复杂网络上的传播动力学

合集下载

复杂网络的演化动力学及网络上的动力学过程研究

复杂网络的演化动力学及网络上的动力学过程研究

复杂网络演化动力学
复杂网络演化动力学
复杂网络的演化是一个包含多种相互作用和动态过程的系统工程。在网络演 化的过程中,节点和边的动态变化会导致网络结构和功能的改变。典型的网络演 化动力学包括自组织、相变和混沌等现象。
复杂网络演化动力学
自组织是指网络在演化过程中,通过局部相互作用和自适应机制,形成具有 特定结构和功能整体的过程。在复杂网络中,自组织往往导致网络出现层次结构 和模块化等特征。相变则是指网络在演化过程中,由于外部环境变化或内部相互 作用改变,网络结构和功能突然发生剧变的现象。而混沌则是指网络演化过程中 的不可预测性和敏感依赖性。
内容摘要
复杂网络,由许多节点和连接这些节点的边构成,在各种科学领域中都有广 泛的应用。从生物学中的神经网络到社交网络,从互联网到电力网络,复杂网络 的身影无处不在。而在这些网络中,各种动力学过程也在悄然进行。本次演示将 探讨几种复杂网络上的动力学过程的研究进展。
一、传播动力学
一、传播动力学
在复杂网络中,信息的传播是一个重要的动力学过程。从疾病病毒的传播到 谣言的扩散,从知识的学习到观点的形成,信息的传播都是在网络中进行的。研 究这种传播过程,需要对网络的拓扑结构和传播机制有深入的理解。一种常用的 方法是使用传染病模型,如 SIR模型,通过模拟疾病在人群中的传播,来预测和 控制疾病的扩散。
未来研究方向
此外,随着大数据和计算能力的不断提升,未来的研究也可以更加深入地探 讨复杂网络结构和动态演化过程对合作演化和博弈动力学的影响。
结论
结论
复杂网络上的合作演化和博弈动力学研究在理解自然、社会和技术系统中的 合作行为方面具有重要的理论和实践价值。本次演示介绍了该领域的研究现状、 主要方法、实验结果以及未来研究方向。通过深入探讨复杂网络背景下的合作演 化和博弈动力学问题,我们可以更好地理解系统中各要素之间的相互作用和演化 过程,并为解决现实问题提供有益的启示。

