第十一章 全等三角形综合测试题 新人教版

合集下载

第十一章全等三角形测试题(B)新人教版八年级上

第十一章全等三角形测试题(B)新人教版八年级上

- 1 -第十一章 全等三角形测试题(B )(每小题3分,共30分)1、下列说法正确的是( ):全等三角形是指形状相同的两个三角形 C :全等三角形的周长和面积分别相等 C :全等三角形是指面积相等的两个三角形 D :所有的等边三角形都是全等三角形 2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为( )A :2B :3C :5D :2.53、如图:若△ABC ≌△EAC ,则∠EAC 等于( )A :∠ACB B :∠BAFC :∠CAFD :∠BAC4、如图:AB=AD ,AE 平分∠BAD ,则图中有( )对全等三角形。

A :2 B :3 C :4 D :55、如图:△ABC ≌△DEF ,△ABC 的周长等于40㎝, AB=10㎝,BC=16㎝,则DF 的长为( ) :10㎝ B :14㎝ C :16㎝ D :40㎝、能判断△ABC ≌△DEF 的是( )A :AB=DE ,BC=EF ,∠A=∠DB :∠A=∠E ,∠C=∠F ,AC=EF :∠B=∠E ,∠A=∠F ,AC=EF D :∠A=∠D ,∠B=∠E ,∠C=∠F 、如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要( )A :AB=CDB :EC=BFC :∠A=∠D D :AB=BC8、如图:AD=AC ,AB 平分∠DAC ,下列结论错误的是( )A :△ADB ≌△ACB B :△ADE ≌△ACEC :△EDB ≌△ECBD :△AED ≌△CEB9、如图:直线a ,b ,c 表示三条相互交叉环湖而建的公路,现在建立一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A :1个 B :2个 C :3个 D :4个10、如图:△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB=6㎝,则△DEB的周长是( ):6㎝ B :4㎝ C :10㎝ D :以上都不对 二、填空题(每小题3分,共30分)11、如图:AB=AC ,BD=CD ,若∠B=28°则∠C= ;12、如图:△EDF ≌△BAC ,EC=6㎝,则BF= ;13、如图:△AEC ≌△ADB ,则∠AEC= ,EC= ;(第2题)FECBA(第3题)ECB A(第4题)EDCBA(第5题)FE DC BA(第7题)FEDCB A(第8题)EDCBAcba(第9题)(第10题)EDCBA(第11题)D CBA(第12题)F EDCBA(第13题)EDCBA- 2 -14、如图5,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______;15、如图:在△ABC 中,AD=AE ,BD=EC ,∠ADB=∠AEC=105°,∠B=40°,则∠CAE= ;16、已知∠MON 的平分线上一点P ,点P 到OM 的距离为3㎝,则点P 到ON 的距离等于 ㎝;17、在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E 是BC 的中点,DE 平分∠ADC,∠CED=35°,如图,则∠EAB = ; 18、如图:BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“ ”; 19、如图:AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB ,你补充的条件是 ;20、如图:在△ABC 中,∠B=∠C=50°,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,则∠BAD= 。

人教版八年级上册数学 第11章 全等三角形 单元测试

人教版八年级上册数学 第11章 全等三角形 单元测试

第11章全等三角形单元测试一.选择题1.如图,△ABC≌△DEF,BC=7,EC=4,则CF的长为()A.2 B.3 C.5 D.72.花花不慎将一块三角形的玻璃打碎成了如图所示的四块(图中所标①、②、③)、④),若要配块与原来大小一样的三角形玻璃,应该带()A.第①块B.第②块C.第③块D.第④块3.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是()A.3 B.4 C.5 D.64.如图,已知AC=AD,再添加一个条件仍不能判定△ABC≌△ABD的是()A.∠C=∠D=90°B.∠BAC=∠BAD C.BC=BD D.∠ABC=∠ABD 5.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED 6.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是()A.SSS B.SAS C.AAS D.ASA7.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC8.如图,在△ABC中,AB=AC,BD=CD,点E,F是AD上的任意两点.若BC=8,AD =6,则图中阴影部分的面积为()A.12 B.20 C.24 D.489.如图,△AOB的外角∠CAB,∠DBA的平分线AP,BP相交于点P,PE⊥OC于E,PF⊥OD 于F,下列结论:(1)PE=PF;(2)点P在∠COD的平分线上;(3)∠APB=90°﹣∠O,其中正确的有()A.0个B.1个C.2个D.3个10.如图,AB∥CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且与AB互相垂直,点P为线段BC上一动点,连接PE.若AD=8,则PE的最小值为()A.8 B.6 C.5 D.4二.填空题11.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC≌△BAD.12.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是.13.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,若AB=5,DC=2,则△ABD的面积为.14.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC 的面积为21cm2,AB=8cm,AC=6cm,则DE的长为cm.15.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是.16.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=8,CD=3,则△ABD的面积是.17.如图,已知△ABC的周长是10cm,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=0.8cm,△ABC的面积为cm2.18.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正确的是(填序号)三.解答题19.如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE =AB,∠BAE=∠CAD.求证:DE=CB.20.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠E=∠F,DE=BF.求证:AE=CF.(每一行都要写依据)21.如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.22.如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E.F、G分别是OA、OB上的点,且PF=PG,DF=EG.(1)求证:OC是∠AOB的平分线.(2)若PF∥OB,且PF=8,∠AOB=30°,求PE的长.23.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.24.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).参考答案1.B2.B3.D4.D5.B6.D7.B8.A9.C10.D11.AC=BD12.7cm13.514.315.216.1217.4.18.①②④.19.证明:∵∠BAE=∠CAD,∴∠BAE+∠BAD=∠CAD+∠BAD,即∠DAE=∠CAB,在△ADE和△ACB中,,∴△ADE≌△ACB(SAS),∴DE=CB.20.证明:∵AD∥CB(已知),∴∠ADB=∠CBD(两直线平行,内错角相等),∴∠ADE=∠CBF(等角的补角相等).在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF(全等三角形的对应边相等).21.(1)证明:∵CE∥AB,∴∠B=∠DCE,在△ABC与△DCE中,,∴△ABC≌△DCE(SAS);(2)解:∵△ABC≌△DCE,∠B=50°,∠D=22°,∴∠ECD=∠B=50°,∠A=∠D=22°,∵CE∥AB,∴∠ACE=∠A=22°,∵∠CED=180°﹣∠D﹣∠ECD=180°﹣22°﹣50°=108°,∴∠AFG=∠DFC=∠CED﹣∠ACE=108°﹣22°=86°.22.解:(1)证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.(2)∵PF∥OB,∠AOB=30°,∴∠PFD=∠AOB=30°,在Rt△PDF中,.23.(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中,∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中,∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)24.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.11 /11∵△ABE ≌△CBD ,∴AE =CD ,S △ABE =S △CDB , ∴•AE •BK =•CD •BJ ,∴BK =BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△ABM ≌△DBM ,则AB =BD ,显然不可能,故①错误. 答案为②.。

