应出不同的特征波形,如旋转机械失衡振动的波形与正弦波形有关,内燃机爆燃振动波形是具有钟形包络的高频波;齿轮轴承等机械零部件出现剥落。
信号处理-习题(答案)【方案】.doc
数字信号处理习题解答 第二章 数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。
试问输出信号y 1(t ),y 2(t )有无失真?为什么?分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。
解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真;因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。
2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。
○1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即f s ≥2f m○2采样公式 )()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nTt s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。
现代信号处理 总结1
第1章 离散时间信号与系统1、 傅里叶分析和Z 变换的区别、缺陷、特点关系:点数为N 的有限长序列x(n)的Z 变换为X(z),而其离散傅里叶变换为X(k),两者均表示了同一有限长序列x(n)的变换,它们之间的关系是:对z 变换在单位圆上取样可得DFT 。
而DFT 的内插就是变换。
傅里叶变换优缺点(1) 傅里叶变换缺乏时间和频率的定位功能 (2) 傅里叶变换对于非平稳信号的局限性(3) 傅里叶变换在时间和频率分辨率上的局限性傅立叶变换是最基本得变换,由傅里叶级数推导出。
傅立叶级数只适用于周期信号,把非周期信号看成周期T 趋于无穷的周期信号,就推导出傅里叶变换,能很好的处理非周期信号的频谱。
但是傅立叶变换的弱点是必须原信号必须绝对可积,因此适用范围不广。
Z 变换的本质是离散时间傅里叶变换(DTFT ),如果说拉普拉斯变换专门分析模拟信号,那Z 变换就是专门分析数字信号,Z 变换可以把离散卷积变成多项式乘法,对离散数字系统能发挥很好的作用。
Z 变换看系统频率响应,就是令Z 在复频域的单位圆上跑一圈,即Z=e^(j2πf),即可得到频率响应。
2、系统的记忆性、因果性、可逆性(1)记忆性如果系统在任意时刻n0的响应仅与该时刻的输入f(n0)有关,而与其它时刻的输入无关,则称该系统为非记忆系统(或系统无记忆性),否则称为记忆系统。
系统的记忆性有时也被称为动态特性。
该特性强调系统的响应是否仅与当前时刻的输入有关。
对于无记忆LTI 系统,其系统冲激响应为,其中()()h n K n δ=,K 为一常数。
由于系统频率响应是冲激响应的傅氏变换、系统函数为系统冲激响应的z 变换,因此,无记忆LTI 系统的系统频率响应和系统函数分别为H(ω)=K ,H(z)=K 。
(2) 因果性如果系统任意时刻的响应与以后的输入无关,则该系统称为因果系统(或系统具有因果性),否则为非因果系统。
该特性强调的是,系统的响应是否与未来的输入有关。
现代数字信号处理 姚天任 第三章答案上
第三章答案3.1解: (1):由题设:h (n) =)()(10n h n hy (n)=)1()(-n yn y 则u (n) =h (n) y (n)所以可得最陡下降法解:h (n=1) =h *+(I-2μR )2h (0)- h *其中R =)0()1()1()0(yy yy yy yy R R R = 3223(2):h *= R1-P =3 =1-(3):由于R =5225 则可得λ1=1,λ2=5;所以μ的取值范围为:0<μ<51当μ=61时迭代公式收敛。
(4):μ=61时h (n) = 14- + 100132× h (0) - 14-=14- +32--(0) - 14-3.2解:(1)空(2)e (n) = x (n)-y (n)[2μe (n-1)y (n-1)+h (n-1)] = x (n)-u (n)[2μe (n-1)y (n-1)+h (n-1)] 对e (n)进行z 变换: e (Z) = x (z) - 2μZ1-e (Z) - Z1-h (Z)由h (n)=2μe (n-1)u (n-1)+h (n-1) 得 h (Z)=2μZ1-e (Z) + Z1-h (Z)h (Z)=1-11)(Z 2--ZZ e μ 所以:e (Z) = x (Z)-2μZ1-e (Z)- Z1-1-11)(z 2--zz e μH (Z) = 11)1(211---+-ZZ μ 所以零点在单位园上,极点在Z = 1-2μ园上。
