安庆市2017年中考数学试题及答案(Word版)

合集下载

2017安徽省中考数学试题及解答0001

2017安徽省中考数学试题及解答0001

2017年安徽省初中学业水平考试(试题卷)注意事项:1•你拿到的试卷满分为150分,考试时间为2. 本试卷包括“试题卷”和“答题卷”两部分,3. 请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

4. 考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共每小题都给出A、11 .丄的相反数是(21A .23 22 .计算a3的结果是120分钟。

“试题卷”共4页,“答题卷”共6页。

10小题,每小题4分,共40分)C、D四个选项,其中只有一个是正确的B、C. 2; D . -2C.a5;3•如图,一个放置在水平试验台上的锥形瓶,它的俯视图为(54.截止2016年底,国家开发银行对“一带一路”其中1600亿用科学计数法表示为()沿线国家累计发放贷款超过1600亿美元,A . 16 1010;B . 1.6 1010;111.6 10 ;12D. 0.16 10 ;5•不等式4 2x 0的解集在数轴上表示为(B.0 1 c.i I ■・J- 匚-2 -1 0 1 16.直角三角板和直尺如图放置,若A. 60 ;B. 50 ;1 20,则2的度数为()C. 40 ;D. 3010.如图,在矩形ABCD中,AB=5 , AD=3,动点P满足S V PAB13 S矩形ABCD,则点P到B两点距离之和PA+PB的最小值为(7•为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A . 280;B . 240;C . 300;D . 2608 一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为X,则X 满足()2 2A. 16 1 2x 25 ;B. 25 1 2x 16 ;C. 16 1 x 25 ;D. 25 1 x 162b9.已知抛物线y ax bx c与反比例函数y 的图像在第一象限有一个公共点,其横x坐标为1,则一次函数y bx ac的图像可能是()A . B.);C.二、填空题(本大题共4小题,每小题5分,满分20分)11. _________________________ 27的立方根是.212. 因式分解:a b 4ab 4b =____________________ .13. 如图,已知等边VABC的边长为6,以AB为直径的e O与边AC,BC分别交于D,E两点,则劣弧DE的长为 _____________ .14. 在三角形纸片ABC中,A 90,C 30,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD (如图1 ),剪去VCDE后得到双层VBDE (如图2),再沿着过VBDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为__________ cm。

2017年安徽省中考数学试卷(含详细答案及方法总结)

2017年安徽省中考数学试卷(含详细答案及方法总结)

2017年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)的相反数是()A.B.﹣ C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5 D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A. B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010C.1.6×1011D.0.16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16 9.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b=.13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC 分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(本大题共2小题,每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=.五、(本大题共2小题,每题10分,共20分)19.(10分)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=,因此,12+22+32+…+n2=.【解决问题】根据以上发现,计算:的结果为.20.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.六、(本题满分12分)21.(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲88乙88 2.2丙63(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.七、(本题满分12分)22.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.(14分)已知正方形ABCD,点M为边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长交CD于点F,求tan∠CBF的值.2017年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)的相反数是()A.B.﹣ C.2 D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5 D.a5【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a6,故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.3.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A. B.C.D.【分析】俯视图是分别从物体的上面看,所得到的图形.【解答】解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010C.1.6×1011D.0.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:1600亿用科学记数法表示为1.6×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.【解答】解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【分析】根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.【解答】解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选:B.【点评】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2【分析】首先由S△PAB的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB 的最小值.【解答】解:设△ABP中AB边上的高是h.=S矩形ABCD,∵S△PAB∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值为.故选D.【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)27的立方根为3.【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.12.(5分)因式分解:a2b﹣4ab+4b=b(a﹣2)2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC 分别交于D、E两点,则劣弧的长为π.【分析】连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.【解答】解:连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为:π.【点评】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为40或cm.【分析】解直角三角形得到AB=10,∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=ABC=30°,BE=AB=10,求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解答】解:∵∠A=90°,∠C=30°,AC=30cm,∴AB=10,∠ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=ABC=30°,BE=AB=10,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=,∴平行四边形的周长=,如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40,综上所述:平行四边形的周长为40或,故答案为:40或.【点评】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.【分析】分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.【解答】解:原式=2×﹣3=﹣2.【点评】此题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【解答】解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53(元),答:共有7人,这个物品的价格是53元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.四、(本大题共2小题,每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)【分析】在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出DF=BD•sin45°=600×≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,由此即可解决问题.【解答】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,∴DF=BD•sin45°=600×≈300×1.41≈423,∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.【点评】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=45°.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′==、A′F′==,C′F′==,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.【点评】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.五、(本大题共2小题,每题10分,共20分)19.(10分)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=,因此,12+22+32+…+n2=.【解决问题】根据以上发现,计算:的结果为1345.【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;【解决问题】运用以上结论,将原式变形为,化简计算即可得.【解答】解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n﹣1+2+n=2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=(2n+1)×(1+2+3+…+n)=(2n+1)×,因此,12+22+32+…+n2=;故答案为:2n+1,,;【解决问题】原式==×(2017×2+1)=1345,故答案为:1345.【点评】本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.20.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.【分析】(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【解答】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.【点评】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.六、(本题满分12分)21.(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲882乙88 2.2丙663(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【分析】(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵甲的平均数是8,∴甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是=6;故答案为:6,2;(2)∵甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;乙的方差是:[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;丙的方差是:[(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3;∴S甲2<S乙2<S丙2,∴甲运动员的成绩最稳定;(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.【点评】此题考查了方差、平均数、中位数和画树状图法求概率,一般地设n 个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n ﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.八、(本题满分14分)23.(14分)已知正方形ABCD,点M为边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长交CD于点F,求tan∠CBF的值.【分析】(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+∠CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC、BE2=BC•CE知CN=BE,再由==且AM=MB得FC=CN=BE,设正方形的边长为1、BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF==可得答案.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴=,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴=,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴==,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=,x2=(舍),∴=,则tan∠CBF===.【点评】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.。

2017年安徽省中考数学试卷(含答案解析版)

2017年安徽省中考数学试卷(含答案解析版)

2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是()A. B.﹣C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0.16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A. B.C. D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16 9.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(每题5分,共20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b= .13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= .五、(每题10分,共20分)19.(10分)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为.20.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD 交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.六、(本题满分12分)21.(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲 8 8乙 8 8 2.2丙 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.七、(本题满分12分)22.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.(14分)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.2017年安徽省中考数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.(4分)(2017•安徽)的相反数是()A.B.﹣ C.2 D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)(2017•安徽)计算(﹣a3)2的结果是()A.a6B.﹣a6C.﹣a5D.a5【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a6,故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.3.(4分)(2017•安徽)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.【分析】俯视图是分别从物体的上面看,所得到的图形.【解答】解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)(2017•安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:1600亿用科学记数法表示为1.6×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)(2017•安徽)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.(4分)(2017•安徽)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.7.(4分)(2017•安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8.(4分)(2017•安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.【解答】解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.(4分)(2017•安徽)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【分析】根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac 的图象.【解答】解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选:B.【点评】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.10.(4分)(2017•安徽)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.【分析】首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【解答】解:设△ABC中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值为.故选D.【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.二、填空题(每题5分,共20分)11.(5分)(2017•安徽)27的立方根为 3 .【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.12.(5分)(2017•安徽)因式分解:a2b﹣4ab+4b= b(a﹣2)2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)(2017•安徽)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为π.【分析】连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.【解答】解:连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为:π.【点评】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.14.(5分)(2017•安徽)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE 后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为40或cm.【分析】解直角三角形得到AB=10,∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=ABC=30°,BE=AB=10,求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解答】解:∵∠A=90°,∠C=30°,AC=30cm,∴AB=10,∠ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=ABC=30°,BE=AB=10,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=,∴平行四边形的周长=,如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40,综上所述:平行四边形的周长为40或,故答案为:40或.【点评】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.三、(每题8分,共16分)15.(8分)(2017•安徽)计算:|﹣2|×cos60°﹣()﹣1.【分析】分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.【解答】解:原式=2×﹣3=﹣2.【点评】此题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.16.(8分)(2017•安徽)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【解答】解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53,答:共有7人,这个物品的价格是53元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.四、(每题8分,共16分)17.(8分)(2017•安徽)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D 处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)【分析】在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出DF=BD •sin45°=600×≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,由此即可解决问题.【解答】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,∴DF=BD•sin45°=600×≈300×1.41≈423,∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.【点评】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.18.(8分)(2017•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= 45°.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′==、A′F′==,C′F′==,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.【点评】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.五、(每题10分,共20分)19.(10分)(2017•安徽)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为2n+1 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为1345 .【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;【解决问题】运用以上结论,将原式变形为,化简计算即可得.【解答】解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n﹣1+2+n=2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=(2n+1)×(1+2+3+…+n)=(2n+1)×,因此,12+22+32+…+n2=;故答案为:2n+1,,;【解决问题】原式==×(2017×2+1)=1345,故答案为:1345.【点评】本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.20.(10分)(2017•安徽)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.【分析】(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【解答】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.【点评】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.六、(本题满分12分)21.(12分)(2017•安徽)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲 8 8 2乙 8 8 2.2丙 6 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【分析】(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵甲的平均数是8,∴甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是=6;故答案为:6,2;(2)∵甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;乙的方差是:[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;丙的方差是:[(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3;∴S甲2<S乙2<S丙2,∴甲运动员的成绩最稳定;(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.【点评】此题考查了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)(2017•安徽)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.八、(本题满分14分)23.(14分)(2017•安徽)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【分析】(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+∠CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC、BE2=BC•CE知CN=BE,再由==且AM=MB得FC=CN=BE,设正方形的边长为1、BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF==可得答案.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴=,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴=,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴==,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=,x2=(舍),∴=,则tan∠CBF===.【点评】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.。

