第七章-第3讲 带电粒子在电场中的运动

合集下载

一轮复习精品课件-第七章第3讲 电容器带电粒子在匀强电场中的运动

一轮复习精品课件-第七章第3讲 电容器带电粒子在匀强电场中的运动
返回
考点三 带电粒子在电场中的偏转
v0 qE (3)设小球 设电场强度的大小为 E,小球 M 进入电场后做直线运动,则 解析:(1) (2) 设 A 点距电场上边界的高度为 h,小球下落 h 时在竖直方向的分速度为 M、N 在 A 点水平射出时的初速度大小为 v0,则它们进入电场时 vy=mg⑨ v 的水平速度仍然为 v0。M、N 在电场中运动的时间 t 相等,电场力作用下产生 y,由运动学公式得 设 M、N 离开电场时的动能分别为 E 、E ,由动能定理得
2019版一轮复习物理课件
第七章 静电场
第3讲 电容器
带电粒子在匀强电场中的运动
知识梳理 考点二 考点三 考点四
自我珍断
考点一 平行板电容器的两类动态变化问题
带电粒子(或带电体)在电场中的直线运动
带电粒子在电场中的偏转 带电粒子在交变电场中的运动
核心素养 等效思想在电场中的应用
A. 电场强度处处为零的区域内, 电势一定也 处处为零 B. 电场强度处处相同的区域内, 电势一定也 处处相同 C.电场强度的方向总是跟等势面垂直 D.电势降低的方向就是电场强度的方向
返回
考点一 平行板电容器的两类动态变化问题
1.分析比较的思路 (1)先确定是 Q 还是 U 不变:电容器保持与电源连接,U 不变;电容器充电后与电源断 开,Q 不变。 εrS (2)用决定式 C=4πkd确定电容器电容的变化。 Q (3)用定义式 C=C 判定电容器所带电荷量 Q 或两极板间电压 U 的变化。 U (4)用 E= d 分析电容器极板间场强的变化。 2.两类动态变化问题的比较 分类 不变量 d 变大 S 变大 εr 变大 充电后与电池两极相连 U C 变小 Q 变小 E 变小 C 变大 Q 变大 E 不变 C 变大 Q 变大 E 不变 充电后与电池两极断开 Q C 变小 U 变大 E 不变 C 变大 U 变小 E 变小 C 变大 U 变小 E 变小

带电粒子在电场中的运动

带电粒子在电场中的运动

2 mv = qU第一章9带电粒子在电场中的运动带电粒子在电场中受到静电力的作用,因此要产生加速度,速度的大小和方向都可能 发生变化。

对于质量很小的带电粒子,如电子、质子等,虽然它们也会受到万有引力(重 力)的作用,但万有引力(重力)一般远小于静电力,可以忽略。

在现代科学实验和技术设备中,常常利用电场来改变或控制带电粒子的运动。

利用电 场使带电粒子加速、利用电场使带电粒子偏转,就是两种最简单的情况。

带电粒子的加速如图1.9-1所示,在真空中有一对平行金属板,由于接上电池组而带电,两板间的电 势差为U 。

若一个质量为 m ,带正电荷q 的粒子,在静电力的作用下由静止开始从正极板 向负极板运动,计算它到达负极板时的速度。

在带电粒子的运动过程中,静电力对它做的功是W = qU设带电粒子到达负极板时的速率为 v ,其动能可以写为2 mv由动能定理可知于是求出思考与讨论 上述问题中,两块金属板是平行的,两板间的电场是匀强电场。

如果两极板是其他形 状,中间的电场不再均匀,上面的结果是否仍然适用?为什么?【例题1】炽热的金属丝可以发射电子。

在金属丝和金属板之间加以电压U = 2 500 V(图1.9-2),发射出的电子在真空中加速后,从金属板的小孔穿出。

电子穿出时的速度有图1.9-1 计算粒子到达另一个极板时的速度2qU v = mv= ,2eU 2X 1.6 X 10-19X 2500\ 0.9 X 10-30=3.0 X 107 m/s电子的质量多大?设电子刚刚离开金属丝时的速度为零。

H >1图1.9-2 带电粒子的加速。

电池E用来给金属丝加热【解】电荷量为e的电子从金属丝移动到金属板,两处的电势差为U,电势能的减少量是eU。

减少的电势能全部转化为电子的动能,所以1 mv2= eU解出速度v并把数值代入,得m= 0.9X 10-30 kg和电子的电荷量e= 1.6 X 10-19 C可以作为已知数据使用。

带电粒子在电场中的运动_讲义

带电粒子在电场中的运动_讲义

y =y+Ltanθ[
由上面 iii 中得到的结论(①式以及②):
y
qL2 2mv 02d
U2
tan
qL mv 02d
U2
所以
qL2 y = 2mv02d
U2
L
qL mv 02d
U2
qL = mv 2d
0
(L
L )U 2
2
=(L+
L 2
)tanθ
由思考题中的式③
tanθ = U2l 2dU 1
]可得:
决于初速度与加速度的大小,以初速度方向设正方向,则 2as vt2 v02 ,当 vt 0 时,
s v02 ,比较 s 与 d 的大小,当 s d 时,说明粒子在打到右金属板上,当 s d 时, 2a
说明当粒子在速度减到 0 时,仍没有到达右金属板,则粒子开始反向加速,最终打在左 金属板上。 例 2、如图 1 所示,在真空中有一对平行金属板,其间距离为 d,电源电压为 U,板间电场为匀强电
3
场,若在左金属板中间有一小孔,一带正电粒子以初速度 v0 射入板间,粒子质量为 m,电量为 q,则
粒子到达右金属板时,速度为多大?(粒子重力可忽略) [解析]:1、受力分析:粒子重力可忽略,因此只受到向右的电场力的作用。
2、运动情况分析:因粒子只受匀强电场的恒定作用力,且其速度方向与其所受电场力方向 相同,因此,粒子做初速度不为零的匀加速直线运动。

A.只适用于匀强电场中,v0=0的带电粒子被加速 B.只适用于匀强电场中,粒子运动方向与场强方向平行的情况
C.只适用于匀强电场中,粒子运动方向与场强方向垂直的情况
D.适用于任何电场中,v0=0的带电粒子被加速

2019年高考物理复习第07章电场第3讲电容器带电粒子在电场中的运动课件新人教版

2019年高考物理复习第07章电场第3讲电容器带电粒子在电场中的运动课件新人教版

U 提示:d→C↓,E= ↓,Q=CU↓,因U不变,故θ不变. d
②电容器充电后与电源断开,增大两板间的距离d,试分析C、U、E、θ各如何 变化?
Q U Q Q 提示:Q一定:d→C↓,U= ↑,E= = = 不变,U →θ . C d Cd εS 4πk
③电容器充电后与电源断开,紧贴右极板插入与电容器极板宽度相同的金属板 或玻璃板时,静电计指针偏角各如何变化?
第 七 章 电 场
第三讲
电容器
带电粒子在电场中的运动

目 导 航
03
01
基础再现· 双基落实
02
核心考点· 探究突破
模拟演练· 稳基提能
04
课后回顾· 高效练习
01
基础再现· 双基落实
一 电容器
1.电容器的充、放电 异种电荷 , (1)充电:使电容器带电的过程,充电后电容器两极板带上等量的__________
请思考为何计算出的结果与根据速度的合成得出的结果不同?
提示:上述计算结果是错误的.带电粒子在电场中运动过程,电场力做的功应 U 是W=Eq· y= qy.W=qU中的U应是入射点和出射点之间的电势差. d
(4)若带电粒子从两板中央进入最后未出电场打在下板上如何处理?
d U 提示:此时偏转位移y= ,W=q· . 2 2
vy qUl qUl ,粒子离开偏转电场时速度方向的偏转角的正切值tan θ= = . dmv0 v0 d同,则 = . tan θH me tan θe (2)若电子与氢核的初动能相同,则 =1. tan θH
02
核心考点· 探究突破
考点一 平行板电容器的动态分析
mg mg 由粒子的受力知粒子带负电,tan θ= ,E= . Eq qtan θ v2 v2 mg 0 0sin θ F合= =ma,x= = . sin θ 2a 2g

2021高考人教版物理一轮复习讲义:第7章第3讲电容器与电容带电粒子在电场中的运动(含解析)

2021高考人教版物理一轮复习讲义:第7章第3讲电容器与电容带电粒子在电场中的运动(含解析)

第3讲电容器与电容带电粒子在电场中的运动主干梳理对点激活知识点常见电容器I电容器的电压、电荷量和电容的关系11•电容器(1) 组成:由两个彼此E01绝缘又相互靠近的导体组成。

