人教版高中数学必修一《集合与函数概念》之《函数的基本性质》教案设计
2019-2020年新人教版高中数学必修1《第一章集合与函数的概念》全章优秀教案教学设计
2019-2020年新人教版高中数学必修1《第一章集合与函数的概念》全章优秀教案教学设计教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系、集合相等的含义;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题引例1:(数学家和牧民的故事)牧民非常喜欢数学,但不知道集合是什么,于是他请教一位数学家.集合是不定义的概念,数学家很难回答牧民的问题.有一天他来到牧场,看到牧民正把羊往羊圈里赶,等到牧民把全部羊赶入羊圈关好门.数学家灵机一动,高兴地告诉牧民:“你看这就是集合!”2:军训时当教官一声口令:“高一(14)班同学到操场集合”在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
人教课标版高中数学必修1第一章集合与函数概念集合教案
⼈教课标版⾼中数学必修1第⼀章集合与函数概念集合教案课题:1.1集合-集合的概念(1)教学⽬的:(1)使学⽣初步理解集合的概念,知道常⽤数集的概念及记法(2)使学⽣初步了解“属于”关系的意义(3)使学⽣初步了解有限集、⽆限集、空集的意义教学重点:集合的基本概念及表⽰⽅法教学难点:运⽤集合的两种常⽤表⽰⽅法——列举法与描述法,正确表⽰⼀些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的⼀个重要的基本概念在⼩学数学中,就渗透了集合的初步概念,到了初中,更进⼀步应⽤集合的语⾔表述⼀些问题在⼏何中⽤到的有点集⾄于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运⽤,基本的逻辑知识在⽇常⽣活、学习、⼯作中,也是认识问题、研究问题不可缺少的⼯具这些可以帮助学⽣认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在⾼中数学的最开始,是因为在⾼中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使⽤数学语⾔的基础例如,下⼀章讲函数的概念与性质,就离不开集合与逻辑本节⾸先从初中代数与⼏何涉及的集合实例⼊⼿,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常⽤表⽰⽅法,包括列举法、描述法,还给出了画图表⽰集合的例⼦这节课主要学习全章的引⾔和集合的基本概念学习引⾔是引发学⽣的学习兴趣,使学⽣认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有⼀个初步认识教科书给出的“⼀般地,某些指定的对象集在⼀起就成为⼀个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:⼀、复习引⼊:1.简介数集的发展,复习最⼤公约数和最⼩公倍数,质数与和数;2.教材中的章头引⾔;3.集合论的创始⼈——康托尔(德国数学家)(见附录);4.“物以类聚”,“⼈以群分”;5.教材中例⼦(P4)⼆、讲解新课:阅读教材第⼀部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表⽰的?(3)集合中元素的特性是什么?(⼀)集合的有关概念:由⼀些数、⼀些点、⼀些图形、⼀些整式、⼀些物体、⼀些⼈组成的.我们说,每⼀组对象的全体形成⼀个集合,或者说,某些指定的对象集在⼀起就成为⼀个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:⼀般地,某些指定的对象集在⼀起就成为⼀个集合. 1、集合的概念(1)集合:某些指定的对象集在⼀起就形成⼀个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素 2、常⽤数集及记法(1)⾮负整数集(⾃然数集):全体⾮负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:⾮负整数集内排除0的集记作N *或N +{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q ,{}整数与分数=Q (5)实数集:全体实数的集合记作R{}数数轴上所有点所对应的=R 注:(1)⾃然数集与⾮负整数集是相同的,也就是说,⾃然数集包括数0(2)⾮负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表⽰,例如,整数集内排除0 的集,表⽰成Z *3、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ? 4、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出) 5、⑴集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q …… ⑵“∈”的开⼝⽅向,不能把a ∈A 颠倒过来写三、练习题:1、教材P 5练习1、22、下列各组对象能确定⼀个集合吗?(1)所有很⼤的实数(不确定)(2)好⼼的⼈(不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b 是⾮零实数,那么bb aa +可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素(B )3个元素(C )4个元素(D )5个元素5、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证: (1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,⽽x1不⼀定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2 ∵a ∈Z, b ∈Z,c ∈Z, d ∈Z ∴(a+c) ∈Z, (b+d) ∈Z ∴x+y =(a+c)+(b+d)2 ∈G ,⼜∵211b a x +==2222222b a b b a a --+-且22222,2ba bb a a ---不⼀定都是整数,∴211b a x +==2222222b a b b a a --+-不⼀定属于集合G四、⼩结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于) 2.集合元素的性质:确定性,互异性,⽆序性 3.常⽤数集的定义及记法五、课后作业:六、板书设计(略)七、课后记:⼋、附录:康托尔简介发疯了的数学家康托尔(Georg Cantor ,1845-1918)是德国数学家,集合论的创始者1845年3⽉3⽇⽣于圣彼得堡,1918年1⽉6⽇病逝于哈雷康托尔11岁时移居德国,在德国读中学1862年17岁时⼊瑞⼠苏黎世⼤学,翌年⼊柏林⼤学,主修数学,1866年曾去格丁根学习⼀学期1867年以数论⽅⾯的论⽂获博⼠学位年在哈雷⼤学通过讲师资格考试,后在该⼤学任讲师,1872年任副教授,1879年任教授由于研究⽆穷时往往推出⼀些合乎逻辑的但⼜荒谬的结果(称为“悖论”),许多⼤数学家唯恐陷进去⽽采取退避三舍的态度在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的⽆穷宣战他靠着⾟勤的汗⽔,成功地证明了⼀条直线上的点能够和⼀个平⾯上的点⼀⼀对应,也能和空间中的点⼀⼀对应这样看起来,1厘⽶长的线段内的点与太平洋⾯上的点,以及整个地球内部的点都“⼀样多”,后来⼏年,康托尔对这类“⽆穷集合”问题发表了⼀系列⽂章,通过严格证明得出了许多惊⼈的结论康托尔的创造性⼯作与传统的数学观念发⽣了尖锐冲突,遭到⼀些⼈的反对、攻击甚⾄谩骂有⼈说,康托尔的集合论是⼀种“疾病”,康托尔的概念是“雾中之雾”,甚⾄说康托尔是“疯⼦”来⾃数学权威们的巨⼤精神压⼒终于摧垮了康托尔,使他⼼⼒交瘁,患了精神分裂症,被送进精神病医院真⾦不怕⽕炼,康托尔的思想终于⼤放光彩1897年举⾏的第⼀次国际数学家会议上,他的成就得到承认,伟⼤的哲学家、数学家罗素称赞康托尔的⼯作“可能是这个时代所能夸耀的最巨⼤的⼯作”可是这时康托尔仍然神志恍惚,不能从⼈们的崇敬中得到安慰和喜悦1918年1⽉6⽇,康托尔在⼀家精神病院去世集合论是现代数学的基础,康托尔在研究函数论时产⽣了探索⽆穷集和超穷数的兴趣康托尔肯定了⽆穷数的存在,并对⽆穷问题进⾏了哲学的讨论,最终建⽴了较完善的集合理论,为现代数学的发展打下了坚实的基础康托尔创⽴了集合论作为实数理论,以⾄整个微积分理论体系的基础17世纪⽜顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创⽴微积分理论体系之后,在近⼀⼆百年时间⾥,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等⼈进⾏的微积分理论严格化所建⽴的极限理论克隆尼克(L.Kronecker,1823-1891),康托尔的⽼师,对康托尔表现了⽆微不⾄的关怀他⽤各种⽤得上的尖刻语⾔,粗暴地、连续不断地攻击康托尔达⼗年之久他甚⾄在柏林⼤学的学⽣⾯前公开攻击康托尔⼀个薪⾦较⾼、声望更⼤的教授职位使得康托尔想在柏林得到职位⽽改善其地位的任何努⼒都遭到挫折法国数学家彭加勒(H.Poi-ncare,1854-1912):我个⼈,⽽且还不只我⼀⼈,认为重要之点在于,切勿引进⼀些不能⽤有限个⽂字去完全定义好的东西集合论是⼀个有趣的“病理学的情形”,后⼀代将把(Cantor)集合论当作⼀种疾病,⽽⼈们已经从中恢复过来了德国数学家魏尔(C.H.Her-mann Wey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想H.A.施⽡兹,康托尔的好友,由于反对集合论⽽同康托尔断交从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去变得很⾃卑,甚⾄怀疑⾃⼰的⼯作是否可靠他请求哈勒⼤学当局把他的数学教授职位改为哲学教授职位健康状况逐渐恶化,1918年,他在哈勒⼤学附属精神病院去世流星埃.伽罗华(E.Galois,1811-1832),法国数学家伽罗华17岁时,就着⼿研究数学中最困难的问题之⼀⼀般π次⽅程求解问题许多数学家为之耗去许多精⼒,但都失败了直到1770年,法国数学家拉格朗⽇对上述问题的研究才算迈出重要的⼀步伽罗华在前⼈研究成果的基础上,利⽤群论的⽅法从系统结构的整体上彻底解决了根式解的难题他从拉格朗⽇那⾥学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进⼀步发展了他的思想,把全部问题转化成或者归结为置换群及其⼦群结构的分析上同时创⽴了具有划时代意义的数学分⽀——群论,数学发展史上作出了重⼤贡献1829年,他把关于群论研究所初步结果的第⼀批论⽂提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论⽂的鉴定⼈在1830年1⽉18⽇柯西曾计划对伽罗华的研究成果在科学院举⾏⼀次全⾯的意见听取会然⽽,第⼆周当柯西向科学院宣读他⾃⼰的⼀篇论⽂时,并未介绍伽罗华的著作1830年2⽉,伽罗华将他的研究成果⽐较详细地写成论⽂交上去了以参加科学院的数学⼤奖评选,论⽂寄给当时科学院终⾝秘书J .B .傅⽴叶,但傅⽴叶在当年5⽉就去世了,在他的遗物中未能发现伽罗华的⼿稿1831年1⽉伽罗华在寻求确定⽅程的可解性这个问题上,⼜得到⼀个结论,他写成论⽂提交给法国科学院于群论的重要著作当时的数学家S .K .泊松为了理解这篇论⽂绞尽了脑汁尽管借助于拉格朗⽇已证明的⼀个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5⽉30⽇,临死的前⼀夜,他把他的重⼤科研成果匆忙写成后,委托他的朋友薛伐⾥叶保存下来,从⽽使他的劳动结晶流传后世,造福⼈类年5⽉31⽇离开了⼈间死因参加⽆意义的决⽃受重伤1846年,他死后14年,法国数学家刘维尔着⼿整理伽罗华的重⼤创作后,⾸次发表于刘维尔主编的《数学杂志》上课题:1.1集合-集合的概念(2)教学⽬的:(1)进⼀步理解集合的有关概念,熟记常⽤数集的概念及记法(2)使学⽣初步了解有限集、⽆限集、空集的意义(3)会运⽤集合的两种常⽤表⽰⽅法教学重点:集合的表⽰⽅法教学难点:运⽤集合的列举法与描述法,正确表⽰⼀些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:⼀、复习引⼊:上节所学集合的有关概念1、集合的概念(1)集合:某些指定的对象集在⼀起就形成⼀个集合(2)元素:集合中每个对象叫做这个集合的元素 2、常⽤数集及记法(1)⾃然数集:全体⾮负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:⾮负整数集内排除0的集记作N *或N + ,{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}所有整数与分数=Q (5)实数集:全体实数的集合记作R ,{}数数轴上所有点所对应的=R3、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ?4、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出) 5、(1)集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q …… (2)“∈”的开⼝⽅向,不能把a ∈A 颠倒过来写⼆、讲解新课:(⼆)集合的表⽰⽅法1、列举法:把集合中的元素⼀⼀列举出来,写在⼤括号内表⽰集合例如,由⽅程012=-x 的所有解组成的集合,可以表⽰为{-1,1} 注:(1)有些集合亦可如下表⽰:从51到100的所有整数组成的集合:{51,52,53,…,100} 所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表⽰⼀个元素,{a}表⽰⼀个集合,该集合只有⼀个元素2、描述法:⽤确定的条件表⽰某些对象是否属于这个集合,并把这个条件写在⼤括号内表⽰集合的⽅法格式:{x ∈A| P (x )}含义:在集合A 中满⾜条件P (x )的x 的集合例如,不等式23>-x 的解集可以表⽰为:}23|{>-∈x R x 或23|{>-x x所有直⾓三⾓形的集合可以表⽰为:}|{是直⾓三⾓形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直⾓三⾓形};{⼤于104的实数} (2)错误表⽰法:{实数集};{全体实数}3、⽂⽒图:⽤⼀条封闭的曲线的内部来表⽰⼀个集合的⽅法4、何时⽤列举法?