(3):要使H(Z)稳定,则极点在单位园内即: 0121><-μμ且3.3(1)性能曲面函数:[][][]⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---+=-+=+-=-==+-=-=-=-====-==⎥⎦⎤⎢⎣⎡---==-+=1022202222010222)1([)]()1([)]1()([)([102)]([)()55(2125)]1()([0)]()([10)]([85585)]()1([)]1()([25)]1([25)]([)2cos(2)()2sin()()()()()1()()()()]()([)1([)]()1([)]1()([)([)]()([2)]([)(W W n x E n x n x E n x n x E n x E W W WP RW W n d E n n x n d E n x n d E n d E n x n x E n x n x E n x E n x E n N n d n N n x n W n W n W n x n d n x n d E n X n d E P n x E n x n x E n x n x E n x E n X n X E R WP RW W n d E n T T TTT T ξππξ[]⎥⎦⎤⎢⎣⎡--10)1()()()(2W W n x n d n x n d[]⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+=10202585585]855852510W W W W⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+--10)55(212502W W1211020)55(21525)45545(2510w w w w w ++++-++=(2)误差性能曲面matlab 程序: (3)[][][][][])1(*)(*2)1(**2)(*)1(**2)(*)(*2)(*)1(**2)(**2 210112001---+-=∂∂-+-+=∂∂⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂=∇n x n d n x E w n x n X E w w n x n d n x n X E w n X E w w w w w Tξξξξξ (4)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎥⎦⎤⎢⎢⎣⎡==---* 2.1029-0.6498 7553.40 0.4422 0.1367-0.1367- 0.4422 7553.402.5 0.77250.7725 2.5 )1()()()(1)-(n x 1)-x)n *x(n)1)-x(n *n) x( )( *11221n x n d n x n d n x pR w(5)[][]91-10 1029.2698.04.7553- 0-10 *)(2min ==⎥⎦⎤⎢⎣⎡-=-=*w p n d E T ξ 3.4[][]2725.3*2*27275.1*2*20.70717071.0 0.7071- 7071.02725.3 7275.1 2.5 .0.77250.7725 2.5 1)-(n x 1)-x(n *x(n)1)-x(n * x(n) )(1120102111021w2==∂∂==∂∂====⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=λλξλλξV V V V n x E R TT[][][][]4216142)2( 8722242 8722112 )]([ 2)]([)(15..3101021201010101010101022+--++=+-⎥⎦⎤⎢⎣⎡+++=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=-+=ωωωωωωωωωωωωωωωωωωωωωωωεn d E P R n d E n T )解:([][][][]()()()[]6222)5(30014'300113122112'21124 )4(438423287)]([)]([ )3(323296872112872112 210'1''1'0min 2min 2110min 2*2min *1*03131*1*011*2'122'02====⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=Λ+=⎥⎦⎤⎢⎣⎡=Λ∴--=--=⎥⎦⎤⎢⎣⎡--=-Λ+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=+==-=⎥⎦⎤⎢⎣⎡-=-==⇒⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⇒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡==∂∂∂∂--λλεελλλλλλεεεεωεωωωωωεεv v T T TTv v v v v v R E v v v v v v Rv v n d E P n d E P R )、(3.6 解:(1)[][]()()[][][][][][][][][]NN N NN NN N N N N N T NN NN N N N N n N N N TT TT T T T n d E n n E n d E E n E n n E n n E n r n x n d n r n x n d E n X n d E P R n n n n x n E n r n x E n x n x E n r n x n r n x E n r n x E n nr E n r E n E n r n E n r n x E n r n x n r n x E n r n x n r n x E E n X n X E R n n n X n d E n n X n X E n n n y n d E n e E n ππππππππππππππππππππππππωωωωωϕωωωωϕϕωωεϕϕϕφωωωωωωεπ212021*********221221211022222242222212212212122124221222212cos -122222222210222sin 2cos ))(5.0(2sin 02cos cos )]([)(2]cos 4[)]([sin 0][sin ][sin )]1(sin )1([cos sin cos 2[)]1()1()(())()()(([)]()([cos cos cos ))]cos((cos E[ )]1(sin sin E[1)]-E[x(n)x(n 1)]-E[r(n)r(n )]1()[()]1()([)]1()([))]1()1())(()([(]))1()1([(E )(sin 2)(sin ))((sin ]r(n))E[(x(n)]))1()1([())]()())(1()1([())]1()1())(()([(]r(n))E[(x(n) ]1)-r(n 1)-x(n r(n)x(n)1)-r(n 1)-x(n r(n)x(n)[])()([1)-r(n 1)-x(n r(n)x(n)X(n) )()()]()([2)(])()([)()](E[d ]))()([()]([)(N 4+++++=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+++=∴====--=-+-+==⎥⎦⎤⎢⎣⎡++=∴=--=-==+-+-+-=-+-+-+-=+=+⎥⎦⎤⎢⎣⎡=++=+=+⎥⎦⎤⎢⎣⎡-+-+-+--+-++=++++==++==-+=-==[]05.0][1044/1T 14.54/1(4)T )21/(1u 0 : ][021][)cos(2/11/2 0 ]cos cos [R -E ]cos cos [)3())cos()21/(()sin()21(2))cos()21/(()sin()cos(20)sin(2)cos(2)5.0(0)cos(2)5.0( )2(2mse21mse112122122122121212212212122221*222220*2201210101======+<<∴<<+=+=+==------=++=⎪⎩⎪⎨⎧-++-=-+=⇒⎪⎩⎪⎨⎧=+++==++===∇-+=∂∂∂∂∂∂∂∂∂∂R ut M u u u R t u R t R r r r N N NN N N N N N N N N N T λλϕϕλλϕλϕλϕλλϕϕϕϕωϕωωωϕωωϕππππππππππππωεπωεωεωεωε值范围为系统收敛的3.11答案:11)(4)(4.0)()]()([2))(()()]([)(min))(()()()()()()1(22222+-=-+===-=n h n h n h n y n x E n y E n h n x E n n e E n n y n h n x n e ξξ5)(04)(8.0)()(==-=n h n h n dh n d ξ (2)μμμξ4)()2.31())(8.04()())(()()1(48.0)(+-=-+=-∇+=+-=∂∂=∇n h n h u n h n n h n h h hn 数迭代计算公式为:最陡下降法推导加权系(3)求加权系数表达式]10)0([)8.01(10])0([)2()(**--+=--+=h h h R I h n h nn μμ要求1max 0-<<λμ5.204.010<<<<∴μμ即3.12答案:2102][][0)1(1011<<==<<∑=--μλμμ即满足为保证收敛应使k k R tr R tr器的收敛速度相同。
西南交大现代信号处理部分答案
题1:(1) 错误!未找到引用源。
是随错误!未找到引用源。
变化的随机信号,因此错误!未找到引用源。
=错误!未找到引用源。
.所以谐波信号)(tx的均值为错误!未找到引用源。
=错误!未找到引用源。
由于谐波信号)(tx的均值等于零,故其方差等于二阶矩,既有错误!未找到引用源。
错误!未找到引用源。
所以x(t)的方差为错误!未找到引用源。
谐波信号)(tx的自相关函数错误!未找到引用源。
又错误!未找到引用源。
所以错误!未找到引用源。
由于x(t)的均值为0,故所以错误!未找到引用源。
(2) y(t)是随B变化的随机信号,因此错误!未找到引用源。
B是标准高斯随机变量,所以错误!未找到引用源。
,所以错误!未找到引用源。
. 由于错误!未找到引用源。
统计独立,故有错误!未找到引用源。
而x(t)和y(t)的均值均为0,所以错误!未找到引用源。
题2:令错误!未找到引用源。
,由于错误!未找到引用源。
是零均值、方差为错误!未找到引用源。
的高斯随机过程,错误!未找到引用源。
和错误!未找到引用源。
是确定的过程,所以x(n)也是一高斯随机过程,其均值错误!未找到引用源。
是时间的函数.所以x(n)的概率密度函数是∏=---=NnBnAnxxf1222}])([21ex p{21);(σπσθ=}])([21ex p{)2(12122/2BnAnxNnN---∑=σπσ在多个未知参数的情况下,Cramer-Rao不等式变为矩阵不等式:∑-≥)(1θJ其中错误!未找到引用源。
无偏估计子错误!未找到引用源。
的协方差矩阵,而错误!未找到引用源。
是Fisher信息矩阵J的逆矩阵,而信息矩阵错误!未找到引用源。
的构成元素为错误!未找到引用源。
本题中,计算得错误!未找到引用源。
错误!未找到引用源。
=错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
《现代数字信号处理》第2章习题答案
∞
∞
1 1− z
1 2 −1
+