安徽省2017年中考数学真题试题(含解析)

安徽省2017年中考数学真题试题(含解析)

安徽省 2017 年中考数学真题试题一、选择题(本题共 10 个小题,每小题 4 分,满分 40 分) 每小题都给出 A、B、C、D 四个选项,其中只有一个是正确的.1 的相反数是( 2 1 A.  21. 【答案】B. 【解析】) B. 1 2C.2D.-2试题分析:只有符号不同的两个数称互为相反数.故选答案 B. 考点: 相反数的定义. 2.计算 ( a 3 ) 2 的结果是( A. a6) B.  a6C.  a5D. a5【答案】A 【解析】考点: 幂的乘方的计算法则. 3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A. 【答案】B.B.C.D..更多学习资料请关注:学而思理科服务 微信公众号(ID:xeslike)【解析】 试题分析:俯视图是从上面得到的视图. 故选答案 B 考点: 俯视图的观察方法. 4.截至 2016 年底,国家开发银行对“一带一 路”沿线国家累积发放贷款超过 1600 亿美元.其中 1600 亿用 科学计数法表示为( A. 16  1010) B. 1.6  1010C. 1.6  1011D. 0.16  1012【答案】C 【解析】 试题分析:1600 亿= 1600 10 =1.6  10 .故选答案 C. 考点: 科学记数法的书写规则. 5.不等式 4  2 x  0 的解集在数轴上表示为( )8 11A. 【答案】D 【解析】B.C.D.考点: 解一元一次不等式及其解集在数轴上的表示方法. 6.直角三角板和直尺如图放置.若 1  20 ,则 2 的度数为( )A. 60 【答案】CB. 50C. 40D. 30.【解析】3 4试题分析:由题意得:a b3=50a  b 4  50 2  40故选答案 C 考点:平行线的性质、外角的性质 7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中 100 名学生进行统计,并绘成 如图所示的频数直方图.已知该校共有 1000 名学生,据此估计,该校五一期间参加社团活动时间在 8~10 小时之间的学生数大约是( )A.280 【答案】A 【解析】B.240C.300D.260考 点: 用样本估计总体. 8.一种药品原价每盒 25 元,经过两次降价后每盒 16 元.设两次降价的百分率都为 x ,则 x 满足( ).A. 16(1  2 x)  25 【答案】D 【解析】B. 25(1  2 x )  16C. 16(1  x) 2  25D. 25(1  x) 2  16试题分析:第一次降价后的而价格为 25(1  x ) ,第一次降价后的而价格为 25(1  x) 2 ,则 25(1  x) 2  16 , 故选答案 D. 考点: 一元二次方程的应用. 9.已知抛物线 y  ax 2  bx  c 与反比例函数 y  函数 y  bx  ac 的图象可能是( )b 的图象在第一象限有一个公共点,其横坐标为 1.则一次 xA. 【答案】B 【解析】B.C.D.考点: 函数的综合运用. 10.如图,在矩形 ABCD 中, AB  5 , AD  3 .动点 P 满足 S PAB  离之和 PA  PB 的最小值为( )1 S .则点 P 到 A , B 两点距 3 矩形ABCDA. 29 【答案】D 【解析】B. 34C. 5 2D. 41.E试 题解析:点 P 在平行于 AB 的直线上,先作点 B 关于该直线的对称点,再利用勾股定 理求出 AE 的长度. 则 BE  4,AB  5  AE  16  25  考点: “小马吃草问题”求极小值. 二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分) 11.27 的立方根是 【答案】3 【解析】 试题分析: 3 27 =3 考点:立方根的定义. 12.因式分解: a b  4ab  4b = 【答案】 b ( a - 2) 【解析】241 ,故选 答案 D..2.考点: 提公因式法和公式法进行因式分解. 13.如图,已知等边 ABC 的边长为 6,以 AB 为直径的⊙ O 与边 AC , BC 分别交于 D , E 两点,则劣弧 的长为 DE..【答案】 p 【解析】试题分析: A  60BOD  120,  BOE  60DOE  60 l60  3  180考点: 圆周角与圆心角的关系,弧长公式. 14.在三角形纸片 ABC 中, A  90 , C  30 , AC  30cm .将该纸片沿过点 B 的直线折叠,使点 A 落在斜边 BC 上的一点 E 处,折痕记为 BD (如图 1) ,剪去 CDE 后得到双层 BDE (如图 2) ,再沿着 边 BDE 某顶点的直线将双层三角形剪开, 使得展开后的平面图形中有一个是平行四边形.则所得平行四边 形的周长为 cm.【答案】 40 或 【解析】80 3 3P H(1)(2)试题解析:先判断该平行四边形是 菱形,在求出周长,注意分类讨论.. 所得的平行四边形的周长为考点: 菱形的判定及性 质.80 3 cm. 3三、 (本大题共 2 小题,每小题 8 分,满分 16 分) 15.计算: | 2 |  cos 60  ( ) . 【答案】 2 【解析】.1 31( ) =3 ,再综合计算. 试题分析:先算 cos 60= ,11 1 2 3试题解析:解:原式 = 2 ?1 3=-2 2考点: 特殊角的三角函数值,负指数的相关计算. 16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下: 今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何? 译文为: 现有一些人共同买一个物品,每人出 8 元,还盈余 3 元;每人出 7 元,则还差 4 元.问共有多少人?这个物 品的价格是多少? 请解答上述问题. 【答案】共有 7 人,物品的价格为 53 元. 【解析】.考点: 一元一次方程的应用. 四、 (本大题共 2 小题,每小题 8 分,满分 16 分) 17.如图,游客在点 A 处坐缆车出发,沿 A  B  D 的路线可至山顶 D 处.假设 AB 和 BD 都是直线段,且AB  BD  600m ,   75 ,   45 ,求 DE 的长.(参考数据: sin 75  0.97 , cos 75  0.26 , 2  1.41 )【答案】 DE = DF + EF = 579 【解析】 试题分析:两次利用三角函数求解即可. 试题解析:解:在 Rt△BDF 中,由 sin b =DF = BD ?sin b 600 ? sin 45° 600 ?BC 可得, AB DF 得, BD2 2300 2 ≈ 423 (m).在 Rt△ ABC 中,由 cos a =BC = AB ?cos a600 ? cos 75° 600 ? 0.26 156 (m).所以 DE = DF + EF = DF + BC = 423 +156 = 579 (m). 考点: 三角函数的实际应用. 18. 如图,在边长为 1 个单位长度的小正方形组成的网格中,给出了格点 ABC 和 DEF (顶点为网格线 的交点) ,以及过格点的直线 l ..(1)将 ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形; (2)画出 DEF 关于直线 l 对称的三角形; (3)填空: C  E  【答案】 【解析】.试题解析:(1)如图所示;(2)如图所示;(3)45考点: 作已知图形按照一定规则平移后的图形,及关于某直线成轴对称的图形. 五、 (本大题共 2 小题,每小题 10 分,满分 20 分) 19.【阅读理解】 我们知道, 1  2  3    n n(n  1) 2 2 2 2 ,那么 1  2  3    n 结果等于多少呢? 2在图 1 所示三角形数阵中,第 1 行圆圈中的数为 1,即 12 ;第 2 行两个圆圈中数的和为 2  2 ,即 22 ;……;. n    n ,即 n .这样,该三角形数阵中共有 第 n 行 n 个圆圈中数的和为 n  2n个nn(n  1) 个圆圈,所有圆圈中 2数的和为 1  2  3    n .2 2 2 2【规律探究】 将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数n) (如第 n  1 行的第一个圆圈中的数分别为 n  1 , 2, , 发现每个位置上三个圆圈中数的和均为由此可得,这三个三角形数阵所有圆圈中数的总和为: 3(12  22  32    n 2 )  .因此,.12  22  32    n 2 =.【解决问题】 根据以上发现,计算12  22  32    2017 2 的结果为 1  2  3    2017n n +1 ( 2n +1) ? ( 2 )1 n ( n +1) ( 2n +1) 6.【答案】 2n +1 【解析】13452 2 2 2 1 试题分析:先利用转化的而思想来探究 1  2  3    n = n ( n +1) ( 2n +1) ;再利用公式解决问题. 6试题解析: 2n +1.22223(123)n ++++= ()()1212n n n ++?2222123n ++++=()()11216n n n ++ 1345222220173212017321++++++++ =12017(20171)(220171)116(220171)40351345(12017)3320172⨯⨯+⨯⨯+==⨯⨯+=⨯+⨯考点: 探究问题、解决问题的能力.20.如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作//CE AD 交ABC ∆的外接圆O 于点E,连接AE .(1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分BCE ∠. 【答案】(1)详见解析.(2)详见解析. 【解析】试题分析:(1)根据平行四边形的定义来证明;(2)根据角平分线的判定定理证明.又AD BC =,∴EC BC =,∴OM ON =,∴CO 平分BCE ∠.考点:平行四边形的判定,角平分线的判定.六、(本题满分12分)21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5.(1)根据以上数据完成下表:平均数 中位数 方差甲 8 8乙 8 8 2.2丙 6 3(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率. 【答案】解:(1)平均数 中位数 方差甲 2乙丙 6【解析】试题分析:(1)根据中位数和方差的定义求解;(2)根据方差的意义求解;(3)用列举法求概率. 试题解析:解:(1) 平均数 中位数 方差 甲 2 乙 丙6(2)因为2 2.23<<,所以222s s s <<甲乙丙,这说明甲运动员的成绩最稳定. (3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率2436P ==. 考点: 中位数、方差的求法,方差的意义,求等可能事件的概率. 七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表: 售价x (元/千克) 50 60 70 销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【答案】(1)2200y x =-+.(2)222808000W x x =-+-;(3)当4070x ?时,W 随x 的增大而增大,当7080x <?时,W 随x 的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.【解析】试题分析:(1)用待定系数法求一次函数的表达式;(2)利用利润的定义,求W 与x 之间的函数表达式;(3)利用二次函数的性质求极值.考点: 二次函数的实际应用. 八、(本题满分14分)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=︒,延长AG ,BG 分别与边BC ,CD 交于点E ,F .①求证:BE CF =; ②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.【答案】(1)详见解析;(2)tan CBF ∠ 【解析】试题分析:(1)①利用ASA 判定证明两个三角形全等;②先利用相似三角形的判定,再利用相似三角形的性质证明;(2)构造直角三角形,求一个角的正切值.(2)解:(方法一)延长AE ,DC 交于点N (如图1),由于四边形ABCD 是正方形,所以AB CD ∥, ∴N EAB =∠∠,又CEN BEA =∠∠,∴CEN BEA △∽△, 故CE CNBE BA=,即BE CN AB CE ??,∵AB BC =,2BE BC CE =?,∴CN BE =,由AB DN ∥知,CN CG CFAM GM MB==, 又AM MB =,∴FC CN BE ==,不妨假设正方形边长为1, 设BE x =,则由2BE BC CE =?,得()211x x =?,解得1x 2x BE BC于是tan BE FC CBF BC BC ==∠,(方法二)∴AGB △是直角三角形,且90AGB =∠°,由(1)知BE CF =,于是tan BE FC CBF BC BC ==∠.考点: (1)全等三角形的判定;(2)相似三角形的判定及性质;(3)求一个角的三角函数值.。