(最新最全)人教版第11章全等三角形练习题综合拔高题(全word已整理)

(最新最全)人教版第11章全等三角形练习题综合拔高题(全word已整理)

全等三角形拔高题1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。

2. 已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。

3. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.4. 如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C ,•∠OAP+∠OBP=180°,若OC=4cm ,求AO+BO 的值.A B C DE P D ACM NPDA CBO5.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE•⊥AC,BF⊥AC,若AB=CD,可以得到BD平分EF,为什么?若将△DEC的边EC沿AC方向移动,变为如图所示时,其余条件不变,上述结论是否成立?请说明理由.6.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由。

7.已知:如图E在△ABC的边AC上,且∠AEB=∠ABC。

(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于F,FD∥BC交AC于D,设AB=5,AC=8,求DC的长。

GD FAC BEGD FACBEFED CBAG8. 如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M .(1) 求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证明你的结论.9. 已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1) 求证:△AED ≌△EBC .(2) 观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):10. 如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1) 求证:MB =MD ,ME =MF(2) 当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.BA DMOE D C B A11. 如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(1) 若BD 平分∠ABC ,求证CE=12BD ;(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。

第十一章_全等三角形测试题(含答案)_人教版(1)

第十一章_全等三角形测试题(含答案)_人教版(1)

第- 1 -页, 试卷共- 4 -页初二期中测试一、选择题(每小题3分,共30分)1、下列说法正确的是( )A :全等三角形是指形状相同的两个三角形 C :全等三角形的周长和面积分别相等 C :全等三角形是指面积相等的两个三角形 D :所有的等边三角形都是全等三角形 2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为( ) A :2B :3C :5D :2.53、如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论: ①△ABD ≌△ACD ,②∠B=∠C ,③BD=CD ,④AD ⊥BC 。

其中正确的个数有( )A :1个B :2个C :3个D :4个4、如图:AB=AD ,AE 平分∠BAD ,则图中有几对全等三角形。

( ) A :2 B :3 C :4 D :55、如图:在△ABC 中,AD 平分∠BAC 交BC 于D ,AE ⊥BC 于E ,∠B=40°, ∠BAC=82°,则∠DAE=( )A :7B :8°C :9°D :10°6、如图:在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AC 于E ,DF ⊥AB 于F , 且FB=CE ,则下列结论::①DE=DF ,②AE=AF ,③BD=CD ,④AD ⊥BC 。

其 中正确的个数有( )A :1个B :2个C :3个D :4个7、如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要( ) A :AB=CD B :EC=BF C :∠A=∠D D :AB=BC8、如图:在不等边△ABC 中,PM ⊥AB ,垂足为M ,PN ⊥AC ,垂足为N , 且PM=PN ,Q 在AC 上,PQ=QA ,下列结论:①AN=AM ,②QP ∥AM , ③△BMP ≌△QNP ,其中正确的是( ) A :①②③ B :①② C :②③ D :①(第2题)FEC BA(第4题)EDCBA(第7题)FEDCB A(第3题)D CBA(第5题)DCBAF E (第6题)B ANMQ (第8题)CBA第- 2 -页, 试卷共- 4 -页9、如图:直线a,b,c 表示三条相互交叉环湖而建的公路,现在建立一个货 物中转站,要求它到三条公路的距离相等,则可供选择的地址有( D )A :1个B :2个C :3个D :4个10、如图:△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB于E ,且AB=6㎝,则△DEB 的周长是( )A :6㎝B :4㎝C :10㎝D :以上都不对 二、填空题(每小题3分,共30分)11、如图:AB=AC ,BD=CD ,若∠B=28°则∠C= 度; 12、如图:在∠AOB 的两边截取OA=OB ,OC=OD ,连接AD ,BC 交于点P ,则下列结论中①△AOD ≌△BOC ,②△APC ≌△BPD ,③点P 在∠AOB 的平分线上。

人教版初中数学八年级上册第十一单元《三角形》综合测试卷(解析版)

人教版初中数学八年级上册第十一单元《三角形》综合测试卷(解析版)