1 3 1 −1 = ⋅ 1 1 −1 1− 2 z 4 (1 − 2 z )(1 − 1 2 z)
−1 1 (1 − 1 3 1 3 1 2 z ) (1 − 2 z ) = ⋅ ⋅ ⋅ = ⋅ −1 1 −1 1 1 −1 1 1 4 (1 − 2 z )(1 − 2 z ) (1 − 3 z ) (1 − 3 z ) 4 (1 − 3 z )(1 − 1 3 z )
1 1− ∑ a (k ) z
k =1 2 v p
−k
2 2 , Px ( z ) =H ( z ) H * (1/ z * ) σ w =σw
1 1− ∑ a (k ) e
k =1 p
2
− jkω
(b) Pz ( z ) = Px ( z ) + σ
2.4 设给定一个线性移不变系统,其系统函数为 H ( z ) = (1 −
σ ∑⎢ ⎣
i =1
N
⎡
2 x
−
2 2 1 2⎤ σx + σx ⎥ N N ⎦
=
N −1 2 σx N
(b) E
{(σ
2
x
− E {σ x }
2
)}
2
⎧⎛ 2 N − 1 2 ⎞ 2 ⎪ ⎫ ⎧ N − 1 2 2 ( N − 1) 2 4 ⎫ ⎪ ˆx − = E ⎨⎜ σ σ x ⎟ ⎬ = E ⎨σ x4 − 2 σ xσ x + σx ⎬ 2 N N N ⎝ ⎠ ⎩ ⎭ ⎪ ⎪ ⎩ ⎭
{ }
N
( N − 1) 2 4 σx N2
− x)
(I)
现代信号处理第一章习题答案:
现代信号处理第一章习题答案: 习题1) 证明1:可通过特征函数证明(证明略) 证明2:设X ,Y 为量个独立的随机变量,概率密度分别为()X f x ,()Y f y 。
那么随即变量Z=X+Y 的分布函数为 {}()()()Z X Y x y zF z P Z z f x f y dxdy +≤=≤=⎰⎰。
将该式化成累次积分,得到()()()z y Z X Y F z f x f y dx dy ∞--∞-∞⎡⎤=⎢⎥⎣⎦⎰⎰,令x=t-y ,得到()()()()z y zX Y X Y f x f y dx f t y f y dt --∞-∞=-⎰⎰ 那么()()()()()z z Z X Y X Y F z f t y f y dt dy f t y f y dy dt ∞∞-∞-∞-∞-∞⎡⎤⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ 所以 ()()()Z X Y X Y f z f z y f y dy f f ∞-∞=-=*⎰。
证毕。
2) 根据题意,有22(),x X f x x -=-∞<<∞,22(),y Y f y y -=-∞<<∞根据习题1,Z=X+Y 的概率密度为 22()221()()()2z y y Z X Y X Y f z f f f z y f y dy eedy π---∞∞-∞-∞=*=-=⎰⎰=22()4212z z y eedy π---∞-∞⎰通过换元,得到 2241()2z t z f z ee dt π-∞--∞=⎰,222t t e dt e dt ∞∞---∞=⎰⎰,其中2t e dt ∞-⎰为Poisson积分,2t e dt ∞-=⎰所以24()z z f z -,所以~(0,2)Z N 。
3) 由相关系数的定义12Z Z ρ=,1211221212(,){[()][()]}()()()Cov Z Z E Z E Z Z E Z E Z Z E Z E Z =--=-由题意得2()(),()()E X E Y D X D Y μσ====,22222()()[()]()E X D X E X E Y σμ=+=+=根据均值和方差的性质:1()()()()()E Z E X Y E X E Y αβαβαβμ=+=+=+222221()()()()()D Z D X Y D X D Y αβαβαβσ=+=+=+,2()()()()()E Z E X Y E X E Y αβαβαβμ=-=-=-!!根据方差的定义展开222222()()()()()D Z D X Y D X D Y αβαβαβσ=-=+=+222212()[()()]()(E Z Z E X Y X Y E X Y αβαβαβαβμσ=+-=-=2222-)(+)2222222222121212(,)()()()()()()()Cov Z Z E Z Z E Z E Z αβμσαβμαβσ=-=-+--=-1222222222222221()()()()()()Z Z D Z αβσαβσαβραβσαβ---====++4) 根据题意通过全概率的公式,定义事件A 为不合格事件 条件概率P(A/甲厂)=0.01, P(A/乙厂)=0.02 先验概率 P(甲厂) = 0.4, P(乙厂) = 0.6P(A)= P(A/甲厂) P(甲厂) + P(A/乙厂) P(乙厂)=0.016。
现代信号处理-课后思考题(2013)
《现代信号处理技术及应用》第一章绪论1.试举例说明信号与信息这两个概念的区别与联系。
2.什么是信号的正交分解?如何理解正交分解在机械故障诊断中的重要价值?3.为什么要从内积变换的角度来认识常见的集中信号处理方法?如何选择合适的信号处理方法?4.对于基函数的各种性质的物理意义如何理解?第二章信号的时域分析1.解释理想滤波器的特点。
2.描述实际滤波器的参数有哪些?其物理含义是什么?3.图示说明采样定理的基本原理,实际测试时如何确定采样频率和数据长度?4.窗函数为什么会导致频谱泄露?试讨论检测两个频率接近幅度不同的信号,选择哪种窗函数比较合适?5.有量纲指标与无量纲指标各有什么优缺点?试举例说明。