何时⽤描述法?⑴有些集合的公共属性不明显,难以概括,不便⽤描述法表⽰,只能⽤列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能⽆遗漏地⼀⼀列举出来,或者不便于、不需要⼀⼀列举出来,常⽤描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同⼀个集合吗?答:不是}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集(三)有限集与⽆限集1、有限集:含有有限个元素的集合2、⽆限集:含有⽆限个元素的集合3、空集:不含任何元素的集合Φ,如:}01|{2=+∈x R x三、练习题:1、⽤描述法表⽰下列集合①{1,4,7,10,13} }5,23|{≤∈-=+n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=+n N n n x x 且 2、⽤列举法表⽰下列集合①{x ∈N|x 是15的约数} {1,3,5,15} ②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防⽌把{(1,2)}写成{1,2}或{x=1,y=2}③=-=+}422|),{(y x y x y x )}32,38{(-④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)} ⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的⽅程ax +b=0,当a,b 满⾜条件____时,解集是有限集;当a,b 满⾜条件_____时,解集是⽆限集4、⽤描述法表⽰下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 四、⼩结:本节课学习了以下内容:1.集合的有关概念:有限集、⽆限集、空集2.集合的表⽰⽅法:列举法、描述法、⽂⽒图五、课后作业:六、板书设计(略)七、课后记:1.2 ⼦集、全集、补集教学⽬标:(1)理解⼦集、真⼦集、补集、两个集合相等概念;(2)了解全集、空集的意义,(3)掌握有关⼦集、全集、补集的符号及表⽰⽅法,会⽤它们正确表⽰⼀些简单的集合,培养学⽣的符号表⽰的能⼒;(4)会求已知集合的⼦集、真⼦集,会求全集中⼦集在全集中的补集;(5)能判断两集合间的包含、相等关系,并会⽤符号及图形(⽂⽒图)准确地表⽰出来,培养学⽣的数学结合的数学思想;(6)培养学⽣⽤集合的观点分析问题、解决问题的能⼒.教学重点:⼦集、补集的概念教学难点:弄清元素与⼦集、属于与包含之间的区别教学⽤具:幻灯机教学过程设计(⼀)导⼊新课上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.【提出问题】(投影打出)已知,,,问:1.哪些集合表⽰⽅法是列举法.2.哪些集合表⽰⽅法是描述法.3.将集M、集从集P⽤图⽰法表⽰.4.分别说出各集合中的元素.5.将每个集合中的元素与该集合的关系⽤符号表⽰出来.将集N中元素3与集M的关系⽤符号表⽰出来.6.集M中元素与集N有何关系.集M中元素与集P有何关系.【找学⽣回答】1.集合M和集合N;(⼝答)2.集合P;(⼝答)3.(笔练结合板演)4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(⼝答)5.,,,,,,,(笔练结合板演)6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(⼝答)【引⼊】在上⾯见到的集M与集N;集M与集P通过元素建⽴了某种关系,⽽具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.(⼆)新授知识1.⼦集(1)⼦集定义:⼀般地,对于两个集合A与B,如果集合A的任何⼀个元素都是集合B 的元素,我们就说集合A包含于集合B,或集合B包含集合A。
高中数学 第一章集合与函数教案 新人教A版必修1
1.1.1 集合的含义与表示一、课时学习目标1、知识与技能:了解集合的含义,体会元素与集合的属于关系;知道常用数集及其专用记号;了解集合中元素的确定性、互异性、无序性;2、过程与方法: 观察关于集合的几组实例,并通过自己举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义。
通过实例,初步体会元素与集合的“属于”关系,正确地理解集合。
通过集合学习,体会类比思想的运用。
3、情感:态度与价值观。
在学习运用集合语言的过程中,增强学生认识事物的能力,初步培养学生实事求是,扎实严谨的科学态度。
二、课时预习导学请同学们阅读教材第2—5页有关内容,然后完成下列问题1、结合在小学和初中所接触的一些集合,观察第2页例子1—8,尝试概括8个例子的共同特征:一般地,我们把研究对象统称为________,把一些元素组成的总体叫______。
思考题:“给定的集合,它的元素必须是确定的”,你是如何理解的?【例1】:下列各组对象能构成一个集合吗?请判断并说明理由。
1、中国古代的四大发明。
2、方程240x-=在实数范围内的解。
3、所有很大的实数。
4、好心的人。
5、2010年上海世博会中所有的参展项目。
【例2】判断下列说法是否正确,并说明理由。
1、36111,,,,2422-这些数组成的集合有5个元素。
2、由a. b. c组成的集合与b.a.c组成的集合是同一个集合。
【自我感悟】⑴、集合中的元素应具有:_______,_______,________.⑵、通常集合用_________表示。
集合中元素用________表示。
元素a与集合A的关系有________或________; 用符号_______表示a属于集合A; 用符号_______表示a不属于集合A;做教材P5练习1⑶、特定集合的表示:2、我们可以用自然语言描述一个集合,除此之外,还可以用_______和_____表示集合。
练习:教材P5第2题【梳理整合】三、课内学习巩固:1、判断下列语句是否正确 ⑴、有1 . 2 . 2 . 4 . 2 . 1构成一个集合时,这个集合共有6个元素。
高一数学上册《函数的基本性质》教案、教学设计
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。
高一数学必修1《函数的基本性质》教案
高一数学必修1《函数的基本性质》教案教学目标:1. 理解函数以及函数的各种表达方式。
2. 掌握函数的基本性质,包括单调性、奇偶性、周期性和零点。
3. 实现函数的简单变换,例如平移、伸缩和反转等。
4. 能够应用函数的基本性质,解决实际问题。
教学重点:1. 理解函数的概念以及函数的各种表达方式。
2. 掌握函数的基本性质,实现函数的简单变换。
3. 能够应用函数的基本性质,解决实际问题。
教学难点:1. 如何理解函数的概念以及函数的各种表达方式。
2. 如何应用函数的基本性质,解决实际问题。
教学方法:一、讲授法。
二、探究法。
三、案例分析法。
教学过程:一. 引入新知识(5分钟):教师简单介绍函数的概念和历史背景,引导学生关注函数在实际生活中的应用,引出本节课的学习目标,激发学生的学习兴趣。
二. 讲解函数的概念(10分钟):1. 函数的定义:任何能够使$x$值唯一对应一个$y$值的规律都称为函数,可以表示为$y=f(x)$。
$x$为自变量,$y$为因变量,函数$f(x)$表示$y$与$x$之间的关系。
2. 函数的图像:函数可以通过绘制它们的图像进行可视化。
函数的图像是平面直角坐标系上的一条曲线。
3. 函数的表示方法:函数可以用表格、图像、公式等多种方式表示。
例如$f(x)=x^2$就是一种表示方式。
三. 掌握函数的基本性质(30分钟):1. 单调性:单调递增和单调递减;2. 奇偶性:奇函数、偶函数和常函数;3. 周期性:周期函数和非周期函数;4. 零点:零点定义以及求零点的方法。
四. 实现函数的简单变换(10分钟):1. 平移变换:表示为$f(x-a)$或$f(x)+b$,注意$a$和$b$的正负性;2. 伸缩变换:表示为$f(kx)$或$f(x)/k$,注意$k$的正负性;3. 反转变换:表示为$f(-x)$或$f(-y)$,注意反转后的坐标轴位置变化。
五. 应用函数的基本性质(10分钟):1. 求函数的最值。
高中数学 第一章 集合与函数概念(函数的概念)教案 新人教版必修1-新人教版高一必修1数学教案
§1.2.1函数的概念一、教学目标1、知识与技能:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.2、过程与方法:(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;3、情态与价值,使学生感受到学习函数的必要性的重要性,激发学习的积极性。
二、教学重点与难点:重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;三、学法与教学用具1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 .2、教学用具:投影仪 .四、教学思路(一)创设情景,揭示课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题3、分析、归纳以上三个实例,它们有什么共同点。
4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.(二)研探新知1、函数的有关概念(1)函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域(range ).注意:① “y =f (x )”是函数符号,可以用任意的字母表示,如“y =g (x )”;②函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x . (2)构成函数的三要素是什么?定义域、对应关系和值域 (3)区间的概念 ①区间的分类:开区间、闭区间、半开半闭区间; ②无穷区间;③区间的数轴表示.(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y =ax +b (a ≠0) y =ax 2+b x +c (a ≠0) y =xk(k ≠0) 比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。
人教A版高中数学必修1第一章 集合与函数概念1.3 函数的基本性质教案(1)
11.已知函数 .判断 在区间(0,1]和[1,+∞)上的单调性,说明理由.
12.已知函数 是偶函数,且 时, .求
(1) 的值,
(2) 时 的值;
(3)当 >0时, 的解析式.
13.作出函数 的图象,并根据函数的图象找出函数的单调区间.
答案:
【课后练习】(可作为单元测试卷)
18.解:减函数令 ,则有 ,即可得 ;同理有 ,即可得 ;
从而有
*
显然 , 从而*式 ,
故函数 为减函数.
19.解: .
;
,故当 62或63时, 74120(元)。
因为 为减函数,当 时有最大值2440。故不具有相等的最大值.
边际利润函数区最大值时,说明生产第二台机器与生产第一台的利润差最大.
20.解: .
13.定义在R上的函数 (已知)可用 的和来表示,且 为奇函数, 为偶函数,则 =.
14.构造一个满足下面三个条件的函数实例,
①函数在 上递减;②函数具有奇偶性;③函数有最小值为;.
三、解答题
15.已知 ,求函数 得单调递减区间.
16.判断下列函数的奇偶性
① ;② ;
③ ;④ 。
17.已知 , ,求 .
(3)解:由于f(x)在R上是减函数,故f(x)在[-3,3]上的最大值是f(-3),最小值是f(3).由f(1)=-2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3×(-2)=-6,f(-3)=-f(3)=6.从而最大值是6,最小值是-6.
例5、建筑一个容积为8000 m3、深6 m的长方体蓄水池(无盖),池壁造价为a元/米2,池底造价为2a元/米2,把总造价y元表示为底的一边长xm的函数,其解析式为___________,定义域为___________.底边长为___________ m时总造价最低是___________元.