(2) 带电量:一个极板所带电荷量的□ 02绝对值。

(3) 电容器的充电、放电①充电:使电容器带电的过程。

充电后电容器两极板带上等量的□ 03异号电荷,电容器中储存电场能。

②放电:使充电后的电容器失去电荷的过程。

放电过程中□04电场能转化为其他形式的能。

③充电时电流流入正极板,放电时电流流出正极板。

2. 常见的电容器⑴分类:从构造上可分为r05固定电容器和P6可变电容器。

(2)击穿电压:加在电容器极板上的□ 07极限电压,超过这个电压,电介质将被击穿,电容器损坏;电容器外壳上标的电压是口)8额定电压,这个电压比击穿电压B9 低。

3. 电容(1) 定义:电容器所带的电荷量Q与电容器两极板间的电势差U的比值。

(2) 定义式:。

=畸。

推论:。

=欝。

(3) 单位:法拉(F),1 F=H^ ,^F^1012 pF。

(4) 物理意义:表示电容器口3容纳电荷本领的物理量。

(5) 决定因素电容C的大小由电容器本身结构(大小、形状、正负极相对位置及电介质)决定,与电容器是否带电及所带电荷量(或两端所加电压)无关。

4. 平行板电容器及其电容(1) 影响因素:平行板电容器的电容与两极板□ 14正对面积成正比,与两极板间介质的⑪相对介电常数成正比,与口16两板间的距离成反比⑵决定式:ffl7C= 4n d,k为静电力常量。

知识点2 带电粒子在匀强电场中的运动n1. 加速问题若不计粒子的重力,则电场力对带电粒子做的功等于带电粒子的口01动能的增量。

1 i(1) 在匀强电场中:W= qEd = qU = dqmv2—qmv O。

1 2 1 2(2) 在非匀强电场中:W= qU = 032mv2—2mv2。

2. 偏转问题(1)条件分析:不计重力的带电粒子以速度v o Q4垂直于电场线方向飞入匀强电场。

高考试题解析选修3-1第七章第3讲电容器 带电粒子在电场中的运动

高考试题解析选修3-1第七章第3讲电容器 带电粒子在电场中的运动

核心素养提升
@《创新设计》
【拓展2】 (多选)若水平放置接有恒压电源的平行金属板内部空间有一带电粒子P恰 能静止,同时下极板接地,当将上极板向右移动一小段距离时,则下列说法正确的 是( ) A.电容器所带电荷量保持不变 B.极板间的电场强度保持不变 C.粒子所在初位置的电势能保持不变 D.粒子将加速向下运动
图7
a、b间的相互作用和重力可忽略。下列说法正确的是( )
A.a的质量比b的大 B.在t时刻,a的动能比b的大 C.在t时刻,a和b的电势能相等 D.在t时刻,a和b的动量大小相等
27
知识梳理·双基过关
课堂互动·研透考点
核心素养提升
@《创新设计》
解析 两微粒只受电场力 qE 作用且两电场力大小相等,由 x=12at2 知微粒 a 的加速 度大,由 qE=ma 知微粒 a 的质量小,A 错误;由动能定理 qEx=Ek 得,位移 x 大 的动能大,B 正确;在同一等势面上,a、b 两微粒电荷量虽相等,但电性相反,故 在 t 时刻,a、b 的电势能不相等,C 错误;由动量定理 qEt=mv 得,在 t 时刻,a、 b 的动量大小相等,D 正确。 答案 BD
放电:使充电后的电容器失去电荷的过程,放电过程中_电__场__能_转化为其他形式的能。
2
知识梳理·双基过关
课堂互动·研透考点
核心素养提升
@《创新设计》
2.电容 (1)定义:电容器所带的___电__荷__量__Q___与电容器两极板间的电势差U的比值。 Q (2)定义式:C=___U______。 (3)物理意义:表示电容器_容__纳__电__荷_____本领大小的物理量。 (4)单位:法拉(F),1 F=__1_0_6__ μF=1012 pF

第3讲 电容器 带电粒子在电场中的运动

第3讲  电容器  带电粒子在电场中的运动

(√)
(6)我们能在手机屏幕上看到各种各样的信息是因为电子束高速撞击荧光屏得
到的。
(×)
提能点(一) 平行板电容器的动态分析(自练通关)
点点通
1.[与电源断开]
有一平行板电容器充电后与电源断开,A 极板带电荷量为+ 4×10-6 C,B 极板带电荷量为-4×10-6 C,电容器的电容为 2 μF,下列
mg+qUd′=ma2
则 PQ 两板电压 U′=3m2qgd 电场方向向下,所以 P 板电势高,故 PQ 两板电压满足:
UPQ′≥3m2qgd。
答案:(1)-9m4qg′≥3m2qgd
[方法规律]
带电体在电场中直线运动的分析方法
提能点(三) 带电粒子(体)的偏转(题点精研) 1.运动规律 (1)沿初速度方向做匀速直线运动,运动时间
作用力可忽略,不计重力,则以下说法正确的是
()
A.电荷量 q1 与 q2 的比值为 3∶7 B.电荷量 q1 与 q2 的比值为 3∶4
C.粒子 A、B 通过平面 Q 时的速度之比为 9∶16
D.粒子 A、B 通过平面 Q 时的速度之比为 3∶7
解析:设电场强度大小为 E,两粒子的运动时间相同,对粒子 A 有:a1=qm1E, 37l=12·qm1E·t2,对粒子 B 有:a2=qm2E,47l=12·qm2E·t2,联立解得:qq12=34,A 错误, B 正确。由动能定理 qEx=12mv2-0,求得:vv12=34,选项 C、D 错误。 答案:B
与电容器是否带电及两极板间是否存在 电压 无关。
3.平行板电容器的电容 (1)决定因素:正对面积,相对介电常数,两板间的距离。
εrS (2)决定式:C= 4πkd 。
二、带电粒子在电场中的运动 1.加速 (1)在匀强电场中,W= qEd =qU=12mv2-12mv20。 (2)在非匀强电场中,W=qU =12mv2-12mv20。

专题七 第3讲 电容器与电容带电粒子在电场中的运动

专题七 第3讲 电容器与电容带电粒子在电场中的运动
A.电阻 R 中没有电流 B.电容器的电容变小
)
C.电阻 R 中有从 a 流向 b 的电流 D.电阻 R 中有从 b 流向 a 的电流 图 7-3-4
解析: 图中电容器被充电, 极板带正电, 极板带负电. A B 根 εS 据平行板电容器的大小决定因素 C∝ d 可知,当增大电容器两 极板间距离 d 时,电容 C 变小.由于电容器始终与电池相连, Q 电容器两极板间电压 UAB 保持不变,根据电容的定义 C=U , AB 当 C 减小时电容器两极板所带电荷量 Q 减小,A 极板所带正电 荷的一部分从 a 到 b 经电阻 R 流向电源正极,即电阻 R 中有从 a 流向 b 的电流.
D.电容器的电容不随所带电荷量及两极板间的电势差的
变化而变化
Q 解析:本题主要考查电容的定义式C=—,即C与Q、U U
皆无关,Q 与 U 成正比. 答案:D
2.(双选)图 7-3-4 所示的是一个由电池、电阻 R、电键 S 与平行板电容器组成的串联电路,电键闭合,在增大电容器
两极板间距离的过程中(
6 12
距离 正比,与两极板的_____成反比,并且跟板间插入的电介质有关.
εS (2)公式:C=______ 4πkd
4.平行板电容器的动态分析 (1)两种情况:①保持两极板与电源相连,则电容器两极板 电压 电量 间_____不变.②充电后断开电源,则电容器的_____不变.
Q εS (2)三个公式:①C=U;②U=Ed;③C=4πkd. (3)方法:找不变量与变化量之间的公式来决定要比较的量
运动、减速运动至速度为零;如此反复运动,每次向左运动的 距离大于向右运动的距离,最终打在 A 板上,所以B 正确.
3T 若 <t0<T,带正电粒子先加速向A 板运动、再减速运动至 4 速度为零;然后再反方向加速运动、减速运动至速度为零;如 此反复运动,每次向左运动的距离小于向右运动的距离,最终 打在B 板上,所以C 错误.若T<t0< 9T ,带正电粒子先加速向B 8

第3讲电容器带电粒子在电场中的运动

第3讲电容器带电粒子在电场中的运动

第3讲电容器带电粒子在电场中的运动一、电容器及电容1.电容器(1)组成:两个彼此绝缘且又相互靠近的导体组成电容器,电容器可以容纳电荷。

(2)所带电荷量:一个极板所带电荷量的绝对值,两极板所带电荷量相等。

(3)充、放电①充电:把电容器接在电源上后,电容器两个极板分别带上等量异号电荷的过程,充电后两极间存在电场,电容器储存了电能。

②放电:用导线将充电后电容器的两极板接通,极板上电荷中和的过程,放电后的两极板间不再有电场,同时电场能转化为其他形式的能。

2.电容(1)定义:电容器所带的电荷量与两极板间电势差的比值。

(2)公式:C=QU=ΔQΔU。

(3)物理意义:电容是描述电容器容纳电荷本领大小的物理量,在数值上等于把电容器两极板的电势差增加1 V 所需增加的电荷量,电容C由电容器本身的构造因素决定,与U、Q无关。

(4)单位:法拉,符号F,与其他单位间的换算关系:1 F=106μF=1012 pF。

3.平行板电容器的电容平行板电容器的电容与平行板正对面积S 、电介质的介电常数εr 成正比,与极板间距离d 成反比,即C =εr S 4πkd。

二、带电粒子在电场中的加速和偏转1.带电粒子在电场中的加速(1)运动状态的分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一条直线上,做匀变速直线运动。

