直线倾斜角、斜率、斜率公式-直线方程的各种表示方法
直线倾斜角、斜率、斜率公式%2C直线方程的各种表示方法

承接上次课:倾斜角:当直线与轴相交时,取轴作为基准,轴正向与直线向上方向之间所成的角叫做直线的倾斜角关键:①直线向上方向;②轴的正方向;③小于平角的正角.注意:当直线与轴平行或重合时,我们规定它的倾斜角为0度..斜率:一条直线的倾斜角的正切值叫做这条直线的斜率.记为.斜率公式:已知直线上两点的直线的斜率公式:.例题1:如图,图中的直线、的斜率分别为k1, k2 ,k3,则( D )A. k1< k2<k3B. k3< k1<k2C. k3< k2<k1D. k1< k3<k2例题2:若经过P(-2,m)和Q(m,4)的直线的斜率为1,则m=( A )A、1B、4C、1或3D、1或4例题3:若A(3,-2),B(-9,4),C(x,0)三点共线,则x=( B )A、1B、-1C、0D、7例题4:直线经过原点和(-1,1),则它的倾斜角为( B )A、45°B、135°C、45°或135°D、-45°例题5:若经过点P(1-,1+)和Q(3,2)的直线的倾斜角为钝角,求实数的取值范围.解:(-2,1)学习小结:1.任何一条直线都有唯一确定的倾斜角,直线斜角的范围是.2.直线斜率的求法:⑴利用倾斜角的正切来求;⑵利用直线上两点的坐标来求;⑶当直线的倾斜角时,直线的斜率是不存在的3.直线倾斜角、斜率、斜率公式三者之间的关系:题型一:已知两点坐标求直线斜率例题1:经过下列两点直线的斜率是否存在,若存在,求其斜率(1) (1,1),(-1,-2) (2) (1,-1),(-2,4) (3) (-2,-3),(-2,3)题型二:求直线的倾斜角例题2:设直线L过坐标原点,它的倾斜角为,如果将L绕坐标远点按逆时针方向旋转,得到直线L1那么L1的倾斜角为 ( D )A.B.C.D.例题3:变式:已知直线L1的倾斜角为,则L1关于x轴对称的直线L1的倾斜角=题型三:斜率与倾斜角关系例题4:当斜率k的范围如下时,求倾斜角的变化范围:题型四:利用斜率判定三点共线例题5:已知三点A(a,2),B(5,1),C(-4,2a)在同一条直线上,求a 的值。
直线的倾斜角和斜率,直线方程

直线的倾斜角和斜率,直线方程一、直线的倾斜角和斜率1.直线的倾斜角概念的注意点:1)注意旋转方向:逆时针2)规定平行x轴(或与x轴重合)的直线倾斜角为0°3)直线倾斜角的范围是0°≤<180°2.直线的倾率:直线的倾斜角的正切值tan(倾斜角不为90°时)。
概念注意点:1)倾斜角为90°的直线无斜率2)斜率k可以是任何实数,每条直线都存在唯一的倾斜角,但不是每条直线都有斜率3)=0°时,k=0;0°<<90°时,k>0;=90°时,k不存在;90°<<180°时,k<0。
3.斜率公式:设直线l的倾斜角为(≠90°),P1(x1,y2),P2(x2,y2)(x1≠x2)是直线l上不同两点,直线l的斜率为k,则:k=tan=,当=90°时,或x1=x2时,直线l垂直于x轴,它的斜率不存在。
例1.求过A(-2,0),B(-5,3)两点的直线的斜率和倾斜角。
解:k==-1,即tan=-1,∵0°≤<180°,∴=135°。
点评:已知直线的斜率,可以直接得出直线的倾斜角,但要注意角的范围。
例2.设直线l的斜率为k,且-1<k<1,求直线倾斜角的范围。
解法1:当-1<k<0时,∈(),则,当k=0时,=0,当0<k<1时,∈(0,),则0<<解法2:作k=tan,∈[0,π)时的图形:由上图可知:-1<k<1时,∈[0,)()。
点评:1、当直线的斜率在某一区间内时,要注意对倾斜角范围的讨论。
2、利用正切函数图像中正切来表示倾斜角和斜率关系也是一种很好的方法。
二、直线方程的四种形式1.两个独立的条件确定一条直线,常见的确定直线的方法有以下两种(1)由一个定点和确定的方向可确定一条直线,这在解析几何中表现为直线的点斜式方程及其特例斜截式方程。
直线的倾斜角与斜率

直线的倾斜角与斜率直线的倾斜角与斜率1. 斜率的定义斜率是平面直角坐标系中一条直线倾斜程度的度量。
斜率可以帮助我们理解直线的倾斜程度以及方向。
在数学中,斜率通常用m表示,它表示一条直线在水平方向的单位偏移所对应的垂直方向的单位偏移的比值。
也可以理解为直线上两点之间的垂直高度差与水平距离的比率。
假设一条直线上有两个点P(x1, y1)和Q(x2, y2),那么这条直线的斜率就可以表示为:m = (y2 - y1) / (x2 - x1)2. 直线的倾斜角度直线的倾斜角度也叫直线的斜率角,可以帮助我们更直观地理解一条直线的倾斜程度和方向。
与斜率相比,倾斜角度更易于理解和使用,尤其是在实际测量和应用中。
直线的倾斜角通常用θ表示,计算公式如下:tan(θ) = m其中tan(θ)表示正切函数,它可以是斜率m的反函数。
因此,直线的倾斜角通常可以表示为:θ = atan(m)而atan表示反正切函数,它可以将斜率转化为对应的弧度角,从而帮助我们更好地理解直线的方向和倾斜程度。