⼈教版初中数学八年级上册第⼗⼀单元《三⾓形》综合测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2023八上·双鸭⼭期中)下列各图中,正确画出△ABC中AC边上的⾼的是( )A.B.C.D.2.(3分)(2023七上·沭阳⽉考)⼀块矩形草坪的⻓比宽多10米,它的周⻓是132米,求宽x所列的⽅程是( )A.x+10=132B.2x+10=132C.22x+10=132D.2x−10=132 3.(3分)(2020七上·庆云⽉考)代数式|x−2|+3的最⼩值是( )A.0B.2C.3D.54.(3分)(2020八上·余⼲⽉考)在△ABC中,∠A:∠B:∠C=1:2:3,则△ABC为( )A.等腰三⾓形B.锐⾓三⾓形C.直⾓三⾓形D.钝⾓三⾓形5.(3分)(2023七下·承德期末)下列四个选项中,∠1与∠2互为邻补⾓的是( )A.B.C.D.6.(3分)(2024八上·合江期末)根据图中的数据,可得∠B的度数为( )A .40°B .50°C .60°D .70°7.(3分)(2022七上·晋州期中)已知射线OC 在∠AOB 的内部,下列4个表述中:①∠AOC =12∠AOB ;②∠AOC =∠BOC ;③∠AOB =2∠BOC ;④∠AOC +∠BOC =∠AOB ,能表⽰射线OC 是∠AOB 的⾓平分线的有( )A .1个B .2个C .3个D .4个8.(3分)(2022八上·港南期中)下列图形具有稳定性的是( )A .B .C .D .9.(3分)(2021九下·曹县期中)如图,在平⾯直⾓坐标系中,点 A 1 , A 2 , A 3 ,…, A n 在 x 轴上,点 B 1 , B 2 ,…, B n 在直线 y 上,若点 A 1 的坐标为 (1,0) ,且 △A 1B 1A 2 , △A 2B 2A 3 ,…, △A n B n A n +1 都是等边三⾓形,从左到右的⼩三⾓形(阴影部分)的⾯积分别记为 S 1 , S 2 ,.., S n ,则 S n 可表⽰为( )A .22B .22n −C .22n −D .22n −10.(3分)(2021八上·诸暨⽉考)如图,BF 是∠ABD 的平分线,CE 是∠ACD 的平分线,BF 与CE 交于G ,若∠BDC =130°,∠BGC =100°,则∠A 的度数为( )A .60°B .70°C .80°D .90°⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)过⼗边形的⼀个顶点可作对⾓线的条数为m,则m的值为 .12.(3分)(2024七下·⽞武期中)如图1,点D在△ABC边BC上,我们知道若BDCD=ab,则S△ABDS△ACD=ab;反之亦然.如图2,BE是△ABC的中线,点F在边AB上,BE、CF相交于点O,若AFBF =m,则OEOB=  .13.(3分)(2024七下·⻄安期中)已知三⾓形两边的⻓分别为1cm,5cm,第三边⻓为整数,则第三边的⻓为 .14.(3分)(2024七下·淮阴期中)如图,在△ABC中,点D是边BC的中点,点E是AC边上⼀点,AD和BE交于点O,CE=14AC,△ABC的⾯积是2024,若把△ABO的⾯积记为S1,把四边形CDOE的⾯积记为S 2,则S1−S2的值为 .15.(3分)(2018八上·武汉⽉考)图中x的值为 .三、解答题(共7题,共65分)(共7题;共65分)16.(10分)(2018八上·潘集期中)某零件如图所⽰,按规定∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=146°,就断定这个零件不合格,你能说出其中的道理吗?17.(5分)(2023八上·鹿寨期中)已知⼀个多边形中,每个内⾓都相等,并且每个外⾓等于与它相,求这个多边形的边数及内⾓和.邻的内⾓的1818.(5分)(2023八上·城厢开学考)已知:△ABC中,图①中∠B、∠C的平分线相交于M,图②中∠B、∠C的外⾓平分线相交于N,(1)(1分)若∠A=80°,∠BMC= °,∠BNC= ° .(2)(1分)若∠A=β,试⽤β表⽰∠BMC和∠BNC19.(11分)(2016八上·肇庆期末)⼀个零件的形状如图所⽰,按规定∠A=90º,∠C=25º,∠B=25º,检验员已量得∠BDC=150º,请问:这个零件合格吗?说明理由。

八年级数学上册 第十一章全等三角形同步练习 人教新课标版

八年级数学上册 第十一章全等三角形同步练习 人教新课标版

全等三角形同步练习时间:45分总分:100分一、选择题(每小题5分,共25分)1.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°2.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是:()A、BC=B′C′B、∠A=∠A′C、AC=A′C′D、∠C=∠C′3.根据下列条件,能判定△ABC≌△A′B′C′的是:()A、AB=A′B′,BC=B′C,∠A=∠A′B、∠A=∠A′,∠B=∠C′,AC=B′C′C、∠A=∠A′,∠B=∠B′,∠C=∠C′AB=A′B′,BC=B′C,△ABC的周长等于△A′B′C′的周长。

4.如图(2),OA=OC,OB=OD,则图中全等三角形共有:()A、2对B、3对C、4对D、5对5.两个三角形有两个角对应相等,正确的说法是()A.两个三角形全等B.如果一对等角的角平分线相等,两三角形就全等C.两个三角形一定不全等D.如果还有一个角相等,两三角形就全等二.填空题(每小题5分,共25分)图(2)A图(1)1.如图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,且AD =AE ,AB =AC ,2.如图(4),已知AB=AC ,AD=AE ,∠BAD=25°,则∠CAE= 。

3.如图(5),已知AB=DC ,AD=BC ,E 、F 是DB 上两点且BF=DE ,若∠AEB=120°,∠ADB=30°,则∠BCF= °。

4.如图(6),AC=BC ,AD=BD ,AE=BE ,AF=BF ,则图中共有 对全等三角形,把它们一一表示出来为 。

图(3)图(4) ABCED图(5)B5、如图(7),已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的 图形是 。

【初二数学】第十一章全等三角形测试题(A)新人教版八年级上(共11页)

【初二数学】第十一章全等三角形测试题(A)新人教版八年级上(共11页)

E �41图�
B
D
。长的 CA 求�㎝ 5=DB 若�2� �DC=EA�证求�1� 。D 点于线长延的 FC 交 BC⊥DB 作 B 过�F 于 EA⊥FC 作 C 点过�线中的 CB 是 EA�CB=CA�°09=BCA∠�中 CBA△在�41�图如、41
A
C E
B F D A
。C∠=B∠�证求。FC=FB�CA=BA�图如、02
B
�91图� F E
A
D
。FCD△≌EBA△�证求 C 。ED=FA�FD=EB�CD=BA�图如、91
B
F D E
�81图�
A
C
。FB+FE=EA�证求。F 于线长延的 DC 交 DC⊥FB�E 于 DG⊥EA�点一上 BA 是 D�CB=CA�°09=BCA∠�中 CBA△在�图如、81
C F
D E
B �题91第�
F E D
C �题81第� B 4 3
并 EB、EA 接连�上 DC 边在 E 点�中 DCBA 形边四在�图如、81
D

=BAE∠则�°53=DEC∠�CDA∠
B E C
�题71第�
1
2
A
A
C
C
O A �题61第� D B
分平 ED�点中的 CB 是 E�°09=C∠=B∠�图如、71 � 是围范值取的 DA 线中的
F C D A B
E
。F∠=C∠�证求。FE=CB�EB=DA�FD=CA�图如�分 01� 、12 �分 07 共�题答解、三
B
C
�5图�
D
E A
B
M N C
。ED=CB �DC=BA �DB⊥DE �DB⊥BA � �5 � 图如 、5 A 。DCA△≌DBA△�证求 。EC⊥CA�证求 。DC=DB�D 为足垂�CB⊥DA� �1�图如、1 题练训题专定判的等全形角三