6.结合你自己的研究方向,谈谈如何应用自相关函数与互相关函数。
第三章信号的频域分析1.谈谈你对信号频谱的物理本质是如何理解的?结合傅里叶变换的性质,试举例说明其重要作用。
2.解释机械信号在离散化过程中产生频率混叠现象及其原因?在工程实践中如何避免频率混叠现象?3.在进行信号频谱分析时,为何要加窗函数?如果要求频谱分析结果的幅值精度高,泄露量小,应该选择什么窗函数?为什么?4.什么是倒频谱?倒频谱的量纲物理单位是什么?你如何利用倒频谱原理将时域中两个卷积信号转换为倒频域中相应的两个线性相加的倒频谱?5.请说明旋转机械故障诊断中二维全息谱的原理。
工频全息谱椭圆较扁说明转子系统存在什么状态现象?第四章循环平稳信号分析1.给出循环平稳信号的定义,并解释机械设备循环平稳信号的特点。
2.为什么齿轮、轴承等机械设备在故障发生时,其振动信号往往具有循环平稳性?3.对于时间序列x(k), k=1,2,…,N, N∈Z,试给出其循环自相关函数的算法步骤。
4.如何通过循环谱识别调幅信号的调制频率和载波频率?第五章非平稳信号处理方法1.请结合时频平面划分的不同,对比说明短时傅里叶变换与小波变换时频分辨率的区别?2.解释尺度函数和小波函数的功能,并给出小波分解三层和小波包分解三层的频带划分示意图。
南邮现代信号处理最后大作业4道题目(含答案)
南邮研究生“现代信号处理”期末课程大作业(四个题目任选三题做)1. 请用多层感知器(MLP )神经网络误差反向传播(BP )算法实现异或问题(输入为[00;01;10;11]X T =,要求可以判别输出为0或1),并画出学习曲线。
其中,非线性函数采用S 型Logistic 函数。
2. 试用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组;并画出其频响。
滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。
3. 根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001)第四章附录提供的数据(pp.352-353),试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线:1) Levinson 算法2) Burg 算法3) ARMA 模型法4) MUSIC 算法4. 图1为均衡带限信号所引起失真的横向或格型自适应均衡器(其中横向FIR 系统长M =11), 系统输入是取值为±1的随机序列)(n x ,其均值为零;参考信号)7()(-=n x n d ;信道具有脉冲响应:12(2)[1cos()]1,2,3()20 n n h n W π-⎧+=⎪=⎨⎪⎩其它式中W 用来控制信道的幅度失真(W = 2~4, 如取W = 2.9,3.1,3.3,3.5等),且信道受到均值为零、方差001.02=v σ(相当于信噪比为30dB)的高斯白噪声)(n v 的干扰。
试比较基于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线):1) 横向/格-梯型结构LMS 算法2) 横向/格-梯型结构RLS 算法并分析其结果。
图1 横向或格-梯型自适应均衡器一、请用多层感知器(MLP)神经网络误差反向传播(BP)算法实现异或问题(输入为[00;01;10;11]X T,要求可以判别输出为0或1),并画出学习曲线。
现代信号处理试题及答案总结汇编
P29采样、频率混叠,画图说明将连续信号转换成离散的数字序列过程就是信号的采样。
它包含了离散和量化两个主要步骤。
若采样间隔Δt 太大,使得平移距离2π/Δt 过小。
移至各采样脉冲函数对应频域序列点上的频谱X(ω)就会有一部分相互重叠,由此造成离散信号的频谱与原信号频谱不一致,这种现象称为混叠。
P33列举时域参数(有量纲和无量纲),说明其意义与作用。
有量纲参数指标包括方根幅值、平均幅值、均方幅值和峰值四种。
无量纲参数指标包括了波形指标、峰值指标、脉冲指标和裕度指标。
偏斜度指标S 表示信号概率密度函数的中心偏离正态分布的程度,反映信号幅值分布相对其均值的不对称性。
峭度指标K 表示信号概率密度函数峰顶的陡峭程度,反映信号波形中的冲击分量的大小。
P37~自相关互相关及作用(举例说明)相关,就是指变量之间的线性联系或相互依赖关系。
信号x (t )的自相关函数:信号中的周期性分量在相应的自相关函数中不会衰减,且保持了原来的周期。
因此,自相关函数可从被噪声干扰的信号中找出周期成分。
在用噪声诊断机器运行状态时,正常机器噪声是由大量、无序、大小近似相等的随机成分叠加的结果,因此正常机器噪声具有较宽而均匀的频谱。
当机器状态异常时,随机噪声中将出现有规则、周期性的信号,其幅度要比正常噪声的幅度大得多。
依靠自相关函数就可在噪声中发现隐藏的周期分量,确定机器的缺陷所在。
(如:自相关分析识别车床变速箱运行状态,确定存在缺陷轴的位置;确定信号周期。
)互相关函数:互相关函数的周期与信号x(t)和y(t)的周期相同,同时保留了两个信号的相位差信息φ。
可在噪音背景下提取有用信息;速度测量;板墙对声音的反射和衰减测量等。
(如:利用互相关分析测定船舶的航速;探测地下水管的破损地点。
P42)P51~蝶形算法FFT 的基本思想是把长度为2的正整数次幂的数据序列{x k }分隔成若干较短的序列作DFT 计算,用以代替原始序列的DFT 计算。
现代数字信号处理课后习题解答
习题二1、求证:,()(,)x i j x i j xi xj R t t C t t m m =+。