复杂网络中的动力学模型与分析方法

复杂网络中的动力学模型与分析方法

复杂网络中的动力学模型与分析方法一、引言复杂网络是由大量节点和连接它们的边组成的网络结构,广泛应用于社交网络、生物网络、信息传播等领域。

网络中各个节点之间相互作用、信息传递的过程可以用动力学模型进行描述和研究。

本文将介绍复杂网络中的动力学模型以及常用的分析方法。

二、节点动力学模型1. 节点动力学模型的概念节点动力学模型是描述网络中单个节点状态变化规律的数学模型。

常用的节点动力学模型包括离散时间模型和连续时间模型。

离散时间模型适用于节点状态在离散时间点上更新的情况,连续时间模型适用于节点状态连续变化的情况。

2. 节点动力学模型的类型(1)布尔模型:布尔模型是一种离散时间模型,节点状态只有两种可能值:0和1。

通过定义节点间的布尔运算规则,模拟节点之间的相互作用和状态更新。

(2)Logistic模型:Logistic模型是一种连续时间模型,节点状态在[0,1]之间连续变化。

该模型可以描述节点的演化和趋于稳定的行为。

三、网络动力学模型1. 网络动力学模型的概念网络动力学模型是描述网络中全体节点的状态变化规律的数学模型。

在网络中,节点之间的相互作用和信息传递会影响节点的状态演化,网络动力学模型可以用来描述和预测整个网络的行为。

2. 网络动力学模型的类型(1)随机性网络模型:随机性网络模型假设节点的连接是随机的,节点间的相互作用和信息传递也是随机发生的。

常见的随机性网络模型包括随机图模型、随机循环模型等。

(2)小世界网络模型:小世界网络模型是一种介于规则网络和随机网络之间的网络结构。

它既具有规则性,节点之间的连接具有聚类特性,又具有随机性,节点之间的连接具有短路径特性。

(3)无标度网络模型:无标度网络模型是一种节点度数服从幂律分布的网络结构。

少数节点的度数非常高,大部分节点的度数较低。

这种模型可以很好地描述现实世界中一些复杂网络的结构。

四、网络动力学的分析方法1. 稳定性分析稳定性分析是判断网络在不同初始条件下是否趋于稳定状态的方法。

复杂网络中的动力学模型与机理分析

复杂网络中的动力学模型与机理分析

复杂网络中的动力学模型与机理分析一、引言复杂网络是近年来引起广泛关注的研究领域,它可以用来模拟和分析各种复杂系统,如社交网络、生物网络和交通网络等。

动力学模型是研究复杂网络行为的重要工具,通过对网络节点之间的相互作用进行建模,我们可以深入了解复杂网络中的动态演化过程与机理。

本文将介绍一些常用的动力学模型,并对其机理进行分析。

二、随机图模型随机图模型是最早被引入到复杂网络研究中的模型之一,它假设网络中节点之间的连接是随机生成的。

其中最经典的是随机图模型中的ER模型,它假设每一对节点间的连接概率都是相等的。

通过该模型,我们可以研究网络中的群聚现象和相变行为等,揭示了复杂网络中的一些基本特性。

三、小世界网络模型小世界网络模型克服了随机图模型中的不足,它通过引入局部连接和随机重连机制,能够同时兼顾网络的聚类特性和短路径特性。

其中比较有代表性的是Watts-Strogatz模型,它将网络的随机重连程度作为参数,可以控制网络的小世界性质。

这种模型揭示了许多实际网络中普遍存在的“六度分隔”现象。

四、无标度网络模型无标度网络模型是另一类常用的动力学模型,它假设网络中部分节点的度数比其他节点更高。

这种模型能够较好地描述现实中一些特殊的网络,如互联网和社交网络等。

其中著名的模型是BA 模型,它通过优先连接机制,使得度数较高的节点更容易获得新节点的连接。

这一模型的提出揭示了复杂网络中的“rich get richer”原则。

五、动力学机理分析除了建立动力学模型,我们还需要分析模型中的动力学机理。

常用的方法包括稳定性分析和数值模拟等。

稳定性分析可以通过线性化系统方程来推导系统的稳定性条件,从而预测网络的稳定状态。

数值模拟则利用计算机模拟的方法,通过迭代网络的动力学方程,模拟网络的演化过程并得到网络的行为特性。

六、复杂网络中的动力学现象在复杂网络中,各种有趣的动力学现象被发现并研究。

例如,网络同步现象是指网络中的节点在相互作用下,逐渐趋于统一的状态。

复杂网络中传播模型的动力学研究

复杂网络中传播模型的动力学研究

复杂网络中传播模型的动力学研究近年来,随着网络技术的飞速发展,复杂网络逐渐成为社会交流、信息传播的重要基础。

在复杂网络中,信息、疾病、新闻、观念等的传播过程涉及到广泛的领域,因此对于传播模型的动力学研究具有重要意义。

本文将就复杂网络中传播模型的动力学研究进行探讨,并重点介绍传统的SI、SIS、SIR模型以及更为复杂的影响力传播模型。

首先,传统的SI(Susceptible-Infected)模型是研究疾病在网络中传播的一个典型模型。

该模型假设节点只能处于两种状态之一:易感染者或已感染者。

在不考虑恢复的情况下,易感染者与感染者之间的传播可以用简单的传染率表示。

通过分析研究,我们可以得出结论:在稀疏网络中,传染病传播的临界点主要取决于网络的簇系数和平均节点度。

进一步的研究发现,节点的连接方式对于传播效果有着重要的影响。

其次,SIS(Susceptible-Infected-Susceptible)模型是对SI模型的改进和扩展。

该模型引入了节点的恢复过程,即已感染者可以恢复为易感染者。

SIS模型在复杂网络中传播行为的研究中更为常见。

通过对SIS模型的动力学特性分析,我们可以发现存在着感染-恢复的平衡状态,在该状态下传染病将不再蔓延。

然而,社区结构、节点度分布以及节点自身特性等因素也会对模型的传播行为产生影响。

此外,SIR(Susceptible-Infected-Recovered)模型是在SIS模型的基础上引入了免疫力的概念。

在该模型中,已感染者在免疫后不会再次被感染。

SIR模型更适用于描述疫苗接种后的传播情况。

通过对SIR模型的研究,我们可以发现疫苗的覆盖率对于控制传染病的蔓延至关重要。

此外,网络的拓扑结构也会对传播行为产生重要影响。

除了传统的SI、SIS和SIR模型,还存在着更为复杂的影响力传播模型。

影响力传播模型主要研究社交网络中信息、观点、新闻等的传播过程。

典型的影响力传播模型有独立级联模型(IC model)和线性阈值模型(LT model)。

复杂网络的动力学研究

复杂网络的动力学研究

复杂网络的动力学研究随着网络技术的日益发展,网络系统正变得愈加复杂。

网络中的节点和连接不仅数量庞大,而且还存在着各种不稳定和随机性,使得其行为表现出各种复杂特征。

复杂网络动力学研究就是对这些复杂网络系统进行研究和探索的学科。

一、复杂网络概述复杂网络是指由大量节点和连接组成的网络系统,其拓扑结构分布无序、随机,并且存在着较强的动态变化性和性能异质性。

复杂网络系统包括社交网络、交通网络和生物网络等。

在复杂网络中,每个节点代表一个实体,连接表示实体之间的关系。

复杂网络中的节点和连接数量可以是任意的,拓扑结构可以是随机的、规则的、分形的、层次的或具有自相似性的。

二、复杂网络动力学复杂网络动力学是研究复杂网络系统中的节点之间以及节点与连接之间的相互作用和大规模行为规律的学科。

在这个领域中,人们关注的是如何描述和预测网络中各个节点的运动、状态和发展趋势,以及分析网络中节点之间以及节点与连接之间的相互作用。

网络中的动力学模型通常包括节点动力学模型和连接动力学模型。

在节点动力学模型中,每个节点的状态和行为受到其邻居节点和外部输入的影响。

连接动力学模型描述了连接的动态演化和改变。

三、复杂网络动力学研究现状在复杂网络动力学研究领域中,人们尝试建立各种数学模型和理论,以分析和预测复杂网络的行为。

其中,著名的模型包括:1. 随机网络模型:基于随机化方法建立的复杂网络模型,包括随机图、随机网络等。

2. 小世界网络模型:模拟现实社交网络的经验法则建立的模型,包括沃茨-斯特罗格兹模型等。

3. 无标度网络模型:与生物网络的拓扑结构相似的复杂网络模型,包括巴拉巴西-阿尔伯特模型等。

此外,人们还研究了复杂网络系统的同步现象、群体行为、稳定性和控制策略等方面的问题。

在这些研究中,人们使用复杂网络动力学模型和数学方法,以及计算机仿真和实验研究等手段进行分析。

四、复杂网络动力学的应用复杂网络动力学已经被广泛应用于各个领域,包括社交网络、物理学、化学、生物学、交通运输和互联网等。

复杂网络的动力学特性及应用研究

复杂网络的动力学特性及应用研究

复杂网络的动力学特性及应用研究随着互联网的发展,人们之间的联系已经超越了地域和时间的限制。

然而,在这个物质流动非常便利的时代里,人们之间的信息流动似乎还有着很多瓶颈。

为了更好地了解网络中信息的流动规律,提高网络传播的效率,科学家们开始研究复杂网络的动力学特性和应用。

一、复杂网络的概念与特征复杂网络是由大量的节点和连接构成的网络结构,它在生物系统、社交系统、交通系统、通信系统等各个领域中都有广泛应用。

复杂网络的性质因应用场景而异,但它们都有以下三个基本特征:复杂度、自组织性和小世界性。

1. 复杂度复杂网络中的节点数目非常大,且它们之间的联系非常复杂,数据的传输和处理都需要高度的复杂性和优化策略。

例如,互联网就是一个全球性的复杂网络,它的节点数目可能达到数十亿,而且这些节点之间存在着极为复杂的联系和交互。

2. 自组织性复杂网络中的每一个节点都有着自己的行为规律,但是它们之间的联系却是非常自然地形成的,而这种联系通常有自己的优化机制,使得网络的结构很好地适应了不同应用场景。