人教版高一数学必修1《集合与函数概念》教案1
第一章 集合与函数概念【】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅).【】集合间的基本关系(6)子集、真子集、集合相等真子集A ≠⊂B(或B ≠⊃A ) B A ⊆,且B 中至少有一元素不属于A (1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图交集A B {|,x x A ∈且}x B ∈ (1)AA A =(2)A ∅=∅(3)A B A ⊆,A B B ⊆ BA并集A B {|,x x A ∈或}x B ∈ (1)AA A =(2)A A ∅=(3)AB A ⊇,A B B ⊇BA补集UA {|,}x x U x A ∈∉且(1)()U A A =∅ (2)()U A A U =(3)()()()U U U A B A B = (4)()()()U U U A B A B =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<<||(0)x a a >> |x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x << ∅ ∅〖1.2〗函数及其表示 【知识回顾】1、一次函数)(x f =ax +b (a ≠0):定义域R ,值域R2、反比例函数)(x f =xk(k ≠0):定义域{x |x ≠0},值域{y | y ≠0} 3、二次函数)(x f =ax 2+bx +c (a ≠0):定义域R ,值域:当a >0时,{y |y ≥a b ac 442-};当a <0时,{y |y ≤ab ac 442-}.【】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],a a b +∞+∞-∞(,)b -∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 注意:(1)A 中的每一个元素都有象,且唯一;(2)B 中的元素未必有原象,即使有,也未必唯一;(3)a 的象记为f (a ). 函数与映射的关系函数是特殊的映射,映射是函数的推广。
高中数学第一章集合与函数概念第3节函数的基本性质3教案新人教A版必修120171012262
第一章第三节函数的基本性质第三课时整体设计教学分析本节讨论函数的奇偶性是描述函数整体性质的.教材沿用了处理函数单调性的方法,即先给出几个特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立了奇(偶)函数的概念.因此教学时,充分利用信息技术创设教学情境,会使数与形的结合更加自然.值得注意的问题:对于奇函数,教材在给出的表格中留出大部分空格,旨在让学生自己动手计算填写数据,仿照偶函数概念建立的过程,独立地去经历发现、猜想与证明的全过程,从而建立奇函数的概念.教学时,可以通过具体例子引导学生认识,并不是所有的函数都具有奇偶性,如函数y=x与y=2x-1既不是奇函数也不是偶函数,可以通过图象看出也可以用定义去说明.三维目标1.理解函数的奇偶性及其几何意义,培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力.2.学会运用函数图象理解和研究函数的性质,掌握判断函数的奇偶性的方法,渗透数形结合的数学思想.重点难点教学重点:函数的奇偶性及其几何意义.教学难点:判断函数的奇偶性的方法与格式.课时安排1课时教学过程导入新课思路1.同学们,我们生活在美的世界中,有过许多对美的感受,请大家想一下有哪些美呢?(学生回答可能有和谐美、自然美、对称美……)今天,我们就来讨论对称美,请大家想一下哪些事物给过你对称美的感觉呢?(学生举例,再在屏幕上给出一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)生活中的美引入我们的数学领域中,它又是怎样的情况呢?下面,我们以麦当劳的标志为例,给它适当地建立平面直角坐标系,那么大家发现了什么特点呢?(学生发现:图象关于y轴对称)数学中对称的形式也很多,这节课我们就同学们谈到的与y轴对称的函数展开研究.思路2.结合轴对称与中心对称图形的定义,请同学们观察图形,说出函数y=x2和y=x3的图象各有怎样的对称性?引出课题:函数的奇偶性.推进新课Error!Error!(1)如图1所示,观察下列函数的图象,总结各函数之间的共性.图1(2)那么如何利用函数的解析式描述函数的图象关于y轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征?表11x -3 -2 -1 0 1 2 3f(x)=x2表2x -3 -2 -1 0 1 2 3f(x)=|x|(3)请给出偶函数的定义?(4)偶函数的图象有什么特征?(5)函数f(x)=x2,x∈[-1,2]是偶函数吗?(6)偶函数的定义域有什么特征?1(7)观察函数f(x)=x和f(x)=的图象,类比偶函数的推导过程,给出奇函数的定义和x性质?活动:教师从以下几点引导学生:(1)观察图象的对称性.(2)学生给出这两个函数的解析式具有什么共同特征后,教师指出:这样的函数称为偶函数.(3)利用函数的解析式来描述.(4)偶函数的性质:图象关于y轴对称.(5)函数f(x)=x2,x∈[-1,2]的图象关于y轴不对称;对定义域[-1,2]内x=2,f(-2)不存在,即其函数的定义域中任意一个x的相反数-x不一定也在定义域内,即f(-x)=f(x) 不恒成立.(6)偶函数的定义域中任意一个x的相反数-x一定也在定义域内,此时称函数的定义域关于原点对称.(7)先判断它们的图象的共同特征是关于原点对称,再列表格观察自变量互为相反数时,函数值的变化情况,进而抽象出奇函数的概念,再讨论奇函数的性质.给出偶函数和奇函数的定义后,要指明:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义,可知函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称);③具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称,奇函数的图象关于原点对称;④可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法;⑤函数的奇偶性是函数在定义域上的性质,是“整体”性质,而函数的单调性是函数在定义域的子集上的性质,是“局部”性质.讨论结果:(1)这两个函数之间的图象都关于y轴对称.(2)表1X -3 -2 -1 0 1 2 3f(x)=x2 9 4 1 0 1 4 9表2x -3 -2 -1 0 1 2 3f(x)=3 2 1 0 1 2 3|x|这两个函数的解析式都满足:f(-3)=f(3);f(-2)=f(2);f(-1)=f(1).可以发现对于函数定义域内任意的两个相反数,它们对应的函数值相等,也就是说对于函数定义域内任一个x,都有f(-x)=f(x).(3)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(4)偶函数的图象关于y轴对称.2(5)不是偶函数.(6)偶函数的定义域关于原点对称.(7)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)就叫做奇函数.奇函数的图象关于原点中心对称,其定义域关于原点对称.Error!思路1例1判断下列函数的奇偶性:(1)f(x)=x4; (2)f(x)=x5;1(3)f(x)=x+;x1(4)f(x)=.x2活动:学生思考奇偶函数的定义,利用定义来判断其奇偶性.先求函数的定义域,并判断定义域是否关于原点对称,如果定义域关于原点对称,那么再判断f(-x)=f(x)或f(-x)=-f(x).解:(1)函数的定义域是R,对定义域内任意一个x,都有f(-x)=(-x)4=x4=f(x),所以函数f(x)=x4是偶函数.(2)函数的定义域是R,对定义域内任意一个x,都有f(-x)=(-x)5=-x5=-f(x),所以函数f(x)=x5是奇函数.(3)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x,都有f(-x)=-x+ 11=-(x+)=-f(x),-x x1 所以函数f(x)=x+是奇函数.x1(4)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x,都有f(-x)=-x21 1==f(x),所以函数f(x)=是偶函数.x2 x2点评:本题主要考查函数的奇偶性.函数的定义域是使函数有意义的自变量的取值范围,对定义域内任意x,其相反数-x也在函数的定义域内,此时称为定义域关于原点对称.利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f(-x)与f(x)的关系;③作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.变式训练设f(x)是R上的任意函数,则下列叙述正确的是()A.f(x)f(-x)是奇函数B.f(x)|f(-x)|是奇函数C.f(x)-f(-x)是偶函数D.f(x)+f(-x)是偶函数解析:A中设F(x)=f(x)f(-x),则F(-x)=f(-x)f(x)=F(x),即函数F(x)=f(x)f(-x)为偶函数;B中设F(x)=f(x)|f(-x)|,F(-x)=f(-x)|f(x)|,此时F(x)与F(-x)的关系不能确定,即函数F(x)=f(x)|f(-x)|的奇偶性不确定;C中设F(x)=f(x)-f(-x),F(-x)=f(-x)-f(x)=-F(x),即函数F(x)=f(x)-f(-x)为奇函数;D中设F(x)=f(x)+f(-x),F(-x)=f(-x)+f(x)=F(x),即函数F(x)=f(x)+f(-x)为偶函数.答案:D例2已知函数f(x)是定义在(-∞,+∞)上的偶函数.当x∈(-∞,0)时,f(x)=x-3x4,则当x∈(0,+∞)时,f(x)=__________.活动:学生思考偶函数的解析式的性质,考虑如何将在区间(0,+∞)上的自变量对应的函数值,转化为区间(-∞,0)上的自变量对应的函数值.利用偶函数的性质f(x)=f(-x),将在区间(0,+∞)上的自变量对应的函数值,转化为区间(-∞,0)上的自变量对应的函数值.解析:当x∈(0,+∞)时,则-x<0.又∵当x∈(-∞,0)时,f(x)=x-x4,∴f(x)=f(-x)=(-x)-(-x)4=-x-x4. 答案:-x-x4点评:本题主要考查函数的解析式和奇偶性.已知函数的奇偶性,求函数的解析式时,要充分利用函数的奇偶性,将所求解析式的区间上自变量对应的函数值转化为已知解析式的区间上自变量对应的函数值.变式训练已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+3 x,求f(x).解:当x=0时,f(-0)=-f(0),则f(0)=0;当x<0时,-x>0,由于函数f(x)是奇函数,则f(x)=-f(-x)=-[(-x)2+3 -x]=-x2+3 x,x23x综上所得,f(x)=0,x23思路2x0,x0,x,x0.例1判断下列函数的奇偶性.(1)f(x)=2x4,x∈[-1,2];x3-x2(2)f(x)=;x-1(3)f(x)=x2-4+4-x2;1+x2+x-1(4)f(x)=.1+x2+x+1活动:学生思考奇偶函数的定义和函数的定义域的求法.先判断函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系.在(4)中注意定义域的求法,对任意x∈R,有1+x2>x2=|x|≥-x,则1+x2+x>0.则函数的定义域是R.解:(1)∵它的定义域关于原点不对称,∴函数f(x)=2x4,x∈[-1,2]既不是奇函数也不是偶函数.x3-x2(2)∵它的定义域为{x|x∈R且x≠1},并不关于原点对称,函数f(x)=既不是奇函x-1数也不是偶函数.(3)∵x2-4≥0且4-x2≥0,∴x=±2,即f(x)的定义域是{-2,2}.∵f(2)=0,f(-2)=0,∴f(2)=f(-2),f(2)=-f(2).∴f(-x)=-f(x),且f(-x)=f(x).∴f(x)既是奇函数也是偶函数.(4)函数的定义域是R. ∵f(-x)+f(x)1+x2-x-1 1+x2+x-1=+1+x2-x+1 1+x2+x+11+x2-x+12+1+x2-x-1 2 =1+x2-x+11+x2+x+11+x2-x2-2x-1+1+x2-x2+2x-1=1+x2-x+11+x2+x+14=0,∴f(-x)=-f(x).∴f(x)是奇函数.点评:本题主要考查函数的奇偶性.定义法判断函数奇偶性的步骤是:(1)求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f(-x)与f(x)或-f(x) 是否相等;(2)当f(-x)=f(x)时,此函数是偶函数;当f(-x)=-f(x)时,此函数是奇函数;(3)当f(-x)=f(x)且f(-x)=-f(x)时,此函数既是奇函数又是偶函数;(4)当f(-x)≠f(x)且f(-x)≠-f(x)时,此函数既不是奇函数也不是偶函数.判断解析式复杂的函数的奇偶性时,如果定义域关于原点对称时,通常化简f(-x)+f(x)来判断f(-x)=f(x)或f(-x)=-f(x)是否成立.变式训练f x函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=在区间x (1,+∞)上一定()A.有最小值B.有最大值C.是减函数D.是增函数解析:函数f(x)=x2-2ax+a的对称轴是直线x=a,由于函数f(x)在开区间(-∞,1)上有最小值,所以直线x=a位于区间(-∞,1)内,f x a即a<1.g(x)==x+-2,x x下面用定义法判断函数g(x)在区间(1,+∞)上的单调性.设1<x1<x2,a a 则g(x1)-g(x2)=(x1+-2)-(x2+-2)x1 x2a a=(x1-x2)+( -)x1 x2a=(x1-x2)(1-)x1x2x1x2-a=(x1-x2) .x1x2∵1<x1<x2,∴x1-x2<0,x1x2>1>0.又∵a<1,∴x1x2>a. ∴x1x2-a>0.∴g(x1)-g(x2)<0. ∴g(x1)<g(x2).∴函数g(x)在区间(1,+∞)上是增函数,函数g(x)在区间(1,+∞)上没有最值.答案:D例2已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1,(1)求证:f(x)是偶函数;(2)求证:f(x)在(0,+∞)上是增函数;5 7(3)试比较f(-)与f( )的大小.2 4活动:(1)转化为证明f(-x)=f(x),利用赋值法证明f(-x)=f(x);(2)利用定义法证明单调性,证明函数单调性的步骤是“去比赛”;(3)利用函数的单调性比较它们的大小,利用5 7函数的奇偶性,将函数值f(-)和f( )转化为同一个单调区间上的函数值.2 4解:(1)证明:令x1=x2=1,得f(1)=2f(1),∴f(1)=0.