2017年安徽省中考数学试卷(含答案解析版)

2017年安徽省中考数学试卷(含答案解析版)

2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是()A. B.﹣C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路"沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为( )A.16×1010B.1。

6×1010C.1。

6×1011D.0。

16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A. B.C. D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为( )A.60° B.50° C.40° D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足( )A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=169.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(每题5分,共20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b= .13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0。

2017年安徽省中考数学试卷(含答案解析版)

2017年安徽省中考数学试卷(含答案解析版)

2017年安徽省中考数学试卷一、选择题〔每题4分,共40分〕1.〔4分〕的相反数是〔〕A.B.﹣C.2 D.﹣22.〔4分〕计算〔﹣a3〕2的结果是〔〕A.a6B.﹣a6C.﹣a5D.a53.〔4分〕如图,一个放置在水平实验台上的锥形瓶,它的俯视图为〔〕A.B.C.D.4.〔4分〕截至2016年底,国家开发银行对“一带一路〞沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为〔〕A.16×1010B.1.6×1010C.1.6×1011D.0.16×10125.〔4分〕不等式4﹣2x>0的解集在数轴上表示为〔〕A.B.C.D.6.〔4分〕直角三角板和直尺如图放置,假设∠1=20°,那么∠2的度数为〔〕A.60°B.50°C.40°D.30°7.〔4分〕为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进展统计,并绘制成如下图的频数直方图,该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是〔〕A.280 B.240 C.300 D.2608.〔4分〕一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,那么x满足〔〕A.16〔1+2x〕=25 B.25〔1﹣2x〕=16 C.16〔1+x〕2=25 D.25〔1﹣x〕2=16 9.〔4分〕抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,那么一次函数y=bx+ac的图象可能是〔〕A.B.C.D.10.〔4分〕如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,那么点P到A、B两点距离之和PA+PB的最小值为〔〕A. B.C.5D.二、填空题〔每题5分,共20分〕11.〔5分〕27的立方根为.12.〔5分〕因式分解:a2b﹣4ab+4b= .13.〔5分〕如图,等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,那么劣弧的长为.14.〔5分〕在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B 的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD〔如图1〕,减去△CDE后得到双层△BDE〔如图2〕,再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,那么所得平行四边形的周长为cm.三、〔每题8分,共16分〕15.〔8分〕计算:|﹣2|×cos60°﹣〔〕﹣1.16.〔8分〕?九章算术?中有一道阐述“盈缺乏术〞的问题,原文如下:今有人共买物、人出八,盈三;人出七,缺乏四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,那么还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、〔每题8分,共16分〕17.〔8分〕如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB 和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.〔参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41〕18.〔8分〕如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF〔顶点为网格线的交点〕,以及过格点的直线l.〔1〕将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.〔2〕画出△DEF关于直线l对称的三角形.〔3〕填空:∠C+∠E= .五、〔每题10分,共20分〕19.〔10分〕【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数〔如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n〕,发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为3〔12+22+32+…+n2〕= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为.20.〔10分〕如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.〔1〕求证:四边形AECD为平行四边形;〔2〕连接CO,求证:CO平分∠BCE.六、〔此题总分值12分〕21.〔12分〕甲、乙、丙三位运发动在一样条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5〔1〕根据以上数据完成下表:平均数中位数方差甲8 8乙8 8 2.2丙 6 3〔2〕根据表中数据分析,哪位运发动的成绩最稳定,并简要说明理由;〔3〕比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.七、〔此题总分值12分〕22.〔12分〕某超市销售一种商品,本钱每千克40元,规定每千克售价不低于本钱,且不高于80元,经市场调查,每天的销售量y〔千克〕与每千克售价x〔元〕满足一次函数关系,局部数据如下表:售价x〔元/千克〕50 60 70销售量y〔千克〕100 80 60〔1〕求y与x之间的函数表达式;〔2〕设商品每天的总利润为W〔元〕,求W与x之间的函数表达式〔利润=收入﹣本钱〕;〔3〕试说明〔2〕中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、〔此题总分值14分〕23.〔14分〕正方形ABCD,点M边AB的中点.〔1〕如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.〔2〕如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.2017年安徽省中考数学试卷参考答案与试题解析一、选择题〔每题4分,共40分〕1.〔4分〕〔2017•〕的相反数是〔〕A.B.﹣C.2 D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.应选:B.【点评】此题考察了相反数的意义,一个数的相反数就是在这个数前面添上“﹣〞号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.〔4分〕〔2017•〕计算〔﹣a3〕2的结果是〔〕A.a6B.﹣a6C.﹣a5D.a5【分析】根据整式的运算法那么即可求出答案.【解答】解:原式=a6,应选〔A〕【点评】此题考察整式的运算,解题的关键是熟练运用幂的乘方公式,此题属于根底题型.3.〔4分〕〔2017•〕如图,一个放置在水平实验台上的锥形瓶,它的俯视图为〔〕A.B.C.D.【分析】俯视图是分别从物体的上面看,所得到的图形.【解答】解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.应选B.【点评】此题考察了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.〔4分〕〔2017•〕截至2016年底,国家开发银行对“一带一路〞沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为〔〕A.16×1010B.1.6×1010C.1.6×1011D.0.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:1600亿用科学记数法表示为1.6×1011,应选:C.【点评】此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.〔4分〕〔2017•〕不等式4﹣2x>0的解集在数轴上表示为〔〕A.B.C.D.【分析】根据解一元一次不等式根本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,应选:D.【点评】此题主要考察解一元一次不等式的根本能力,严格遵循解不等式的根本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.〔4分〕〔2017•〕直角三角板和直尺如图放置,假设∠1=20°,那么∠2的度数为〔〕A.60°B.50°C.40°D.30°【分析】过E作EF∥AB,那么AB∥EF∥CD,根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥AB,那么AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,应选C.【点评】此题考察了平行线的性质,熟练掌握平行线的性质定理是解题的关键.7.〔4分〕〔2017•〕为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进展统计,并绘制成如下图的频数直方图,该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是〔〕A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28〔人〕,∴1000×=280〔人〕,即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.应选:A.【点评】此题考察了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越准确.8.〔4分〕〔2017•〕一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,那么x满足〔〕A.16〔1+2x〕=25 B.25〔1﹣2x〕=16 C.16〔1+x〕2=25 D.25〔1﹣x〕2=16 【分析】等量关系为:原价×〔1﹣降价的百分率〕2=现价,把相关数值代入即可.【解答】解:第一次降价后的价格为:25×〔1﹣x〕;第二次降价后的价格为:25×〔1﹣x〕2;∵两次降价后的价格为16元,∴25〔1﹣x〕2=16.应选D.【点评】此题考察求平均变化率的方法.假设设变化前的量为a,变化后的量为b,平均变化率为x,那么经过两次变化后的数量关系为a〔1±x〕2=b.9.〔4分〕〔2017•〕抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,那么一次函数y=bx+ac的图象可能是〔〕A.B.C.D.【分析】根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac 的图象.【解答】解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.应选:B.【点评】考察了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.10.〔4分〕〔2017•〕如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,那么点P到A、B两点距离之和PA+PB的最小值为〔〕A. B.C.5D.【分析】首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l 上,作A关于直线l的对称点E,连接AE,连接BE,那么BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【解答】解:设△ABC中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,那么BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值为.应选D.【点评】此题考察了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.二、填空题〔每题5分,共20分〕11.〔5分〕〔2017•〕27的立方根为 3 .【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考察了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.12.