证明:(,)(,)(,,,)x i j i j iji j i j i j R t t E x x x xp x x t t dx dx ==⎰⎰(,)[(),()](),()(,,,)()(,,,)(,)(,)i j i j j i i j i j j i i j i jx i j i x j x i x j x i j i j i ji j i x j x x x i j i j i j x i j x x x x x x x i j x x C t t E x m x m x m x m p x x t t dx dx x x x m x m m m p x x t t dx dx R t t m m m m m m R t t m m =--=--=--+=--+=-⎰⎰⎰⎰ 2、令()x n 和()y n 不是相关的随机信号,试证:若()()()w n x n y n =+,则w x y m m m=+和222w x y σσσ=+。
证明:(1)[()][()()][()][()]x ym E n E x n y n E x n E y n m m ωω==+=+=+ (2)2222222222[(())]{[()()()]}[(())(())][(())][(())]2[(())(())]2[]x y x y x y x y x y x y x y x y x y x yE n m E x n y n m m E x n m y n m E x n m E y n m E x n m y n m m m m m m m m m ωωσωσσσσ=-=+-+=-+-=-+-+--=++--+=+即222x y ωσσσ=+3、试证明平稳随机信号自相关函数的极限性质,即证明: ①当0τ=时,2(0),(0)x x x x R D C σ==; ②当τ=∞时,2(),()0x x x R m C ∞=∞=。
西南交大现代信号处理部分答案
题1:(1) 错误!未找到引用源。
是随错误!未找到引用源。
变化的随机信号,因此错误!未找到引用源。
=错误!未找到引用源。
.所以谐波信号)(tx的均值为错误!未找到引用源。
=错误!未找到引用源。
由于谐波信号)(tx的均值等于零,故其方差等于二阶矩,既有错误!未找到引用源。
错误!未找到引用源。
所以x(t)的方差为错误!未找到引用源。
谐波信号)(tx的自相关函数错误!未找到引用源。
又错误!未找到引用源。
所以错误!未找到引用源。
由于x(t)的均值为0,故所以错误!未找到引用源。
(2) y(t)是随B变化的随机信号,因此错误!未找到引用源。
B是标准高斯随机变量,所以错误!未找到引用源。
,所以错误!未找到引用源。
. 由于错误!未找到引用源。
统计独立,故有错误!未找到引用源。
而x(t)和y(t)的均值均为0,所以错误!未找到引用源。
题2:令错误!未找到引用源。
,由于错误!未找到引用源。
是零均值、方差为错误!未找到引用源。
的高斯随机过程,错误!未找到引用源。
和错误!未找到引用源。
是确定的过程,所以x(n)也是一高斯随机过程,其均值错误!未找到引用源。
是时间的函数.所以x(n)的概率密度函数是∏=---=NnBnAnxxf1222}])([21ex p{21);(σπσθ=}])([21ex p{)2(12122/2BnAnxNnN---∑=σπσ在多个未知参数的情况下,Cramer-Rao不等式变为矩阵不等式:∑-≥)(1θJ其中错误!未找到引用源。
无偏估计子错误!未找到引用源。
的协方差矩阵,而错误!未找到引用源。
是Fisher信息矩阵J的逆矩阵,而信息矩阵错误!未找到引用源。
的构成元素为错误!未找到引用源。
本题中,计算得错误!未找到引用源。
错误!未找到引用源。
=错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
现代数字信号处理课后习题解答
习 题 二1、求证:,()(,)x i j x i j xi xj R t t C t t m m =+。
证明:(,)(,)(,,,)x i j i j i jijijijR t t E x x x x p x x t t dx dx==⎰⎰(,)[(),()](),()(,,,)()(,,,)(,)(,)i j ijjiiji j j i i j i jx i j i x j x i x jx ijijijijix jx x x ijijijx i j x x x x x x x i j x x C t t E x m x m x m x m p x x t t dx dxx x x m x m m m p x x t t dx dxR t t m m m m m m R t t m m =--=--=--+=--+=-⎰⎰⎰⎰2、令()x n 和()y n 不是相关的随机信号,试证:若()()()w n x n y n =+,则w x ym m m =+和222w x y σσσ=+。
证明:(1)[()][()()][()][()]x ym E n E x n y n E x n E y n m m ωω==+=+=+ (2)2222222222[(())]{[()()()]}[(())(())][(())][(())]2[(())(())]2[]x y x y x y x y x y x y x y x y x y x yE n m E x n y n m m E x n m y n m E x n m E y n m E x n m y n m m m m m m m m m ωωσωσσσσ=-=+-+=-+-=-+-+--=++--+=+即222x y ωσσσ=+3、试证明平稳随机信号自相关函数的极限性质,即证明: ①当0τ=时,2(0),(0)x x x x R D C σ==; ②当τ=∞时,2(),()0x x x R m C ∞=∞=。