令x1=x2=-1,得f(1)=f[(-1)×(-1)]=f(-1)+f(-1),∴2f(-1)=0.5∴f(-1)=0.∴f(-x)=f(-1·x)=f(-1)+f(x)=f(x).∴f(x)是偶函数.(2)证明:设x2>x1>0,则x2 x2 x2 f(x2)-f(x1)=f(x1·)-f(x1)=f(x1)+f( )-f(x1)=f( ).x1 x1 x1x2 x2∵x2>x1>0,∴>1.∴f( )>0,即f(x2)-f(x1)>0.x1 x1∴f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数.5 5(3)由(1)知f(x)是偶函数,则有f(-)=f( ).2 25 7 5 7由(2)知f(x)在(0,+∞)上是增函数,则f( )>f( ).∴f(-)>f( ).2 4 2 4点评:本题是抽象函数问题,主要考查函数的奇偶性和单调性及其综合应用.判断抽象函数的奇偶性和单调性通常应用定义法,比较抽象函数值的大小通常利用抽象函数的单调性来比较.其关键是将所给的关系式进行有效的变形和恰当的赋值.变式训练已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判断f(x)的奇偶性,并说明理由.分析:(1)利用赋值法,令x=y=1得f(1)的值,令x=y=-1,得f(-1)的值;(2)利用定义法证明f(x)是奇函数,要借助于赋值法得f(-x)=-f(x).解:(1)∵f(x)对任意x,y都有f(xy)=yf(x)+xf(y),∴令x=y=1时,有f(1×1)=1×f(1)+1×f(1).∴f(1)=0.∴令x=y=-1时,有f[(-1)×(-1)]=(-1)×f(-1)+(-1)×f(-1).∴f(-1)=0.(2)是奇函数.∵f(x)对任意x,y都有f(xy)=yf(x)+xf(y),∴令y=-1,有f(-x)=-f(x)+xf(-1).将f(-1)=0代入得f(-x)=-f(x),∴函数f(x)是(-∞,+∞)上的奇函数.Error!课本本节练习,1,2.[补充练习]1.设函数y=f(x)是奇函数.若f(-2)+f(-1)-3=f(1)+f(2)+3,则f(1)+f(2)=__________.解析:∵函数y=f(x)是奇函数,∴f(-2)=-f(2),f(-1)=-f(1).∴-f(2)-f(1)-3=f(1)+f(2)+3.∴2[f(1)+f(2)]=-6.∴f(1)+f(2)=-3.答案:-32.已知f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=__________,b=__________.1解析:∵偶函数的定义域关于原点对称,∴a-1+2a=0.∴a=.31∴f(x)=x2+bx+1+b.又∵f(x)是偶函数,∴b=0.31答案:033.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为()A.-1B.0C.1D.2解析:f(6)=f(4+2)=-f(4)=-f(2+2)=f(2)=f(2+0)=-f(0).又f(x)是定义在R上的奇函数,∴f(0)=0.∴f(6)=0.故选B.6答案:BError!问题:基本初等函数的奇偶性.探究:利用判断函数的奇偶性的方法:定义法和图象法,可得正比例函数y=kx(k≠0)是奇函数;k反比例函数y=(k≠0)是奇函数;x一次函数y=kx+b(k≠0),当b=0时是奇函数,当b≠0时既不是奇函数也不是偶函数;二次函数y=ax2+bx+c(a≠0),当b=0时是偶函数,当b≠0时既不是奇函数也不是偶函数.Error! 本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.Error!课本习题1.3,A组,6,B组,3.设计感想单调性与奇偶性的综合应用是本节的一个难点,而本节设计的题目不多,因此,在实际教学中,教师可以利用课余时间补充,让学生结合函数的图象充分理解好单调性和奇偶性这两个性质.在教学设计中,注意培养学生的综合应用能力,以便满足高考要求.备课资料奇、偶函数的性质(1)奇偶函数的定义域关于原点对称;奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.(2)奇偶性是函数的整体性质,对定义域内任意一个x都必须成立. (3)f(-x)=f(x)⇔f(x)是偶函数,f(-x)=-f(x)⇔f(x)是奇函数.(4)f(-x)=f(x)⇔f(x)-f(-x)=0,f(-x)=-f(x)⇔f(x)+f(-x)=0.(5)两个奇函数的和(差)仍是奇函数,两个偶函数的和(差)仍是偶函数.奇偶性相同的两个函数的积(商、分母不为零)为偶函数,奇偶性相反的两个函数的积(商、分母不为零)为奇函数;如果函数y=f(x)和y=g(x)的奇偶性相同,那么复合函数y=f[g(x)] 是偶函数,如果函数y=f(x)和y=g(x)的奇偶性相反,那么复合函数y=f[g(x)]是奇函数,简称为“同偶异奇”.(6)如果函数y=f(x)是奇函数,那么f(x)在区间(a,b)和(-b,-a)上具有相同的单调性;如果函数y=f(x)是偶函数,那么f(x)在区间(a,b)和(-b,-a)上具有相反的单调性.(7)定义域关于原点对称的任意函数f(x)可以表示成一个奇函数与一个偶函数的和,即f x-f-x f x+f-xf(x)=+.2 2(8)若f(x)是(-a,a)(a>0)上的奇函数,则f(0)=0;若函数f(x)是偶函数,则f(x)=f(-x)=f(|x|)=f(-|x|).若函数y=f(x)既是奇函数又是偶函数,则有f(x)=0.实习作业作者:曹齐平,福鼎一中教师.本教学设计获福建省教学大赛三等奖.整体设计教学内容分析《普通高中课程标准实验教科书·数学(1)》(人教A版)——《实习作业》.本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力.学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解,感受新的学习方式带给他们学习数学的乐趣.7学生学习情况分析该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第一章末.学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,作好准备工作,充分体现教师的“导演”角色.特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶.设计思想《标准》强调数学文化的重要作用,体现数学文化的价值.数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值.让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神.教学目标1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物.2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐.3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观.重点难点教学重点:了解函数在数学中的核心地位,以及在生活中的广泛应用.教学难点:培养学生合作交流的能力以及收集和处理信息的能力.教学过程课堂准备1.分组:4~6人为一个实习小组,确定一人为组长.教师需要做好协调工作,确保每位学生都参加.2.选题:根据个人兴趣初步确定实习作业的题目.教师应该到各组中去了解选题情况,尽量多地选择不同的题目.参考题目:(1)函数产生的社会背景;(2)函数概念发展的历史过程;(3)函数符号的故事;(4)数学家(如:开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、贝努利、欧拉、柯西、狄里克雷、罗巴契夫斯基等)与函数;(5)也可自拟题目.3.分配任务:根据个人情况和优势,经小组共同商议,由组长确定每人的具体任务.4.搜集资料:针对所选题目,通过各种方式(相关书籍——《函数在你身边》《世界函数通史》《世界著名科学家传记》等;相关网页——、http:///cz/tbjak/qnj/bsdb8njsxxc/200605/43459.html等)搜集素材,包括文字、图片、数据以及音像资料等,并记录相关资料,写出实习报告.实习报告年月日题目组长及参加人员教师审核意见及等级正文备注(指出参考文献或相关网页) 5.投影仪、多媒体.6.把各组的实习报告,贴在班级的学习栏内,让学生相互学习交流.教学过程1.出示课题:交流、分享实习报告.2.交流、分享:(由数学科代表主持.小组推荐中心发言人;以下记录均为发言概述)(1)学生1:函数小史数学史表明,重要的数学概念的产生和发展,对数学发展起着不可估量的作用.有些重要的数学概念对数学分支的产生起着奠定性的作用.我们刚学过的函数就是这样的重要概念.在笛卡儿引入变量以后,变量和函数等概念日益渗透到科学技术的各个领域.最早提出函数(function)概念的是17世纪德国数学家莱布尼兹.最初莱布尼兹用“函数”一词表示幂.1755 年,瑞士数学家欧拉给出了不同的函数定义.中文数学书上使用的“函数”一词是转译词,是我国清代数学家李善兰在翻译《代数学》(1895年)一书时,把“function”译成“函数”的.我们可以预计到,关于函数的争论、研究、发展、拓广将不会完结,也正是这些影响着数8学及其相邻学科的发展.(2)教师带头鼓掌并简单评价.(3)学生2:函数概念的纵向发展:该同学从早期函数概念——几何观念下的函数到十八世纪函数概念——代数观念下的函数,其中包括18世纪中叶著名的数学家欧拉对函数概念发展的贡献.接着又讲述了十九世纪函数概念——对应关系下的函数.以及现代函数概念——集合论下的函数.函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式.(4)教师带头鼓掌并简单评价.(5)学生3:我国数学家李国平与函数:学生3描述了数学家、中国科学院数学物理学部委员——李国平(1910—1996)的身世和他的成长历程.李国平,1933年毕业于中山大学数学天文系,后历任中国科学院数学计算技术研究所所长,中国科学院武汉数学物理研究所所长,中国数学会理事,中国科学院学部委员等职务.学生还通俗地讲述了李国平先生在微分方程、复变函数论领域的卓越贡献.(6)教师带头鼓掌并简单评价.(7)学生4:函数概念对数学发展的影响:该学生从历史上重要数学概念对数学发展的作用是不可估量的事实出发,讲述了函数概念对数学发展的深刻影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展、数学学习的巨大作用.函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽.该学生说道,早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义.从以上函数概念发展的全过程中,我们体会到联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.(8)教师带头鼓掌并简单评价.(9)学生5:函数概念的历史演变过程:该学生说,数学的抽象完全舍弃了事物的质的内容,而仅仅保留了它们的量的属性,即数学抽象的目的只是数量关系和空间形式.这就决定了数学与其他自然科学的区别,也决定了数学的特殊性.如果在两个集合元素之间存在着确定的对应关系,就称为是一个映射.上述函数概念的历史演变过程就是一系列弱抽象的过程.学生展示了下表:9(10)教师带头鼓掌并简单评价.3.实习作业的评定:实习作业评价参考意见级别标准1.小组配合默契(有计划、任务分配合理、每人积极认真);很好2.报告材料丰富、可靠,线索清晰;3.拥有自己的独立见解.1.小组配合良好;好2.报告材料丰富、可靠,线索较清晰;3.有一定的独立见解.1.小组配合一般;一般2.报告材料一般、线索基本清晰;3.有一定的分析.较差1.小组配合欠佳;2.报告材料贫乏、线索不够清晰.教学反思实习作业是新课程的一个亮点,是培养学生的团队精神,体验合作学习的方式的重要途径.但事实上,实习作业很容易被教师忽视,所以想通过该教学设计引起教师们的重视.在高一刚开始的时候,如何做好第一次实习作业,是很关键的.就目前的学校条件和学生情况,是完全可以做好实习作业的,事实证明学生做得很好.可以通过这次实习作业,让学生体验合作学习的方式,通过合作学习品尝分享获得知识的快乐.再者,通过对数学家的了解,感受数学家的精神,增加学好数学的信心,为今后的学习打下良好的基础.10。
高中数学 第一章 集合与函数概念 第3节 函数的基本性质(3)教案 新人教A版必修1-新人教A版高一
第一章第三节函数的基本性质第三课时整体设计教学分析本节讨论函数的奇偶性是描述函数整体性质的.教材沿用了处理函数单调性的方法,即先给出几个特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意〞值都成立,最后在这个基础上建立了奇(偶)函数的概念.因此教学时,充分利用信息技术创设教学情境,会使数与形的结合更加自然.值得注意的问题:对于奇函数,教材在给出的表格中留出大部分空格,旨在让学生自己动手计算填写数据,仿照偶函数概念建立的过程,独立地去经历发现、猜想与证明的全过程,从而建立奇函数的概念.教学时,可以通过具体例子引导学生认识,并不是所有的函数都具有奇偶性,如函数y=x与y=2x-1既不是奇函数也不是偶函数,可以通过图象看出也可以用定义去说明.三维目标1.理解函数的奇偶性及其几何意义,培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力.2.学会运用函数图象理解和研究函数的性质,掌握判断函数的奇偶性的方法,渗透数形结合的数学思想.重点难点教学重点:函数的奇偶性及其几何意义.教学难点:判断函数的奇偶性的方法与格式.课时安排1课时教学过程导入新课思路 1.同学们,我们生活在美的世界中,有过许多对美的感受,请大家想一下有哪些美呢?(学生回答可能有和谐美、自然美、对称美……)今天,我们就来讨论对称美,请大家想一下哪些事物给过你对称美的感觉呢?(学生举例,再在屏幕上给出一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)生活中的美引入我们的数学领域中,它又是怎样的情况呢?下面,我们以麦当劳的标志为例,给它适当地建立平面直角坐标系,那么大家发现了什么特点呢?(学生发现:图象关于y轴对称)数学中对称的形式也很多,这节课我们就同学们谈到的与y轴对称的函数展开研究.思路2.结合轴对称与中心对称图形的定义,请同学们观察图形,说出函数y=x2和y=x3的图象各有怎样的对称性?引出课题:函数的奇偶性.推进新课新知探究提出问题(1)如图1所示,观察以下函数的图象,总结各函数之间的共性.图1(2)那么如何利用函数的解析式描述函数的图象关于y轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征?