〔5分〕〔2017•〕因式分解:a2b﹣4ab+4b= b〔a﹣2〕2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b〔a2﹣4a+4〕=b〔a﹣2〕2,故答案为:b〔a﹣2〕2【点评】此题考察了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解此题的关键.13.〔5分〕〔2017•〕如图,等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,那么劣弧的长为π.【分析】连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.【解答】解:连接OD、OE,如下图:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为:π.【点评】此题考察了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.14.〔5分〕〔2017•〕在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD〔如图1〕,减去△CDE后得到双层△BDE〔如图2〕,再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,那么所得平行四边形的周长为40或cm.【分析】解直角三角形得到AB=10,∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=ABC=30°,BE=AB=10,求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解答】解:∵∠A=90°,∠C=30°,AC=30cm,∴AB=10,∠ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=ABC=30°,BE=AB=10,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=,∴平行四边形的周长=,如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40,综上所述:平行四边形的周长为40或,故答案为:40或.【点评】此题考察了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.三、〔每题8分,共16分〕15.〔8分〕〔2017•〕计算:|﹣2|×cos60°﹣〔〕﹣1.【分析】分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.【解答】解:原式=2×﹣3=﹣2.【点评】此题主要考察了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.16.〔8分〕〔2017•〕?九章算术?中有一道阐述“盈缺乏术〞的问题,原文如下:今有人共买物、人出八,盈三;人出七,缺乏四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,那么还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【分析】根据这个物品的价格不变,列出一元一次方程进展求解即可.【解答】解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53,答:共有7人,这个物品的价格是53元.【点评】此题考察了一元一次方程的应用,解题的关键是明确题意,找出适宜的等量关系,列出相应的方程.四、〔每题8分,共16分〕17.〔8分〕〔2017•〕如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.〔参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41〕【分析】在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出DF=BD•sin45°=600×≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,由此即可解决问题.【解答】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,∴DF=BD•sin45°=600×≈300×1.41≈423,∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.【点评】此题考察解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.18.〔8分〕〔2017•〕如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF〔顶点为网格线的交点〕,以及过格点的直线l.〔1〕将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.〔2〕画出△DEF关于直线l对称的三角形.〔3〕填空:∠C+∠E= 45°.【分析】〔1〕将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;〔2〕分别作出点D、E、F关于直线l的对称点,顺次连接即可得;〔3〕连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:〔1〕△A′B′C′即为所求;〔2〕△D′E′F′即为所求;〔3〕如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′==、A′F′==,C′F′==,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.【点评】此题主要考察作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.五、〔每题10分,共20分〕19.〔10分〕〔2017•〕【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数〔如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n〕,发现每个位置上三个圆圈中数的和均为2n+1 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3〔12+22+32+…+n2〕= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为1345 .【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;【解决问题】运用以上结论,将原式变形为,化简计算即可得.【解答】解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n﹣1+2+n=2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为:3〔12+22+32+…+n2〕=〔2n+1〕×〔1+2+3+…+n〕=〔2n+1〕×,因此,12+22+32+…+n2=;故答案为:2n+1,,;【解决问题】原式==×〔2017×2+1〕=1345,故答案为:1345.【点评】此题主要考察数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.20.〔10分〕〔2017•〕如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.〔1〕求证:四边形AECD为平行四边形;〔2〕连接CO,求证:CO平分∠BCE.【分析】〔1〕根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;〔2〕作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【解答】证明:〔1〕由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;〔2〕作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.【点评】此题考察的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.六、〔此题总分值12分〕21.〔12分〕〔2017•〕甲、乙、丙三位运发动在一样条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5〔1〕根据以上数据完成下表:平均数中位数方差甲8 8 2乙8 8 2.2丙 6 6 3〔2〕根据表中数据分析,哪位运发动的成绩最稳定,并简要说明理由;〔3〕比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【分析】〔1〕根据方差公式和中位数的定义分别进展解答即可;〔2〕根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;〔3〕根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【解答】解:〔1〕∵甲的平均数是8,∴甲的方差是:[〔9﹣8〕2+2〔10﹣8〕2+4〔8﹣8〕2+2〔7﹣8〕2+〔5﹣8〕2]=2;把丙运发动的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,那么中位数是=6;故答案为:6,2;〔2〕∵甲的方差是:[〔9﹣8〕2+2〔10﹣8〕2+4〔8﹣8〕2+2〔7﹣8〕2+〔5﹣8〕2]=2;乙的方差是:[2〔9﹣8〕2+2〔10﹣8〕2+2〔8﹣8〕2+3〔7﹣8〕2+〔5﹣8〕2]=2.2;丙的方差是:[〔9﹣6〕2+〔8﹣6〕2+2〔7﹣6〕2+2〔6﹣6〕2+2〔5﹣6〕2+〔4﹣6〕2+〔3﹣6〕2]=3;∴S甲2<S乙2<S丙2,∴甲运发动的成绩最稳定;〔3〕根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.【点评】此题考察了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2,…x n的平均数为,那么方差S2=[〔x1﹣x¯〕2+〔x2﹣x¯〕2+…+〔x n﹣x¯〕2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.七、〔此题总分值12分〕22.〔12分〕〔2017•〕某超市销售一种商品,本钱每千克40元,规定每千克售价不低于本钱,且不高于80元,经市场调查,每天的销售量y〔千克〕与每千克售价x〔元〕满足一次函数关系,局部数据如下表:售价x〔元/千克〕50 60 70销售量y〔千克〕100 80 60〔1〕求y与x之间的函数表达式;〔2〕设商品每天的总利润为W〔元〕,求W与x之间的函数表达式〔利润=收入﹣本钱〕;〔3〕试说明〔2〕中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】〔1〕根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;〔2〕根据题意可以写出W与x之间的函数表达式;〔3〕根据〔2〕中的函数解析式,将其化为顶点式,然后根据本钱每千克40元,规定每千克售价不低于本钱,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:〔1〕设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数表达式是y=﹣2x+200;〔2〕由题意可得,W=〔x﹣40〕〔﹣2x+200〕=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;〔3〕∵W=﹣2x2+280x﹣8000=﹣2〔x﹣70〕2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】此题考察二次函数的应用,解答此题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.八、〔此题总分值14分〕23.〔14分〕〔2017•〕正方形ABCD,点M边AB的中点.〔1〕如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.〔2〕如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【分析】〔1〕①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+∠CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG 可得答案;〔2〕延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC、BE2=BC•CE知CN=BE,再由==且AM=MB得FC=CN=BE,设正方形的边长为1、BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF==可得答案.【解答】解:〔1〕①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴=,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;〔2〕延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴=,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴==,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•〔1﹣x〕,解得:x1=,x2=〔舍〕,∴=,那么tan∠CBF===.【点评】此题主要考察相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.。