例如,社交网络中的“朋友圈”就是通过节点间的自发联系而形成的,它不需要特别的设计或规划。

3. 小世界性复杂网络中的节点之间的联系非常复杂,但是他们之间的距离也非常短。

也就是说,一个任何两个随机节点之间的路径长度是非常短的,甚至只需要经过少量的中间节点就能够到达。

例如,六度分隔理论就是基于这一特性而提出的。

二、复杂网络的动力学模型在复杂网络中,节点的状态和节点之间的连接关系都会不断地变化,因此必须建立动力学模型来描述网络的发展规律。

其中著名的动力学模型有ER模型和BA模型。

1. ER模型ER模型是最早的随机网络模型,它是由Erdős和Rényi在1959年提出的。

该模型假设节点之间是随机互联的,每个节点间的连边是等概率的。

这种简单模型可以用来产生随机网络,但是它缺乏现实的应用背景。

2. BA模型BA模型是由Barabási和Albert在1999年提出的,它放弃了ER模型的随机互联假设,而提出了“富人愈富”的思想。

复杂网络结构及动力学模型研究与应用

复杂网络结构及动力学模型研究与应用

复杂网络结构及动力学模型研究与应用概述:复杂网络结构及动力学模型是计算机科学与应用数学领域中的重要研究方向,近年来受到广泛关注。

本文将介绍复杂网络的基本概念、典型结构以及常用的动力学模型,并重点探讨其在现实生活中的应用。

一、复杂网络的概念与特征复杂网络是由大量节点和连接节点的边所构成的网络结构,它具有以下几个重要特征:1. 尺度无关性:复杂网络的节点度数分布呈幂律分布,即存在少量节点具有极高的连接度。