(4)偶函数的图象有什么特征?(5)函数f (x )=x 2,x ∈[-1,2]是偶函数吗?(6)偶函数的定义域有什么特征?(7)观察函数f (x )=x 和f (x )=1x的图象,类比偶函数的推导过程,给出奇函数的定义和性质?活动:教师从以下几点引导学生:(1)观察图象的对称性.(2)学生给出这两个函数的解析式具有什么共同特征后,教师指出:这样的函数称为偶函数.(3)利用函数的解析式来描述.(4)偶函数的性质:图象关于y 轴对称.(5)函数f (x )=x 2,x ∈[-1,2]的图象关于y 轴不对称;对定义域[-1,2]内x =2,f (-2)不存在,即其函数的定义域中任意一个x 的相反数-x 不一定也在定义域内,即f (-x )=f (x )不恒成立.(6)偶函数的定义域中任意一个x 的相反数-x 一定也在定义域内,此时称函数的定义域关于原点对称.(7)先判断它们的图象的共同特征是关于原点对称,再列表格观察自变量互为相反数时,函数值的变化情况,进而抽象出奇函数的概念,再讨论奇函数的性质.给出偶函数和奇函数的定义后,要指明:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义,可知函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,那么-x 也一定是定义域内的一个自变量(即定义域关于原点对称);③具有奇偶性的函数的图象的特征:偶函数的图象关于y 轴对称,奇函数的图象关于原点对称;④可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法;⑤函数的奇偶性是函数在定义域上的性质,是“整体〞性质,而函数的单调性是函数在定义域的子集上的性质,是“局部〞性质.讨论结果:(1)这两个函数之间的图象都关于y 轴对称.(2)f (-3)=f (3);f (-2)=f (2);f (-1)=f (1).可以发现对于函数定义域内任意的两个相反数,它们对应的函数值相等,也就是说对于函数定义域内任一个x ,都有f (-x )=f (x ).(3)一般地,对于函数f (x )的定义域内的任意一个x ,都有f (-x )=f (x ),那么f (x )就叫做偶函数.(4)偶函数的图象关于y 轴对称. (5)不是偶函数. (6)偶函数的定义域关于原点对称.(7)一般地,对于函数f (x )的定义域内的任意一个x ,都有f (-x )=-f (x ),那么f (x )就叫做奇函数.奇函数的图象关于原点中心对称,其定义域关于原点对称.应用示例思路1例1判断以下函数的奇偶性:(1)f (x )=x 4;(2)f (x )=x 5;(3)f (x )=x +1x; (4)f (x )=1x2. 活动:学生思考奇偶函数的定义,利用定义来判断其奇偶性.先求函数的定义域,并判断定义域是否关于原点对称,如果定义域关于原点对称,那么再判断f (-x )=f (x )或f (-x )=-f (x ).解:(1)函数的定义域是R ,对定义域内任意一个x ,都有f (-x )=(-x )4=x 4=f (x ),所以函数f (x )=x 4是偶函数.(2)函数的定义域是R ,对定义域内任意一个x ,都有f (-x )=(-x )5=-x 5=-f (x ),所以函数f (x )=x 5是奇函数.(3)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x ,都有f (-x )=-x +1-x =-(x +1x)=-f (x ), 所以函数f (x )=x +1x是奇函数. (4)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x ,都有f (-x )=1-x 2=1x 2=f (x ),所以函数f (x )=1x2是偶函数. 点评:此题主要考查函数的奇偶性.函数的定义域是使函数有意义的自变量的取值X 围,对定义域内任意x ,其相反数-x 也在函数的定义域内,此时称为定义域关于原点对称.利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f (-x )与f (x )的关系;③作出相应结论:假设f (-x )=f (x )或f (-x )-f (x )=0,那么f (x )是偶函数; 变式训练设f (x )是R 上的任意函数,那么以下表达正确的是( )A .f (x )f (-x )是奇函数B .f (x )|f (-x )|是奇函数C .f (x )-f (-x )是偶函数D .f (x )+f (-x )是偶函数解析:A 中设F (x )=f (x )f (-x ),那么F (-x )=f (-x )f (x )=F (x ),即函数F (x )=f (x )f (-x )为偶函数;B 中设F (x )=f (x )|f (-x )|,F (-x )=f (-x )|f (x )|,此时F (x )与F (-x )的关系不能确定,即函数F (x )=f (x )|f (-x )|的奇偶性不确定;C 中设F (x )=f (x )-f (-x ),F (-x )=f (-x )-f (x )=-F (x ),即函数F (x )=f (x )-f (-x )为奇函数;D 中设F (x )=f (x )+f (-x ),F (-x )=f (-x )+f (x )=F (x ),即函数F (x )=f (x )+f (-x )为偶函数.答案:D例2函数f (x )是定义在(-∞,+∞)上的偶函数.当x ∈(-∞,0)时,f (x )=x -x 4,那么当x ∈(0,+∞)时,f (x )=__________.活动:学生思考偶函数的解析式的性质,考虑如何将在区间(0,+∞)上的自变量对应的函数值,转化为区间(-∞,0)上的自变量对应的函数值.利用偶函数的性质f (x )=f (-x ),将在区间(0,+∞)上的自变量对应的函数值,转化为区间(-∞,0)上的自变量对应的函数值.解析:当x ∈(0,+∞)时,那么-x <0.又∵当x ∈(-∞,0)时,f (x )=x -x 4,∴f (x )=f (-x )=(-x )-(-x )4=-x -x 4.答案:-x -x 4点评:此题主要考查函数的解析式和奇偶性.函数的奇偶性,求函数的解析式时,要充分利用函数的奇偶性,将所求解析式的区间上自变量对应的函数值转化为解析式的区间上自例1判断以下函数的奇偶性.(1)f (x )=2x 4,x ∈[-1,2];(2)f (x )=x 3-x 2x -1; (3)f (x )=x 2-4+4-x 2;(4)f (x )=1+x 2+x -11+x 2+x +1. 活动:学生思考奇偶函数的定义和函数的定义域的求法.先判断函数的定义域是否关于原点对称,再判断f (-x )与f (x )的关系.在(4)中注意定义域的求法,对任意x ∈R ,有1+x 2>x 2=|x |≥-x ,那么1+x 2+x R .解:(1)∵它的定义域关于原点不对称,∴函数f (x )=2x 4,x ∈[-1,2]既不是奇函数也不是偶函数.(2)∵它的定义域为{x |x ∈R 且x ≠1},并不关于原点对称,函数f (x )=x 3-x 2x -1既不是奇函数也不是偶函数.(3)∵x 2-4≥0且4-x 2≥0,∴x =±2,即f (x )的定义域是{-2,2}.∵f (2)=0,f (-2)=0,∴f (2)=f (-2),f (2)=-f (2).∴f (-x )=-f (x ),且f (-x )=f (x ).∴f (x )既是奇函数也是偶函数.(4)函数的定义域是R .∵f (-x )+f (x )=1+x 2-x -11+x 2-x +1+1+x 2+x -11+x 2+x +1=1+x 2-x +12+1+x 2-x -121+x 2-x +11+x 2+x +1=1+x 2-x 2-2x -1+1+x 2-x 2+2x -11+x 2-x +11+x 2+x +1=0,∴f (-x )=-f (x ). ∴f (x )是奇函数.点评:此题主要考查函数的奇偶性.定义法判断函数奇偶性的步骤是:(1)求函数的定义域,当定义域关于原点不对称时,那么此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f (-x )与f (x )或-f (x )是否相等;(2)当f (-x )=f (x )时,此函数是偶函数;当f (-x )=-f (x )时,此函数是奇函数;(3)当f (-x )=f (x )且f (-x )=-f (x )时,此函数既是奇函数又是偶函数;(4)当f (-x )≠f (x )且f (-x )≠-f (x )时,此函数既不是奇函数也不是偶函数.判断解析式复杂的函数的奇偶性时,如果定义域关于原点对称时,通常化简f (-x )+变式训练函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,那么函数g (x )=f x x在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数解析:函数f (x )=x 2-2ax +a 的对称轴是直线x =a ,由于函数f (x )在开区间(-∞,1)上有最小值,所以直线x =a 位于区间(-∞,1)内, 即a <1.g (x )=f x x =x +a x-2, 下面用定义法判断函数g (x )在区间(1,+∞)上的单调性.设1<x 1<x 2,那么g (x 1)-g (x 2)=(x 1+a x 1-2)-(x 2+a x 2-2) =(x 1-x 2)+(a x 1-a x 2) =(x 1-x 2)(1-a x 1x 2) =(x 1-x 2)x 1x 2-a x 1x 2. ∵1<x 1<x 2,∴x 1-x 2<0,x 1x 2>1>0.又∵a <1,∴x 1x 2>a .∴x 1x 2-a >0.∴g (x 1)-g (x 2)<0.∴g (x 1)<g (x 2).∴函数g (x )在区间(1,+∞)上是增函数,函数g (x )在区间(1,+∞)上没有最值. 答案:D1212=f (x 1)+f (x 2),且当x >1时f (x )>0,f (2)=1,(1)求证:f (x )是偶函数;(2)求证:f (x )在(0,+∞)上是增函数;(3)试比较f (-52)与f (74)的大小. 活动:(1)转化为证明f (-x )=f (x ),利用赋值法证明f (-x )=f (x );(2)利用定义法证明单调性,证明函数单调性的步骤是“去比赛〞;(3)利用函数的单调性比较它们的大小,利用函数的奇偶性,将函数值f (-52)和f (74)转化为同一个单调区间上的函数值. 解:(1)证明:令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.令x 1=x 2=-1,得f (1)=f [(-1)×(-1)]=f (-1)+f (-1),∴2f (-1)=0.∴f (-1)=0.∴f (-x )=f (-1·x )=f (-1)+f (x )=f (x ).∴f (x )是偶函数.(2)证明:设x 2>x 1>0,那么f (x 2)-f (x 1)=f (x 1·x 2x 1)-f (x 1)=f (x 1)+f (x 2x 1)-f (x 1)=f (x 2x 1). ∵x 2>x 1>0,∴x 2x 1>1.∴f (x 2x 1)>0,即f (x 2)-f (x 1)>0. ∴f (x 2)>f (x 1).∴f (x )在(0,+∞)上是增函数.(3)由(1)知f (x )是偶函数,那么有f (-52)=f (52). 由(2)知f (x )在(0,+∞)上是增函数,那么f (52)>f (74).∴f (-52)>f (74). 点评:此题是抽象函数问题,主要考查函数的奇偶性和单调性及其综合应用.判断抽象函数的奇偶性和单调性通常应用定义法,比较抽象函数值的大小通常利用抽象函数的单调性课本本节练习,1,2.[补充练习]1.设函数y =f (x )是奇函数.假设f (-2)+f (-1)-3=f (1)+f (2)+3,那么f (1)+f (2)=__________.解析:∵函数y =f (x )是奇函数,∴f (-2)=-f (2),f (-1)=-f (1).∴-f (2)-f (1)-3=f (1)+f (2)+3.∴2[f (1)+f (2)]=-6.∴f (1)+f (2)=-3. 答案:-32.f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],那么a =__________,b =__________.解析:∵偶函数的定义域关于原点对称,∴a -1+2a =0.∴a =13. ∴f (x )=13x 2+bx +1+b .又∵f (x )是偶函数,∴b =0. 答案:130 3.定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),那么f (6)的值为( )A .-1B .0C .1D .2解析:f (6)=f (4+2)=-f (4)=-f (2+2)=f (2)=f (2+0)=-f (0).又f (x )是定义在R 上的奇函数,∴f (0)=0.∴f (6)=0.应选B.答案:B拓展提升问题:基本初等函数的奇偶性.探究:利用判断函数的奇偶性的方法:定义法和图象法,可得正比例函数y =kx (k ≠0)是奇函数;反比例函数y =kx(k ≠0)是奇函数; 一次函数y =kx +b (k ≠0),当b =0时是奇函数,当b ≠0时既不是奇函数也不是偶函数;二次函数y =ax 2+bx +c (a ≠0),当b =0时是偶函数,当b ≠0时既不是奇函数也不是偶函数.课堂小结本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.作业课本习题1.3,A 组,6,B 组,3.设计感想单调性与奇偶性的综合应用是本节的一个难点,而本节设计的题目不多,因此,在实际教学中,教师可以利用课余时间补充,让学生结合函数的图象充分理解好单调性和奇偶性这两个性质.在教学设计中,注意培养学生的综合应用能力,以便满足高考要求.备课资料奇、偶函数的性质(1)奇偶函数的定义域关于原点对称;奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.(2)奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立.(3)f (-x )=f (x )⇔f (x )是偶函数,f (-x )=-f (x )⇔f (x )是奇函数.(4)f (-x )=f (x )⇔f (x )-f (-x )=0,f (-x )=-f (x )⇔f (x )+f (-x )=0.(5)两个奇函数的和(差)仍是奇函数,两个偶函数的和(差)仍是偶函数.奇偶性相同的两个函数的积(商、分母不为零)为偶函数,奇偶性相反的两个函数的积(商、分母不为零)为奇函数;如果函数y =f (x )和y =g (x )的奇偶性相同,那么复合函数y =f [g (x )]是偶函数,如果函数y =f (x )和y =g (x )的奇偶性相反,那么复合函数y =f [g (x )]是奇函数,简称为“同偶异奇〞.