东南大学 考博 信号与信息处理 《现代数字信号处理》第5章习题解答
∫ = 1
2π
π
−π Px
e jω WB
e j(ω−θ ) dθ ,其中WB
e jω
=
1 L
⎡ ⎢ ⎢ ⎢⎣
sin sin
ωL 2
ω 2
⎤2 ⎥。 ⎥ ⎥⎦
( ) 由于已选择 L 使得两个峰值可以被分辨,因此不妨假设WB
e jω
只在区间 − Δω ≤ ω ≤ Δω
2
2
( ) 上非零。进一步,由于WB e jω 窗函数的主瓣宽度远大于谱峰的宽度,因此可假设在区间
aZ
−1
1 +
0.98Z
−2
由于输入到该滤波器的是单位方差白噪声,因此输出 x (n) 的功率谱是:
H
(
z
)
=
1+
az −1
1 +
0.99 z −2
×
1−
az −1
1 +
0.98 z −2
×
1+
az
1 + 0.99z2
×
1−
az
1 + 0.98z2
显然,Px ( z ) 有 8 个极点,其中 4 个在单位圆内,4 个在圆外。由于每个极点都接近单位圆,
≈
1.0
2.5 ×103 ×10−4 + 4.0204a
2
( ) ( )( ) Px
e jω2
=
1 4.0 ×10−4 + 3.97987a2 1.0×10−4 − 3.0 ×10−5 a2
≈
104 4.0×10−4 + 3.97987a2
( ) ( )( ) Px
e jω0
=
信号分析与处理的几个思考题
信号分析与处理的⼏个思考题“测试信号分析”课程思考题1. 信号分析与信号处理的内容和任务是什么?答:信号分析就是将⼀复杂信号分解为若⼲简单信号分量的叠加,并以这些分量的组成情况去考察信号的特征。
信号处理是指对信号进⾏某种变换或运算(如滤波、变换、增强、压缩、估计、识别等)⼴义的信号处理也可包括信号分析在内。
信号处理包括时域和频域处理,时域处理中最典型的是波形分析。
信号处理另⼀重要内容是滤波,将信号中感兴趣的部分提取出来,抑制不感兴趣的部分(⼲扰、噪声)。
2. 简要说明什么是模拟信号处理系统,什么是数字信号处理系统?答:系统的输⼊输出信号都是模拟信号的处理系统称为模拟信号处理系统,系统的输⼊输出信号都是数字信号的处理系统称为数字信号处理系统。
3. 离散信号的表⽰⽅法是什么?离散信号变量的物理概念是什么?答:离散信号通常⽤序列()n x 来表⽰,其中n 为整数,表⽰序号。
序列就是按⼀定次序排列的⼀组数,可⽤函数、数列、图形表⽰。
离散信号变量代表的是离散的时间,即采样间隔的n 倍。
4. 周期序列与⾮周期序列是如何定义的?试举⼀周期序列的例⼦。
答:具有()mN n +=p p x )n (x 形式的序列称为周期序列。
其他形式的称为⾮周期序列。
例如正弦序列[]()?+Ω=n n x sin ,(当Ωπ2为⾮⽆理数时)5. 根据傅⾥叶变换性质,当将磁带慢录快放将产⽣什么样的声⾳效果?答:根据傅⾥叶变换的时间尺度变化性质,磁带快放相当于信号在时域中的时间函数压缩了N 倍,则它在频域中的频域函数就要扩展N 倍。
因此声⾳变尖,失真。
6. 讨论周期为1T 的矩形脉冲信号)(t f T 与它⼀个周期内的信号)(t f 0的傅⾥叶变换间的关系。
根据时域采样定理说明采样过程中如何减⼩信号失真。
答:周期矩形脉冲信号的傅⾥叶级数的系数等于其单位脉冲信号的傅⾥叶变换()ω0F 在1ωωn =频率点的值乘以11T 。
连续信号必须是带限信号,采样频率必须⼤于或等于信号所具有最⾼频率的两倍。
信号处理-习题(答案)
数字信号处理习题解答 第二章 数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。
试问输出信号y 1(t ),y 2(t )有无失真?为什么?分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。
解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真;因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真.2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。
错误!采样定理采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即f s ≥2f m错误!采样公式)()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nTt s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果.第三章 傅里叶分析I. 傅里叶变换概述3.1 [习题3.2]设序列x (n )=δ(n-m ),求其频谱X (e j ω),并讨论其幅频和相频响应分析:求解序列的频谱有两种方法:○,1先求序列的z 变换X (z ),再求频谱ωωj e z j z X e X ==)()(,即X (e j ω)为单位圆上的z 变换;错误!直接求序列的傅里叶变换∑∞-∞=-=n nj j en x e X ωω)()(解:对序列x (n )先进行z 变换,再求频谱,得m z m n ZT n x ZT z X -=-==)]([)]([)(δ则ωωωjm e z j e z X e X j -===)()(若系统的单位采样响应h (n )=x (n ),则系统的频率响应)}(exp{)(1)()(ωϕωωωωωj e H e e e X e H j jm jm j j ====--•故其幅频和相频响应(如图)分别为幅频响应 1)(=ωj e H 相频响应 ωωϕm -=)(由图可见,该系统的频率响应具有单位幅值以及线性相位的特点。