新人教版八年级上11.1全等三角形11.2三角形全等的条件综合测试题

新人教版八年级上11.1全等三角形11.2三角形全等的条件综合测试题

数学: 11.1全等三角形-11.2三角形全等的条件综合测试题(人教新课标八年级上)一、选择题(共10小题,每小题3分,共30分)*1.下列说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法为( )A .①②③④B .①③④C .①②④D .②③④2.(2021年遵义市).如图,OA OB =,OC OD =,50O ∠=,35D ∠=,则AEC ∠等于( )A .60B .50C .45D .30*3.如图2,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( )A .∠1=∠2B .∠B=∠CC .∠D=∠ED .∠BAE=∠CAD4.如图3,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC•与右边滑梯水平方向的长度DF 相等,则下列结论:①AB=DE ;②∠ABC=∠DEF ;•③∠ACB=∠DFE ;④∠ABC+∠DFE=90°,其中成立的有( )A .①②③④B .①②③C .①②D .②③图35.如图4所示,已知:点D 在AC 上,点B 在AE 上,△ABC ≌△DBE ,且∠BDA =∠A ,∠OEA BDCA ∶∠C =5∶3,∠DBC 等于( )A .30°B .25°C .20°D .15°6.如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )A .相等B .互补C .互余D .相等或互补7.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短8.如图5,在四边形ABCD 中,AD=CB ,DE ⊥AC 于E ,BF ⊥AC 于F ,且DE=•BF ,则图中全等三角形有( )A .1对B .2对C .3对D .4对9.如图6,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:410.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A→B→C→A ,及A 1→B 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图7),若运动方向相反,则称它们是镜面合同三角形(如图8),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°(如图9),下列各组合同三角形中,是镜面合同三角形的是()二、填空题11.已知ABC A B C '''△≌△,60A A '==∠∠,70B B '==∠∠,15cm A B ''=,则AB =_____,C =∠_____._ 图 6#12.用同样粗细,同种材料的金属粗线,构成两个全等三角形,如图2所示,△ABC和△DEF,已知∠B=∠E,AC的质量为100克,则DF的质量为.13.如图3,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP=时,才能使△ABC和△APQ全等.*14.如图4所示,有一块三角形镜子,小明不小心摔破成Ⅰ、Ⅱ两块,现需配制同样大小的镜子.为了方便起见,需带上块即可,其理由是.图4*15. 一个三角形的三边长分别为2,5,m,另一个三角形的三边长分别为n,6,2,若这两个三角形全等,则m+n=.16.已知如图5,F在正方形ABCD的边BC边上,E在AB的延长线上,FB=EB,AF交CE于G,则∠AGC的度数是______.*17.如图6,将△ABC沿经过点A的直线AD折叠,使边AC所在的直线与边AB所在的直线重合,点C落在边AB上的点E处,若∠B=450,∠BDE=200,则∠C= ,∠CAD= .#18.如图7,高速公路上有A、B两站(视为线上两点)相距30km,C、D为高速公路同旁的两个村庄(视为两点),已知DA⊥AB于A点,CB⊥AB于B点,DA=20km,CB=10km,现在要在公路AB上建一个土特产收购站E,使C、D两村庄到E站的距离相等,则E站应建在距A站______km处.三、解答题19.(8分)已知△ABC≌△A′B′C′,AD和A′D′分别是BC和B′C′边上的高,AD•和A′D′相等吗?为什么?20.(8分)如图8,AB=AC,D、E分别为AB、AC的中点,则△ABE≌△ACD,说明理由.图821.(8分)有一块三角形板材,如图所示,根据实际生产的需要,工人师傅要把∠MAN平分开,现在他手边只有一把直尺和一根细绳,你能帮工人师傅想个办法吗?并说明你的根据.22.(10分)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形?请任选一对给予证明.*23. (10分)如图所示,A、B、C、D是四个村庄,B、D、C在一条东西走向公路的沿线上,BD=1千米,DC=1千米,村庄AC、AD间也有公路相连,且AD⊥BC,AC=3千米,只有村庄AB之间由于间隔了一个小湖,所以无直接相连的公路. 现准备在湖面上造一座斜拉桥,测得AE=1.2千米,BF=0.7千米. 试求所建造的斜拉桥长有多少千米?#24.(10分)已知:如图12,AB∥CD,AB=CE,BC=FC,∠DCB+∠ECF=180o,试说明:AC=EF.图1225. (12分)如图7是小明和小刚玩跷跷板的示意图,横板绕它的中点O 上下转动,立柱OC 与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA ',BB '有何数量关系?为什么?答案一、选择题1.A2. A. 3 .A 4.A 5.C 6.D 7. A 8.C9. D 10. B二、填空题11.15cm ;50 12.100克 13.BC 或AC14.Ⅰ,根据“SAS ”确定三角形全等 15. 1116. 90° 17.65°,35°18. 10提示:将实际问题转化为几何问题以方便求解,关键是利用或构造直角三角形全等来证明线段相等.三、解答题19.相等,证△ABD ≌△A ′B ′D ′20.解:因为AB=AC ,D 、E 分别为AB 、AC 的中点,所以AD=AE.在△ABE 和△ACD 中,()()AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩(已知)公共角已说明,所以△ABE ≌△ACD(SAS)21.根据“边边边”公理构造全等三角形,能把∠MAN 平分开。