3. 应用举例下面通过一个具体的应用举例来理解斜率和倾斜角度的概念。
假设我们需要计算一条直线的倾斜角度和斜率,该直线穿过两个点P(3, 4)和Q(5, 8)。
首先,我们需要计算该直线的斜率:m = (8 - 4) / (5 - 3) = 2然后,我们可以将该斜率转化为对应的倾斜角度:θ = atan(2) = 1.107 rad也就是说,该直线的倾斜角度是1.107弧度,约等于63.43度。
这意味着,在平面坐标系上,该直线与水平方向的夹角为63.43度。
可以看出,倾斜角度可以帮助我们更直观地理解直线的倾斜程度和方向,从而更方便地进行测量和计算。
4. 总结斜率和倾斜角度是描述一条直线倾斜程度和方向的重要概念。
它们可以帮助我们更直观地理解一条直线的特性,并且在测量和计算中有广泛的应用。
需要注意的是,在实际应用中,我们需要根据具体情况选择使用斜率或倾斜角度,以获得更准确的结果。
数学高一专题 倾斜角与直线方程

数学高一专系列之 倾斜角与直线方程一、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是k = tanα二、直线的斜率公式:三、直线方程:1.点斜式:11()y y k x x -=-,当l 的90α=时, l 的方程为1.x x =2.斜截式: y kx b =+,其中b 称为直线在y 轴上的截距3.两点式:1112122121(,)y y x x x x y y y y x x --=≠≠-- 注意!①当l 的0α=时,l 的方程为1y y = ②当l 的90α=时, l 的方程为1.x x =4.截距式:1x ya b+= 其中,a b 分别是直线在x 轴和y 轴上的横截距和纵截距,简称截距. 注意!①当l 的a 不存在,b 存在时,l 的方程为y b = ②当l 的b 不存在, a 存在时,l 的方程为x a =③当l 的a 、b 都存在, 且都为零时,l 的方程为y kx =其中k 为直线的斜率. 5.直线方程的一般式:0Ax By C ++=22(0)A B +≠ (1)任何一条直线的方程都是关于x 、y 的一次方程(2)任何关于x 、y 的一次方程0Ax By C ++=22(0)A B +≠表示直线四、求直线方程:题型一:基础题型1.已知A (3,1),B (-1,k ),C (8,11)三点共线,则k 的取值是( )A .-6B .-7C .-8D .-9[答案] B[解析] ∵A ,B ,C 三点共线, ∴k -1-1-3=11-18-3. ∴k =-7.2.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限[答案] C[解析] 由A ·C <0及B ·C <0,可知A ≠0,B ≠0, 又直线Ax +By +C =0过(-C A ,0),(0,-C B ),且-C A >0,-CB >0,∴直线不过第三象限.变式练习1.光线自点M (2,3)射到N (1,0)后被x 轴反射,则反射光线所在的直线方程为( ) A .y =3x -3 B .y =-3x +3 C .y =-3x -3 D .y =3x +3[答案] B[解析] 点M 关于x 轴的对称点M ′(2,-3),则反射光线即在直线NM ′上,由y -0-3-0=x -12-1,得y =-3x +3. 2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1 D .-2或1 [答案] D[解析] 由题意得a +2=a +2a ,解得a =-2或a =1.3.一条直线l 过点P (1,4),分别交x 轴,y 轴的正半轴于A 、B 两点,O 为原点,则△AOB 的面积最小时直线l 的方程为________.[答案] 4x +y -8=0[解析] 设l :x a +yb =1(a ,b >0).因为点P (1,4)在l 上, 所以1a +4b =1.由1=1a +4b ≥24ab⇒ab ≥16, 所以S △AOB =12ab ≥8.当1a =4b =12, 即a =2,b =8时取等号. 故直线l 的方程为4x +y -8=0.∴直线l 的方程为x -6y +6=0或x -6y -6=0.题型二:能力提升1.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A .13B .-13C .-32D .23[答案] B[解析] 设P (x P ,y P ),由题意及中点坐标公式,得x P +7=2,解得x P =-5, ∴P (-5,1),∴直线l 的斜率k =1-(-1)-5-1=-13.2.设直线l 的方程为x +y cos θ+3=0(θ∈R ),则直线l 的倾斜角α的范围是( ) A .[0,π) B .⎣⎡⎭⎫π4,π2C .⎣⎡⎦⎤π4,3π4 D .⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4 [答案] C[解析] 当cos θ=0时,方程变为x +3=0,其倾斜角为π2;当cos θ≠0时,由直线方程可得斜率k =-1cos θ.∵cos θ∈[-1,1]且cos θ≠0, ∴k ∈(-∞,-1]∪[1,+∞),即tan α∈(-∞,-1]∪[1,+∞),又α∈[0,π),∴α∈⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4.综上知倾斜角的范围是⎣⎡⎦⎤π4,3π4,故选C .3.在平面直角坐标系中,如果x 与y 都是整数,就称点(x ,y )为整点.下列命题中正确的是________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点 ②如果k 与b 都是无理数,则直线y =kx +b 不经过任何整点 ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点④直线y =kx +b 经过无穷多个整点的充分必要条件是:k 与b 都是有理数 ⑤存在恰经过一个整点的直线 [答案] ①③⑤[解析] 对于①,举例:y =2x + 3.故①正确;对于②,举例:y =2x -2,过整点(1,0),故②不正确; 对于③,不妨设两整点(a 1,b 1),(a 2,b 2),(b 1≠b 2),则直线为:y =b 2-b 1a 2-a 1(x -a 1)+b 1,只需x -a 1为a 2-a 1的整数倍.即x -a 1=k (a 2-a 1),(k ∈Z )就可得另外整点.故③正确.对于④,举例:y =x +12,k 与b 均为有理数,但是直线不过任何整点.故④不正确. 变式练习1.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围. [解析] (1)∵l 在两坐标轴上的截距相等, ∴直线l 的斜率存在,a ≠-1. 令x =0,得y =a -2. 令y =0,得x =a -2a +1.由a -2=a -2a +1,解得a =2,或a =0.∴所求直线l 的方程为3x +y =0,或x +y +2=0. (2)直线l 的方程可化为y =-(a +1)x +a -2.∵l 不经过第二象限,∴⎩⎪⎨⎪⎧-(a +1)≥0,a -2≤0.∴a ≤-1.∴a 的取值范围为(-∞,-1]. 2.已知直线l: kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 的方程.[解析] (1)直线l 的方程是:k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧ x +2=01-y =0解之得⎩⎪⎨⎪⎧x =-2y =1.∴无论k 取何值,直线总经过定点(-2,1).(2)由方程知,直线在x 轴上的截距为-1+2kk (k ≠0),在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k <-21+2k ≥1或k =0,解之得k ≥0. (3)由l 的方程得,A (-1+2k k ,0),B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <01+2k >0,,解得k >0. ∵S =12·|OA |·|OB |=12·|1+2kk|·|1+2k |=12·(1+2k )2k =12(4k +1k+4) ≥12(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时l :x -2y +4=0.[点评] 本题证明直线系过定点问题所使用的“分离参数法”是证明曲线系过定点的一般方法课后练习1.过点A (0,2)且倾斜角的正弦值是35的直线方程为( )A .3x -5y +10=0B .3x -4y +8=0C .3x +4y +10=0D .3x -4y +8=0或3x +4y -8=0 [答案] D[解析] 设所求直线的倾斜角为α, 则sin α=35,∴tan α=±34,∴所求直线方程为y =±34x +2,即为3x -4y +8=0或3x +4y -8=0.2.设A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .x +y -5=0B .2x -y -1=0C .2x -y -4=0D .2x +y -7=0[答案] A[解析] 易知A (-1,0). ∵|P A |=|PB |,∴P 在AB 的中垂线即x =2上. ∴B (5,0).∵P A ,PB 关于直线x =2对称, ∴k PB =-1.∴l PB :y -0=-(x -5),即x +y -5=0.3.