《现代信号处理》题库
《现代信号处理》题库1、简述时频分析的意义,列举几种常用时频分析方法及其特点。
2、试叙述信号分析的不确定原理,计算Gauss信号的频率窗半径。
3、谱图是否为Wigner-Ville分布的平滑,请说明理由; 举例对比谱图与WV分布的分辨率情况。
4、简述多分辨率分析的意义及Mallat分解算法的优点。
5、什么是小波的容许条件,试由此简要地说明小波函数是带通的且其时域波形是振荡的。
6、什么是连续信号的Gabor展开?实际利用Gabor展开分析信号时,是采用临界抽样还是过抽样?请说明理由。
7、什么是信号的模糊函数,简要叙述模糊函数的意义和应用。
能否设计出一个2-D低通滤波器且保持能量的时间边缘特性,为什么?8、什么情况下要用小波包?简要说明如何选取"最佳小波包"。
9、什么是信号的抽取?什么是信号的插值?抽取前以及插值后分别要进行滤波,请给出各自需要滤波的原因。
10、小波提升方案与第一代小波构造方法的主要区别是什么?简述小波提升方案的优点。
为什么说它是在时域或空域中直接实现小波构造的?11、试叙述信号分析的不确定原理,并以高斯信号为例解释相关概念。
12、相对于傅里叶变换,短时傅里叶变换有何特点?窗口应满足什么条件?13、相对于信号的谱图,wvd有何优缺点?14、什么是小波变换的恒Q性质?试由此简要说明小波变换的时频分析特点。
15、试给出能保持信号能量边缘特性的和不能保持信号能量边缘特性的时频变换的例子。
16、什么是连续信号的Gabor展开?实际利用Gabor展开分析信号时,是采用临界采样还是过采样?说明理由。
17、简要叙述Cohen类时频分布对核函数的要求。
18、简述现代信号处理与经典信号处理的区别。
19、请比较Gabor变换与短时Fourier变换。
20、Wigner分布是否是信号的能量分布?请给出解释。
21、 请比较小波分析与经典时频分析。
22、 请给出高阶消失矩小波的优点。
23、 能否设计出一个2D 低通滤波器且保持能量的时间边缘特性,为什么?24、 请给出随机信号是广义平稳信号的条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 连续小波变换及其工程应用
连续小波变换和离散小波变换的各有哪些优点和缺点? 以谐波小波变换为例,说明如何实现连续小波变换的 快速算法? 为什么小波分析与分形理论可以相结合构成小波分形 技术?除了谐波小波轴心轨迹的盒维数应用外,请提 出其它的振动信号小波分形应用方法。 自学Laplace小波和Hermitian小波,简要说明其特 点与工程应用价值。
第七章 基于第二代小波变换的信号 处理
与经典小波相比,第二代小波的优势哪些? 图示说明第二代小波分解的基本原理。 简要说明第二代小波尺度函数和小波函数特 性。 简要说明基于第二代小波包分解的滚动轴承 损伤定量识别方法。 为什么要进行冗余第二代小波EMD的时频分析方法及其应 用
第三章 信号的频域分析
谈谈你对信号频谱的物理本质是如何理解的?结合傅 里叶变换的性质,试举例说明其重要作用。 解释机械信号在离散化过程中产生频率混叠现象及其 原因?在工程实践中如何避免频率混叠现象? 在进行信号频谱分析时,为何要加窗函数?如果要求 频谱分析结果的幅值精度高,泄漏量小,应该选择什 么窗函数?为什么? 什么是倒频谱?倒频谱的量纲单位是什么?你如何利 用倒频谱原理将时域中两个卷积信号转换为倒频域中 相应的两个线性相加的倒频谱? 请说明旋转机械故障诊断中二维全息谱的原理。工频 全息谱椭圆较扁说明转子系统存在什么状态现象?
第四章 循环平稳信号分析
给出循环平稳信号的定义,并解释机械设备循 环平稳信号的特点。 为什么齿轮、轴承等机械设备在故障发生时, 其振动信号往往具有循环平稳性? 对于时间序列 为整数, 试给出其循环自相关函数的算法步骤。 如何通过循环谱识别调幅信号的调制频率和载 波频率?
第五章 非平稳信号处理方法
第二章信号的时域分析
1、解释理想滤波器的特点。 2、描述实际滤波器的参数有哪些?其物理含义是什么? 3、图示说明采样定理的基本原理。实际测试时如何确 定采样频率和数据长度? 4、窗函数为什么会导致频谱泄露?试讨论检测两个频 率相近幅度不同的信号 ,选择哪种窗函数比较合适? 5、有量纲指标与无量纲指标各有什么优缺点?试举例 说明。 6、结合你自己的研究方向,谈谈如何应用自相关函数 与互相关函数。
现代信号处理技术及应用
课后思考题
2015年9月
第一章 绪论
试举例说明信号与信息这两个概念的区别与联 系。 什么是信号的正交分解?如何理解正交分解在 机械故障诊断中的重要价值? 为什么要从内积变换的角度来认识常见的几种 信号处理方法?如何选择合适的信号处理方法? 对于基函数的各种性质的物理意义如何理解?
请结合时频平面划分的不同,对比说明短时傅里叶 变换与小波变换时频分辨率的区别? 解释尺度函数和小波函数的功能,并给出小波分解 三层和小波包分解三层的频带划分示意图。 解释什么是小波基函数的双尺度关系?为什么小波 变换能够对信号进行时间—尺度(时—频)分析? 简述Mallat塔形算法的基本原理和特点。 简述小波包频带能量监测的基本原理。
为什么在EMD分解时会出现端点效应?试 给出三种消除或减弱端点效应的措施。 瞬时频率的定义和物理意义是什么?如何理 由瞬时频率进行转子摩擦故障的诊断? 与小波分解相比较,试说明EMD方法的完 备性和正交性。