(2)用功能观点分析:电场力对带电粒子做的功等于带电粒子动能的增量,即qU =12m v 2-12m v 20。

2.带电粒子的偏转(1)运动状态:带电粒子受到恒定的与初速度方向垂直的电场力作用而做类平抛运动。

(2)处理方法:类似于平抛运动的处理方法①沿初速度方向为匀速运动,运动时间t =l v 0。

②沿电场力方向为匀加速运动,a =F m =qE m =qU md 。

③离开电场时的偏移量y =12at 2=ql 2U 2m v 20d。

④离开电场时的偏转角tan θ=v ⊥v 0=qlU m v 20d。

带电粒子在电场中的运动 带电粒子在电场中的运动(课件)高二物理(沪科版2020上海必修第三册)

带电粒子在电场中的运动  带电粒子在电场中的运动(课件)高二物理(沪科版2020上海必修第三册)

解析 两板间电压为U保持不变,设板间距为d,电 子在板间的加速度为a, 据牛顿第二定律有 qUd =ma,可得电子的加速度 a=qmUd, 故两板间距离越小,电子的加速度就越大,B错误; 电子在板间做匀加速直线运动,可得 d=12at2,可得 t=d 2qUm, 故两板间距离越大,加速时间越长,A错误; 由动能定理可得 qU=12mv2,电子到达 Q 板时的速率 v= 2qmU,与两板 间距离无关,仅与加速电压有关,C 正确,D 错误.
(2)电子在偏转电场中运动的加速度a的大小; 答案 1.1×1015 m/s2
解析 根据牛顿第二定律得 a=emE 代入数据得 a=332×1014 m/s2≈1.1×1015 m/s2;
(3)电子离开偏转电场时的速度方向与进入该 电场时的速度方向之间的夹角θ. 答案 45°
解析 粒子在偏转电场中的运动时间为 t=vLx 离开电场时的竖直分速度为vy=at 又有 tan θ=vvxy 代入数据解得θ=45°.
场加速,沿直线垂直进入另一个场强为E=6 000 V/m的匀强偏转电场,
而后电子从右侧离开偏转电场.已知电子比荷为
me ≈×1196011 C/kg,不计
电子的重力,偏转极板长为L=6.0×10-2 m.求:
(1)电子经过电压U加速后的速度vx的大小; 答案 8×106 m/s
解析 根据动能定理得 eU=12mvx2 代入数据解得vx=8×106 m/s;
所以aQ>aP,故B错误;
根据牛顿第二定律,有qE=ma

由①②两式解得 q=2Emt2y, 所以它们所带的电荷量之比qP∶qQ=1∶2,故D正确; 根据动能定理,有qE·y=ΔEk,又qP∶qQ=1∶2,yP∶yQ=1∶2, 所以动能增加量之比ΔEkP∶ΔEkQ=1∶4,故C错误.

高考物理一轮总复习 第七章 第3讲 电容器与电容 带电粒子在电场中的运动(含解析)

高考物理一轮总复习 第七章 第3讲 电容器与电容 带电粒子在电场中的运动(含解析)