2. 小世界性:任意两个节点之间的平均最短路径长度较短,网络具有快速的信息传播能力。

3. 聚类特性:网络中的节点倾向于形成聚类,即存在多个密集连接的子群。

二、复杂网络的典型结构1. 随机网络:节点之间的连接随机分布,节点度数呈高斯分布。

2. 规则网络:节点之间的连接按照固定的规则形成,例如正方形晶格、环形结构等。

3. 无标度网络:节点度数分布呈幂律分布,少数节点具有极高的度数。

三、常用的动力学模型1. 随机游走模型:节点按照一定概率随机地选择与之相连的节点进行信息传递。

2. 光波传播模型:模拟信息在复杂网络中的传播过程,节点之间的边具有传播概率,节点接收到信息后可能以一定的概率继续传播。

3. 病毒传播模型:模拟疾病在人群中的传播过程,节点之间的边表示人与人之间的接触关系,节点可能具有感染病毒的概率,疾病传播具有阈值效应。

四、复杂网络在现实生活中的应用1. 社交网络分析:借助复杂网络理论,可以研究社交网络中的信息传播、群体行为等。

例如,利用动力学模型可以预测疾病在社交网络中的传播趋势,从而制定有效的防控策略。

2. 物流网络优化:将物流系统中的节点与边抽象为复杂网络结构,可以利用复杂网络模型优化物流运输路径以及货物分配策略,提高物流效率。

3. 金融风险管理:通过构建金融网络模型,可以研究金融系统中的风险传播和系统性风险。

借助动力学模型,可以模拟金融市场的波动、投资者行为以及系统性风险的爆发。

五、研究挑战与展望复杂网络与动力学模型的研究仍面临一些挑战,例如难以准确地刻画真实系统中的复杂网络特征,设计适用于不同领域的动力学模型等。

复杂网络与动力学系统的相互作用分析

复杂网络与动力学系统的相互作用分析

复杂网络与动力学系统的相互作用分析复杂网络和动力学系统是现代科学研究中的两个重要领域,它们之间的相互作用引起了学术界的广泛关注。

复杂网络是由大量节点和边连接而成的结构复杂的网络系统,如社交网络、互联网等;而动力学系统研究的是随时间演化的物理、生物、社会等系统。

本文将从网络结构与系统动力学两个方面,分别介绍复杂网络与动力学系统之间的相互作用分析。

一、复杂网络结构与动力学系统复杂网络的结构特性对动力学系统的行为产生重要影响。

首先,网络中节点的连接模式决定了信息传播的路径和速度。

例如,在社交网络中,人际关系的网络结构决定了信息的传播和影响力的扩散。

其次,网络的拓扑特性如度分布、聚集系数和小世界性等,会影响到动力学系统的同步、稳定性和异质性等方面。

例如,度分布趋向幂律分布的复杂网络更容易出现小世界现象,其异质性会导致动力学系统的行为更加复杂多样。

二、动力学系统对复杂网络的影响动力学系统的演化行为与网络结构紧密相关。

一方面,动力学系统的状态更新规则会影响到网络的连接权重和结构演化。

例如,在生物网络中,蛋白质相互作用网络的演化与基因调控网络的动力学系统之间存在着相互影响。

另一方面,动力学系统的演化与网络的拓扑特性相互作用,决定了系统的稳定性和动态行为。

例如,环境系统中的演化模型会导致系统中出现周期性、混沌或稳定的行为态,而网络的小世界结构则能够增强系统的同步性和稳定性。

三、复杂网络与动力学系统的相互演化模型为了更好地研究复杂网络与动力学系统的相互作用,学者们提出了许多相互演化模型。

其中一类常见的模型是基于节点状态和连接权重之间的相互调整。

例如,节点的状态更新规则可以根据节点的邻居节点的状态和连接权重进行调整,而连接权重则会根据节点的状态来进行更新。

另一类模型则是将动力学系统的状态更新规则建立在网络结构的基础上,通过网络的拓扑特性来决定节点和连接之间的相互作用规则。

四、应用领域与前景复杂网络与动力学系统的相互作用分析不仅在科学研究中有重要意义,也在多个领域具有广泛应用。

几类复杂网络传播动力学的研究

几类复杂网络传播动力学的研究

几类复杂网络传播动力学的研究复杂网络传播动力学的研究是研究在复杂网络中信息、疾病、观念等现象的传播过程和规律的学科。

在复杂网络中传播动力学的研究已经成为重要的交叉学科。

以下是几类复杂网络传播动力学的研究。

1.信息传播动力学:信息传播动力学是研究在复杂网络中信息的传播过程和规律的学科。

信息传播模型是研究的重点之一、例如,研究病毒式传播模型,模拟信息在网络中的传播路径,分析信息传播速度和范围,研究信息传播的影响因素。

另一个研究方向是研究信息传播的影响力,包括研究哪些节点对信息传播有较大的影响力,以及如何选择种子节点来优化信息传播效果。

2.疾病传播动力学:疾病传播动力学是研究在复杂网络中疾病的传播过程和规律的学科。

在这个领域,研究者主要关注传染病传播模型。

例如,研究SIS模型(易感者-感染者-易感者),通过建立数学模型和仿真实验来研究传染病的传播速度和规模,以及如何控制传染病的传播。

此外,疾病传播动力学还研究了网络结构对疾病传播的影响,如何通过调整网络结构来控制疾病传播等问题。

3.观念传播动力学:观念传播动力学是研究在复杂网络中观念的传播过程和规律的学科。

观念可以包括政治观点、文化观念、舆论等。

观念传播动力学研究的一个重要问题是如何模拟观念在网络中的传播过程。

在此基础上,研究者可以通过仿真实验和数学模型研究观念的传播速度和范围,研究网络结构对观念传播的影响等问题。

观念传播动力学的研究对于理解公共舆论形成和影响具有重要意义。

4.传播思维网络的动力学:传播思维网络的动力学是研究在复杂网络中思维的传播过程和规律的学科。

传播思维网络的研究主要关注信息、疾病、观念等传播过程中的个体心理状态和行为变化。

通过建立数学模型和仿真实验,研究者可以研究思维的传播速度和规模,研究网络结构对思维传播的影响等问题。

传播思维网络的研究对于理解人类行为和决策过程具有重要意义。

总之,复杂网络传播动力学的研究包括信息传播动力学、疾病传播动力学、观念传播动力学和传播思维网络动力学等多个方向。

复杂网络结构与信息传播动力学

复杂网络结构与信息传播动力学

复杂网络结构与信息传播动力学复杂网络结构和信息传播动力学是关于网络中信息传播的重要主题,它们在诸多领域中都有广泛的应用,特别是在社交媒体、病毒传播和市场营销等方面。

本文将回答以下几个问题:什么是复杂网络结构?复杂网络结构与信息传播动力学有什么关系?复杂网络结构如何影响信息传播动力学?一、复杂网络结构是指由节点和边构成的网络结构。

节点代表网络中的个体,例如个人、公司或者网站等;边代表节点之间的连接关系,例如社交关系、传输通道或者合作关系等。

复杂网络结构可以用图论来描述,其中节点是图中的顶点,边是图中的边。

复杂网络通常具有以下特点:拓扑结构复杂、节点之间的连接方式多样、网络中节点的度分布具有幂律特性等。

常见的复杂网络模型有随机网络模型、小世界网络模型和无标度网络模型等。

二、复杂网络结构与信息传播动力学之间存在密切的关系。

信息传播动力学研究的是在网络中信息如何传播的过程,包括信息在网络中的传播路径、传播速度、传播规模等。

而网络的拓扑结构是影响信息传播的重要因素之一。

不同的网络拓扑结构会导致信息传播的速度、范围和影响力不同。

例如,在随机网络中,信息传播的速度较慢,范围较小,因为网络中存在较多的短程连接和随机连接;而在无标度网络中,少数节点具有较高的度,这些节点成为信息传播的重要枢纽,使得信息能够迅速传播到整个网络。

三、复杂网络结构对信息传播动力学的影响主要体现在以下几个方面。

1. 信息传播速度:网络的拓扑结构会影响信息在网络中的传播路径。

在小世界网络中,节点之间具有较短的平均路径长度,信息传播速度较快;而在无标度网络中,由于少数节点具有较高的度,信息可以通过这些节点迅速传播,传播速度也较快。

相比之下,在随机网络中,信息传播速度较慢。

2. 信息传播范围:网络的拓扑结构也会影响信息在网络中的传播范围。

在无标度网络中,少数高度连接的节点可以将信息迅速传播到整个网络,使得信息传播范围较广;而在随机网络中,由于节点之间的连接是随机的,信息传播范围较小。

复杂网络上传染病动力学概述(张海峰)

复杂网络上传染病动力学概述(张海峰)
有很大的浮动性,当 N,导致 k2 ,从而 c 0 ➢特别地,作为SF网络的一个典型例子,考虑 BA无标度网络。
-
BA无标度网络的传播临界值
BA无标度网络:(1) 增长特性,(2) 优先连接特性(富者更富, 或马太效应)
➢ 度分布 Pk2m2k3,平均度
➢ 将平均度 k 2m ,度分布
1 k
-
无标度网络中的疾病传播
Ⅰ. 无标度网络:具有幂律度分布的网络,即:Pk ∝ k ;
网络中节点的度没有明显的特征长度
Ⅱ. 解析模型
无标度网络的度分布是呈幂律分布,因而度具有很大的
波动性,定义一个相对感染密度 k ( t ) :度数为k的感染节点
数占总节点数的比例。当t趋于无穷大时,相对稳态感染密
度记为 k 。
平均感染密度: (t)=P(k)k(t)
k
稳态平均感染密度:= P(k)k
k
-
同样感我染们密能度采的用变M化F方理程论为来:求 k ( t ) 的变化率得:度为k的节点相对
k tt kt k 1 kt t
t :任意一条给定的边与一个被感染节点相连的概率
k P( k )
任意一条给定边指向度为k的节点的概率为 (与度为k节点关联的边数与总边数的比值)
• SIS模型:易染个体被感染后,可以被治愈但无免疫力(还可以再被感染)(感冒等) ➢ SIR模型:易染个体被感染后,可以被治愈且有免疫力(不会被感染,也不会感染其它
节点,相当于已经从传播网络中被清除了)(天花等) ➢ SI模型:易染个体被感染后,不能被治愈(艾滋病等) ➢ SIRS模型:易染个体被感染后,可以被治愈且有记
- = c
。1
k
结论:
➢ 在均匀网络中存在一个有限的正的传播临界值λc。