已知点M 是直线l :2x -y -4=0与x 轴的交点,把直线l 绕点M 按逆时针方向旋转45°,得到的直线方程是( )A .3x +y -6=0B .3x -y +6=0C .x +y -3=0D .x -3y -2=0 [答案] A[解析] 由题意知M (2,0),设已知直线和所求直线的倾斜角分别为α,β,则β=α+45°且tan α=2,45°<α<90°,tan β=tan(α+45°)=tan α+tan45°1-tan αtan45°=-3,所以所求直线方程为y -0=-3(x -2), 即3x +y -6=0.4.经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程为________. [答案] 2x +y +2=0或x +2y -2=0[解析] 设所求直线方程为x a +yb=1,由已知可得⎩⎨⎧-2a +2b=1,12|a ||b |=1,解得⎩⎪⎨⎪⎧a =-1,b =-2或⎩⎪⎨⎪⎧a =2,b =1.∴2x +y +2=0或x +2y -2=0为所求.5.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率是( ) A .0 B .33C . 3D .- 3[答案] C[解析] k PQ =-3得直线PQ 的倾斜角为120°,将直线PQ 绕点P 顺时针旋转60°所得直线的倾斜角为60°,∴所得直线的斜率k =tan60°= 3.6.点P (x ,y )在以A (-3,1),B (-1,0),C (-2,0)为顶点的△ABC 的内部运动(不包含边界),则y -2x -1的取值范围是( ) A .⎣⎡⎦⎤12,1 B .⎝⎛⎭⎫12,1 C .⎣⎡⎦⎤14,1 D .⎝⎛⎭⎫14,1 [答案] D[解析] 令k =y -2x -1,则k 可以看成过点D (1,2)和点P (x ,y )的直线斜率,显然k DA 是最小值,k BD 是最大值.由于不包含边界,所以k ∈⎝⎛⎭⎫14,1.7.若经过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是________.[答案] (-2,1)[解析] ∵直线的斜率k =a -1a +2,且直线的倾斜角为钝角,∴a -1a +2<0,解得-2<a <1. 8.直线ax +my -2a =0(m ≠0)过点(1,1),则该直线的倾斜角α为________.[答案] 135°[解析] ∵ax +my -2a =0(m ≠0)过点(1,1), ∴a +m -2a =0. ∴m =A .直线方程为ax +ay -2a =0, 又m =a ≠0,∴直线方程即为x +y -2=0. ∴斜率k =-1,∴倾斜角α=135°.9.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.[解析] (1)设直线l 的方程是y =k (x +3)+4, 它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b , 则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b , 由已知,得|-6b ·b |=6,∴b =±1.。
直线的倾斜角、斜率及直线的方程ppt

点斜式方程的局限性
点斜式方程只适用于已知一点和 斜率的直线,对于其他情况需要
使用其他形式的直线方程。
当直线与x轴垂直时,斜率不存 在,点斜式方程不适用。
在实际应用中,需要根据具体情 况选择合适的直线方程形式。
05 直线的两点式方程与斜率 的关系
点斜式方程
01
点斜式方程是直线方程的一种形 式,它表示通过一个固定点(x1, y1)和斜率m的直线。
02
点斜式方程可以用来求解直线的 方程,特别是当已知直线上的一 点和斜率时。
两点式方程
两点式方程是直线方程的另一种形式, 它表示通过两点(x1, y1)和(x2, y2)的 直线。
两点式方程也可以用来验证两点是否 在同一直线上。
整理得到$y - y_1 = m(x - x_1)$,其中$m$为直线斜率。
因此,点斜式方程为$y - y_1 = m(x - x_1)$,它是通过直线上两点坐标推导出来的。
斜率在点斜式方程中的应用
斜率$m$表示直线在坐标系上的倾斜程度,当$m > 0$时, 直线从左下到右上倾斜;当$m < 0$时,直线从左上到右下 倾斜;当$m = 0$时,直线与x轴平行。
两点式方程仅适用于已知两点坐标的情 况,对于其他情况可能不适用。
当两点坐标相同时,即直线过一个点时, 另外,当直线与坐标轴平行或重合时,
两点式方程将失去意义。
斜率不存在,此时两点式方程也无法表
示直线。
06 直线的方程在实际问题中 的应用
利用直线方程解决几何问题
确定两点间的直线方程
已知两点坐标,利用直线方程求解直线方程。
推导过程中,利用了直线上两点间斜率相等的性质,即斜率是固定的值。