(6)如果函数y =f (x )是奇函数,那么f (x )在区间(a ,b )和(-b ,-a )上具有相同的单调性;如果函数y =f (x )是偶函数,那么f (x )在区间(a ,b )和(-b ,-a )上具有相反的单调性.(7)定义域关于原点对称的任意函数f (x )可以表示成一个奇函数与一个偶函数的和,即f (x )=f x -f -x 2+f x +f -x 2. (8)假设f (x )是(-a ,a )(a >0)上的奇函数,那么f (0)=0;假设函数f(x)是偶函数,那么f(x)=f(-x)=f(|x|)=f(-|x|).假设函数y=f(x)既是奇函数又是偶函数,那么有f(x)=0.实习作业作者:曹齐平,福鼎一中教师.本教学设计获某某省教学大赛三等奖.整体设计教学内容分析《普通高中课程标准实验教科书·数学(1)》(人教A版)——《实习作业》.本节课程表达数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力.学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解,感受新的学习方式带给他们学习数学的乐趣.学生学习情况分析该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第一章末.学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,作好准备工作,充分表达教师的“导演〞角色.特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶.设计思想《标准》强调数学文化的重要作用,表达数学文化的价值.数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值.让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神.教学目标1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物.2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐.3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和某某价值观.重点难点教学重点:了解函数在数学中的核心地位,以及在生活中的广泛应用.教学难点:培养学生合作交流的能力以及收集和处理信息的能力.教学过程课堂准备1.分组:4~6人为一个实习小组,确定一人为组长.教师需要做好协调工作,确保每位学生都参加.2.选题:根据个人兴趣初步确定实习作业的题目.教师应该到各组中去了解选题情况,尽量多地选择不同的题目.参考题目:(1)函数产生的社会背景;(2)函数概念发展的历史过程;(3)函数符号的故事;(4)数学家(如:开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、贝努利、欧拉、柯西、狄里克雷、罗巴契夫斯基等)与函数;(5)也可自拟题目.3.分配任务:根据个人情况和优势,经小组共同商议,由组长确定每人的具体任务.4.搜集资料:针对所选题目,通过各种方式(相关书籍——《函数在你身边》《世界函数通史》《世界著名科学家传记》等;相关网页——.pep..、http://.i3721./cz/tbjak/qnj/bsdb8njsxxc/200605/43459.html等)搜集素材,包括文字、图片、数据以及音像资料等,并记录相关资料,写出实习报告.6.把各组的实习报告,贴在班级的学习栏内,让学生相互学习交流.教学过程1.出示课题:交流、分享实习报告.2.交流、分享:(由数学科代表主持.小组推荐中心发言人;以下记录均为发言概述)(1)学生1:函数小史数学史说明,重要的数学概念的产生和发展,对数学发展起着不可估量的作用.有些重要的数学概念对数学分支的产生起着奠定性的作用.我们刚学过的函数就是这样的重要概念.在笛卡儿引入变量以后,变量和函数等概念日益渗透到科学技术的各个领域.最早提出函数(function)概念的是17世纪德国数学家莱布尼兹.最初莱布尼兹用“函数〞一词表示幂.1755年,瑞士数学家欧拉给出了不同的函数定义.中文数学书上使用的“函数〞一词是转译词,是我国清代数学家李善兰在翻译《代数学》(1895年)一书时,把“function〞译成“函数〞的.我们可以预计到,关于函数的争论、研究、发展、拓广将不会完结,也正是这些影响着数学及其相邻学科的发展.(2)教师带头鼓掌并简单评价.(3)学生2:函数概念的纵向发展:该同学从早期函数概念——几何观念下的函数到十八世纪函数概念——代数观念下的函数,其中包括18世纪中叶著名的数学家欧拉对函数概念发展的贡献.接着又讲述了十九世纪函数概念——对应关系下的函数.以及现代函数概念——集合论下的函数.函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式.(4)教师带头鼓掌并简单评价.(5)学生3:我国数学家李国平与函数:学生3描述了数学家、中国科学院数学物理学部委员——李国平(1910—1996)的身世和他的成长历程.李国平,1933年毕业于某某大学数学天文系,后历任中国科学院数学计算技术研究所所长,中国科学院某某数学物理研究所所长,中国数学会理事,中国科学院学部委员等职务.学生还通俗地讲述了李国平先生在微分方程、复变函数论领域的卓越贡献.(6)教师带头鼓掌并简单评价.(7)学生4:函数概念对数学发展的影响:该学生从历史上重要数学概念对数学发展的作用是不可估量的事实出发,讲述了函数概念对数学发展的深刻影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展、数学学习的巨大作用.函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽.该学生说道,早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义.从以上函数概念发展的全过程中,我们体会到联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.(8)教师带头鼓掌并简单评价.(9)学生5:函数概念的历史演变过程:该学生说,数学的抽象完全舍弃了事物的质的内容,而仅仅保留了它们的量的属性,即数学抽象的目的只是数量关系和空间形式.这就决定了数学与其他自然科学的区别,也决定了数学的特殊性.如果在两个集合元素之间存在着确定的对应关系,就称为是一个映射.上述函数概念的历史演变过程就是一系列弱抽象的过程.学生展示了下表:(10)教师带头鼓掌并简单评价.3.实习作业的评定:实习作业评价参考意见教学反思实习作业是新课程的一个亮点,是培养学生的团队精神,体验合作学习的方式的重要途径.但事实上,实习作业很容易被教师忽视,所以想通过该教学设计引起教师们的重视.在高一刚开始的时候,如何做好第一次实习作业,是很关键的.就目前的学校条件和学生情况,是完全可以做好实习作业的,事实证明学生做得很好.可以通过这次实习作业,让学生体验合作学习的方式,通过合作学习品尝分享获得知识的快乐.再者,通过对数学家的了解,感受数学家的精神,增加学好数学的信心,为今后的学习打下良好的基础.。
高中数学第一章集合与函数概念第3节函数的基本性质1教案新人教A版必修120171012260
第一章第三节函数的基本性质第一课时教学目标1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.2.通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.重点难点教学重点:函数单调性的概念、判断及证明.教学难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性.教学方法教师启发讲授,学生探究学习.教学手段计算机、投影仪.教学过程创设情境,引入课题课前布置任务:(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜举办大型国际体育赛事.下图是北京市某年8月8日一天24小时内气温随时间变化的曲线图.图1引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.问题:还能举出生活中其他的数据变化情况吗?预案:水位高低、燃油价格、股票价格等.归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.【设计意图】由生活情境引入新课,激发兴趣.归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中时同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数y =x +2,y =-x +2,y =x 2,y =1x的图象,并且观察自变量变化时,函数值有什么变化规律?图2预案:(1)函数y =x +2在整个定义域内y 随x 的增大而增大;函数y =-x +2在整个定义域内y 随x 的增大而减小.(2)函数y =x 2在[0,+∞)上y 随x 的增大而增大,在(-∞,0)上y 随x 的增大而减小.(3)函数y =1x在(0,+∞)上y 随x 的增大而减小,在(-∞,0)上y 随x 的增大而减小. 引导学生进行分类描述(增函数、减函数),同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.问题2:能不能根据自己的理解说说什么是增函数、减函数?预案:如果函数f (x )在某个区间上随自变量x 的增大,y 也越来越大,我们说函数f (x )在该区间上为增函数;如果函数f (x )在某个区间上随自变量x 的增大,y 越来越小,我们说函数f (x )在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观.描述性的认识.【设计意图】 从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.探究规律,理性认识问题1:下图是函数y =x +2x(x >0)的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?图3学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.【设计意图】 使学生体会到用数量大小关系严格表述函数单调性的必要性.问题2:如何从解析式的角度说明f (x )=x 2在[0,+∞)为增函数?预案:(1)在给定区间内取两个数,例如1和2,因为12<22,所以f (x )=x 2在[0,+∞)为增函数.(2)仿(1),取很多组验证均满足,所以f (x )=x 2在[0,+∞)为增函数.(3)任取x 1,x 2∈[0,+∞),且x 1<x 2,因为x 21-x 22=(x 1+x 2)(x 1-x 2)<0,即x 21<x 22,所以f (x )=x 2在[0,+∞)为增函数.对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量x 1,x 2.【设计意图】 把对单调性的认识由感性上升到理性的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好了铺垫.3.抽象思维,形成概念问题:你能用准确的数学符号语言表述出增函数的定义吗?师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)巩固概念判断题:①已知f (x )=1x,因为f (-1)<f (2),所以函数f (x )是增函数. ②若函数f (x )满足f (2)<f (3),则函数f (x )在区间[2,3]上为增函数.③若函数f (x )在区间(1,2]和(2,3)上均为增函数,则函数f (x )在区间(1,3)上为增函数.④因为函数f (x )=1x 在区间(-∞,0)和(0,+∞)上都是减函数,所以f (x )=1x在(-∞,0)∪(0,+∞)上是减函数.通过判断题,强调三点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在A ∪B 上是增(或减)函数.思考:如何说明一个函数在某个区间上不是单调函数?【设计意图】 让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.掌握证法,适当延展【例】 证明函数f (x )=x +2x在(2,+∞)上是增函数. 1.分析解决问题针对学生可能出现的问题,组织学生讨论、交流.证明:任取x 1,x 2∈(2,+∞),且x 1<x 2, 设元f (x 1)-f (x 2)=(x 1+2x 1)-(x 2+2x 2) 求差=(x 1-x 2)+(2x 1-2x 2) 变形 =(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)(1-2x 1x 2)=(x 1-x 2)x 1x 2-2x 1x 2, ∵2<x 1<x 2, 断号 ∴x 1-x 2<0,x 1x 2>2,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )=x +2x在(2,+∞)上是增函数.定论 2.归纳解题步骤引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.练习:证明函数f (x )=x 在[0,+∞)上是增函数.问题:要证明函数f (x )在区间(a ,b )上是增函数,除了用定义来证,如果可以证得对任意的x 1,x 2∈(a ,b ),且x 1≠x 2有f x 2-f x 1x 2-x 1>0可以吗? 引导学生分析这种叙述与定义的等价性,让学生尝试用这种等价形式证明函数f (x )=x 在[0,+∞)上是增函数.【设计意图】 初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.归纳小结,提高认识学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.1.小结(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.(3)数学思想方法和思维方法:数形结合,等价转化,类比等.2.作业书面作业:课本习题1.3 A 组第1,2,3题.课后探究:(1)证明:函数f (x )在区间(a ,b )上是增函数的充要条件是对任意的x ,x +h ∈(a ,b ),且h ≠0有f x +h -f x h>0. (2)研究函数y =x +1x(x >0)的单调性,并结合描点法画出函数的草图. 《函数的单调性》教学设计说明一、教学内容的分析函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其他性质提供了方法依据.对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点.二、教学目标的确定根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.三、教学方法和教学手段的选择本节课是函数单调性的起始课,采用教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.四、教学过程的设计为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:(1)在探索概念阶段,让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.(3)可对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.。