复杂网络中的动力学模型研究

复杂网络中的动力学模型研究

复杂网络中的动力学模型研究一、引言随着计算机技术、互联网技术与通信技术的快速发展,网络科学迅速崛起。

网络科学研究的核心是研究网络结构和动力学行为之间的关系,即网络动力学。

网络动力学的研究成果已经在许多领域得到了广泛应用,如社交网络、生物网络、交通网络等。

复杂网络作为网络科学中的一个重要分支领域,其研究重点是研究由大量元素相互连接所形成的网络结构及其在不同系统中表现出来的复杂性。

本文将介绍复杂网络中的动力学模型研究。

二、复杂网络简介复杂网络是由大量元素相互连接所形成的网络结构,其网络结构是由节点和边构成的。

节点代表网络中的元素,边代表节点间的相互作用关系。

在复杂网络中,节点数量众多、相互关联复杂、结构多样、动态变化等特点显著,具有不可预测、不稳定、过渡性和非线性等特性。

复杂网络通常被分为静态网络和动态网络。

静态网络指网络拓扑结构保持不变时的网络,动态网络则是网络拓扑结构会随时间变化而变化的网络。

研究动态网络的动力学模型,可以更好地理解复杂网络的演化及其在不同系统中表现出来的复杂性。

三、动力学模型动力学模型是表述系统时空变化规律及其背后因果机制的一种数学模型。

3.1 传染病模型传染病模型在研究复杂网络中的动力学模型中得到广泛的应用。

传染病模型分为SIR模型、SI模型、SIS模型等。

SIR模型中,假设人群分为易感人群(S)、感染人群(I)和康复人群(R)。

疾病传播主要通过S和I之间的交互。

当S个体与I个体相遇时,易感个体会被感染,成为感染个体。

同时,感染个体在一段时间后会愈合,成为康复个体。

这一模型能够模拟传染病在人群中的传播过程。

3.2 博弈论模型博弈论是对策略和利益相关者之间决策行为进行分析和研究的一种数学模型。

在复杂网络中的动力学模型研究中,博弈论常被应用于网络中节点之间的互动行为研究中。

博弈论模型分为纳什均衡模型、演化博弈模型、动态博弈模型等。

在复杂网络中的动力学模型研究中,演化博弈模型是最常用的模型之一。

复杂网络动力学理论及应用

复杂网络动力学理论及应用

复杂网络动力学理论及应用复杂网络动力学是一门研究网络中节点之间相互作用和信息传递的学科。

在过去的几十年里,复杂网络动力学理论逐渐发展壮大,引起了广泛的关注和研究。

本文将介绍复杂网络动力学的基本概念和原理,以及它在现实世界中的应用。

复杂网络动力学的基本概念包括节点、边和网络拓扑结构。

节点代表网络中的个体或单元,边表示节点之间的相互关系。

网络拓扑结构则描述了节点和边之间的连接方式。

常见的网络拓扑结构有随机网络、小世界网络和无标度网络等。

复杂网络动力学理论的研究重点是研究节点之间的相互作用和信息传递规律。

传统的动力学系统研究主要关注单个节点的演化规律,而复杂网络动力学则注重研究整个网络系统的演化行为。

在复杂网络中,节点之间的相互作用和信息传递可以通过节点自身的状态变化、邻居节点的影响以及网络结构的调整来实现。

复杂网络动力学的研究方法包括数学建模、计算模拟和实验验证。

数学建模是将复杂网络动力学问题转化为数学方程组,在此基础上进行分析和求解。

计算模拟则通过计算机仿真来模拟网络系统的演化过程,并验证理论模型的有效性。

实验验证则通过实际的物理实验来验证理论模型的可行性和适用性。

复杂网络动力学理论不仅仅是一种学科研究方法,还具有广泛的应用领域。

例如,在生物学中,复杂网络动力学可以用于研究蛋白质相互作用网络和基因调控网络的演化规律,揭示生物系统中的基本原理和机制。

在社会学和经济学领域,复杂网络动力学可以用于研究人际关系网络和金融市场网络的稳定性和动态变化,为社会和经济系统的管理和决策提供科学依据。

此外,复杂网络动力学还被广泛应用于城市规划、交通网络优化、信息传播和疾病传播等领域。

在复杂网络动力学的应用中,常见的问题和挑战包括网络鲁棒性、信息传播和社群发现等。

网络鲁棒性指网络系统对外部干扰和内部攻击的抵抗能力,是确保网络系统稳定运行的关键因素。

信息传播研究关注在网络中如何高效地传播信息,以及如何控制信息传播的范围和速度。

复杂网络中的动力学传播模型与应用研究

复杂网络中的动力学传播模型与应用研究

复杂网络中的动力学传播模型与应用研究复杂网络是由大量相互连接的节点构成的系统,节点之间的连接关系和信息传播对于网络的稳定性和功能性起着重要作用。

动力学传播模型是研究复杂网络中信息、疾病、观点等在网络中传播和扩散的数学模型。

本文将探讨复杂网络中的动力学传播模型及其在实际应用中的研究。

一、复杂网络中的传播模型1. SI模型SI模型是一种简单的动力学传播模型,它假设在网络中,只有两种节点状态:易感染(Susceptible)和感染(Infected)。