直线的倾斜角、斜率及方程知识点总结

直线的倾斜角、斜率及方程知识点总结一、倾斜角:重点:取值范围:0≤a <180° 二、斜率k :1、当a ≠90°时,斜率k=tana ;2、当a=90°时,斜率k 不存在;(联系正切函数的定义域去理解)3、两点P1(x1,y1),P2(x2,y2)间的斜率公式:)间的斜率公式:k=y 2-y 1/x 2-x 1理解:①两点间斜率要求x 1≠x 2,因为当x 1=x 2时,直线垂直于x 轴,倾斜角为90°,斜率k 不存在;在;②当x 1≠x 2且y 1=y 2时,直线垂直于y 轴,倾斜角为0°,斜率k=0 三、各表达式之间的区别与联系:名称名称公式公式备注备注点斜式点斜式y-y 0=k(x-x 0)1、联系斜率公式进行理解联系斜率公式进行理解2、已知一定点P 0(x 0,y 0)和斜率k ; 斜截式斜截式 y=kx+b 1、 联系点斜式进行理解;联系点斜式进行理解;2、 此时是已知一定点P (0,b )和斜率k ; 3、 b 表示直线在y 轴上的截距轴上的截距 两点式两点式y-y 1/y 2-y 1=x-x 1/x 2-x 11、 两点式要求x 1≠x 2且y 1≠y 2;2、 当x 1=x 2且y 1≠y 2时,直线垂直于x轴;轴; 3、 当x 1≠x 2且y 1=y 2时,直线垂直于y 轴。
轴。
截距式截距式 x/a+y/b=1 1、 联系两点式进行理解;联系两点式进行理解;2、 点P 1(a ,0),P 2(0,b )分别为直线与坐标轴的交点坐标;线与坐标轴的交点坐标; 一般式一般式Ax+By+C=0(A 、B 不同时为零)不同时为零)1、 联系二元一次方程组的相关知识点理解;理解;2、 熟练掌握A 、B 、C 对直线位置的影响作用。
响作用。
四、斜率k与截距b对直线位置的影响:1、k对直线位置的影响:对直线位置的影响:时,直线向右上方倾斜;①当k>0时,直线向右上方倾斜;时,直线向右下方倾斜;②当k<0时,直线向右下方倾斜;轴;③当k=0时,此时倾斜角为0,直线平行与x轴;轴平行。
直线的倾斜角和斜率

第七章 直线和圆的方程7.1 直线的倾斜角斜率知识概要:1、直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着按方向旋转到和直线重合时所转的记为α,那么α就叫做直线的倾斜角。
规定:当直线和x 轴平行或重合时,直线的倾斜角α=。
因此,直线的倾斜角的取值X 围是。
2、直线的斜率:倾斜角不是的直线,它的叫做这条直线的斜率,常用k 表示,即k=。
倾斜角是90°的直线,斜率k 不存在。
3、斜率公式:当直线l 经过两点P 1(x 1,y 1),P 2(x 2,y 2)时,l 的斜率k=(x 1≠x 2)。
4、当直线的方向向量为(u ,v )时(u ≠0),直线的斜率k=。
基础训练:1、直线),(03为常数a R a a y x ∈=+-的倾斜角是。
2、直线L 的方向向量为(-1,2),则其倾斜角为,斜率为。
3、过点A (1,2)作直线,使直线在两坐标轴上的截距相等,则此直线的斜率为( )A 、-1B 、±1,C 、-1或2D 、±1或24、若三点A (2,2),B (a ,0),C (0,4)共线,则实数a=5、典型例题:例1、已知两点A (-1,2),B (m ,3)求:(1) 直线AB 的斜率和倾斜角;(2) 当]13,133[---∈m 时,求直线AB 倾斜角的取值X 围。
例2、求直线023cos =++y x θ的倾斜角取值X 围。
[解析]先求出直线的斜率的取值X 围,再结合直线的倾斜角的X 围及正切函数的单调性求出倾斜角的X 围。
例3、直线L 过点M (-1,2)且与以点P (-2,-3)、Q (4,0)为端点的线段PQ 恒相交,求直线L 的斜率的取值X 围。
例4、若圆0104422=---+y x y x 上至少有三个不同点到直线L :ax+by=0的距离为22,求直线L 的倾斜角的取值X 围。
方法归纳总结:1、直线的斜率和倾斜角问题的解题方法:(1)求直线的斜率:定义法、两点的斜率公式、直线方程。
关于求直线斜率和倾斜角的公式

关于求直线斜率和倾斜角的公式直线斜率和倾斜角是数学中的基本概念,它们的解析式可以通过几何图形、三角函数等方法推导而来。
在本文中,我们将详细介绍求解直线斜率和倾斜角的公式,并配合实例进行阐述。
1. 直线斜率的公式及求解方法直线的斜率是指直线在坐标系中的倾斜程度,它表示直线沿水平方向上的运动量与沿竖直方向上的运动量之比。
斜率的计算方法有多种,我们将分别介绍以下两种方法。
方法一:点斜式公式点斜式公式是求解直线斜率最常用的方法之一。
如果已知直线上某一点和它的斜率,则可以通过点斜式公式计算直线方程。
设直线过点(x₁,y₁),斜率为k,则有:y-y₁=k(x-x₁)将其改写为一般式,即y=kx+b其中,b=y₁-kx₁为直线的截距。