最新人教版 第十一章三角形单元测试及答案

最新人教版 第十一章三角形单元测试及答案

最新人教版第十一章三角形单元测试及答案最新人教八年级数学第十一章三角形测试一、填空题1.三角形的三个外角中,钝角的个数最多有1个,锐角最多2个。

2.造房子时屋顶常用三角结构,从数学角度来看,是应用了三角形的相似性质,而活动挂架则用了四边形的对角线。

3.用长度为8cm、9cm、10cm的三条线段能构成三角形。

4.要使五边形木架不变形,则至少要钉上3根木条。

5.已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=70°,∠C=30°。

6.如图1所示,AB∥CD,∠A=45°,∠C=29°,则∠E=16°。

1)2)3)7.如图2所示,∠α=40°。

8.正十边形的内角和等于1440°,每个内角等于144°。

9.一个多边形的内角和是外角和的一半,则它的边数是360°÷(180°-外角)。

10.把边长相同的正三角形和正方形组合镶嵌,若用2个正方形,则还需要4个正三角形才可以镶嵌。

11.等腰三角形的周长为20cm,一边长为6cm,则底边长为4cm。

12.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有10条对角线。

13.如图3所示,共有4个三角形,其中以AB为边的三角形有2个,以∠C为一个内角的三角形有2个。

14.如图4所示,∠A+∠B+∠C+∠D+∠E=540°。

二、选择题15.下列说法错误的是(B)。

A。

锐角三角形的三条高线,三条中线,三条角平分线分别交于一点。

B。

钝角三角形有两条高线在三角形外部。

C。

直角三角形只有一条高线。

D。

任意三角形都有三条高线,三条中线,三条角平分线。

16.在下列正多边形材料中,不能单独用来铺满地面的是(C)。

A。

正三角形B。

正四边形C。

正五边形D。

正六边形17.如图5所示,在△ABC中,D在AC上,连结BD,且∠ABC=∠C=∠1,∠A=∠3,则∠A的度数为(30°)。

2019-2020学年八年级数学《第十一章全等三角形》综合测试A新人教版.docx

2019-2020学年八年级数学《第十一章全等三角形》综合测试A新人教版.docx

2019-2020 学年八年级数学《第十一章全等三角形》综合测试A新人教版一、选择题(每题 3 分,共 30 分。

每题只有一个正确答案,请将正确答案的代号填在下面的表格中)题号12345678910答案1.下列判断中错误的是()..A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等E C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等D2.如图,△DAC和△EBC均是等边三角形,AE,BD分别与N CD, CE 交于点 M , N ,有如下结论:A M BC①△ ACE ≌△ DCB ;② CM CN ;③ AC DN .其中,正确结论的个数是()(第 2 题)A.3 个B. 2 个C. 1 个D. 0 个3.某同学把一块三角形的玻璃打碎了 3 块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去(第 3 题)C.带③去D.带①②③去4.△ABC≌△DEF, AB=2,AC=4,若△DEF的周长为偶数,则 EF的取值为()A .3B .4C .5D .3 或 4 或 55.如图,已知,△ABC的三个元素,则甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙6.三角形ABC的三条内角平(第 5 题)分线为 AE、 BF、CG、下面的说法中正确的个数有()①△ ABC的内角平分线上的点到三边距离相等②三角形的三条内角平分线交于一点③三角形的内角平分线位于三角形的内部④三角形的任一内角平分线将三角形分成面积相等的两部分(第 7 题)A .1 个B . 2 个C . 3 个D . 4 个7.如图,长方形 沿 AE 折叠,使 D 点落在边上的 F 点处,∠=600,那么∠等于()ABCDBCBAFDAEA .150B .300C . 450D . 6008.如图所示, △ ABE 和△ ADC 是△ ABC 分别沿着 AB ,AC 边翻折 180°形成的,若∠ 1∶∠ 2∶∠ 3=28∶ 5∶ 3,则∠ α 的度数为()A .80°B .100°C .60°D .45°9. 在△ ABC 和△ A B C 中 , 已知 A A , ABAB , 在下面判断中错误的(第 8 题)是 ( )A. 若添加条件 ACA C , 则△ ≌△A B CABC B. 若添加条件 BCB C , 则△ ABC ≌△ A B C C. 若添加条件 BB , 则△ ABC ≌△ A B CD. 若添加条件CC , 则△ ABC ≌△ A B C10. 如图 , 在△ ABC 中 , ∠ C = 90 , AD 平分∠ BAC ,DE ⊥ AB 于 E ,则下列结论 : ① AD 平分∠ CDE ;②∠ BAC =∠ BDE ;③ DE 平分∠ ADB ;④ BE +AC =AB . 其中正确的有 ()A.1 个B.2 个C.3 个D.4个二、填空题(每题3 分,共 30)第 10 题11.如图, AB , CD 相交于点 O , AD = CB ,请你补充一个条件,使得△AOD ≌△ COB .你补充的条件是 ______________________________ .12.如图, AC ,BD 相交于点 O , AC =BD , AB =CD ,写出图中两对相等的角 ______ .13.如图,△ ABC 中,∠ C = 90°, AD 平分∠ BAC , AB = 5, CD =2,则△ ABD 的面积是 ______.BDACADE OOCDAD B B C ABC的面 14.如图(,第直11线题)AE ∥ BD ,点 C 在(BD 第上12,题若) AE =4, BD (=第8,13△题ABD )的面积为 (16第,14则题△)ACE 积为 ______. 15.在△ ABC 中,∠ C =90°, BC =4CM ,∠ BAC 的平分线交 BC 于 D ,且 BD :DC =5:3,则 D 到 AB 的距离为 _____________ .16.如图,△ ABC 是不等边三角形, DE =BC ,以 D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ ABC全等,这样的三角形最多可以画出_____个.(第 16 题)17.如图,AD, A D 分别是锐角三角形ABC 和锐角三角形 A B C 中 BC , B C 边上的高,且AB A B , AD A D .若使△ ABC ≌△ A B C ,请你补充条件___________.(填写一个你认为适当的条件即可)18.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.A A'ADBCB''C'D DBE C(第 17、 18 题)(第 19 题)19.如图,已知在ABC 中, A 90 , AB AC , CD平分ACB , DE BC 于 E ,若BC 15cm ,则△ DEB 的周长为cm .20.在数学活动课上,小明提出这样一个问题:∠B=∠C=900, E 是 BC的中点, DE平分∠ ADC,∠CED=350,如图16,则∠ EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是 ______.三、解答题(每题9 分,共 36 分)21.如图,O为码头,A,B两个灯塔与码头的距离相等,OA, OB为海岸线,一轮船从码头开出,计划沿∠ AOB的平分线航行,航行途中,测得轮船与灯塔A,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.AOB22.如图,在△ABC中,BD=DC,∠ 1=∠ 2 ,求证:AD⊥BC.23.如图,OM平分∠POQ,MA⊥OP, MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠ OAB=∠ OBA24.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交 AP于 D.求证:AD+BC=AB.PCEDA B四、解答题(每题10 分,共 30 分)25.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠ C=2∠ BACD B26.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于 E,BF⊥AC于F,若AB=CD,AF=CE,BD交 AC于点 M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.27.已知:如图,DC∥ AB,且 DC=AE, E 为 AB的中点,(1)求证:△AED≌△EBC.(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△ AED的面积相等的三角形.(直接写出结果,不要求证明):AE O DB C五、(每题12 分,共24 分)28.如图,△ABC中,∠BAC=90 度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于,直线交的延长线于.E CE BA F求证: BD=2CE.FAEDB C29.已知 : 在△ABC中 , ∠BAC= 90 , AB=AC, AE是过点A的一条直线 , 且BD⊥AE于D, CE⊥AE于 E.(1)当直线 AE 处于如图①的位置时,有 BD=DE+CE,请说明理由;(2)当直线 AE处于如图②的位置时,则 BD、DE、 CE的关系如何?请说明理由;(3)归纳 (1) 、(2), 请用简洁的语言表达BD、DE、CE之间的关系 . 第十一章全等三角形综合测试 A 参考答案。