(完整word版)2017安徽中考数学试卷(含答案).docx

(完整word版)2017安徽中考数学试卷(含答案).docx

2017 年安徽省初中学业水平考试数学(试题卷)一、选择题(本题共 10 个小题 , 每小题 4 分,满分 40 分)每小题都给出 A 、 B 、 C 、 D 四个选项,其中只有一个是正确的.1.1的相反数是()21 1A .C. 2D . -22B .22. 计算 ( a 2 )2的结果是()A . a 6B . a 6C . a 5D . a 53. 如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A. B. C. D .4. 截至 2016 年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过 1600 亿美元 . 其中 1600 亿用科学计数法表示为( )A. 16 1010 B. 1.6 1010C.1.6 1011D . 0.16 10125. 不等式 3 2x0 的解集在数轴上表示为()A .B . C. D .6. 直角三角板和直尺如图放置. 若 1 20 ,则 2 的度数为()A. 60B.50 C.40 D.307. 为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100 名学生进行统计,并绘成如图所示的频数直方图. 已知该校共有1000 名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A. 280B.240C.300D.2608. 一种药品原价每盒25 元,经过两次降价后每盒16 元. 设两次降价的百分率都为x ,则 x 满足()A.16(12x) 25B.25(12x) 16 C.16(1 x) 225D.25(1x)2169. 已知抛物线y ax 2bx c 与反比例函数y b的图象在第一象限有一个公共点,其横坐标为 1. 则一次x函数 y bx ac 的图象可能是()A.B. C.D.10. 如图,在矩形ABCD 中, AB 5 , AD 3.动点 P 满足S PAB 1 S矩形ABCD.则点P到A,B两点距3离之和 PA PB 的最小值为()A.29B.34 C. 5 2D.41二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)11.27 的立方根是.12. 因式分解:a2b 4ab 4b =.13.如图,已知等边 ABC 的边长为6,以 AB 为直径的⊙ O 与边 AC , BC 分别交于 D , E 两点,则劣弧DE 的长为.14. 在三角形纸片ABC 中, A 90 , C 30 , AC 30cm.将该纸片沿过点 B 的直线折叠,使点A 落在斜边 BC 上的一点 E 处,折痕记为BD (如图1),剪去CDE 后得到双层BDE (如图2),再沿着边BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为cm.三、(本大题共 2 小题,每小题 8 分,满分 16 分)1115. 计算:| 2 | cos60( ).16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四 . 问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出 8 元,还盈余 3 元;每人出 7 元,则还差 4 元 . 问共有多少人?这个物品的价格是多少?请解答上述问题 .四、(本大题共 2 小题,每小题 8 分,满分 16 分)17. 如图,游客在点 A 处坐缆车出发,沿 A B D 的路线可至山顶 D 处.假设 AB 和 BD 都是直线段,且AB BD 600m ,75 ,45 ,求DE的长.(参考数据:sin750.97 , cos75 0.26 ,2 1.41 )18.如图,在边长为 1 个单位长度的小正方形组成的网格中,给出了格点ABC 和DEF (顶点为网格线的交点),以及过格点的直线l .( 1)将ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;( 2)画出DEF 关于直线 l 对称的三角形;( 3)填空:C E.五、(本大题共 2 小题,每小题 10 分,满分 20 分)19.【理解】我知道, 123n n( n1),那么 122232n2果等于多少呢?2在 1 所示三角形数中,第 1 行圈中的数1,即12;第 2 行两个圈中数的和 2 2 ,即 22;⋯⋯;第 n 行 n 个圈中数的和n n n ,即n2.,三角形数中共有n(n 1)个圈,所有圈中n个n2数的和 122232n2.【律探究】将桑拿教学数两次旋可得如所示的三角形数,察三个三角形数各行同一位置圈中的数(如第 n1行的第一个圈中的数分n 1 ,2,n),每个位置上三个圈中数的和均.由此可得,三个三角形数所有圈中数的和:3(122232n2 ).因此,122232n2=.【解决】根据以上,算12223220172的果.123201720. 如图,在四边形ABCD 中, AD BC ,B D , AD 不平行于 BC ,过点 C 作 CE / / AD 交ABC 的外接圆 O 于点 E ,连接 AE .(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分BCE .六、(本题满分 12 分)21.甲、乙、丙三位运动员在相同条件下各射靶10 次,每次射靶的成绩如下:甲: 9, 10, 8, 5,7, 8, 10, 8, 8,7;乙: 5, 7,8, 7, 8, 9, 7, 9, 10, 10;丙: 7, 6,8, 5, 4, 7, 6, 3, 9, 5.( 1)根据以上数据完成下表:平均数中位数方差甲88乙88 2.2丙63(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定. 求甲、乙相邻出场的概率 .七、(本题满分 12 分)22. 某超市销售一种商品,成本每千克40 元,规定每千克售价不低于成本,且不高于80 元 . 经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价 x (元/千克)506070销售量 y (千克)1008060( 1)求y与x之间的函数表达式;( 2)设商品每天的总利润为W (元),求 W 与x之间的函数表达式(利润=收入 - 成本);(3)试说明( 2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分 14 分)23.已知正方形 ABCD ,点 M 为边 AB 的中点.( 1)如图 1,点G为线段CM上的一点,且AGB90 ,延长 AG , BG 分别与边 BC ,CD 交于点 E ,F.①求证: BE CF ;②求证: BE 2BC CE .( 2)如图 2,在边BC上取一点E,满足BE2BC CE ,连接AE交CM于点G,连接BG延长交CD 于点 F ,求 tan CBF 的值.2017 年中考数学参考答案一、 1-5: BABCD 6-10: CADBD14、 40或80 3二、 11、 312、 b (a - 2) 13、 p23三、 15、解:原式1 3 = -2 .= 2?216、解:设共有 x 人,根据题意,得 8x - 3 = 7x + 4 ,解得 x = 7 ,所以物品价格为 8? 7 3 = 53 (元 ).答:共有7 人,物品的价格为 53 元 .四、 17、解:在 Rt △BDF 中,由 sin b =DF得,BDDF = BD ?sin b2 300 2 ≈ 423 (m).600? sin 45° 600 ?2在 Rt △ ABC 中,由 cos a =BC可得,ABBC = AB ?cosa 600? cos75° 600? 0.26 156(m).所以 DE = DF + EF = DF + BC = 423+156 = 579 (m). 18、 (1)如图所示; (2)如图所示; (3)45五、 19、2n +1(2 n +1)?n (n +1)1n (n +1)( 2n +1)134526 20、 (1)证明:∵ ∠B =∠ D , ∠B = ∠E ,∴ ∠D = ∠E ,∵ CE ∥ AD , ∴∠ E +∠DAE = 180°.∴ ∠D +∠ DAE = 180°,∴ AE ∥ CD . ∴四边形 AECD 是平行四边形 .(2) 证明:过点 O 作 OM ^ EC , ON ^ BC ,垂足分别为 M 、 N .∵四边形 AECD 是平行四边形,∴AD = EC .又 AD = BC ,∴ EC = BC ,∴ OM = ON ,∴ CO 平分 ∠BCE .六、 21、解: (1)平均数中位数 方差甲 2乙丙6(2) 因为 2 < 2.2 < 3 ,所以 s 甲2 < s 乙2 < s 丙2 ,这说明甲运动员的成绩最稳定.(3) 三人的出场顺序有 (甲乙丙 ), ( 甲丙乙 ), (乙甲丙 ) ,(乙丙甲 ), (丙甲乙 ) , (丙乙甲 )共 6 种,且每一种结果 出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙 ),(乙甲丙 ),( 丙甲乙 ), (丙乙甲 )共 4 种,所以 甲、乙相邻出场的概率 P = 4 = 2 .6 3ììy = - 2x + 200 .七、 22.解: (1) 设 y = kx + b ,由题意,得 í,解得 í,∴所求函数表达式为?60k + b = 80?b = 200(2) W = (x - 40)(- 2 x + 200) = - 2 x 2+ 280 x - 8000 .2(3) W = - 2x 2 + 280x - 8000 = - 2( x - 70)+1800 ,其中 40 #x80 ,∵ - 2 < 0,∴当 40 ? x70 时, W 随 x 的增大而增大,当70 < x ? 80 时, W 随 x 的增大而减小,当售价为 70 元时,获得最大利润,这时最大利润为 1800 元.八、 23、 (1)①证明:∵四边形ABCD 为正方形,∴AB = BC ,,∠ABC = ∠BCF = 90°又,∴,又,∴ ∠BAE =∠CBF ,∠AGB = 90° ∠BAE +∠ABG = 90°∠ABG +∠CBF = 90°∴ △ ABE ≌△ BCF (ASA) ,∴ BE = CF .②证明:∵ ,点 M 为 AB 中点,∴ MG = MA = MB ,∴ ∠GAM = ∠AGM ,∠AGB = 90°又∵ ∠CGE = ∠AGM ,从而 ∠CGE = ∠CGB ,又 ∠ECG = ∠GCB ,∴ △CGE ∽△ CBG , ∴CE = CG,即 CG 2 = BC ?CE ,由 ∠CFG = ∠GBM = ∠CGF ,得 CF = CG . CG CB由①知, BE = CF ,∴ BE = CG ,∴ BE 2 = BC ?CE . (2) 解: ( 方法一 )延长 AE , DC 交于点 N ( 如图 1) ,由于四边形ABCD 是正方形,所以 AB ∥ CD ,∴ ∠N = ∠EAB ,又 ∠CEN = ∠BEA ,∴ △CEN ∽△ BEA , 故 CE =CN,即 BE ?CN AB?CE , BE BA∵ AB = BC , BE 2 = BC ?CE ,∴ CN = BE ,由 AB ∥ DN 知, CN = CG =CF,AM GM MB又 AM = MB ,∴ FC = CN = BE ,不妨假设正方形边长为1,设 BE = x ,则由 BE 2= BC ?CE ,得 x 2 =1?(1 x ),解得 x 1 =5 - 1, x 2 =-5 - 1( 舍去 ) ,∴ BE=5 - 1 ,22 BC2FCBE 5 - 1于是 tan ∠CBF ===,BCBC2( 方法二 )不妨假设正方形边长为 1,设 BE = x ,则由 BE 2= BC ?CE ,得 x 2= 1?(1 x ),解得 x 1 =5 - 1, x 2 =-5 - 1( 舍去 ) ,即 BE = 5 - 1 ,222作 GN ∥ BC 交 AB 于 N ( 如图 2) ,则 △ MNG ∽△ MBC ,∴MN=MB= 1,NGBC 25 y ,∵GN =AN,即2 y y +1设 MN = y ,则 GN = 2 y , GM =2 ,=BE AB 5 - 1 12解得 y =1 ,∴ GM = 1,从而 GM = MA = MB ,此时点 G 在以 AB 为直径的圆上, 2 5 2∴ △ AGB 是直角三角形,且 ,∠AGB = 90° 由 (1) 知 BE = CF ,于是 tan ∠CBF =FC = BE= 5 - 1 .BC BC 2。