该模型认为感染节点可以直接传播给易感染节点,但易感染节点无法恢复,即一旦被感染,将一直保持感染状态。

2. SIS模型SIS模型是传染病传播模型中的一种,与SI模型相似,不同之处在于感染节点可以恢复为易感染状态。

该模型假设节点会经历感染和恢复的循环,使得感染状态在网络中持续传播。

3. SIR模型SIR模型是另一种常见的传染病传播模型,相比于SI和SIS模型,SIR模型引入了“恢复”状态。

在该模型中,被感染节点经过一段时间后会进入恢复状态,从而不再感染他人。

该模型适用于研究传染病在网络中的传播规律。

二、复杂网络中的应用研究1. 疾病传播复杂网络中的动力学传播模型可以应用于研究和预测疾病在人群中的传播。

通过构建适当的传播模型和网络结构,可以预测疾病的传播速度、范围和路径,为疾病防控和治疗提供指导。

2. 社交媒体分析在社交媒体中,信息和观点可以通过网络迅速传播。

利用复杂网络中的动力学传播模型,可以研究社交媒体中不同信息在网络中的传播路径和影响力。

这对于舆情分析、网络营销和信息推荐等领域具有重要意义。

3. 网络安全随着互联网的发展,网络安全问题日益突出。

复杂网络中的动力学传播模型可以应用于研究网络攻击和恶意软件的传播机制。

通过模拟恶意行为在网络中的传播路径,可以提前预警和防范潜在的网络安全威胁。

4. 创新传播策略在市场营销中,传播是一项重要的工作。

利用复杂网络中的动力学传播模型,可以研究和优化传播策略。

复杂网络中的信息传播与动力学模型研究

复杂网络中的信息传播与动力学模型研究

复杂网络中的信息传播与动力学模型研究在当今数字时代,信息传播已经成为了社会生活的一部分。

除了传统的媒体渠道外,人们可以通过互联网快速传播和获取信息。

这种信息传播模式不仅改变了社交交流方式,还对社会、经济、政治等方面产生了深远的影响。

因此,研究复杂网络中的信息传播方式和动力学模型成为了一项重要的研究领域。

复杂网络是由大量节点和连接它们的边组成的网络结构。

节点可以是个体、组织、机构等,边代表它们之间存在的相互作用关系。

通过研究复杂网络,我们可以深入了解信息在网络中的传播方式,并探索影响信息传播的因素。

在研究复杂网络中的信息传播时,一个重要的问题是如何建立动力学模型来描述和预测信息传播过程。

动力学模型可以帮助我们理解信息在网络中的传播路径、速度和影响力等方面的特征。

一个经典的动力学模型是传染病模型。

传染病模型基于人们之间的传染关系来研究疾病的传播方式。

同样地,我们可以将信息传播类比为一种“传染病”,其中信息的“传染者”是初始发布者,而信息的“受感染者”是其他节点在收到信息后进一步传播的节点。

通过建立合适的动力学模型,我们可以模拟信息传播的传染过程,并利用数学和计算方法分析传播的速度、范围和影响。

除了传染病模型外,还有其他类型的动力学模型可以用于研究复杂网络中的信息传播。

例如,扩散模型可以描述在网络中信息的扩散过程,但它不涉及节点之间的相互作用关系。

反馈模型则更加关注节点之间的相互作用,并研究节点之间的反馈机制对信息传播的影响。

通过研究复杂网络中的信息传播和动力学模型,我们可以获得很多有用的信息。

首先,我们可以深入了解信息传播的特征和行为,从而为我们设计更有效的信息传播策略提供指导。

其次,我们可以预测信息传播的速度和范围,并提前采取措施来控制和调控信息的传播。

此外,我们还可以发现网络结构对信息传播的重要性,并根据这些发现来优化网络拓扑结构。

尽管复杂网络中的信息传播和动力学模型研究具有很多潜在的应用价值,但是在实际领域中的应用还存在一些挑战。

复杂网络的结构和动力学研究

复杂网络的结构和动力学研究

复杂网络的结构和动力学研究随着信息时代的到来,我们身处在一个信息交流高速发展、万物互联的世界。

在这样的一个世界里,人们之间的联系和交流呈现出一种复杂网络的结构。

复杂网络是由大量的节点和连接构成的一种网络结构,可以用来描述社交网络、互联网、交通网络等复杂现象。

而网络的动力学则是研究网络结构对时间演化的影响,通过模拟和实验等方式进行分析和研究,可以更好地理解网络的运作机理,发现网络中深层次的规律和现象。

一、复杂网络的结构复杂网络中最基本的单元是节点,它们是网络中的基本单位。

节点可以是人、物、事件等,它们之间通过连接或边相互联系。

这些连接形成了网络的骨架,描述一个复杂网络的运作机理。

网络的结构和运作方式和任务特点息息相关。

具体来讲,一个复杂网络的结构可以由其节点和边的数量、连接方式和程度来描述。

一般情况下,我们可以用度分布和聚集系数等指标来衡量复杂网络的结构特征。

度分布是指各个节点的度数(即节点连接的数量)出现的频率,它可以告诉我们网络中节点间的联系程度;而聚集系数是指任意两个节点的共同邻居节点数量与它们自己的连接数量之比,可以用来表示网络中的聚集程度。

已有的研究表明,现实世界的复杂网络通常呈现出一种“小世界”的特征。

这意味着网络中各个节点之间的距离较短,而且具有高度的聚集性。

在网络的结构中,少数的节点和连接起到了重要作用,而大多数节点则相对较为疏离。

这种结构可以促进信息传递和资源利用,也有助于网络的稳定性。

二、复杂网络的动力学复杂网络的动力学研究主要是基于网络结构的变化,通过模拟和实验等方式进行探究,并用数学模型来描述。

动力学模型通常是一个基于微分方程的系统,可以通过时间的演化来求解网络系统的各个节点的行为变化。

其中,传播模型是网络动力学研究的一个重要方面。

传播模型是指研究网络上某种负能量或正能量在节点之间的传播行为。

以疾病传播为例,我们可以通过传染病模型来描述病毒在网络中的传播机制,并在此基础上推测和预测疾病在不同环境下的传播率和趋势。

复杂网络中的动力学问题

复杂网络中的动力学问题

复杂网络中的动力学问题在当今日益复杂、互联的社会中,网络已经成为了人们生活、工作和社交的重要平台。

除了各种社交网络,还有物联网、金融网络、生态网络等各种复杂网络,这些网络中存在着许多动力学问题。

本文将探讨复杂网络中的动力学问题,并探讨一些这方面的研究进展。

一、复杂网络基本概念复杂网络,简单来说就是由大量节点和连接组成的复杂结构。

它包括了各种网络,如社交网络、物联网、生态网络等等。

最简单的复杂网络就是图形模型,由节点和边组成。

节点表示网络中的元素,比如人、物品、化学物质等等;边则表示两个元素之间的关系,这个关系可以是社交关系、制品之间的关联或者生物之间的相互作用等。

二、复杂网络的动力学问题复杂网络中存在着许多动力学问题。

在许多网络中,节点之间存在着相互影响、相互作用、相互影响的关系。

这些影响和作用是非线性的,从而产生许多复杂的动态现象。

比如,在社交网络中,节点之间的影响和情绪会相互传递,可能会导致社交网络中出现群体行为、社交演化等等。

在物联网中,节点之间可能会发生变化,节点的运行状态也会相互影响,可能会导致整个物联网的崩溃。

在金融网络中,节点之间的交互作用和经济环节的复杂性,可能导致金融网络中出现系统性风险。

三、如何研究复杂网络的动力学问题为了更好地理解复杂网络中的动力学问题,许多学者提出了不同的研究方法。

其中,最重要的是基于网络的动力学方法。

该方法是通过分析网络节点之间的连接和相互作用关系,来分析网络节点之间的动态行为。

通过该方法,可以发现复杂网络中的许多动态现象,如社交网站上的舆论演变、网络协同、金融风险和物联网演化等。

基于网络动力学的研究方法可以为社会解释动态现象提供有力工具,例如支持决策制定、社会协调和社会风险管理等。

四、复杂网络中的动力学问题研究进展随着科技的发展,越来越多的关于复杂网络中的动力学问题的研究涌现出来。

其中,一些重要的研究如下:1、社交演化社交演化是指在网络中,相互作用的个体之间逐渐发展和形成新的关系。

复杂网络中的传播动力学模型研究

复杂网络中的传播动力学模型研究

复杂网络中的传播动力学模型研究一、引言复杂网络是由大量节点和节点之间的连接所组成的一种网络结构,它的研究已经渗透到社会、生物、工程等众多领域。

而网络中的信息传播机制是复杂网络研究的重要方向之一,因为它不仅可以帮助我们理解真实世界中的信息传播现象,还能够为社交媒体、疾病传播等问题提供解决方案。

本文旨在介绍复杂网络中的传播动力学模型研究。

二、传播动力学模型的基本概念1. 信息传播信息传播是指在网络中,信息从一个节点传播到其他节点的过程。

传统的信息传播研究主要关注信息的传播速度、范围和影响力等方面。

而复杂网络中的信息传播则更加注重个体节点的影响力、传播路径和传播过程中的动力学行为。

2. 传播动力学模型传播动力学模型是研究信息在复杂网络中传播过程的数学模型。

常用的传播动力学模型包括SIS模型、SIR模型和SEIR模型等。

其中,SIS模型描述了在一个网络中,感染者可以被治愈并恢复为易感者;SIR模型考虑了感染者在被治愈后具有免疫性;SEIR模型在SIR模型的基础上增加了潜伏期的考虑。