人教新课标第十一章全等三角形判定测试题

人教新课标第十一章全等三角形判定测试题

A D 1、如图,△ABN ≌△ACM ,AB=AC ,BN=CM ,∠B=50°,∠ANC=120°, 则∠MAC 的度数等于( )
A .120° B.70° C.60° D.50°.
2.使两个直角三角形全等的条件是( ) A.一锐角对应相等 B.两锐角对应相等
D.一条边对应相等 D.两条边对应相等 3.如图,已知△ABC 的六个元素,则甲、乙、丙三个三角形中和△ABC 全等的图形是( ) A .甲和乙 B.乙和丙 C.只有乙 D.只有丙 4.如图,已知△ABC,则甲、乙、丙三个三角形中和△ABC 全等的图形是( )
A .甲和乙 B.乙和丙 C.只有乙 D.只有丙
5.如右图所示,已知△ABC 和△BDE 则下列结论:① AE=CD ;②BF=BG ;③HB 平分∠④∠AHC=600,⑤△BFG 是等边三角形;⑥ FG ∥AD 其中正确的有( ) A 3个 B 4个 C 5个 D 6个
6. 如图示,已知AB=AC ,BD=DC ,试说明理BD=CD 。

7如图:在△ABC 中,点D ,E 在BC 上,且AD=AE ,BD=CE ,∠ADE=∠AED ,求
证:AB=AC.
8,如图,D 是△ABC 的边AB 上一点, DF 交AC 于点E, DE=FE, FC ∥AB, 求证:AD=CF . 9如图,BE ,CD 是△ABC 的高,且BD =EC ,请证明△BCD ≌△CBE
10如图14,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE ,=DEF B ∠∠ 求证:=ED EF .
A B C A B C D E A B D F C A
D E C B A D E C B
F。

人教版八年级上册第十一章单元测试题全等三角形

人教版八年级上册第十一章单元测试题全等三角形

人教版八年级上册第十一章单元测试题——全等三角形(时间:90分钟 满分:100分) 姓名 得分一、选择题二、1.一个三角形三个内角的度数之比为2∶3∶7,这个三角形是( ).A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形2.下列命题中,正确的是( )A 、有两边及一边的对角相等的两个三角形全等B 、有两边相等的两个直角三角形全等C 、有两个角及第三角的对边相等的两个三角形全等D 、有两个角及一边相等的两个三角形全等3.如图,BE=CF ,AB=DE ,添加下列哪些条件可以推证△ABC ≌△DFE ( )A 、BC=EFB 、∠A=∠DC 、AC ∥DFD 、AC=DF 4.已知,如图,AC=BC ,AD=BD ,下列结论不正确的是( )A 、CO=DOB 、AO=BOC 、AB ⊥BD D 、△ACO ≌△BCO 5.在△ABC 内部取一点P 使得点P 到△ABC 的三边距离相等,则点P 应是△ABC 的哪三条线交点( )A 、高B 、角平分线C 、中线D 、垂直平分线 6.下列结论正确的是( )A 、有两个锐角相等的两个直角三角形全等; 三、B 、一条斜边对应相等的两个直角三角形全等;C 、顶角和底边对应相等的两个等腰三角形全等;D 、两个等边三角形全等. 7.下列条件能判定△ABC ≌△DEF 的一组是( )A 、∠A=∠D ,∠C=∠F,,AC=DFB 、AB=DE , BC=EF,,∠A=∠DC 、∠A=∠D ,∠B=∠E ,∠C=∠F D 、AB=DE ,△ABC 的周长等于△DEF 的周长 8.能把一个三角形分成面积相等的两部分的是该三角形的一条( )A 、中线B 、角平分线C 、高线D 、边的垂直平分线9.已知,如下图,在△ABC 中,AB=AC,AD 是角平分线,BE=CF,则下列说法正确的有几个 ( ) (1)AD 平分∠EDF ;(2)△EBD ≌△FCD ; (3)BD=CD ;(4)AD ⊥BC 。

第11章全等三角形全章检测题(人教新课标八年级上)

第11章全等三角形全章检测题(人教新课标八年级上)