例如,已知直线过点(2,3),斜率为2,那么根据点斜式公式,可以写出直线方程为:y-3=2(x-2)化简得:y=2x-1因此,直线的斜率为2,截距为-1。
方法二:斜率公式斜率公式是另一种常用的求解直线斜率的方法。
它的基本原理是计算直线上任意两点的纵坐标差与横坐标差的比值。
设直线上两点的坐标分别为(x₁,y₁)和(x₂,y₂),则有:k=(y₂-y₁)/(x₂-x₁)其中,k为直线的斜率。
例如,已知直线上两点(3,1)和(5,3),则根据斜率公式,直线的斜率为:k=(3-1)/(5-3)=1因此,直线的斜率为1。
需要注意的是,斜率存在的前提是直线存在。
在一些情况下,直线可能不存在斜率,例如水平直线和竖直直线。
此时,我们需要特殊考虑。
2. 直线倾斜角的公式及求解方法直线倾斜角是指直线相对于水平方向或竖直方向的倾斜程度,也称为直线的倾角或坡度。
直线倾斜角的求解方法多样,以下是两种常见的方法。
方法一:利用斜率求解倾斜角的定义是直线与水平线的夹角。
因此,我们可以先利用斜率求出直线与水平线之间的夹角,进而计算直线的倾斜角。
设直线的斜率为k,则有:θ=arctan(k)其中,arctan为反正切函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
承接上次课:倾斜角:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角关键:①直线向上方向;②x 轴的正方向;③小于平角的正角. 注意:当直线与x 轴平行或重合时,我们规定它的倾斜角为0度.. 斜率:一条直线的倾斜角()2παα≠的正切值叫做这条直线的斜率.记为tan k α=.时,斜率不存在。
当时,当的增大而减小;随的增大而增大,但随时,,当的增大而增大;也随的增大而增大,随时,当2;0 0,0)2(,0 )2,0 (πααααππαααπα===<∈>∈k k k k k k k 斜率公式:已知直线上两点111222(,),(,)P x y P x y 12()x x ≠的直线的斜率公式:2121y y k x x -=-. 例题1:如图,图中的直线321l l l 、、、的斜率分别为k 1, k 2 ,k 3,则( D )A. k 1< k 2 <k 3B. k 3< k 1 <k 2C. k 3< k 2 <k 1D. k 1< k 3 <k 2 例题2:若经过P (-2,m )和Q (m ,4)的直线的斜率为1,则m=( A )A 、1B 、4C 、1或3D 、1或4例题3:若A (3,-2),B (-9,4),C (x ,0)三点共线,则x=( B )A 、1B 、-1C 、0D 、7例题4:直线 经过原点和(-1,1),则它的倾斜角为( B )A 、45°B 、135°C 、45°或135°D 、-45°例题5:若经过点P (1-a ,1+a )和Q (3,2a )的直线的倾斜角为钝角,求实数a 的取值范围. 解:(-2,1)学习小结:1.任何一条直线都有唯一确定的倾斜角,直线斜角的范围是[0,180)︒.2.直线斜率的求法:⑴利用倾斜角的正切来求;⑵利用直线上两点111222(,),(,)P x y P x y 的坐标来求;⑶当直线的倾斜角90οα=时,直线的斜率是不存在的3.直线倾斜角、斜率、斜率公式三者之间的关系:题型一:已知两点坐标求直线斜率例题1:经过下列两点直线的斜率是否存在,若存在,求其斜率(1) (1,1),(-1,-2) (2) (1,-1),(-2,4) (3) (-2,-3),(-2,3) 题型二:求直线的倾斜角例题2:设直线L 过坐标原点,它的倾斜角为α,如果将L 绕坐标远点按逆时针方向旋转︒45,得到直线L 1那么L 1的倾斜角为 ( D )A.︒+45αB.︒-135αC.α-︒135D.[︒-⎢⎣⎡∈︒+∈1354345430αππααπα,为),;当)时,为,当 例题3:变式:已知直线L 1的倾斜角为α,则L 1关于x 轴对称的直线L 1的倾斜角β= 题型三:斜率与倾斜角关系例题4:当斜率k 的范围如下时,求倾斜角α的变化范围: 题型四:利用斜率判定三点共线例题5:已知三点A (a,2),B (5,1),C (-4,2a )在同一条直线上,求a 的值。
利用斜率相等即可 即AB 的斜率=BC 的斜率 用两点式计算斜率(1-2)/(5-a)=(2a-1)/(-4-5) (5-a)(2a-1)=9 -2a ²+11a-5=9 2a ²-11a+14=0 (2a-7)(a-2)=0∴a=7/2 或a=2题型五:平行于垂直的判定例题6:已知A (1,-1),B (2,2),C (3,0)三点,求点D 的坐标,使直线,AB CD ⊥且CB//AD.题型六:综合应用例题7:变式:若三点A (3,1),B(-2,k),C (8,1)能够成三角形,求实数k 的取值范围。