2017年安徽中考数学试题(word版-含答案)

2017年安徽中考数学试题(word版-含答案)

其横坐标为 1,则一次函数 y=bx+ac 的图象可能是( )
精品资料
______________________________________________________________________________________________________________
y
y
y
y
A.
B.
C.
D.
3、如图,一个放置在水平实验台上的锥形瓶,它的俯视图为(

A
B
C
D
4、截止 2016 年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过 1600 亿美元,其中 1600 亿用科学计数法表示为( )
精品资料
______________________________________________________________________________________________________________
与边 AC,BC .
14、在三角形纸片 ABC 中,∠A=90 °,∠C=30 °,AC=30cm ,将该纸片沿过点 B
的直线折叠, 使点 A 落在斜边 BC 上的一点 E 处,折痕记为 BD(如图 1)剪去△ CDE 后得到双层△BDE (如图 2)再沿着过△BDE 某顶点的直线将双层三角形剪
开,使得展开后的平面图形中有一个平行四边形,则所得平行四边形的周长为
n个 n
和为
.

个圆圈,所有圆圈中数的
第1行--第2行--第3行---
A. 16
B. 1.6
C. 1.6
5、不等式 4- 2x>0 的解集在数轴上表示为(
D. 0.16 )

2017年安徽中考数学试题及答案

2017年安徽中考数学试题及答案

2017年安徽中考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分)1. 下列哪个选项是正确的?A. 2是无理数B. 有理数和无理数统称实数C. 0是正数D. 绝对值等于2的数是±2答案:D2. 计算下列算式的结果:A. 3x^2 - 2x + 1 = 0B. (x-1)(x+2) = 0C. x^2 - 4x + 4 = 0D. 2x^2 + 3x - 2 = 0答案:C3. 根据题目给出的图形,下列哪个选项是正确的?A. ∠A + ∠B = 180°B. ∠A + ∠C = 90°C. ∠B + ∠C = 180°D. ∠A + ∠D = 90°答案:B4. 已知函数y = 2x + 3,当x = 2时,y的值是多少?A. 7B. 5C. 3D. 1答案:A5. 计算下列算式的值:A. (-2)^3B. (-2)^2C. √16D. √(-4)答案:B6. 根据题目给出的统计图,下列哪个选项是正确的?A. 甲班的平均分高于乙班B. 乙班的中位数高于甲班C. 甲班的众数高于乙班D. 甲班的方差大于乙班答案:D7. 根据题目给出的几何图形,下列哪个选项是正确的?A. 三角形ABC是直角三角形B. 三角形ABC是等腰三角形C. 三角形ABC是等边三角形D. 三角形ABC是钝角三角形答案:B8. 计算下列算式的值:A. √(9/4)B. √(16/9)C. √(25/16)D. √(36/25)答案:C9. 根据题目给出的函数关系,下列哪个选项是正确的?A. y随x的增大而减小B. y随x的增大而增大C. y与x成反比例关系D. y与x成正比例关系答案:B10. 根据题目给出的方程组,下列哪个选项是正确的?A. x = 1, y = 2B. x = 2, y = 1C. x = -1, y = -2D. x = -2, y = -1答案:A二、填空题(本大题共5小题,每小题4分,共20分)11. 计算下列算式的值:(3/4)^2 = _______。