电容器与电容 带电粒子在电场中的运动[基础知识·填一填][知识点1] 电容器及电容 1.电容器(1)组成:由两个彼此 绝缘 又相互靠近的导体组成. (2)带电荷量:一个极板所带电荷量的 绝对值 . (3)电容器的充、放电①充电:使电容器带电的过程,充电后电容器两极板带上等量的 异种电荷_ ,电容器中储存电场能.②放电:使充电后的电容器失去电荷的过程,放电过程中 电能 转化为其他形式的能.2.电容(1)定义:电容器所带的 电荷量 与两个极板间的 电势差 的比值. (2)定义式: C =Q U.(3)单位:法拉(F)、微法(μF)、皮法(pF).1 F = 106μF= 1012pF. (4)意义:表示电容器 容纳电荷 本领的高低.(5)决定因素:由电容器本身物理条件(大小、形状、相对位置及电介质)决定,与电容器是否 带电 及 电压 无关.3.平行板电容器的电容(1)决定因素:正对面积、介电常数、两板间的距离. (2)决定式: C =εr S4πkd.判断正误,正确的划“√”,错误的划“×”.(1)电容器所带的电荷量是指每个极板所带电荷量的代数和.(×) (2)电容器的电容与电容器所带电荷量成反比.(×) (3)放电后的电容器电荷量为零,电容也为零.(×) [知识点2] 带电粒子在电场中的运动 1.加速问题(1)在匀强电场中:W =qEd =qU =12mv 2-12mv 20.(2)在非匀强电场中:W =qU =12mv 2-12mv 20.2.偏转问题(1)条件分析:不计重力的带电粒子以速度v 0垂直于电场线方向飞入匀强电场. (2)运动性质: 匀变速曲线 运动. (3)处理方法:利用运动的合成与分解. ①沿初速度方向:做 匀速 运动.②沿电场方向:做初速度为零的 匀加速 运动. 判断正误,正确的划“√”,错误的划“×”. (1)带电粒子在匀强电场中只能做类平抛运动.(×)(2)带电粒子在电场中,只受电场力时,也可以做匀速圆周运动.(√) (3)带电粒子在电场中运动时重力一定可以忽略不计.(×) [知识点3] 示波管1.装置:示波管由电子枪、偏转电极和荧光屏组成,管内抽成真空,如图所示. 2.原理(1)如果在偏转电极XX ′和YY ′之间都没有加电压,则电子枪射出的电子沿直线传播,打在荧光屏 中心 ,在那里产生一个亮斑.(2)YY ′上加的是待显示的 信号电压 ,XX ′上是机器自身产生的锯齿形电压,叫做扫描电压.若所加扫描电压和信号电压的周期相同,就可以在荧光屏上得到待测信号在一个周期内变化的图象.[教材挖掘·做一做]1.(人教版选修3-1 P32第1题改编)(多选)如图所示,用静电计可以测量已充电的平行板电容器两极板之间的电势差U ,电容器已带电,则下列判断正确的是( )A .增大两极板间的距离,指针张角变大B .将A 板稍微上移,静电计指针张角变大C .若将玻璃板插入两板之间,则静电计指针张角变大D .若减小两板间的距离,则静电计指针张角变小解析:ABD [电势差U 变大(小),指针张角变大(小).电容器所带电荷量一定,由公式C =εr S 4πkd 知,当d 变大时,C 变小,再由C =QU得U 变大;当A 板上移时,正对面积S 变小,C 也变小,U 变大;当插入玻璃板时,C 变大,U 变小;而两板间的距离减小时,C 变大,U 变小,所以选项A 、B 、D 正确.]2.(人教版选修3-1 P39第2题改编)两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图所示,OA =h ,此电子具有的初动能是( )A.edhU B .edUhC.eU dhD.eUh d解析:D [电子从O 点到A 点,因受电场力作用,速度逐渐减小.根据题意和图示判断,电子仅受电场力,不计重力.这样,我们可以用能量守恒定律来研究问题,即12mv 20=eU OA .因E =U d ,U OA =Eh =Uh d ,故12mv 20=eUhd,故选项D 正确.] 3.(人教版选修3-1 P39第4题改编)如图所示,含有大量11H 、21H 、42He 的粒子流无初速度进入某一加速电场,然后沿平行金属板中心线上的O 点进入同一偏转电场,最后打在荧光屏上.下列有关荧光屏上亮点分布的说法正确的是( )A .出现三个亮点,偏离O 点最远的是11H B .出现三个亮点,偏离O 点最远的是42He C .出现两个亮点 D .只会出现一个亮点 答案:D4.(人教版选修3-1 P36思考与讨论改编)如图是示波管的原理图,它由电子枪、偏转电极(XX ′和YY ′)、荧光屏组成.管内抽成真空.给电子枪通电后,如果在偏转电极XX ′和YY ′上都没有加电压,电子束将打在荧光屏的中心O 点.(1)带电粒子在 __________ 区域是加速的,在 ________ 区域是偏转的. (2)若U YY ′>0,U XX ′=0,则粒子向 ________ 板偏转,若U YY ′=0,U XX ′>0,则粒子向 ________ 板偏转.答案:(1)Ⅰ Ⅱ (2)Y X考点一 平行板电容器的动态分析[考点解读]1.两类典型问题(1)电容器始终与恒压电源相连,电容器两极板间的电势差U 保持不变. (2)电容器充电后与电源断开,电容器两极板所带的电荷量Q 保持不变. 2.动态分析思路 (1)U 不变①根据C =Q U =εr S4πkd 先分析电容的变化,再分析Q 的变化.②根据E =U d分析场强的变化. ③根据U AB =Ed 分析某点电势变化. (2)Q 不变①根据C =Q U =εr S4πkd先分析电容的变化,再分析U 的变化.②根据E =U d=4k πQεr S分析场强变化.[典例赏析][典例1] (多选)如图所示,平行板电容器与直流电源连接,下极板接地,一带电油滴位于电容器中的P 点且处于静止状态,现将上极板竖直向上移动一小段距离,则( )A .带电油滴将沿竖直方向向上运动B .P 点电势将降低C .电容器的电容减小,极板带电荷量减小D .带电油滴的电势能保持不变[解析] BC [电容器与电源相连,两极板间电压不变,下极板接地,电势为0.油滴位于P 点处于静止状态,因此有mg =qE .当上极板向上移动一小段距离时,板间距离d 增大,由C =εr S 4πkd 可知电容器电容减小,板间场强E 场=Ud 减小,油滴所受的电场力减小,mg>qE ,合力向下,带电油滴将向下加速运动,A 错;P 点电势等于P 点到下极板间的电势差,由于P 到下极板间距离h 不变,由φP =ΔU =Eh 可知,场强E 减小时P 点电势降低,B 对;由C =Q U可知电容器所带电荷量减小,C 对;带电油滴所处P 点电势下降,而由题图可知油滴带负电,所以油滴电势能增大,D 错.]分析平行板电容器动态变化的三点关键1.确定不变量:先明确动态变化过程中的哪些量不变,是电荷量保持不变还是极板间电压不变.2.恰当选择公式:灵活选取电容的决定式和定义式,分析电容的变化,同时用公式E =U d分析极板间电场强度的变化情况.3.若两极板间有带电微粒,则通过分析电场力的变化,分析其运动情况的变化.[题组巩固]1.(2016·全国卷Ⅰ)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上,若将云母介质移出,则电容器( )A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C .极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变解析:D [据C =εr S4πkd 可知,将云母介质移出电容器,C 变小,电容器接在恒压直流电源上,电压不变,据Q =CU 可知极板上的电荷量变小,据E =U d可知极板间电场强度不变,故选D.]2.(2018·北京卷) 研究与平行板电容器电容有关因素的实验装置如图所示.下列说法正确的是( )A .实验前,只用带电玻璃棒与电容器a 板接触,能使电容器带电B .实验中,只将电容器b 板向上平移,静电计指针的张角变小C .实验中,只在极板间插入有机玻璃板, 静电计指针的张角变大D .实验中,只增加极板带电荷量,静电计指针的张角变大,表明电容增大解析:A [当用带电玻璃棒与电容器a 板接触,由于静电感应,从而在b 板感应出等量的异种电荷,从而使电容器带电,故选项A 正确;根据电容器电容的决定式:C =εr S 4πkd ,将电容器b 板向上平移,即正对面积S 减小,则电容C 减小,根据C =QU可知, 电荷量Q 不变,则电压U 增大,则静电计指针的张角变大,故选项B 错误;根据电容器电容的决定式:C =εr S4πkd,只在极板间插入有机玻璃板,则介电常数εr 增大,则电容C 增大,根据C =Q U可知, 电荷量Q 不变,则电压U 减小,则静电计指针的张角减小,故选项C 错误;根据C =Q U可知,电荷量Q 增大,则电压U 也会增大,而电容由电容器本身决定,C不变,故选项D 错误.]考点二 带电粒子在电场中的直线运动[考点解读]1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学观点分析a =qE m ,E =Ud,v 2-v 20=2ad .3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 2非匀强电场中:W =qU =E k2-E k1.[典例赏析][典例2] (2019·湖南长沙模拟)如图所示,在A 点固定一正电荷,电荷量为Q ,在离A 高度为H 的C 处由静止释放某带同种电荷的液珠,开始运动瞬间向上的加速度大小恰好等于重力加速度g .已知静电力常量为k ,两电荷均可看成点电荷,不计空气阻力.求:(1)液珠的比荷;(2)液珠速度最大时离A 点的距离h ;(3)若已知在点电荷Q 的电场中,某点的电势可表示成φ=kQr,其中r 为该点到Q 的距离(选无限远的电势为零).求液珠能到达的最高点B 离A 点的高度r B .[解析] (1)设液珠的电荷量为q ,质量为m ,由题意知,当液珠在C 点时k QqH2-mg =mg 比荷为q m =2gH 2kQ(2)当液珠速度最大时,k Qq h2=mg 得h =2H(3)设BC 间的电势差大小为U CB ,由题意得U CB =φC -φB =kQ H -kQr B对液珠由释放处至液珠到达最高点(速度为零)的全过程应用动能定理得qU CB -mg (r B -H )=0即q ⎝ ⎛⎭⎪⎫kQ H -kQr B -mg (r B -H )=0解得:r B =2H ,r B =H (舍去). [答案] (1)2gH 2kQ(2)2H (3)2H带电体在匀强电场中的直线运动问题的解题步骤[题组巩固]1.(多选)如图所示,带电小球自O 点由静止释放,经C 孔进入两水平位置的平行金属板之间,由于电场的作用,刚好下落到D 孔时速度减为零.对于小球从C 到D 的运动过程,已知从C 运动到CD 中点位置用时t 1,从C 运动到速度等于C 点速度一半的位置用时t 2,下列说法正确的是( )A .小球带负电B .t 1<t 2C .t 1>t 2D .将B 板向上平移少许后小球可能从D 孔落下解析:AB [由题图可知,A 、B 间的电场强度方向向下,小球从C 到D 做减速运动,受电场力方向向上,所以小球带负电,选项A 正确;由于小球在电场中受到的重力和电场力都是恒力,所以小球做匀减速直线运动,其速度图象如图所示,由图可知,t 1<t 2,选项B 正确,C 错误;将B 板向上平移少许时两板间的电压不变,根据动能定理可知,mg (h +d )-qU =0,mg (h +x )-qUx d ′=0,联立得x =h h +d -d ′d ′<d ′,即小球不到D 孔就要向上返回,所以选项D 错误.]2.(2017·江苏卷)如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点解析:A [设A 、B 板间的电势差为U 1,B 、C 间电势差为U 2,板间距为d ,电场强度为E ,第一次由O 点静止释放的电子恰好能运动到P 点,根据动能定理得:qU 1=qU 2=qEd ,将C 板向右移动,B 、C 板间的电场强度:E =U 2d =Q C 0d =4πkQεr S不变,所以电子还是运动到P 点速度减小为零,然后返回,故A 正确,B 、C 、D 错误.]考点三 带电粒子在匀强电场中的偏转[考点解读]1.运动规律(1)沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0b.不能飞出电容器:y =12at 2=qU 2mdt 2,t =2mdyqU(2)沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =qUmd离开电场时的偏移量:y =12at 2=qUl 22mdv2离开电场时的偏转角:tan θ=v y v 0=qUl mdv202.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 2y =12at 2=12·qU 1md ·⎝ ⎛⎭⎪⎫l v 02tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d.(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.[典例赏析][典例3] 如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L =0.4 m ,两板间距离d =4×10-3m ,有一束由相同带电微粒组成的粒子流,以相同的速度v 0从两板中央平行极板射入,开关S 闭合前,两板不带电,由于重力作用微粒能落到下极板的正中央,已知微粒质量为m =4×10-5kg ,电荷量q =+1×10-8C ,g 取10 m/s 2.求:(1)微粒入射速度v 0为多少?(2)为使微粒能从平行板电容器的右边射出电场,电容器的上极板应与电源的正极还是负极相连?所加的电压U 应取什么范围?[审题指导] 开关闭合前,微粒做平抛运动,开关闭合后,微粒做类平抛运动,两个过程的分析方法相同,都要用到运动的合成与分解.[解析] (1)开关S 闭合前,由L 2=v 0t ,d 2=12gt 2可解得v 0=L2gd=10 m/s. (2)电容器的上极板应接电源的负极.当所加的电压为U 1时,微粒恰好从下板的右边缘射出,即d 2=12a 1⎝ ⎛⎭⎪⎫L v 02, 又a 1=mg -qU 1dm,解得U 1=120 V当所加的电压为U 2时,微粒恰好从上极板的右边缘射出,即d 2=12a 2⎝ ⎛⎭⎪⎫L v 02, 又a 2=q U 2d-mg m,解得U 2=200 V所以120 V ≤U ≤200 V.[答案] (1)10 m/s (2)与负极相连,120 V ≤U ≤200 V带电粒子在电场中偏转问题求解通法1.解决带电粒子先加速后偏转模型的通法:加速电场中的运动一般运用动能定理qU =12mv 2进行计算;在偏转电场中的运动为类平抛运动,可利用运动的分解进行计算;二者靠速度相等联系在一起.2.计算粒子打到屏上的位置离屏中心的距离Y 的四种方法: (1)Y =y +d tan θ(d 为屏到偏转电场的水平距离).(2)Y =⎝ ⎛⎭⎪⎫L2+d tan θ(L 为电场宽度). (3)Y =y +v y ·d v 0.(4)根据三角形相似Y y =L2+d L2.[题组巩固]1.(多选)如图所示,带电荷量之比为q A ∶q B =1∶3的带电粒子A 、B 以相等的速度v 0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C 、D 点,若OC =CD ,忽略粒子重力的影响,则( )A .A 和B 在电场中运动的时间之比为1∶2 B .A 和B 运动的加速度大小之比为4∶1C .A 和B 的质量之比为1∶12D .A 和B 的位移大小之比为1∶1解析:ABC [粒子A 和B 在匀强电场中做类平抛运动,水平方向由x =v 0t 及OC =CD 得,t A ∶t B =1∶2,选项A 正确;竖直方向由h =12at 2得a =2ht 2,它们沿竖直方向下落的加速度大小之比为a A ∶a B =4∶1,选项B 正确;根据a =qE m 得m =qEa,故m A ∶m B =1∶12,选项C 正确;A 和B 的位移大小不相等,选项D 错误.]2.(2016·北京卷23题改编)如图所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m ,电荷量为e ,加速电场电压为U 0,偏转电场可看做匀强电场,极板间电压为U ,极板长度为L ,板间距为d .(1)忽略电子所受重力,求电子射入偏转电场时的初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ;(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U =2.0×102 V ,d =4.0×10-2m ,m =9.1×10-31 kg ,e =1.6×10-19 C ,g =10 m/s 2. 解析:(1)根据动能定理,有eU 0=12mv 20, 电子射入偏转电场时的初速度v 0=2eU 0m 在偏转电场中,电子的运动时间Δt =Lv 0=L m 2eU 0加速度a =eE m =eU md偏转距离Δy =12a (Δt )2=UL 24U 0d(2)只考虑电子所受重力和电场力的数量级,有重力 G =mg ≈10-29 N 电场力F =eUd ≈10-15 N由于F ≫G ,因此不需要考虑电子所受的重力.答案:(1) 2eU 0m UL 24U 0d(2)见解析 思想方法(十四) 电容器在现代科技生活中的应用[典例] (多选)目前智能手机普遍采用了电容触摸屏,电容触摸屏是利用人体的电流感应进行工作的,它是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂一层ITO(纳米铟锡金属氧化物),夹层ITO 涂层作为工作面,四个角引出四个电极,当用户手指触摸电容触摸屏时,手指和工作面形成一个电容器,因为工作面上接有高频信号,电流通过这个电容器分别从屏的四个角上的电极中流出,且理论上流经四个电极的电流与手指到四个角的距离成比例,控制器通过对四个电流比例的精密计算来确定手指位置.对于电容触摸屏,下列说法正确的是( )A.电容触摸屏只需要触摸,不需要压力即能产生位置信号B.使用绝缘笔在电容触摸屏上也能进行触控操作C.手指压力变大时,由于手指与屏的夹层工作面距离变小,电容变小D.手指与屏的接触面积变大时,电容变大[解析]AD [据题意知,电容触摸屏只需要触摸,由于流经四个电极的电流与手指到四个角的距离成比例,控制器就能确定手指的位置,因此不需要手指有压力,故A正确;绝缘笔与工作面不能形成一个电容器,所以不能在电容屏上进行触控操作,故B错误;手指压力变大时,由于手指与屏的夹层工作面距离变小,电容将变大,故C错误;手指与屏的接触面积变大时,电容变大,故D正确.][题组巩固]1.(2019·汕头模拟)图示为某电容传声器结构示意图,当人对着传声器讲话,膜片会振动.若某次膜片振动时,膜片与极板距离增大,则在此过程中( ) A.膜片与极板间的电容增大B.极板所带电荷量增大C.膜片与极板间的电场强度增大D.电阻R中有电流通过解析:D [根据C=εr S4πkd可知,膜片与极板距离增大,膜片与极板间的电容减小,选项A错误;根据Q=CU可知极板所带电荷量减小,因此电容器要通过电阻R放电,所以选项D正确,B错误;根据E=Ud可知,膜片与极板间的电场强度减小,选项C错误.]2.(多选)电容式加速度传感器的原理如图所示,质量块左、右侧连接电介质、轻质弹簧,弹簧与电容器固定在外框上,质量块可带动电介质移动,改变电容.则( ) A.电介质插入极板间越深,电容器电容越小B.当传感器以恒定加速度运动时,电路中有恒定电流C.若传感器原来向右匀速运动,突然减速时弹簧会压缩D.当传感器由静止突然向右加速时,电路中有顺时针方向的电流解析:CD [由C =εr S 4πkd知,电介质插入越深,εr 越大,即C 越大,A 错;当传感器以恒定加速度运动时,电介质相对电容器静止,电容不变,电路中没有电流,B 错;传感器向右匀速运动,突然减速时,质量块由于惯性相对传感器向右运动,弹簧压缩变短,C 对;传感器由静止突然向右加速时,电介质相对电容器向左运动,εr 增大,C 增大,电源电动势不变,由C =Q U 知,Q 增大,上极板电荷量增大,即电路中有顺时针方向的电流,D 对.。