高一数学人教版第一章集合与函数概念教案
第一章集合与函数概念§1.1.1集合的含义与表示一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)湖南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)洞口一中2007年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
《函数的概念与性质》教案设计范例
《函数的概念与性质》教案设计范例一、教学目标1. 了解函数的概念,理解函数的性质,能够运用函数的性质解决实际问题。
2. 掌握函数的表示方法,包括解析式、表格和图象等。
3. 学会运用函数的性质分析问题,提高解决问题的能力。
二、教学内容1. 函数的概念:函数的定义、函数的表示方法、函数的性质。
2. 函数的性质:单调性、奇偶性、周期性。
3. 函数的图像:函数图像的画法、函数图像的特点。
三、教学重点与难点1. 教学重点:函数的概念、函数的性质、函数的图像。
2. 教学难点:函数的单调性、奇偶性、周期性的理解与应用。
四、教学方法与手段1. 教学方法:讲授法、案例分析法、讨论法、实践活动法。
2. 教学手段:多媒体课件、黑板、教学卡片、练习题。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考函数的概念与性质。
2. 讲解与示范:讲解函数的概念,举例说明函数的表示方法,展示函数的图像,引导学生理解函数的性质。
3. 互动环节:分组讨论函数的性质,分享各自的观点和理解。
4. 练习与巩固:布置练习题,让学生运用函数的性质解决问题。
5. 总结与反思:对本节课的内容进行总结,引导学生思考函数的概念与性质在实际生活中的应用。
教案设计范例仅供参考,具体实施时可根据学生的实际情况进行调整。
六、教学评价1. 评价目标:学生能理解函数的概念,掌握函数的性质,能够运用函数的性质解决实际问题。
2. 评价方法:课堂问答、练习题、小组讨论、课后作业。
3. 评价内容:函数的概念、函数的表示方法、函数的性质、函数的图像。
七、教学拓展1. 函数与方程的关系:引导学生思考函数与方程的联系,理解函数的图像与方程的解的关系。
2. 函数的实际应用:举例说明函数在实际生活中的应用,如线性规划、最优化问题等。
八、教学资源1. 教材:《数学教材》2. 多媒体课件:函数的图像、案例分析3. 练习题:针对函数的概念、性质和图像的练习题4. 教学卡片:用于小组讨论和分享九、教学进度安排1. 第一课时:函数的概念与表示方法2. 第二课时:函数的性质(单调性、奇偶性)3. 第三课时:函数的性质(周期性)4. 第四课时:函数的图像5. 第五课时:函数的图像分析与应用十、课后作业1. 作业内容:针对本节课的内容,布置相关的练习题,巩固所学知识。
高一数学函数的概念与性质的优秀教案范本
高一数学函数的概念与性质的优秀教案范本一、教学目标1. 理解函数的定义及其相关概念。
2. 掌握函数的性质,包括定义域、值域、单调性等。
3. 能够应用函数的性质解决实际问题。
4. 培养学生的数学思维和解决问题的能力。
二、教学重难点1. 函数的定义及相关概念的理解与运用。
2. 函数性质的整体把握及灵活应用。
三、教学准备1. 教师准备:教案、白板、彩色粉笔、课件等。
2. 学生准备:教材、笔记、习题等。
四、教学过程【导入】1. 通过展示一个某商品的价格与着装人数的关系图,引导学生思考这两种量的关系如何表示。
2. 引导学生回忆什么是映射,然后引入函数的概念。
【概念讲解】1. 函数的定义:函数是一个集合,它把一个集合中的每个元素都对应到另一个集合中的唯一元素上。
2. 函数的符号表示:y = f(x),其中 y 是函数值,x 是自变量。
3. 自变量和因变量的概念解析。
4. 定义域和值域的概念及意义。
【性质讲解】1. 单调性:定义以及单调递增和单调递减的概念。
2. 奇偶性:定义以及奇函数和偶函数的概念。
3. 周期性:定义以及周期函数的概念。
4. 映射图和函数图像的关系。
5. 函数的有界性。
6. 线性函数、二次函数、指数函数和对数函数等特殊函数的性质介绍。
【例题演练】1. 针对不同的函数性质,设计一些例题进行演练,以巩固学生对函数性质的理解与掌握。
2. 着重培养学生运用性质解决实际问题的能力。
【拓展应用】1. 设计一些拓展问题,让学生能够在新的情境中应用所学的函数性质解决问题。
2. 鼓励学生自行思考、探索,并与同学分享自己的思路和方法。
【归纳总结】1. 学生归纳总结函数的定义及其性质。
2. 教师对学生的总结进行点评和补充。
【学生练习】1. 让学生完成课堂练习题,巩固所学的概念与性质。
2. 对学生的答题进行批改和讲解。
五、课堂小结本节课我们学习了函数的基本概念和性质,包括定义域、值域、单调性等。
通过运用所学的知识解决实际问题,培养了学生的数学思维和解决问题的能力。
函数的基本性质教案设计
函数的基本性质教案设计这是函数的基本性质教案设计,是优秀的数学教案文章,供老师家长们参考学习。
函数的基本性质教案设计第1篇各位老师,大家好!今天我说课的课题是高中数学人教A版必修一第一章第三节”函数的基本性质”中的“函数的奇偶性”,下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。
一、教材分析(一)教材特点、教材的地位与作用本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。
函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。
因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。
(二)重点、难点1、本课时的教学重点是:函数的奇偶性及其几何意义。
2、本课时的教学难点是:判断函数的奇偶性的方法与格式。
(三)教学目标1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。
3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教法、学法分析1.教学方法:启发引导式结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用"引导发现法"进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构.使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性.2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。
让每一位学生都能参与研究,并最终学会学习.三、教辅手段以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学四、教学过程为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。
新人教版高中数学必修一第一章《集合与函数》优秀教案
高中数学必修1 第一章《集合与函数概念》全章教案第一章集合§1集合的含义与表示(第一课时)一、教学目标:【知识和技能目标】1.初步理解集合的含义,进一步理解分类的思想,掌握常用数集的记法;2.体会集合中的元素与对应的集合之间的“属于”关系,以及元素的三个特性;3.能选择自然语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;4.理解什么是集合中不同元素的共同特征性质,会用集合的特征性质判断一个对象是否属于某个集合,知道如何用集合的特征性质描述初中学习过的数的集合、平面图形的集合;【过程和方法目标】1.通过由自然语言描述集合到用抽象的符号语言描述集合的过程,体会集合语言的精确性和简洁性;2.由用自然语言描述数学概念到用集合语言描述数学概念的抽象过程,感知用集合语言思考问题的方法;3.体会将实际问题数学化的过程.二、教学重点与难点:【重点】理解集合的含义,掌握常用数集的记法,选择适当的方法表示集合.【难点】适当选择自然语言、集合语言(列举法或描述法)描述不同的具体问题.三、教学方法:创设问题情境,采用实例归纳,注重引导学生自主探索,合作交流的学习意识,注意启发式和探索式的教学方法.四、教学过程与设计一.用描述法表示下列集合:1.所有奇数组成的集合;2. 2. 被5除余1的正整数集合;3.{2,4,6,8,10,12};4. 4. {12325 ,,,, 34537}.§1.1.1集合的含义与表示一. 教学目标: l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性; (4)会用集合语言表示有关数学对象; (5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义. (2)让学生归纳整理本节所学知识. 3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性. 二. 教学重点.难点重点:集合的含义与表示方法. 难点:表示法的恰当选择. 三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪. 四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容. (二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例: (1)1—20以内的所有质数; (2)我国古代的四大发明; (3)所有的安理会常任理事国; (4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点; (7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么? 3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等. 2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数; (2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈. 如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示. (3)让学生完成教材第6页练习第1题. 5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题: (1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
高中数学《集合和函数概念》教学设计 新人教版必修1
高中数学《集合和函数概念》教学设计新人教版必修1集合与函数概念一、教材分析集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学的一些内容.本章中只将集合作为一种语言来学习,学生将学会使用最基本的集合语言去表示有关的数学对象,发展运用数学语言进行交流的能力.函数的学习促使学生的数学思维方式发生了重大的转变:思维从静止走向了运动、从运算转向了关系.函数是高中数学的核心内容,是高中数学课程的一个基本主线,有了这条主线就可以把数学知识编织在一起,这样可以使我们对知识的掌握更牢固一些.函数与不等式、数列、导数、立体、解析、算法、概率、选修中的很多专题内容有着密切的联系.用函数的思想去理解这些内容,是非常重要的出发点.反过来,通过这些内容的学习,加深了对函数思想的认识.函数的思想方法贯穿于高中数学课程的始终.高中数学课程中,函数有许多下位知识,如必修1第二章的幂、指、对函数数,在必修四将学习三角函数.函数是描述客观世界变化规律的重要数学模型.二、学情分析1.学生的作业与试卷部分缺失,导致易错问题分析不全面.通过布置易错点分析的任务,让学生意识到保留资料的重要性.2.学生学基本功较扎实,学习态度较端正,有一定的自主学习能力.但是没有养成及时复习的习惯,有些内容已经淡忘.通过自主梳理知识,让学生感受复习的必要性,培养学生良好的复习习惯.3.在研究例4时,对分类的情况研究的不全面.为了突破这个难点,应用几何画板制作了课件,给学生形象、直观的感知,体会二次函数对称轴与所给的区间的位置关系是解决这类问题的关键.三、设计思路本节课新课中渗透的理念是:“强调过程教学,启发思维,调动学生学习数学的积极性”.在本节课的学习过程中,教师没有把梳理好的知识展示给学生,而是让学生自己进行知识的梳理.一方让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生在“最近发展区”发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想、函数与方程思想.在教学过程中通过恰当的应用信息技术,从而突破难点.四、教学目标分析(一)知识与技能1.了解集合的含义与表示,理解集合间的基本关系,集合的基本运算.A:能从集合间的运算分析出集合的基本关系.B:对于分类讨论问题,能区分取交还是取并.2.理解函数的定义,掌握函数的基本性质,会运用函数的图象理解和研究函数的性质.A:会用定义证明函数的单调性、奇偶性.B:会分析函数的单调性、奇偶性、对称性的关系.(二)过程与方法1.通过学生自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的内容网络化、系统化.2.在解决问题的过程中,学生通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合与函数的本质.(三)情感态度与价值观在学生自主整理知识结构的过程中,认识到材料整理的必要性,从而形成及时反思的学习习惯,独立获取数学知识的能力.在解决问题的过程中,学生感受到成功的喜悦,树立学好数学的信心.在例4的解答过程中,渗透动静结合的思想,让学生养成理性思维的品质.五、重难点分析重点:掌握知识之间的联系,洞悉问题的考察点,能选择合适的知识与方法解决问题.难点:含参问题的讨论,函数性质之间的关系.六.