数学:第11章全等三角形全章检测题(人教新课标八年级上)、选择题(每小题3分,共30分)1•在△ ABC中,/ B=Z 6与厶ABC全等的三角形有一个角是与这100°角对应相等的角是()2•如图,在CD上求一点P,使它到OA, OB的距离相等,则P点是(100 °,那么在△ ABC中B. / BC.Z CD. / B 或/ CA.线段CD的中点C.OA与CD的中垂线的交点B.OA与OB的中垂线的交点D.CD与/ AOB的平分线的交点3•如图所示,△ ABD CDB,下面四个结论中,不正确的是(A. △ ABD和厶CDB的面积相等C. / A+ / ABD = Z C+Z CBDB. △ ABD和厶CDB的周长相等D.AD // BC, 且AD = BCA)4•如图,已知 AB = DC , AD = BC , E , F 在 DB 上两点且 BF = DE ,若 Z AEB = 120 °Z ADB = 30° 则Z BCF =( ) A.150 °B.40 °C.80D.905•如果两个三角形中两条边和其中一边上的高对应相等, 所对的角的关系是( )B.不相等AB 丄 BC , BE 丄 AC , EFD B.BE = ECA.相等 6,如图, A. Z 1 = ZC.互余或相等1 = Z 2, AD = AB ,则(C.BF = DF = CDD.互补或相等)D.FD // BC7•如图所示,BE 丄AC 于点D , A.25 °B.27 °且 C.30 AD = CD , BD = ED , °D.45 °A那么这两个三角形的第三条边 若Z ABC = 54 ° 则Z E =( )8•如图,在△ ABC中,AD平分/ BAC,过B作BE丄AD于E,过E作EF // AC交AB于F,则()A.AF = 2BFB.AF = BFC.AF > BFD.AF V BF9如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.AASD.ASA10•将一张长方形纸片按如图A • 60°B • 75二、填空题(每小题3分,共24分)11. (08牡丹江)如图,.BAC二.ABD,请你添加一个条件:______________ ,使OC =OD (只添一个即可)•12. 如图,在△ ABC中,AB = AC , BE、CF是中线,则由可得△ AFC◎△ AEB.A/ \/ \FE/ \B C13. 如图,AB = CD , AD = BC, O为BD中点,过O点作直线与DA、BC延长线交于E、F,若/ ADB = 60°, EO= 10,则/ DBC = ___________ , FO = _______ .4所示的方式折叠,C • 90°)E14. 已知 Rt △ ABC 中,/ C = 90° AD 平分/ BAC 交 BC 于 D ,若 BC = 32,且 BD : CD =9 : 7,则D 到AB 边的距离为 ________ .15. 如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三 边所对的角的关系是 ____________ .16. 如图,AB // CD , AD // BC , OE = OF ,图中全等三角形共有 ____ 对.17. 在数学活动课上,小明提出这样一个问题:/ B =Z C = 90° E 是BC 的中点,DE平分/ ADC , / CED = 35°如图,则/ EAB 是多少度?大家一起热烈地讨论交流,小英第 一个得出正确答案,是18. 如图,AD , A D 分别是锐角三角形 ABC 和锐角三角形 AB'C'中BC , B'C 边上的高, 且AB = A B ', AD = A D 若使△ ABC ◎△ A B C ',请你补充条件 适当的条件即可)三、解答题(第19-25每题8分,第26题10分,共60分)19•已知:△ DEF ◎△ MNP ,且 EF = NP , / F = / P , / D = 48 ° / E = 52 ° MN = 12cm , 求:/ P 的度数及DE 的长.20. 如图,/ DCE=900, CD=CE , AD 丄 AC , BE 丄 AC ,垂足分别为 A 、B ,试说明 AD+AB =BE.21. 如图,工人师傅要检查人字梁的/ B 和/ C 是否相等,但他手边没有量角器, 只有一 个刻度尺.他是这样操作的:①分别在 BA 和CA 上取BE = CG ;②在BC 上取BD = CF:③.(填写一个你认为C '量出DE 的长a 米,FG 的长b 米•如果a = b ,则说明/ B 和/ C 是相等的他的这种做法合理 吗?为什么?22. 要将如图中的/ MON 平分,小梅设计了如下方案:在射线 OM , ON 上分别取OA = OB ,过A 作DA 丄OM 于A ,交ON 于D ,过B 作EB 丄ON 于B 交OM 于E , AD , EB 交于 点C ,过O , C 作射线OC 即为MON 的平分线,试说明这样做的理由 .23. 如图所示,A , E , F , C 在一条直线上,AE = CF ,过E , F 分别作DE 丄AC , BF 丄AC , 若AB = CD ,可以得到BD 平分EF ,为什么?若将△ 时,其余条件不变,上述结论是否成立?请说明理由25. (1)如图〔,△ ABC 的边AB 、AC 为边分别向外作正方形 ABDE 和正方形 ACFG , 连结EG ,试判断△ ABC 与厶AEG 面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米?DEC 的边EC 沿AC 方向移动,变为图24.如图,△ ABC 中,D 是BC 的中点,过 D 点的直线 BG 于G 点,DE 丄DF ,交AB 于点E ,连结EG 、EF.(1) 求证:BG = CF.(2) 请你判断BE+CF 与EF 的大小关系,并说明理由GF 交AC 于F ,交AC 的平行线CC参考答案: 一、 选择题 1.A 2.D3.C 提示:•••△ ABDBA CDB ,二 AB = CD , BD = DB , AD = CB ,/ ADB =/ CBD ,:•△ ABD 和厶CDB 的周长和面积都分别相等 • ADB = / CBD ,二AD // BC. 4.D 5.A6.D7.B 解析:在 Rt △ ADB 与 Rt △ EDC 中,AD = CD , BD = ED ,/ ADB = / EDC =90° •••△ ADB ◎△ CDE ,•••/ABD = / E.在 Rt △ BDC 与 Rt △ EDC 中,BD = DE ,/ BDC = / EDC = 90° CD = CD , • Rt △ BDC 也 Rt △ EDC , •/ DBC =/ E.「./ABD =/ DBC =1 1 -/ ABC , •/ E =/ DBC = - X54 °= 27°.提示:本题主要通过两次三角形全等找出/ABD22=/ DBC = / E. 8.B9.D10. C二、 填空题11. /C = D 或 /ABC = BAD 或 AC = BD 或 /OAD = OBC 12.SAS 13.60 ° 10 14. 14提示:角平分线上的一点到角的两边的距离相等15.互补或相等 16.5 17.35 ° 18.答案不惟一三、 解答题19. 解:•••△ DEF ◎△ MNP , • DE = MN ,/ D = / M ,/ E = / N ,/ F = / P , •/ M =48° / N = 52° •/ P = 180° — 48° — 52° = 80° DE = MN = 12cm.20. 解:因为/ DCE=90O (已知),所以/ ECB+ / ACD=90 o ,因为EB 丄AC ,所以 / E+ / ECB=90 o(直角三角形两锐角互余).所以/ ACD= / E (同角的余角相等).因为AD 丄AC , BE 丄AC (已知),所以/ A= / EBC=90° (垂直的定义).在Rt △ ACD 和Rt △ BEC 中,A —EBCJ^ACD 二 E ,所以 Rt △ ACD 也 Rt △ BEC (AAS ).所以 AD=BC , AC=BE (全等三角形的对 CD -EC应边相等),所以 AD+AB=BC+ AB=AC. 所以 AD+AB=BE.21. 解:DE = AE.由厶 ABC ◎△ EDC 可知.22. 证明 T DA 丄 OM , EB 丄 ON , •/ OAD= / OBE=90° .EF图1图2在厶OAD和厶OBE中,f/AOD =NBOE,(公共角)QA=OB,• △ OAD 也厶OBE (ASA )• OD=OE , / ODA= / OEB , • OD-OB=OE-OA .即BD=AE .|在厶BCD 和厶ACE 中,〈乂BCD=NACE,(对顶角)BCD ◎△ ACE ( AAS ), BD = AE,「BC= AC••• BC=AC .在Rt△ BOC 和Rt△ AOC 中,•••△BOC ◎△ AOC ( HL ),[OB= OA•••/ BOC= / AOC .23. v DE 丄AC 于点E, BF 丄AC 于点F,•/ DEF = Z BFE = 90 ° •/ AE= CF , • AE+EF =CF+FE , 即卩AF = CE.在Rt△ ABF 与Rt△ CDE 中,AB= CD ,AF = CE, •• Rt A ABF也Rt△ CDE ,• BF = DE.在Rt△ DEG也Rt△ BFG 中,/ DGE = Z BGF , DE = BF , • Rt△ DEG 也Rt A BFG ,•EG = FG,即BD平分EF•若将△ DEC的边EC沿AC方向移动到图2时,其余条件不变,上述结论仍旧成立,理由同上•提示:寻找AF与CE的关系是解决本题的关键.24. (1) v AC// BG , GBD = Z C,在厶GBD 与厶FCD 中,/ GBD = Z C, BD = CD , / BDG =Z CDF ,•••△GBD ◎△ FCD , • BG = CF. (2) BE+CF > EF , "△ GBD ◎△ FCD (已证),• GD = FD,在△ GDE 与厶FDE 中,GD = FD,/ GDE =Z FDE = 90° DE = DE , •••△GDE◎△ FDE (SAS , • EG= EF , v BE + BG>GE , • BE+CF> EF.25. (1)解:△ ABC与厶AEG面积相等理由:过点C作CM丄AB于M ,过点G作GN 丄EA 交EA延长线于N ,则/ AMC =Z ANG = 90°, v四边形ABDE和四边形ACFG都是正方形,BAE = Z CAG = 90° , AB = AE , AC= AG,•/ BAC+ / EAG = 180° , v/EAG +1/ GAN = 180° , BAC =/ GAN , •△ACM AGN , • CM = GN. v & ABC= AB X CM2 , 1 一S^AEG = AE X GN , • S^ABC=S SEG. (2)解:由(1)知外圈的所有二角形的面积之和等于2内圈的所有三角形的面积之和,.••这条小路的面积为(a+2b)平万米.。