《带电粒子在电场中的运动》人教版教材课件1

《带电粒子在电场中的运动》人教版教材课件1
问:被这种紫外线照射出的电子,最大速度是多少?(结果保留3位有效数字)
【答案】2.10×106 m/s
【解析】如果电子的动能减少到等于 0 的时候,电子恰好没有到达 N 板,则电
流表中就没有电流.由 W=0-Ekm,W=-eU,得-eU=0-Ekm=-12mev2,v=
2Ue me

2×12.5×1.6×10-19 0.91×10-30
②充电后断开电源,则电容器所带的_电_电荷量 _荷__量___不变.
二、带电粒子在电场中的运动
1.带电粒子在电场中的加速 (1)处理方法:利用动能定理qU=___12m_v_2_-_12m_v_20_______. (2)适用范围:任何电场. 2.带电粒子在电场中的偏转
匀变速曲线
(1)条件分析:带电粒相互垂直 子垂直于电场线方向进入 平抛运动 匀强电 场.
第3讲 电容、带电粒子在电场中的运动
第3讲 电容、带电粒子在电场中的运动
第3讲 电容、带电粒子在电场中的运动
考点0 双基过关掌握
一、电容器、电容
1.电容器 (1)组成:由两个彼此__绝缘_绝_缘____又相靠互近 __靠__近____的平行板导体组
成.
绝对值
绝对值
(2)带电荷量:一个极板所带电荷量的________.
异种电荷
(3)电容器的充、放电 电场能
充电:使电容器带电的过程,充电后电容器两极板带上等量的 电场能 _异__种_电__荷____,电容器中储存___电__场_能__.
放电:使充电后的电容器失去电荷的过程,放电过程中 ___电_场__能__转化为其他形式的能.
2.电容 (1)定义式:
___C_=___UQ_.
(2)单位:法拉(F),1 F=106 μF=1012 pF.

【人教版】2020届高考物理一轮复习第7章静电场第3讲电容器带电粒子在电场中的运动课时作业(含解析)

【人教版】2020届高考物理一轮复习第7章静电场第3讲电容器带电粒子在电场中的运动课时作业(含解析)