安徽省2017中考数学试题兼答案

安徽省2017中考数学试题兼答案

安徽省2017中考数学试题兼答案2017年安徽省初中学业水平考试数学(试题卷)一、选择题(本题共10个小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.12的相反数是() A .12- B .12- C .2D .-22.计算22()a -的结果是() A .6aB .6a -C .5a -D .5a3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A. B. C. D .4.截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为()A.101610? B .101.610? C.111.610? D .120.1610?5.不等式320x ->的解集在数轴上表示为()A .B . C. D . 6.直角三角板和直尺如图放置.若120∠=?,则2∠的度数为()A.60? B .50? C.40? D.30?7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A .280B .240C .300D .2608.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足() A .16(12)25x += B .25(12)16x -= C.216(1)25x += D .225(1)16x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是()A. B . C. D .10.如图,在矩形ABCD 中,5AB =,3AD =.动点P 满足13PAB ABCD S S ?=矩形.则点P 到A ,B 两点距离之和PA PB +的最小值为()A二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是.12.因式分解:244a b ab b -+= .13.如图,已知等边ABC ?的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为.14.在三角形纸片ABC 中,90A ∠=?,30C ∠=?,30AC cm =.将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE ?后得到双层BDE ?(如图2),再沿着边BDE ?某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm.三、(本大题共2小题,每小题8分,满分16分)15.计算:11|2|cos60()3--??-.16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少?请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17.如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600AB BD m ==,75α=?,45β=?,求DE 的长.(参考数据:sin750.97?≈,cos750.26?≈ 1.41≈)18. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC ?和DEF ?(顶点为网格线的交点),以及过格点的直线l .(1)将ABC ?向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;(2)画出DEF ?关于直线l 对称的三角形;(3)填空:C E ∠+∠= ?.五、(本大题共2小题,每小题10分,满分20分)19.【阅读理解】我们知道,(1)1232n n n +++++=,那么2222123n ++++结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为22+,即22;……;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++.【规律探究】将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1n -,2,n ),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123)n ++++= .因此,2222123n ++++= .【解决问题】根据以上发现,计算222212320171232017++++++++的结果为 .20.如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作//CE AD 交ABC ?的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形;(2)连接CO ,求证:CO 平分BCE ∠.六、(本题满分12分)21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5. (1)根据以上数据完成下表:(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=?,延长AG ,BG 分别与边BC ,CD 交于点E ,F .①求证:BE CF =;②求证:2BE BC CE =?.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =?,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.2017年中考数学参考答案一、1-5:BABCD 6-10:CADBD二、11、312、()22b a -13、p 14、40三、15、解:原式12322=?=-. 16、解:设共有x 人,根据题意,得8374x x -=+,解得7x =,所以物品价格为87353?=(元). 答:共有7人,物品的价格为53元. 四、17、解:在Rt BDF △中,由sin DFBDb =得,sin 600sin 45600423DF BD b=°(m).在Rt ABC △中,由cos BCABa =可得,cos 600cos756000.26156BC AB a =°(m). 所以423156579DE DF EF DF BC =+=+=+=(m). 18、(1)如图所示;(2)如图所示;(3)45五、19、21n +()()1212n n n ++?()()11216n n n ++134520、(1)证明:∵B D =∠∠,B E =∠∠,∴D E =∠∠,∵CE AD ∥,∴180E DAE +=∠∠°.∴180D DAE +=∠∠°,∴AE CD ∥. ∴四边形AECD 是平行四边形.(2)证明:过点O 作OM EC ^,ON BC ^,垂足分别为M 、N . ∵四边形AECD 是平行四边形,∴AD EC =.又AD BC =,∴EC BC =,∴OM ON =,∴CO 平分BCE ∠.六、21、解:(1)(2)因为2 2.23<<,所以222s s s <<甲乙丙,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率4263 P ==. 七、22.解:(1)设y kx b =+,由题意,得501006080k b k b ì+=?í+=??,解得2200k b ì=-?í=??,∴所求函数表达式为2200y x =-+.(2)()()240220022808000W x x x x =--+=-+-.(3)()22228080002701800W x x x =-+-=--+,其中4080x #,∵20-<,∴当4070x ?时,W 随x 的增大而增大,当7080x得最大利润,这时最大利润为1800元.八、23、(1)①证明:∵四边形ABCD 为正方形,∴AB BC =,90ABC BCF ==∠∠°,又90AGB =∠°,∴90BAE ABG +=∠∠°,又90ABG CBF +=∠∠°,∴BAE CBF =∠∠,∴ABE BCF △≌△(ASA),∴BE CF =.②证明:∵90AGB =∠°,点M 为AB 中点,∴MG MA MB ==,∴GAM AGM =∠∠,又∵CGE AGM =∠∠,从而CGE CGB =∠∠,又ECG GCB =∠∠,∴CGE CBG △∽△,∴CE CGCG CB=,即2CG BC CE =?,由CFG GBM CGF ==∠∠∠,得CF CG =. 由①知,BE CF =,∴BE CG =,∴2BE BC CE =?. (2)解:(方法一) 延长AE ,DC 交于点N (如图1),由于四边形ABCD 是正方形,所以AB CD ∥,∴N EAB =∠∠,又CEN BEA =∠∠,∴CEN BEA △∽△,故CE CNBE BA=,即BE CN AB CE ??,∵AB BC =,2BE BC CE =?,∴CN BE =,由AB DN ∥知,CN CG CFAM GM MB==,又AM MB =,∴FC CN BE ==,不妨假设正方形边长为1,设BE x =,则由2BE BC CE =?,得()211x x =?,解得1x 2x 舍去),∴BE BC于是tan FC BE CBF BC BC ==∠,(方法二)不妨假设正方形边长为1,设BE x =,则由2BE BC CE =?,得()211x x =?,解得1x2x 舍去),即BE ,作GN BC ∥交AB 于N (如图2),则MNG MBC △∽△,∴12MN MB NG BC ==,设MN y =,则2GN y =,GM ,∵GN ANBE AB =121y +=,解得y ,∴12GM =,从而GM MA MB ==,此时点G 在以AB 为直径的圆上,∴AGB △是直角三角形,且90AGB =∠°,由(1)知BE CF = ,于是tan FC BE CBF BC BC ==∠.。

安徽省2017年中考数学真题试题(含扫描答案)

安徽省2017年中考数学真题试题(含扫描答案)

2017年安徽省初中学业水平考试数学试题卷一、选择题(本题共10个小题,每小题4分,满分40分) 每小题都给出A、B、C、D 四个选项,其中只有一个是正确的.1.12的相反数是( ) A.12- B.12- C.2D.-22.计算22()a -的结果是( ) A.6aB.6a -C.5a -D.5a3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A. B. C. D.4.截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为( )A.101610⨯ B.101.610⨯ C.111.610⨯ D.120.1610⨯5.不等式320x ->的解集在数轴上表示为( )A. B. C. D. 6.直角三角板和直尺如图放置.若201︒∠=,则2∠的度数为( )A.60︒ B.50︒ C.40︒ D.30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A.280 B.240 C.300 D.2608.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( ) A.16(12)25x += B.25(12)16x -= C.216(1)25x += D.225(1)16x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是( )A. B. C. D.110.如图,在矩形ABCD 中,AB =5,AD =3动点P 满足S =S 则点P 到A ,B 两点距.∆PAB 矩形ABCD.3离之和PA +PB 的最小值为()二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是 .12.因式分解:244a b ab b-+= .13.如图,已知等边ABC∆的边长为6,以AB为直径的⊙O与边AC,BC分别交于D,E两点,则劣弧DE的长为 .14.在三角形纸片ABC中,90A∠=︒,30C∠=︒,30AC cm=.将该纸片沿过点B的直线折叠,使点A 落在斜边BC上的一点E处,折痕记为BD(如图1),剪去CDE∆后得到双层BDE∆(如图2),再沿着边BDE∆某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm.三、(本大题共2小题,每小题8分,满分16分)115.计算:|-2|⨯cos60︒-(-1.316.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少? 请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17.如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600AB BD m ==,75α=︒,45β=︒,求DE 的长.(参考数据:sin 750.97︒≈,cos 750.26︒≈1.41≈)18. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC ∆和DEF ∆(顶点为网格线的交点),以及过格点的直线l.(1)将∆ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;(2)画出∆DEF 关于直线l 对称的三角形;(3)填空:∠C +∠E =︒.五、(本大题共2小题,每小题10分,满分20分)19.【阅读理解】n (n +1)2222我们知道,1+2+3+ +n =,那么1+2+3+ +n 结果等于多少呢?2在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为2+2,即22;……;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++ .【规律探究】将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1n -,2,n ),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123)n ++++= .因此,2222123n ++++ = .【解决问题】根据以上发现,计算222220171231232017++++++++ 的结果为 .20.如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作//CE AD 交ABC ∆的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形;∠.(2)连接CO,求证:CO平分BCE六、(本题满分12分)21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5.(1)根据以上数据完成下表:平均数 中位数 方差甲 8 8乙 8 8 2.2丙 6 3(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.已知正方形ABCD,点M为边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90︒,延长AG,BG分别与边BC,CD交于点E,F .①求证:BE CF =; ②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.。

(完整版)2017年安徽省中考数学试卷(含答案解析版)

(完整版)2017年安徽省中考数学试卷(含答案解析版)