三、传播动力学模型研究的方法1. 基于传统传播动力学模型的研究基于传统传播动力学模型的研究主要关注传播速度、范围和影响力等方面的问题。

通过对网络中不同节点的状态转换规则进行建模,可以研究信息在网络中的传播路径和传播过程中的动力学行为。

2. 基于机器学习的传播动力学模型研究基于机器学习的传播动力学模型研究主要利用机器学习算法来分析网络中节点之间的联系和信息传播的规律。

通过使用大数据和机器学习算法,可以挖掘出网络中隐藏的模式,进而预测信息传播的趋势和影响。

四、传播动力学模型在社交媒体中的应用社交媒体已经成为信息传播的重要平台,而传播动力学模型在社交媒体中的应用也日益受到关注。

通过分析用户在社交媒体上的行为和关系,可以建立起用户之间的社交网络模型,并且预测用户之间的信息传播路径和传播效果。

五、传播动力学模型在疾病传播中的应用疾病传播是一个复杂的过程,而传播动力学模型可以帮助我们更好地理解疾病的传播规律和影响因素。

复杂网络的结构与动力学研究

复杂网络的结构与动力学研究

复杂网络的结构与动力学研究网络在现代社会中扮演着重要的角色,人们通过网络进行信息传递、交流和合作。

而网络的结构与动力学,尤其是复杂网络的结构与动力学研究,对于我们理解和优化网络的功能至关重要。

复杂网络是一种由大量节点和边组成的网络结构,节点代表网络中的个体,边代表个体之间的连接关系。

复杂网络的结构通常呈现出与随机网络和规则网络截然不同的特征,如小世界性、无标度性和社区结构等。

小世界性指的是网络中的任意两个节点之间存在较短的路径,这使得信息在网络中的传播更加迅速。

无标度性意味着网络中只有少数节点与大量节点相连,这些具有很多连接的节点被称为“关键节点”,其功能对网络的稳定性和韧性起着至关重要的作用。

社区结构是指网络中存在着紧密相连的节点群体,这些群体在网络中形成了独特的社区。

复杂网络的动力学研究是指研究网络中节点的状态随时间的演化规律。

节点的状态可以是二元的(例如“激活/未激活”状态),也可以是连续的(例如人的情绪状态)。

动力学研究的一个典型问题是研究节点的激活轨迹在网络中的传播过程。

在复杂网络中,节点的激活通常是相互影响的,即一个节点的激活可能会导致其邻居节点的激活。

通过对网络结构和节点激活规则的研究,我们可以预测节点激活的传播路径和传播速度。

这对于研究信息传播、疾病传播和社会行为等问题具有重要意义。

复杂网络的结构和动力学之间存在着密切的关系。

网络的结构特征决定了节点激活的传播路径和速度,而节点激活的传播又反过来影响了网络的结构演化。

例如,节点的激活可能导致其邻居之间的新连接形成,而新连接的形成又会进一步促进节点激活的传播。

这种相互作用使得网络的结构和动力学之间形成了一个正反馈的循环,推动了网络的演化和发展。

近年来,复杂网络的结构与动力学研究在各个领域都取得了重要进展。

在物理学领域,复杂网络的结构和动力学研究大大推动了人们对复杂系统的认识和理解。

在社会学领域,通过对复杂网络的结构和动力学研究,人们对社会群体的形成和演化规律有了更深入的认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复杂网络上的传播动力学摘要:纵观人类社会的发展,传染病一直持续不断地威胁着人类的健康,从早期的天花、麻疹,到近年来的艾滋病、非典、禽流感,每一次传染病都以极快的速度传播着并且吞噬着人类的生命财产。

此外,计算机病毒在因特网上的扩散过程也是极其复杂的系统。

其不安全因素有计算机信息系统自身的,也有人为的,计算机病毒的高度隐藏性、快速传播性和严重的破坏性使其成为影响计算机系统使用的最不安全的因素。

近年来,真实网络中小世界效应和无标度特性的发现激起了物理学界对复杂网络的研究高潮,其中网络拓扑结构对复杂网络上动力学行为的影响是研究的焦点之一。

这篇论文主要从复杂网络的拓扑结构和流行病的感染机制两个方面来探讨当前国内外传播动力学研究的现状和最新进展,指出值得进一步研究的问题。

例如动态网络结构下的疾病传播行为和微观感染机制等。

关键词:复杂网络、传播动力学、疾病传播、网络免疫技术、感染机制Abstract: Throughout the development of human society, infectious diseases has been continuously threatens human health, from the early smallpox, measles, in recent years to AIDS, SARS, avian influenza, every infectious disease in order to speed the spread of human life and property. In addition, the system of computer viruses on the Internet diffusion process is extremely complex. The unsafe factors of computer information system itself, but also for someone, highly concealed, rapid spread and serious destruction to the most unsafe factors of computer system using a computer virus. In recent years, the real network small world effect and scale-free characteristics aroused the research climax to the complex network of physics, including the impact of network topology on the dynamics on complex networks is one of the focus of the study. This paper mainly from the two aspects of infection mechanism topological structure of complex networks and epidemic to explore the current status of domestic spread dynamics research and new development, points out the problems to be further studied. For example, the spread of the disease dynamic behavior of network structure and micro mechanism of infection.Keywords: immune complex network, transmission dynamics, disease transmission, network1.引言复杂网络是指具有复杂拓扑结构和动力学行为的大规模网络,它是由大量的节点通过边的相互连接而构成的图。

例如,英特网、生物网络、无线通讯网络、高速公路网、电力网络、流行病和谣言传播网络等都是复杂网络。

传播动力学的基本研究对象是动力学模型在不同网络上的性质与相应网络的静态统计性质的联系。

包括已知和未知的静态几何量。

而像传染病、谣言的传播过程的研究不能像其他一些学科一样,通过在人群中做实验的方式获得数据,相关数据、资料只能从已有的报告和记录中获取,而这些数据往往不够全面和充分,很难根据这些数据准确地确定某些参数,进行预报和控制工作。