3、电容器 带电粒子在电场中的运动[基础训练]1.(2018·云南曲靖联考)(多选)如图所示电路中,A 、B 为两块竖直放置的金属板,G 是一只静电计,开关S 合上后,静电计指针张开一个角度,下述哪些做法可使指针张角增大( )A .使A 、B 两板靠近一些 B .使A 、B 两板正对面积错开一些C .断开S 后,使B 板向右平移拉开一些D .断开S 后,使A 、B 两板正对面积错开一些答案:CD 解析:图中静电计的金属杆接A 板,外壳和B 板均接地,静电计显示的是A 、B 两极板间的电压,指针张角越大,表示两板间的电压越高.当合上S 后,A 、B 两板与电源两极相连,板间电压等于电源电压不变,静电计指针张角不变;当断开S 后,板间距离增大,正对面积减小,都将使电容器的电容变小,而电容器电荷量不变,由U =Q C可知,板间电压U 增大,从而使静电计指针张角增大.综上所述,选项C 、D 正确.2.(2018·山东菏泽期末)(多选)一平行板电容器充电后与电源断开,负极板接地,在两极板间有一带正电小球(电荷量很小)固定在P 点,如图所示.以U 表示两极板间的电压,E 表示两极板间的场强,E p 表示该小球在P 点的电势能,若保持负极板不动,而将正极板移至图中虚线所示位置,则( )A .U 变小B .U 不变C .E 变大D .E p 不变答案:AD 解析:根据电容器充电后与电源断开可知,Q 不变,将正极板移至图中虚线所示位置,间距d 减小,由C =εr S 4πkd ,知电容C 增大,又U =Q C ,电压U 减小,因E =U d =Q Cd =4πkQ εr S,E 不变,P 点到下极板的距离不变,则P 点与下极板的电势差不变,P 点的电势φ不变,P 点电势能E p =φq 不变,选项A 、D 正确.3.如图所示,从F 处由静止释放一个电子,电子向B 板方向运动,设电源电动势为U (V),下列对电子运动的描述中错误的是( )A .电子到达B 板时的动能是U (eV)B .电子从B 板到达C 板的过程中,动能的变化量为零 C .电子到达D 板时动能是3U (eV) D .电子在A 板和D 板之间做往复运动答案:C 解析:由题图可知,电子在A 、B 板间做加速运动,电场力做的正功为U (eV);电子在B 、C 板间做匀速运动,动能变化量为零;电子在C 、D 板间做减速运动,电场力做的功为-U (eV),电子在D 板处速度为零,故电子在A 板和D 板之间做往复运动,选C.4.如图所示,电子(不计重力,电荷量为e ,质量为m )由静止经加速电场加速,然后从相互平行的A 、B 两板的正中间射入,已知加速电场两极间电压为U 1,A 、B 两板之间电压为U 2,则下列说法中正确的是( )A .电子穿过A 、B 板时,其动能一定等于e ⎝ ⎛⎭⎪⎫U 1+U 22B .为使电子能飞出A 、B 板,则要求U 1>U 2C .若把电子换成另一种带负电的粒子(忽略重力),它将沿着电子的运动轨迹运动D .在A 、B 板间,沿电子的运动轨迹,电势越来越低答案:C 解析:电子穿过A 、B 板时不一定从板的边缘射出,所以动能不一定等于e ⎝ ⎛⎭⎪⎫U 1+U 22,故A 错误.为使电子能飞出A 、B 板,不能只要求U 1>U 2,因为竖直位移还与板长、板间距离有关,故B 错误.电子在A 、B 板间的水平位移x =v 0t ,竖直位移y =12at 2,其中a =eU 2md ,eU 1=12mv 20,联立得y =U 2x24U 1d,与电荷量、质量无关,所以C 正确.在A 、B 板间,电场力对电子做正功,电势能减少,沿电子的运动轨迹电势升高,所以D 错误.5.(2018·湖北宜昌模拟)如图所示,一个带电粒子从粒子源飘入(初速度很小,可忽略不计)电压为U 1的加速电场,经加速后从小孔S 沿平行金属板A 、B 的中线射入,A 、B 板长为L ,相距为d ,电压为U 2.则带电粒子能从A 、B 板间飞出应该满足的条件是( )A.U 2U 1<2dL B.U 2U 1<d LC.U 2U 1<2d 2L2 D.U 2U 1<d 2L2 答案:C 解析:根据qU 1=12mv 2,再根据t =L v 和y =12at 2=12·qU 2md ·⎝ ⎛⎭⎪⎫L v 2,由题意知,y <12d ,解得U 2U 1<2d2L 2,故C正确.6.如图所示的示波管,电子由阴极K 发射后,初速度可以忽略,经加速电场加速后垂直于电场方向飞入偏转电场,最后打在荧光屏上.已知加速电压为U 1,偏转电压为U 2,两偏转极板间距为d ,板长为L ,偏转极板右端到荧光屏的距离为D ,不计重力,求:(1)电子飞出偏转电场时的偏转位移y ; (2)电子打在荧光屏上的偏转距离OP .答案:(1)U 2L 24dU 1 (2)U 2L4dU 1(L +2D )解析:设电子加速后速度为v 0,则eU 1=12mv 20在偏转电场中水平方向:L =v 0t 竖直方向:y =12eU 2dmt 2联立解得y =U 2L 24dU 1.(2)由类平抛运动的推论可得y OP =12L L2+D联立解得OP =y +2D L y =U 2L 24dU 1+U 2LD 2dU 1=U 2L4dU 1(L +2D ).[能力提升]7.(2018·河北张家口模拟)如图所示,P 、Q 为平行板电容器,两极板竖直放置,在两板间用绝缘线悬挂一带电小球.将该电容器与电源连接,闭合开关后,悬线与竖直方向夹角为α,则()A .保持开关闭合,缩小P 、Q 两板间的距离,角度α会减小B .保持开关闭合,加大P 、Q 两板间的距离,角度α会增大C .断开开关,加大P 、Q 两板间的距离,角度α会增大D .断开开关,缩小P 、Q 两板间的距离,角度α不变化答案:D 解析:保持开关闭合,电容器两端的电压不变,减小两板间距离,根据E =Ud,电场强度增大,角度α增大,A 错误;增大两板间距离,场强减小,角度α减小,B 错误;将开关断开,Q 不变,则有E =U d =Q Cd=Q εr S4πkd·d =4πkQεr S,改变距离d ,场强不变,角度α不变,C 错误,D 正确.8.如图所示,在空间中有平行于xOy 平面的匀强电场,一群带正电粒子(电荷量为e ,重力不计,不计粒子间相互作用)从P 点出发,可以到达以原点O 为圆心、R =25 cm 为半径的圆上的任意位置,比较圆上这些位置,发现粒子到达圆与x 轴正半轴的交点A 时,动能增加量最大,为60 eV ,已知∠OAP =30°.则下列说法正确的是( )A .该匀强电场的方向沿x 轴负方向B .匀强电场的电场强度是240 V/mC .过A 点的电场线与x 轴垂直D .P 、A 两点间的电势差为60 V答案:D 解析:到A 点时,动能增加量最大,说明等势面在A 点与圆相切(否则一定还可以在圆上找到比A 点电势低的点,粒子到达这点,动能增加量比到达A 点时动能增加量大),即等势面与y 轴平行,电场力做正功,所以电场沿x 轴正方向,P 、A 两点间的电势差U PA =W e=60 V ,由匀强电场中电场强度与电势差的关系可得E =U PA2R cos 30°cos 30°=160 V/m ,故D 正确,A 、B 、C 错误.9.(多选)两个相同的电容器A 和B 如图所示连接,它们的极板均水平放置,当它们都带有一定电荷并处于静电平衡时,电容器A 中的一带电粒子恰好静止,现在电容器B 的两极板间插入一长度与板长相同的金属块,且两极板的间距d 不变,这时带电粒子的加速度大小为12g ,重力加速度的大小为g .则下列说法正确的是( )A .带电粒子加速度方向向下B .电容器A 的带电量增加为原来的2倍C .金属块的厚度为23dD .电容器B 两板间的电压保持不变答案:AC 解析:带电粒子静止,则有mg =qU d ,得U =mgdq①,当在电容器B 的两极板间插入一长度与板长相同的金属块时,板间距减小,则由C =εr S4πkd 可知,电容器B 的电容C 增大,而两个电容器的总电量不变,电压相等,则知电容器B 两端的带电量增大,电容器A 两端的电量减小,则由C =Q U知电容器A 板间电压减小,场强减小,粒子所受的电场力减小,所以粒子向下加速运动,故A 项正确;带电粒子向下加速运动,根据牛顿第二定律得mg -qU ′d =m g 2②,由①②解得U ′=12mgd q ,则板间电压变为原来的12,根据电容的定义式C =QU,可知电容器A 的带电量变为原来的12,则电容器B 的带电量变为原来的32倍,由电容的定义式C =QU ,可知电容器B 的电容变为原来的3倍,则电容器B 的板间距减小到原来的13,故金属块的厚度为23d ,C 项正确,B 、D 项错误.10.如图所示,矩形区域ABCD 内存在竖直向下的匀强电场,两个带正电的粒子a 和b 以相同的水平速度射入电场,粒子a 由顶点A 射入,从BC 的中点P 射出,粒子b 由AB 的中点O 射入,从顶点C 射出.若不计重力,则a 和b 的比荷之比是()A .1∶2B .2∶1C .1∶8D .8∶1答案:D 解析:如图所示,设AB 长为2h ,BC 长为2l ,对a 粒子有2h =12a a t 2a =q a E 2m a t 2a ,l =v 0t a ,解得2h =q a E 2m a ⎝ ⎛⎭⎪⎫l v 02,对b 粒子有h =12a b t 2b =q b E 2m b t 2b ,2l =v 0t b ,解得h =q b E 2m b ⎝ ⎛⎭⎪⎫2l v 02,可得q am a q b m b=81,D 正确.11.如图甲所示,质量为m 、电荷量为e 的电子经加速电压U 1加速后,在水平方向沿O 1O 2垂直进入偏转电场.已知形成偏转电场的平行板电容器的极板长为L (不考虑电场边缘效应),两极板间距为d ,O 1O 2为两极板的中线,P 是足够大的荧光屏,且屏与极板右边缘的距离也为L .甲乙(1)求电子进入偏转电场时的速度大小v ;(2)若偏转电场两板间加恒定电压,电子经过偏转电场后正好打中屏上的A 点,A 点与极板M 在同一水平线上,求偏转电场所加电压U 2;(3)若偏转电场两板间的电压按如图乙所示做周期性变化,要使电子经加速电场后在t =0时刻进入偏转电场,最后水平击中A 点,求偏转电场电压U 0以及周期T 分别应该满足的条件.答案:见解析 解析:(1)电子经加速电场加速eU 1=12mv 2解得v =2eU 1m.(2)由题意知,电子经偏转电场偏转后做匀速直线运动到达A 点,设电子离开偏转电场时的偏转角为θ,由几何关系得d 2=⎝⎛⎭⎪⎫L +12L tan θ解得tan θ=d3L又tan θ=v y v =eU 2md ·L v v =eU 2L mdv 2=U 2L2U 1d解得U 2=2U 1d23L2.(3)要使电子在水平方向击中A 点,电子必向上极板偏转,且v y =0,则电子应在t =0时刻进入偏转电场,且电子在偏转电场中运动的时间为整数个周期,因为电子水平射出,则电子在偏转电场中的运动时间满足t =Lv =nT T =L nv=L n2eU 1m=L n m2eU 1(n =1,2,3,…) 在竖直方向满足d2=2n ×12a ⎝ ⎛⎭⎪⎫T 22=2n ×12·eU 0md ⎝ ⎛⎭⎪⎫T 22解得U 0=4nU 1d2L2(n =1,2,3,…).。

带电粒子在电场中的运动 课件-高二物理人教版(2019)必修第三册

带电粒子在电场中的运动 课件-高二物理人教版(2019)必修第三册


U
+F
~
0
1
2
3
4

三、多级加速器原理
多级直线加速器示图

U
+F
~
0
1
2
3
4

可以通过不断改变电压方向使带电粒子实现多 级加速。
三、多级加速器原理 多级直线加速器示意图

U ~

U
u0
0
-u0
T
2T
因交变电压的变化周期相
同,故粒子在每个加速电
t
场中的运动时间相等。
三、多级加速器原理
多级直线加速器示图
一、带电粒子的分类
1.带电的基本粒子(微观):如电子、质子、α粒子、正负离子等。这些粒 子所受重力和电场力相比小得多,除非有说明或明确的暗示以外,一般都不 考虑重力。(但不能忽略质量)。 2.带电微粒(宏观):如带电小球、液滴、尘埃等。除非有说明或明确的暗 示以外,一般都考虑重力。
3.某些带电体是否考虑重力,要根据题目暗示或运动 状态来判定。
三、多级加速器原理
问题:如图多级平行板连接,能否加速粒子?