知识梳理(约10分钟)提出问题问题1:把本章的知识结构用框图形式表示出来.问题2:一个集合中的元素应当是确定的、互异的、无序的,你能结合具体实例说明集合的这些基本要求吗?问题3:类比两个数的关系,思考两个集合之间的基本关系.类比两个数的运算,思考两个集合之间的基本运算,交、并、补.问题4:通过本章学习,你对函数概念有什么新的认识和体会吗?请结合具体实例分析,表示函数的三种方法,每一种方法的特点.问题5:分析研究函数的方向,它们之间的联系.在前一次晚自习上,学生相互展示自己的结果,通过相互讨论,每组提供最佳的方案.在自己的原有方案的基础上进行补充与完善.学生回答问题要点预设如下:1.集合语言可以简洁准确表达数学内容.2.运用集合与对应进一步描述了函数的概念,与初中的函数的定义比较,突出了函数的本质函数是描述变量之间依赖关系的重要数学模型.3.函数的表示方法主要有三种,这三种表示方法有各自的适用范围,要根据具体情况选用.4.研究函数的性质时,一般先从几何直观观察图象入手,然后运用自然语言描述函数的图象特征,最后抽象到用数学符号刻画相应的数量特征,也是数学学习和研究中经常使用的方法.设计意图:通过布置任务,让学生充分的认识自己在学习的过程中,哪些知识学习的不透彻.让学生更有针对的进行复习,让复习进行的更有效.让学生体会到知识的横向联系与纵向联系.通过类比初中与高中两种函数的定义,让学生体会到两种函数的定义本质是一样的.七、易错点分析(约3分钟)问题6:集合中的易错问题,函数中的易错问题?主要是作业、训练、考试中出现的问题?(任务提前布置,由课代表汇总,并且在教学课件中体现.教师不进行修改,呈现的是原始的)教师展示学和成果并进行点评.对于问题6主要由学生讨论分析,并回答,其他学生补充.这个过程尽量由学生来完成,教师可以适应的引导与点评.设计意图:让学生学会避开命题者制造的陷阱,通过不断的分析,让学生了解问题出现的根源,充分暴露自己的思维,在交流与合作的过程中,改进自己的不足,加深对错误的认识.通过交流了解别人的错误,自己避免出现类似的错误.八、考察点分析(约5分钟)问题7:分析集合中的考察点,函数中的考察点.问题8:知识的横纵联系.学生回答问题要点预设如下:1.集合中元素的互异性. 2.,则集合A可以是空集.3.交集与并集的区分,即何时取交,何时取并,特别是含参的分类讨论问题.4.函数的单调性与奇偶性的证明.5.作业与试卷中出现的问题.6.学生分析本章的考察点,主要分析考察的知识点、思想方法等方面.设计意图:让学生了解考察点,才能知道命题者的考察意图,才能选择合适的知识与思想方法来解答.例如如果试题中出现集合,无论试题以什么形式出现,考察点基本是集合间的基本关系、集合的运算.九、典型问题分析例1:设集合(1)若(2)若(3)若 (1)答案:(2)答案:(3)答案:.或; 或; ,求的值;,求实数的值;,求的值.教师点评,同时板书.由学生分析问题的考察点,包括知识与数学思想.(预设有以下几个方面)从知识点来分析,这是集合问题.考察点主要为集合的表示方法、集合中元素的特性、集合间的基本关系、集合的运算等.学生在解第1个问时,可能漏掉特殊情况.第2、3问可能会遇到一定的障碍,可以给学生时间进行充分的思考.设计意图:让学生体会到分析考察点的好处,养成解题之前分析考察点的习惯.能顺利的找到问题的突破口,为后续的解答扫清障碍.通过一题多问、一题多解、多题归一,让学生主动的形成发散思维,主动应用转化与化归的思想.例2:已知函数,求函数的解析式.是定义在R上的奇函数,当时,变式:函数是偶函数教师对生回答进行点评.并板书.学生分析考察点、解题思路,如果不完善,其他学生补充.学生回答问题要点预设如下:1.考察点为函数的奇偶性与函数图象的关系.2.函数的奇偶性的定义.3.转化与化归的思想.法一:本题即求,函数的解析式,可先利用函数的奇偶性绘制函数的图象,把本题转化为二次函数的图象与解析式的问题.法二:本法更具有一般性,已知时,函数的解析式,要分析时的函数对应关系,即当一个数小于零时,函数值应当怎样计算.由于函数具有奇偶性,即一个数与它的相反数的函数值之间有关系,,所以可以研究设计意图:学生在思考的过程中,体会数形结合思想.函数的奇偶性与函数的图象的关系,可以根据奇偶性绘制函数图象,也可以通过函数的图象分析函数的奇偶性,两者是相辅相承的.体会转化与化归的思想,把要研究的转化为已知的.考察函数的单调性的证明,函的函数值.数的奇偶性与单调性之间的关系,体会知识的纵向联系.体会转化与化归的思想、特殊与一般的数学思想,让学生体会到问题后面隐含的本质.例3:已知是偶函数,而且在上是减函数,判断在上是增函数还是减函数,并证明你的判断.变式1:函数为奇函数变式2:你能分析奇函数(偶函数)在对称区间上的单调性的关系吗?试从数形两个方面来分析.学生分析考察点、解题思路,如果不完善,其他学生补充.学生回答问题要点预设如下:1.考察点为函数的奇偶性与单调性的关系.2.函数的单调性的定义.3.数形结合、转化与化归的思想.法一:通过函数的图象分析.法二:把要研究的范围转化为已知的范围.设计意图:明确函数的性质是一个有机的整体,不是一个个知识点的简单罗列.同时体会知识的纵向联系与横向联系,在第二个方法中进一步感受转化与的思想.通过两个变式的研究过程,学生体会研究探索性问题的一般思路,即通过特殊情况分析结果,再对结果的正确性进行证明.例4:求在区间上的最大值和最小值.变式:在区间上的最大值是1,求的值.教师用几何画板演示,二次函数对称轴的变化对函数的最值的影响.答案:是.;时,最大值是时,最大值是,最小值是,最小值是;;时,最大值是时,最大值是,最小值,最小值是变式答案:或.学生通过直观的演示,思考问题的考察点与解答策略.学生回答考察点分析(预设):1.二次函数的图象与性质.2.分类与整合.3.逆向思维.学生回答解题思路分析(预设):研究二次函数的对称轴方程与所给的区间的关系.设计意图:通过几何画板的动态性,给学生直观的感知,从而建立最近发展区,进而突破难点.通过对二次函数的研究,学生巩固了上位知识函数的图象与性质,充分体会数形结合的优势.学生在解答变式的过程中,体会逆向思维与正向思维的关系,体会函数与方程思想,感受到动静结合.十、课后小结1.知识网络2.知识的来龙去脉3.问题中体现的数学思想4.分析问题的基本思路学生总结,教师板书.设计意图:让学生把知识窜串,形成网络,能迅速而准确的选用知识来解答问题.十一、课后总结巩固所学,补充课上的不足.主要是本节课中没有涉及的问题,本节课中理解有困难的问题. 1.已知是定义在R上的函数,设,.(1)试判断的奇偶性;(2)试判断的关系;(3)由此你猜想得出什么样的结论,并说明理由? 2.设函数(1)讨论3.已知集合,是否存在实数4.将长度为20 cm的铁丝分成两段,分别围成一个正方形和一个圆,要使正方形与圆的面积之和最小,正方形的周长应为多少?十二、教学反思在复习课中,教师要充分调动学生学习的自主性,让学生独立制定出适合自己的知识结构、整理出自己在本章学习中出现的问题.在课堂上,学生通过交流与合作,体会解决问题成功的喜悦.从而养成良好的学习习惯、树立信心.感受知识的横向联系与纵向联系,洞悉知识的本质、问题的根源,从而形成深刻的印象,少出现或避免出现类似的问题.通过分析知识的来龙去脉,明确知识的用途.通过典型题分析,回顾主干知识,重要的数学思想,感受知识与数学思想的有机融合.,同时满足.,,的奇偶性;(2)求的最小值.,,谢谢您的阅读,祝您生活愉快!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的基本性质
教学目标
1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应用函数的基本性质解决一些问题。
(2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.
(3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。
重点与难点
(1)判断或证明函数的单调性;
(2)奇偶性概念的形成与函数奇偶性的判断。
教学过程 一、
函数的单调性
1.单调函数的定义
(1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。
(2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当
1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。
(3)单调性:如果函数()y f x =在某个区间是增函数或减函数。
那么就说函数
()y f x =在这一区间具有(严格的)单调性,这一区间叫做()y f x =的单调区间。
2、单调性的判定方法 (1)定义法:
判断下列函数的单调区间:2
1x y =
(2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。
(3)复合函数的单调性的判断:
设)(x f y =,)(x g u =,],[b a x ∈,],[n m u ∈都是单调函数,则[()]y f g x =在
],[b a 上也是单调函数。
①若)(x f y =是[,]m n 上的增函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。
②若)(x f y =是[,]m n 上的减函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。
即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的
单调性相反时则复合函数为增减函数。
也就是说:同增异减(类似于“负负得正”) 练习:(1)函数24x y -=的单调递减区间是 ,单调递增区间
为 .
(2)5
412
+-=
x x y 的单调递增区间为 .
3、函数单调性应注意的问题:
①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).
③函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在上是增(或减)函数 4.例题分析 证明:函数1
()f x x
=
在(0,)+∞上是减函数。
证明:设任意1x ,2x ∈(0,+∞)且12x x <, 则21
121212
11()()x x f x f x x x x x --=
-=, 由1x ,2x ∈(0,+∞),得120x x >,又12x x <,得210x x ->, ∴12()()0f x f x ->,即12()()f x f x >
所以,1
()f x x
=
在(0,)+∞上是减函数。
说明:一个函数的两个单调区间是不可以取其并集,比如:x
y 1
=
不能说 )0,(-∞Y ),0(+∞是原函数的单调递减区间;
练习:1..根据单调函数的定义,判断函数3
()1f x x =+的单调性。
2.根据单调函数的定义,判断函数()f x =
二、函数的奇偶性 1.奇偶性的定义:
(1)偶函数:一般地,如果对于函数()f x 的定义域内任意一个x ,都有
()()f x f x -=,那么函数()f x 就叫做偶函数。
例如:函数2()1f x x =+,
4()2f x x =-等都是偶函数。
(2)奇函数:一般地,如果对于函数()f x 的定义域内任意一个x ,都有
()()f x f x -=-,那么函数()f x 就叫做奇函数。
例如:函数x x f =)(,x
x f 1
)(=
都是奇函数。
(3)奇偶性:如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性。
说明:从函数奇偶性的定义可以看出,具有奇偶性的函数: (1)其定义域关于原点对称;
(2) ()()f x f x -=或()()f x f x -=-必有一成立。
因此,判断某一函数的奇偶性时,首先看其定义域是否关于原点对称,若对称,再计算()f x -,看是等于()f x 还是等于()f x -,然后下结论;若定义域关于原点不对称,则函数没有奇偶性。
(3)无奇偶性的函数是非奇非偶函数。
(4)函数0)(=x f 既是奇函数也是偶函数,因为其定义域关于原点对称且既满足
)()(x f x f -=也满足)()(x f x f --=。
(5)一般的,奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数。
偶函数的图象关于y 轴对称,反过来,如果一个函数的图形关于y 轴对称,那么这个函数是偶函数。
(6)奇函数若在0x =时有定义,则(0)0f =. 2、函数的奇偶性判定方法 (1)定义法 (2)图像法 (3)性质罚 3.例题分析:
判断下列函数的奇偶性:
(1)()||f x x =( ) (2)()f x =( )
说明:在判断()f x -与()f x 的关系时,可以从()f x -开始化简;也可以去考虑
()()f x f x +-或()()f x f x --;当()f x 不等于0时也可以考虑
()
()
f x f x -与1或1-的关系。
五.小结:1.函数奇偶性的定义; 2.判断函数奇偶性的方法;
3.特别要注意判断函数奇偶性时,一定要首先看其定义域是否关于原点对称,否则将会导致结论错误或做无用功。
三、函数的最大值或最小值 1.最大值的定义:
一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足: ⑴对于任意的x ∈I ,都有f(x)≤M ;
⑵存在x 0∈I ,使得f(x 0) = M 那么,称M 是函数y=f(x)的最大值. 2
①函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ; ②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ).
仿照函数最大值的定义,给出函数y=f(x)的最小值的定义. 3.例题分析:
例4.(教材P 35例4)求函数1
2
-=x y 在区间[2,6]上的最大值和最小值. 解:(略)
巩固练习:(教材P 36练习5)
基础练习:
一、选择题、每个题目中,只有一个选项是正确的。
1、函数f(x)=x-2 +2-x 是( C )
A 、奇函数
B 、偶函数
C 、既是奇函数又是偶函数
D 、非奇非偶函数2.在区间)0,(-∞上为增函数的是
(B ) A .1=y
B .21+-=
x
x
y C .122
---=x x y
D .2
1x y +=
3.函数c bx x y ++=2
))1,((-∞∈x 是单调函数时,b 的取值范围
( B ) A .2-≥b
B .2-≤b
C .2->b
D . 2-<b
4.如果偶函数在],[b a 具有最大值,那么该函数在],[a b --有
( A )
A .最大值
B .最小值
C .没有最大值
D . 没有最小值
5.在区间(0,+∞)上不是增函数的函数是
( C ) A .y =2x +1 B .y =3x 2
+1
C .y =
x
2
D .y =2x 2+x +1
6.函数y =(x -1)-2
的减区间是_(_1,+∞)。