解:能够成三角形则不能共线AC 垂直y 轴 是y=1 则k ≠1例题8:已知两点A (-3,4),B (3,2),过点P (2,-1)的直线L 与线段AB 有公共点,求直线L 的斜率k 的取值范围例题1.下列命题正确的个数是 ( C )1) 若a 是直线L 的倾斜角,则︒<≤︒1800a 2)若k 是直线的斜率,则R k ∈3)任一直线都有倾斜角,但不一定有斜率 4)任一直线都有斜率,但不一定有倾斜角 A .1 B.2 C.3 D.4例题2.直线L 过(,)a b , (,)b a 两点,其中0,≠≠ab b a 则 ( D )A.L 与x 轴垂直B. L 与y 轴垂直C.L 过原点和一,三象限D.L 的倾斜角为︒135 例题3.已知点)1,1(),321,1(-+B A ,直线L 的倾斜角是直线AB 的倾斜角的一半,则L 的斜率为 ( B )A.1 33.B 3.C D.不存在例题4.直线L 经过二、三、四象限,L 的倾斜角为a ,斜率为k ,则 ( B ) 例题5.若),0(),2,(),5,1(a C a a B a A ---三点共线,则a= 2)1,0(1233,2,111,3,3),D D y x y x k k k x y k k k x yk k y x BCAD BC AD CD AB CD AB ⎩⎨⎧=+=+=-=-+=-=⋅-==得点坐标为(解:设例题6.已知四边形ABCD 的顶点为)5,2(),3,3(),1,6(),,(D C B n m A ,求m 和n 的值,使四边形ABCD 为直角梯形。
解:有两种情况 1、AB//CD 角A=90=角D (5-3)/(2-3)=(n -1)/(m -6) 2m+n=13 (n -5)/(m -2)=1/2 m=18/5 n=29/52、AD//BC 角A=90=角B (n -5)/(m -2)=(3-1)/(3-6)=-2/3 2m+3n=19 (n -1)/(m -6)=3/2 3m -2n=16 m=86/13 n=25/13两直线平行与垂直的判定 :平行:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即12//l l ⇔1k =2k垂直:两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直.即12l l ⊥⇔121k k =-⇔121k k =-学习小结:1.1212//l l k k ⇔=或12,l l 的斜率都不存在且不重合.2.12121l l k k ⊥⇔=-或10k =且2l 的斜率不存在,或20k =且1l 的斜率不存在.直线的点斜式方程:直线的点斜式方程:已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程.直线的斜截式方程:直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距.直线y kx b =+叫做直线的斜截式方程.例题1、过点(5,2)且在两坐标轴截距相等的直线方程是__2x -5y=0或y -2=-(x -5)__. 例题2、经过点(1,2)A 并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程。
直线的两点式方程:直线的两点式方程:已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为1112122121(,)y y x x x x y y y y x x --=≠≠--,由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程直线的截距式方程.:已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程1=+bya x 叫做直线的截距式方程. 例题1、已知直线l 经过两点)5,3(),2,1(21P P ,求直线l 的方程. 例题2、已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠,求通过这两点的直线方程。
例题3、 已知三角形的三个顶点A (-5,0),B (3,-3),C(0,2),求BC 边所在直线的方程,以及该边上中线所在直线的方程。
解:直线BC :(y +3)/(y -2)=(x -3)/(x -0) 即5x +3y -6=0 直线BC 的中点坐标: x =(3+0)/2=3/2 y =(-3+2)/2=-1/2 即点(3/2,-1/2))(112121x x x x y y y y ---=-0513,0635=++=-+y x y x 191396.2()13y x -=--直线BC 边中线所在的直线方程: (y -0)/(y +1/2)=(x +5)/(x -3/2) 即x +13y +5=0学习小结:1.直线方程的各种形式总结为如下表格:2.中点坐标公式:已知1122(,),(,)A x y B x y ,则AB 的中点(,)M x y ,则2121,22x x y y x y ++==.例题1、过点P (2,1)作直线l 交,x y 正半轴于AB 两点,当||||PA PB ⋅取到最小值时,求直线l 的方程.直线的一般式方程:直线的一般式方程:关于,x y 的二元一次方程0Ax By C ++=(A ,B 不同时为0)叫做直线的一般式方程,简称一般式例题1、在方程0=++C By Ax 中,A ,B ,C 为何值时,方程表示的直线(1)平行于x 轴;(2)平行于y 轴;(3)与x 轴重合;(4)与y 重合。