A
B
C
D
E
F
U
三、多级加速器原理
多级直线加速器示图

U
+F
~
0
1
2
3
4

三、多级加速器原理
多级直线加速器示图

U
+F
~
0
1
2
3
4

三、多级加速器原理
多级直线加速器示图

新教材人教版高中物理 精品资料第3讲 电容器 带电粒子在电场中的运动

新教材人教版高中物理 精品资料第3讲 电容器 带电粒子在电场中的运动

第3讲电容器带电粒子在电场中的运动一、电容器及电容1.电容器(1)组成:由两个彼此绝缘又相距很近的导体组成。

(2)带电荷量:一个极板所带电荷量的绝对值。

(3)电容器的充、放电①充电:电容器充电的过程中,两极板所带的电荷量增加,极板间的电场强度增大,电源的能量不断储存在电容器中。

②放电:放电过程中,电容器把储存的能量通过电流做功转化为其他形式的能量。

2.电容(1)定义:电容器所带的电荷量Q与电容器两极板之间的电势差U之比。

(2)定义式:C=QU。

(3)单位:法拉(F)、微法(μF)、皮法(pF)。

1 F=106μF=1012 pF。

(4)意义:表示电容器容纳电荷本领的物理量。

(5)决定因素:由电容器本身物理条件(大小、形状、极板相对位置及电介质)决定,与电容器是否带电及电压无关。

3.平行板电容器的电容(1)决定因素:正对面积,电介质,两极板间的距离。

(2)决定式:C=εr S4πkd。

二、带电粒子在电场中的运动1.带电粒子在电场中的加速(1)在匀强电场中:W=qEd=qU=12m v2-12m v2。

(2)在非匀强电场中:W=qU=12m v2-12m v2。

2.带电粒子在匀强电场中的偏转(1)运动情况:带电粒子以初速度v0垂直电场方向进入匀强电场中,则带电粒子在电场中做类平抛运动,如图1所示。

图1(2)处理方法:将带电粒子的运动分解为沿初速度方向的匀速直线运动和沿电场力方向的匀加速直线运动。

根据运动的合成与分解的知识解决有关问题。

(3)基本关系式:运动时间t=lv0,加速度a=Fm=qEm=qUmd,偏转量y=12at2=qUl22md v20,偏转角θ的正切值tan θ=v yv0=atv0=qUlmd v20。

【自测如图2所示,A、B两个带正电的粒子,所带电荷量分别为q1与q2,质量分别为m1和m2。

它们以相同的速度先后垂直于电场线从同一点进入平行板间的匀强电场后,A粒子打在N板上的A′点,B粒子打在N板上的B′点,若不计重力,则()图2A.q1>q2B.m1<m2C.q1m1>q2m2 D.q1m1<q2m2答案 C解析设粒子垂直电场进入匀强电场的速度为v0,电荷量为q,质量为m,所以加速度a=qEm,运动时间t=xv0,偏转位移为y=12at2,整理得y=qEx22m v20,显然由于A粒子的水平位移小,则有q1m1>q2m2,但A粒子的电荷量不一定大,质量关系也不能确定,故A、B、D错误,C正确。

高二物理 第3讲 带电粒子在电场中的运动(一)

高二物理 第3讲  带电粒子在电场中的运动(一)

高二物理第3讲带电粒子在电场中的运动(一)——仅在电场力作用下的带电粒子在电场中的运动【考点提示】重点:用功能观点处理带电粒子在匀强电场中的加速和偏转问题难点:用功能观点和运动的合成和分解结合处理带电粒子在匀强电场中的类平抛运动综合点:与力学问题的综合【知识要点】一、带电粒子在电场中平衡——用共点力平衡条件处理。

二、带电粒子在匀强电场中的直线加速(减速)(不计重力)1、由静止释放:。

2、v0与电场力方向相同:。

3、v0与电场力方向相反:。

4、处理方法:。

三、带电粒子在匀强电场中的偏转(只研究速度方向与电场方向垂直)(不计重力)1、运动性质:v0与电场力方向垂直,电场力是恒力——2、处理方法:①运动的合成和分解:v0方向:电场力方向:②应用动能定理3、如图,运动时间:;侧向位移:;偏转角:。

其出射速度的反向延长线【例题分析】【例1】图所示带电导体,已知其表面的电场强度E A =100N/C,E B =1N/C,点电荷q在电场力的作用下第一次在A点由静止释放到无限远处;第二次在B点由静止释放到无限远处。

二次初始的加速度大小之比为;二次的末速度大小之比为。

【例2】下列粒子从初速度为零的状态经过加速电压为U的电场后,哪种粒子的速度最大?()哪种粒子的动能最大?()A、质子B、氘核C、α粒子D、钠离子12【 例3】如图1—8—1所示,两板间电势差为U ,相距为d ,板长为L .—正离子q 以平行于极板的速度v 0射入电场中,在电场中受到电场力而发生偏转,则电荷的偏转距离y 和偏转角θ为多少?【例4】如图,匀强电场在xoy 平面内,场强为E ,与y 轴夹角为450,现有一电荷量为q 、质量为m 的负离子从坐标原点O 以初速0v 射出,0v 与x 轴的夹角为450,不计重力,求离子通过x 轴的位置坐标及在该处速度的大小。