因此通过合理的网络模型产生数据并在此基础上进行理论和数值研究,是当前传播动力推进创新理论探索创新实践学的重要方法。

2.背景知识2.1经典传播模型的简介目前研究最为彻底,应用最为广泛的经典传染病模型是SIR模型和SIS模型。

SIR模型适合于染病者在治愈后可以获得终生免疫力,或者染病者几乎不可避免走向死亡的情形。

在SIR模型中,人群被划分为三类:第一类是易感人群(S),他们不会感染他人,但有可能被传染;第二类是染病人群(I),他们已经患病,具有传染性;第三类是移除人群(R),他们是被治愈并获得了免疫能力,或者已经死亡的人群——不具有传染性,也不会再次被感染,即不再对相应动力学行为产生任何影响,可以看做已经从系统中移除.对于象感冒、淋病这类治愈后患者也没有办法获得免疫能力的疾病,使用SIR模型是不适宜的,这时候往往采用SIS模型,该模型与SIR模型类似,只是患者被治愈后自动恢复为易感状态。

除了上述SIR 和SIS模型外,针对不同传染病的特点,还有其他相应的传播模型。

比如,对于突然爆发的尚缺乏有效控制的流行病,如黑死病,非典型肺炎等,在疾病爆发早期常使用SI模型进行分析;对于免疫期有限的疾病,往往利用SIRS模型进行分析;对于潜伏期不可忽略的疾病,可以引入潜伏人群的概念。

2.2 SIR模型介绍在传染病动力学中,主要沿用的由Kermack与McKendrick在1927年用动力学的方法建立了SIR传染病模型。

直到现在SIR模型仍被广泛地使用和不断发展。

SIR模型将总人口分为以下三类:易感者(susceptibles),其数量记为S(t),表示t时刻未染病但有可能被该类疾病传染的人数;染病者(infectives),其数量记为I(t),表示t时刻已被感染成为病人而且具有传染力的人数;恢复者(recovered),其数量记为R(t),表示t时刻已从染病者中移出的人数。

设总人口为N(t),则有N(t)=S(t)+I(t)+R(t)。

SIR模型的建立基于以下三个假设:⑴不考虑人口的出生、死亡、流动等种群动力因素。

人口始终保持一个常数,即N(t)≡K。

⑵一个病人一旦与易感者接触就必然具有一定的传染力。

假设t时刻单位时间内,一个病人能传染的易感者数目与此环境内易感者总数S(t)成正比,比例系数为β,从而在t时刻单位时间内被所有病人传染的人数为βS(t)I(t)。

⑶ t时刻,单位时间内从染病者中移出的人数与病人数量成正比,比例系数为γ,单位时间内移出者的数量为γI(t)。

在以上三个基本假设条件下,3.传播动力学的影响3.1经典传播模型的简介目前研究最为彻底,应用最为广泛的经典传染病模型是SIR模型[26]和SIS模型[27].SIR模型适合于染病者在治愈后可以获得终生免疫力,或者染病者几乎不可避免走向死亡的情形[28].在SIR模型中,人群被划分为三类:第一类是易感人群(S),他们不会感染他人,但有可能被传染;第二类是染病人群(I),他们已经患病,具有传染性;第三类是移除人群(R)[29],他们是被治愈并获得了免疫能力,或者已经死亡的人群——不具有传染性,也不会再次被感染,即不再对相应动力学行为产生任何影响[30],可以看做已经从系统中移除.对于象感冒、淋病这类治愈后患者也没有办法获得免疫能力的疾病[31],使用SIR模型是不适宜的[32],这时候往往采用SIS模型,该模型与SIR模型类似,只是患者被治愈后自动恢复为易感状态[33].除了上述SIR和SIS模型外,针对不同传染病的特点,还有其他相应的传播模型[34].比如,对于突然爆发的尚缺乏有效控制的流行病,如黑死病,非典型肺炎等,在疾病爆发早期常使用SI模型进行分析[35];对于免疫期有限的疾病,往往利用SIRS模型进行分析[36];对于潜伏期不可忽略的疾病,可以引入潜伏人群的概念。

传统的基于微分方程的传染病模型假设人群是充分混合的[37],染病个体原则上有机会感染任何易感的个体.这种感染总是通过某种“接触”完成的[38],因此如果两个个体可能接触就在相应的节点之间连一条边[39],那么传统的模型可以看做是对疾病在一个完全连通的社会接触网络上传播行为的描述[40].但是,正如我们前面所述及的,社会接触网络具有不同于完全连通网络的结构特点[41].特别地,由统计物理学家发展出来的一些分析技术,例如逾渗理论[42]、生成函数方法[43]、平均场近似[44]等等,使得分析具有复杂结构特性的真实网络上的传播行为称为可能.事实上,社会接触网络一些公认的结构特征被证明对传播规律有重大影响,下面我们列举一些具有代表性的研究成果[45]。

3-2小世界效应对于传播动力学行为的影响.Moore等发现,少量的长程边也可以明显增加网络中疾病易于传染的性质[46].如果把疾病得以传播开去的传染率下限(称为传播阈值)和传播时间特性(感染者数量和传播持续时间之间的关系)视作网络传播动力学中最重要的可观测量[47],则相比规则网络,小世界网络的传播阈值小,传播速度快[48].另外,很早人们就观察到在大规模的种群中,疾病的流行常常具有某种周期的特性,Kuperman[49]等最早讨论了小世界网络中的疾病传播的周期振荡[50],他们发现,当长程边数目慢慢增大时,感染个体数量的时间序列将逐步从在一个不动点上下波动变成明显的周期振荡[51].熊等通过在小世界网络的SIR模型中引入潜伏期,在不同参数设置下,分别得到短时和长时的振荡行为[52].类似地,Verdasca等从儿童传染病麻疹和百日咳的致病机理出发,系统讨论了带有潜伏期的SIR模型(SEIR模型)在小世界网络上的传播行为,也发现了明显的周期振荡[53]。

3-3 无标度性质对于传播动力学行为的影响关于规则和随机网络上流行病传播动力学研究中最重要的结论是[54]:存在有限传播阈值,当传染率高于此值时,疾病能够在网络中长期存在下去[55];反之,疾病以指数的速率迅速消亡。

相关文档
最新文档