解:(1)A=0且B ≠0且C ≠0(2)B=0且A ≠0且C ≠0(3)A=0且B ≠0且C=0 (4)B=0且A ≠0且C=0 例题2、根据下列各条件写出直线的方程,并且化成一般式:⑴ 斜率是12-,经过点(8,2)A -;⑵ 经过点(4,2)B ,平行于x 轴;⑶ 在x 轴和y 轴上的截距分别是3,32-;⑷ 经过两点12(3,2),(5,4)P P --. 解:(1)042;221=-++-=y x x y (2)02;2=-=y y(3)032;13132=--=-y x y x (4)012322=-+-=-+y x x y ; 两条直线的交点坐标:已知方程组 A 1x +B 1y +C 1=0 (1)A 2x +B 2y +C 2= 0 (2)当A 1,A 2,B 1,B 2全不为零时,方程组的解的各种情况分别对应的两条直线的位置关系 解:在直线上另(1)×B 2-(2)×B 1得(A 1B 2-A 2B 1)x=B 1C 2-B 2C 11、当A 1B 2-A 2B 1≠0时,方程组有唯一解,相交:且当2121B B A A =时,两直线垂直2、当A 1B 2-A 2B 1=0,B 1C 2-B 2C 1≠0 时,方程组无解,平行3、当A 1B 2-A 2B 1=0,B 1C 2-B 2C 1=0时,方程组有无穷多解,重合 例题1、判断下列各对直线的位置关系,如果相交,求出交点坐标: (1)l 1:x -y =0, l 2:3x +3y -10=0(2)l 1:3x -y +4=0, l 2:6x -2y =0 (3)l 1:3x +4y -5=0, l 2:6x +8y -10=0解:(1)相交交点坐标⎪⎭⎫⎝⎛35,35;(2)平行,无交点 (3)同一条直线,无穷多解例题2、求经过两条直线x+2y -1=0和2x -y -7=0的交点,且垂直于直线x+3y -5=0的直线方程解:解法一:解方程组⎩⎨⎧-==⎩⎨⎧=-+=--13012072y x y x y x 得 ∴这两条直线的交点坐标为(3,-1)又∵直线x+2y -5=0的斜率是-1/3 ∴所求直线的斜率是3,所求直线方程为y+1=3(x -3)即 3x -y -10=0 解法二:所求直线在直线系2x -y -7+λ(x+2y -1)=0中 经整理,可得(2+λ)x+(2λ-1)y -λ-7=03122=-+-∴λλ解得 λ= 1/7因此,所求直线方程为3x -y -10=0两点间的距离:两点之间距离公式:已知平面上两点111222(,),(,)P x y P x y ,则12PP .特殊地:(,)P x y 与原点的距离为OP点到直线的距离:已知点00(,)P x y 和直线:0l Ax By C ++=,则点P 到直线l 的距离为:d =.注意:⑴点到直线的距离是直线上的点与直线外一点的连线的最短距离;⑵在运用公式时,直线的方程要先化为一般式平行线间的距离:已知两条平行线直线1l 10Ax By C ++=,2:l20Ax By C ++=,则1l 与2l 的距离为d =注意:应用此公式应注意如下两点:(1)把直线方程化为一般式方程;(2)使,x y 的系数相等.例题1、已知点P(x 0,y 0),直线l :A x +C=0,求点P 到直线的距离.)(0A C x -- 例题2、已知点P(x 0,y 0),直线l :B y +C=0,求点P 到直线的距离.)(0BC y -- 例题3、已知点P(x 0,y 0),直线l :Ax+By+C=0,求点P 到直线的距离. 例题4、点P(3,-2)到直线 的距离为 例题5、两条平行线 与 间的距离是 例题6、求平行线2x -7y +8=0和2x -7y -6=0的距离.解:在直线2x -7y -6=0上任取点P(x 0,y 0),则2 x 0-7 y 0-6=0,点P(x 0,y 0)到直线2x-7y +8=0的距离是例题7、直线经过原点,且点M(5,0)到直线 l 的距离等于3,求l 的方程 解 : 3x ±4y=0例题8、直线l 过点(1,2)且两点(2,-3),(4,-5)到l 的距离相等,求l 的方程 解:x+y-3=0或3x+y-5=0例题9、△ABC 的一个顶点是A (3,-1), ∠B, ∠C 的内角平分线所在的直线方程分别为x=0和y=x,求顶点B 、C 坐标·。