【例5】示波器是一种观察电信号随时间变化的仪器,其核心部件是示波管,由电子枪、偏转电极和荧光屏组成,管内抽成真空,如图所示。

带电粒子在电场中的运动

带电粒子在电场中的运动
(1)B点距虚线MN的距离d2; (2)带电微粒从A点运动到B点所经历的时间t.
d2=0.50 cm t=1.5×10-8s.
带电体在匀强电场中做直线运动问题的分析方法
如图所示,绝缘光滑轨
道AB部分为倾角为30°
的斜面,AC部分为竖直
平面上半径为R的圆轨道,
斜面与圆轨道相切.整个装置处于场强为
E、方向水平向右的匀强电场中.现有一个
42
例.如图所示,一带电粒子 在电场中,由M点沿虚线运 动到N点的过程中,请判断:
①电荷的带电性质
②电荷从M运动
N
到N,电势能、 动能如何变化?
M
43
44
45
第3讲 电容器和电容 带电粒子在电 场中的运动
考基自主落实 核心考点透析 思维方法技巧 高考快乐体验 活页限时训练
2.带电粒子在匀强电场中的偏转 (1)研究条件:带电粒子垂直于电场方向进入匀强电场. (2)处理方法:类似于平抛运动,应用运动的_合__成__与__分__解__ 的方法. ①②沿沿初电速场度力方方向向做,做_匀___速匀____直加____线速____直运__线_动_运,动运动时间t=vl0
质量为m的小球,带正电荷量为要使小球能
安全通过圆轨道,在O点的初速度应为多
大?
答案 v≥
10 3gR 3
如图甲所示,在真空中足够大的绝缘水平地面上, 一个质量为m=0.2 kg、带电荷量为q=+2.0×10 -6 C的小物块处于静止状态,小物块与地面间的 摩擦因数μ=0.1.从t=0时刻开始,空间上加一个 如图乙所示的电场.(取水平向右的方向为正方 向,g取10 m/s2)求: (1)4秒内小物块的位移大小; (2)4秒内电场力对小物块所做的功.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子沿与电场线平行的方向进入电场,带电粒子将做
加(减)速运动.有两种分析方法:
(1)用动力学观点分析:a=qmE,E=Ud,v2- 匀v强20=电2a场d.
(2)用功能观点分析:粒子只受电场力作用,电场力做的
功等于物体动能的变化,qU=12m匀v2- 强12电mv场20. 非匀强电场
典例微探 【例 1】 如图所示,在某一真空中,只有水平向右的匀强电
②沿电场力方向,做匀加速直线运动.
加速度 a=
③粒子离开电场时的速率
vy
at qUl mdv0
vt
v02 vt2
v02
(
qUl mdv0
)2
④粒子离开电场时的侧移距离
y:(偏转距离)y
1 2
at 2
qUl 2 2mdv02
⑤粒子离开电场时的速度偏角:tan
vy vx
at v0
qUl mdv02
的异种电荷 ,电容器中储存电场能 .
②放电:使充电后的电容器失去电荷的过程,放电过程中
电场能转化为其他形式的能.
2.电容 (1)意义:表示电容器容纳电荷本领的物理量.
(2)定义式:C=Q=ΔQ. U ΔU
(3)单位:法拉(F),1 F=106 μF= 1012 pF.
3.平行板电容器
(1)影响因素:平行板电容器的电容与正对面积 成正比,与电介 质的相对介电常数成正比,与两极板间的距离 成反比.
平抛运动知识可得
x=v0t ①
h=1at2 ② 2
a=qE ③ m
S=πx2 ④
联立以上各式得所形成的面积为 4.0 m2,可以通过减小 h 或增大 E 来实现 答案 (1)80 V (2)1.2×10-10 J (3)4.0 m2 可通过减小 h 或增大 E 实现
题组微练
3-1.(多选)有三个质量相等,分别带正电、负电和不带电的小 球,从左上方同一点以相同的水平速度先后射入匀强电场中,
高三物理第一轮总复习
第七章 静电场
第三讲 电容器与电容 带电粒子在电场中的运动
微考点 1 平行板电容器的动态分析 1.电容器
(1)组成:由两个彼此绝___缘__又相互靠___近__的导体组成. (2)带电量:一个极板所带电荷量的绝对值.
(3)电容器的充、放电. ①充电:使电容器带电的过程,充电后电容器两极板带上等量
A.小球水平位移 x1 与 x2 的比值为 1∶3 B.小球水平位移 x1 与 x2 的比值为 1∶4 C.小球落到 B 点时的动能为 32 J D.小球从 A 点运动到 B 点的过程中最小动能为 6 J
正交分解法或化曲为直法
微专题 巧突破 带电粒子在交变电场中的运动 方法·模型 1.此类题型一般有三种情况:一是粒子做单向直线运动(一般用 牛顿运动定律求解);二是粒子做往返运动(一般分段研究);三是 粒子做偏转运动(一般根据交变电场的特点分段研究). 2.分析时从两条思路出发:一是力和运动的关系,根据牛顿第 二定律及运动学规律分析;二是功能关系. 3.注重全面分析(分析受力特点和运动规律),抓住粒子的运动 具有周期性和在空间上具有对称性的特征,求解粒子运动过程中 的速度、位移、做功或确定与物理过程相关的边界条件.
F′N=FN=0.6 N。 答案 (1)7 m/s (2)0.6 N
小结:等效法处理带电粒子在电场、重力场中的运动 带电体在匀强电场和重力场组成的复合场中的运动问题,是高 中物理教学中一类重要而典型的题型.对于这类问题,若采用 常规方法求解,过程复杂,运算量大.若采用“等效法”求解, 则能避开复杂的运算,过程比较简捷.先求出重力与电场力的
解析 (1)题中匀强电场竖直向下,b 板接地;
因此φa=Uab=Eh=1.0×102×0.8 V=80 V。
(2)不计重力,只有电场力做功;对粒子由动能定理
qUab=Ek
-1m 2
v
20可得
带电粒子打在金属板上时的动能为 1.2×10-10 J 。
(3)粒子源射出的粒子打在金属板上的范围以粒子水平抛出为落点边界,由
忽略不计)。小孔正上方d处的 P 点有一带电粒子,该粒子从静 2
止开始下落,经过小孔进入电容器,并在下极板处(未与极板
接触)返回。若将下极板向上平移d3,则从 P 点开始下落的相同
粒子将( D )
A.打到下极板上
B.在下极板处返回
C.在距上极板d2处返回 D.在距上极板25d处返回
规律总结 带电粒子在匀强电场中的直线运动问题的分析方法
微考点3 带电粒子在匀强电场中的偏转问题
1.带电粒子在匀强电场中的偏转 (1)条件分析:带电粒子垂直于电场方向进入匀强电场. (2)运动性质:类平抛运动. (3)处理方法:分解成相互垂直的两个方向上 的直线运动. (4)运动规律 ①沿初速度方向做匀速直线运动,粒子穿越
电场的时间 t= t l v0
A、B、C 三个小球的运动轨迹如图所示,A、B 小球运动轨迹
的末端处于同一竖直线上,则如图运动轨迹对应的过程( AD)
A.小球 A 带负电,B 不带电,C 带正电 B.三小球运动的时间 tA=tB<tC C.小球 B 和小球 C 末动能可能相等 D.小球 A 和小球 C 的电势能变化绝对值可能相等
二、对点微练
应以多大的初速度 v0 向左运动?
(2)这样运动的小滑块通过 P 点时对轨道的压力是多大?
解析 (1)设小滑块到达 Q 点时速度为 v,
由牛顿第二定律得 mg+qE=mv2
R 小滑块从开始运动至到达 Q 点过程中,由动能定理得
-m
g·2R
-qE·2R
-μ(m
g+qE
)x
=1m 2
v2-1m
2
v20
A.三个液滴在真空盒中都做平抛运动 B.三个液滴的运动时间一定相同 C.三个液滴落到底板时的速率相同 D.液滴 C 所带电荷量最多
微考点4 电场中的力电综合问题 核心微讲
研究带电粒子在电场中的运动常用的三种方法 1.力和运动的关系——牛顿第二定律:根据带电粒子受到静电 力,用牛顿第二定律求出加速度,结合运动学公式确定带电粒 子的速度、位移等,这种方法通常适用于受恒力作用下做匀变 速运动的情况。 2.功和能的关系——动能定理:根据静电力对带电粒子所做的 功,引起带电粒子的能量发生变化,利用动能定理研究全过程 中能量的转化,研究带电粒子的速度变化、经历的位移等。这 种方法同样也适用于非匀强电场。 3.正交分解法或化曲为直法。 处理这种运动的基本思想与处理平抛运动是类似的,可以将复 杂的运动分解为两个互相正交的比较简单的直线运动,而这两 个直线运动的规律是我们已经掌握的,然后再按运动合成的观 点去求出复杂运动的有关物理量。
(2)决定式:C= εrS ,k 为静电力常量. 4πkd
4.平行板电容器动态分析的两类题型 (1)电容器始终与电源相连,U 恒定不变; (2)电容器充完电后与电源断开,Q 恒定不变. (3).平行板电容器动态问题的分析思路
题组突破
1-1.(2016·天津卷)如图所示,平行板电容器带有等量异种电
荷,与静电计相连,静电计金属外壳和电容器下极板都接地。
[答案] 7.7 R
题组微练 4-1.(多选)在电场方向水平向右的匀强电场中,一带电小球从 A 点竖直向上抛出,其运动的轨迹如图所示,小球运动的轨迹 上 A、B 两点在同一水平线上,M 为轨迹的最高点,小球抛出 时的动能为 8 J ,在 M 点的动能为 6 J ,不计空气的阻力,则
下列判断正确的是( AC)
在两极板间有一固定在 P 点的点电荷,以 E 表示两板间的电
场强度,Ep 表示点电荷在 P 点的电势能,θ表示静电计指针的
偏角。若保持下极板不动,将上极板向下移动一小段距离至图
中虚线位置,则( D )Q不变
A.θ增大,E 增大 B.θ增大,Ep 不变 C.θ减小,Ep 增大
问:极板间插入一定厚度的金属 片或极板间插入一云母片,静
3.(带电粒子在电场中的偏转)(多选)如图所示,六面体真空盒 置于水平面上,它的 ABCD 面与 EFGH 面为金属板,其他面 为绝缘材料。ABCD 面带正电,EFGH 面带负电。从小孔 P 沿水平方向以相同速率射入三个质量相同的带正电液滴 A、B、
C,最后分别落在 1、2、3 三点,则下列说法正确的是(BD)
(调整极板间距离时电子仍能穿出偏转电场),应该( AC)
A.仅使 U2 加倍 B.仅使 U2 变为原来的 4 倍 C.仅使偏转电场板间距离变为原来的 0.5 倍 D.仅使偏转电场板间距离变为原来的 2 倍
பைடு நூலகம்
3-2.如图所示,某空间有一竖直向下的匀强电场,电场强度 E =1.0×102 V/m,一块足够大的接地金属板水平放置在匀强电 场中,在金属板的正上方高度 h=0.80 m 的 a 处有一粒子源,
微考点2 带电粒子在匀强电场中的直线运动 1.带电粒子在电场中运动时重力的处理 (1)基本粒子:如电子、质子、α粒子、离子等,除有说 明或明确的暗示以外,一般都不考虑重力(但并不忽略质 量). (2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明 或有明确的暗示以外,一般都要考虑重力. 2.带电粒子在电场中的加速
联立方程组,解得:v0=7 m/s。
(2)设小滑块到达 P 点时速度为 v′,则从开始运动至到达 P 点过程中,由
动能定理得
-(m
g+qE)R
-μ
(qE+m
g)x=1mv′2-1m
2
2
v20
又在 P 点时,由牛顿第二定律得 FN=mv′2
R 代入数据,解得:FN=0.6 N 由牛顿第三定律得,小滑块通过 P 点时对轨道的压力
合力,将这个合力视为一个“等效重力”,将 a=F 合视为“等 m
效重力加速度”,再将物体在重力场中做圆周运动的规律迁移 到等效重力场中分析求解即可.
相关文档
最新文档