第十一章全等三角形同步测试(人教新课标八年级上)

第十一章全等三角形同步测试(人教新课标八年级上)
- 新世纪教育网 版权所有
证明的书写步骤:
①准备条件:证全等时要用的间接 条件要先证好; ②三角形全等书写三步骤:
写出在哪两个三角形中 摆出三个条件用大括号括起来 写出全等结论
- 新世纪教育网 版权所有
已知AC=FE,BC=DE,点A,D,B,F在 一条直线上,AD=FB(如图),要用“边边 边”证明△ABC ≌△ FDE,除了已知中的 AC=FE,BC=DE以外,还应该有什么条件? 怎样才能得到这个条件? 解:要证明△ABC ≌△ FDE, 还应该有AB=DF这个条件 ∵ DB是AB与DF的公共部分, 且AD=BF
探究:
1.只给一个条件(一组对应边相等或一组对应角相等)。 ①只给一条边:
②只给一个角:
60°
60°
- 新世纪教育网 版权所有
60°
2.给出两个条件:
①一边一内角:
30° ②两内角:
30°
30°
30° 50° ③两边:
2cm 4cm
30°
可以发现按这 些条件画的三 50° 角形都不能保 证一定全等。
∴ AD+DB=BF+DB 即 AB=DF
- 新世纪教育网 版权所有
如图,AB=AC,AE=AD,BD=CE, A 求证:△AEB ≌ △ ADC。
证明:∵BD=CE
∴ BD-ED=CE-ED, 即BE=CD。 在AEB和ADC中,
B E D C
ì ï ï í ï ï î
◇新人教版◇八年级上册◇
☆ 第 十 三 章 ☆ 全 等 三 角 形 ☆
◇新人教版◇八年级上册◇
- 新世纪教育网 版权所有
☆ 第 十 三 章 ☆ 全 等 三 角 形 ☆形叫 全等三角形。
2、 全等三角形有什么性质?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 全等三角形综合测试题 新人教版
班级_________姓名__________等级评价________
一、选一选:(5'×8=40')
1、不能判定两个三角形全等的条件是________
A 、AAS
B 、SAS
C 、SSA
D 、ASA 2、使两个直角三角形全等的条件是__________
A 、一锐角对应相等
B 、两锐角对应相等
C 、一条边对应相等
D 、两条边对应相等 3、如图,点D 、
E 在BC 上,且△ABE ≌△ACD ,对于结论①AB=AC,②∠BAE=∠CAD,③BE=CD,④AD=DE,其中正确的个数是____ 个 A 、1 B 、2 C 、3 D 、4 4、如图,AC 和BD 交于点O ,若OA=OD , 用“SAS ”证明△AOB ≌△DOC 还需________
A 、AB=DC
B 、OB=O
C C 、∠A=∠
D D 、∠AOB=∠DOC
5、△ABC 和△DEF 中,AB=DE ,∠A=∠D ,若证明△ABC ≌△DEF ,还需补充一个条 件,错误的补充方法是________
A 、∠B=∠E
B 、∠C=∠F
C 、BC=EF
D 、AC =DF 6、如图,Rt △ABC 沿直角边BC 所在直线向右 平移得到△DEF ,下列结论中错误的是_______ A 、△ABC ≌△DEF B 、∠DEF=90° C 、AC=DF D 、EC=CF
7、如图,右a 、b 、c 三条公路的位置成三角形,现决定在三条公路之间修建一个购物超市,使超市到三条公路的距离相等,则超市应建在_______
A 、在a 、b 两边高线的交点处
B 、在b 、c 两边中线的交点处
C 、在a 、b 两边中垂线的交点处
D 、在∠1、∠2两内角平分线的交点处
8、如图,某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是_______
A 、带①去
B 、带②去
C 、带③去
D 、带①②③去
A
B C D E 3题图
A B C D O 4题图 A D E

6题图 ① ② ③
a
b c 1 2 7题图
8题图
二、填空:(5'×6=30') 9、如图,△ABC ≌△BAD ,点A 和点B ,点C 和点D 是对应点, 若AB=6cm ,BD=5cm ,AD=4cm ,则BC=_________
10、如图,△ABE ≌△ACD ,AB=AC ,BE=CD ,∠B=50°, ∠AEC=120°,则∠DAC=________°
11、如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,
BC=10cm ,BD=6cm ,则点D 到AB 的距离是________
12、如图,AC ⊥BD 于O ,BO=OD ,则图中有全等三角形________对 13、如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于E ,若AB=10cm ,则△DEB 的周长是_______
14、如图,AD 与BC 互相平分,且相交于点O ,则AB 与CD 的关系是_________
三、解答题:(10'×5=50')
15、如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C.
求证:∠A=∠D
16、如图,AB=CD ,AC=DB ,∠A 与∠D 相等吗?为什么?
A
B C D E
10题图
A B
C D
9题图 A B
D
A B
D C
C B
A
D E
C B A D
O O 11题图 12题图 13题图 14题图
A B C
D
E
A
B C
D
17、如图,BE ⊥AC 、CF ⊥AB 于点E 、F ,BE 与CF 交于点D ,DE=DF ,连结AD. 求证:(1)∠1=∠2(2)BD=CD
18、如图,∠B=∠C=90°,M 是BC 中点,DM 平分∠ADC , 求证:AM 平分∠DAB (提示:作MN ⊥AD 于N )
A B
C
D E F
1 2 A B
C
D M
19、如图,在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,求证:AD=CE
A B
C D E M N。

相关文档
最新文档