2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是()A. B.﹣C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0.16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A. B.C. D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16 9.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(每题5分,共20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b= .13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= .五、(每题10分,共20分)19.(10分)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为.20.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD 交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.六、(本题满分12分)21.(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲 8 8乙 8 8 2.2丙 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.七、(本题满分12分)22.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.(14分)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.2017年安徽省中考数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.(4分)(2017•安徽)的相反数是()A.B.﹣ C.2 D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)(2017•安徽)计算(﹣a3)2的结果是()A.a6B.﹣a6C.﹣a5D.a5【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a6,故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.3.(4分)(2017•安徽)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.【分析】俯视图是分别从物体的上面看,所得到的图形.【解答】解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)(2017•安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:1600亿用科学记数法表示为1.6×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)(2017•安徽)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.(4分)(2017•安徽)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.7.(4分)(2017•安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8.(4分)(2017•安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.【解答】解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.(4分)(2017•安徽)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【分析】根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac 的图象.【解答】解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选:B.【点评】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.10.(4分)(2017•安徽)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.【分析】首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【解答】解:设△ABC中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值为.故选D.【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.二、填空题(每题5分,共20分)11.(5分)(2017•安徽)27的立方根为 3 .【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.12.(5分)(2017•安徽)因式分解:a2b﹣4ab+4b= b(a﹣2)2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)(2017•安徽)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为π.【分析】连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.【解答】解:连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为:π.【点评】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.14.(5分)(2017•安徽)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE 后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为40或cm.【分析】解直角三角形得到AB=10,∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=ABC=30°,BE=AB=10,求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解答】解:∵∠A=90°,∠C=30°,AC=30cm,∴AB=10,∠ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=ABC=30°,BE=AB=10,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=,∴平行四边形的周长=,如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40,综上所述:平行四边形的周长为40或,故答案为:40或.【点评】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.三、(每题8分,共16分)15.(8分)(2017•安徽)计算:|﹣2|×cos60°﹣()﹣1.【分析】分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.【解答】解:原式=2×﹣3=﹣2.【点评】此题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.16.(8分)(2017•安徽)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【解答】解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53,答:共有7人,这个物品的价格是53元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.四、(每题8分,共16分)17.(8分)(2017•安徽)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D 处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)【分析】在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出DF=BD •sin45°=600×≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,由此即可解决问题.【解答】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,∴DF=BD•sin45°=600×≈300×1.41≈423,∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.【点评】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.18.(8分)(2017•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= 45°.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′==、A′F′==,C′F′==,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.【点评】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.五、(每题10分,共20分)19.(10分)(2017•安徽)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为2n+1 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为1345 .【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;【解决问题】运用以上结论,将原式变形为,化简计算即可得.【解答】解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n﹣1+2+n=2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=(2n+1)×(1+2+3+…+n)=(2n+1)×,因此,12+22+32+…+n2=;故答案为:2n+1,,;【解决问题】原式==×(2017×2+1)=1345,故答案为:1345.【点评】本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.20.(10分)(2017•安徽)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.【分析】(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【解答】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.【点评】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.六、(本题满分12分)21.(12分)(2017•安徽)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲 8 8 2乙 8 8 2.2丙 6 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【分析】(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵甲的平均数是8,∴甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是=6;故答案为:6,2;(2)∵甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;乙的方差是:[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;丙的方差是:[(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3;∴S甲2<S乙2<S丙2,∴甲运动员的成绩最稳定;(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.【点评】此题考查了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)(2017•安徽)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.八、(本题满分14分)23.(14分)(2017•安徽)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【分析】(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+∠CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC、BE2=BC•CE知CN=BE,再由==且AM=MB得FC=CN=BE,设正方形的边长为1、BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF==可得答案.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴=,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴=,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴==,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=,x2=(舍),∴=,则tan∠CBF===.【点评】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安庆市2017年中考数学试题及答案(试卷满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,共40分) 1.12的相反数是 A .12 B .12- C .2 D .-22.计算()23a-的结果是A .6a B .6a - C .5a - D .5a 3.如图,一个放置在水平试验台上的锥形瓶,它的俯视图为4.截止2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学计数法表示为A .101610⨯ B .101.610⨯ C .111.610⨯ D .120.1610⨯ 5.不等式420x ->的解集在数轴上表示为6.直角三角板和直尺如图放置,若120∠=︒,则2∠的度数为【 】A .60︒B .50︒C .40︒D .30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是A .280B .240C .300D .2608. 一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足A .()161225x +=B .()251216x -=C .()216125x +=D .()225116x -= 9. 已知抛物线2y ax bx c =++与反比例函数by x=的图像在第一象限有一个公共点,其横坐标为 1,则一次函数y bx ac =+的图像可能是10.如图,在矩形ABCD 中,AB =5,AD =3,动点P满足13PABABCD SS =矩形,则点P 到A ,B 两点距 离之和PA +PB 的最小值为【 】 A .29 B .34 C .52 D .41二、填空题(本大题共4小题,每小题5分,满分20分) 11.27的立方根是_____________.12.因式分解:244a b ab b -+=_________________.13.如图,已知等边△ABC 的边长为6,以AB 为直径的⊙O与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为 ___________.14. 在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1), 剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图 形中有一个是平行四边形,则所得平行四边形的周长为 ___________cm 。

三、(本大题共2小题,每小题8分,满分16分)15.计算:112cos603-⎛⎫-⨯︒- ⎪⎝⎭.16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。

问人数,物价几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少? 请解答上述问题。

四、(本大题共2小题,每小题8分,满分16分)17.如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处,假设AB 和BD 都是线段,且AB =BD =600m ,75α=︒,45β=︒,求DE 的长。

(参考数据:sin 750.97cos 750.26,2 1.41︒≈︒≈≈,)18.如图,在边长为1个单位长度的小正方形组成的网格中给出了格点△ABC 和△DEF (顶点为网格线的交点),以及过格点的直线l .(1)将△ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形; (2)画出△DEF 关于l 对称的三角形;(3)填空:C E ∠+∠=___________.五、(本大题共2小题,每小题10分,满分20分) 19.[阅读理解]我们知道,()1123 (2)n n n +++++=,那么2222123...n ++++的结果等于多少呢?在图1所示的三角形数阵中,第1行圆圈中的数为1,即12;第2行两个圆圈中数的和为2+2,即22;......;第n 行n 个圆圈中数的和为;即2n ;这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123...n ++++.[规律探究]将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n -1行的第一个圆圈中的数分别为n -1,2,n )发现每个位置上三个圆圈中的数的和均为______________.由此可得,这三个三角形数阵所有圆圈中数的总和为:3(2222123...n ++++)=_________________.因此,2222123...n ++++=__________.∠=∠,AD不平行于BC,过点C作CE//AD,交△ABC 20.如图,在四边形ABCD中,AD=BC,B D∠. 的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分BCE六、(本题满分12分)21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9, 10, 8, 5, 7, 8, 10, 8, 8, 7;乙:5, 7, 8, 7, 8, 9, 7, 9, 10, 10;丙:7, 6, 8, 5, 4, 7, 6, 3, 9, 5.(1)根据以上数据完成下表:平均数中位数方差甲8 8乙8 8 2.2丙 6 3(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克不低于成本,且不高于80元。

经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克) 50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本)(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.已知正方形ABCD,点M为AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;BE=BC·CE.②求证:2BE=BC·CE,连接AE交CM于点G,连接BG并延长交CD于点F,(2)如图2,在边BC上取一点E,满足2求tan∠CBF的值.参考答案:一、选择题1.B2.A3.B4.C5.D6.C7.A8.D9.B 10.D 二、填空题11. 3 12. 22b a 13.π 14. 40或8033三、(本大题共2小题,每小题8分,满分16分) 15.解:原式12322四、(本大题共2小题,每小题8分,满分16分) 17.解:在Rt BDF △中,由sinDFBD得, 2sin600sin 4560030024232DFBD °≈(m).在Rt ABC △中,由cosBCAB可得, cos 600cos756000.26156BC AB °(m).所以423156579DE DF EFDF BC (m).18.(1)如图所示;(2)如图所示;(3)45五、(本大题共2小题,每小题10分,满分20分) 19.22223(123)n ++++=1212n n n2222123n ++++=11216n n n222212320171232017++++++++=12017(20171)(220171)116(220171)40351345(12017)3320172⨯⨯+⨯⨯+=⨯⨯+=⨯=+⨯又AD BC ,∴EC BC ,∴OMON ,∴CO 平分BCE ∠.六、(本题满分12分) 21.解:(1)平均数 中位数 方差 甲 2 乙 丙6(2)因为2 2.23,所以222s s s 甲乙丙,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率4263P . 七、(本题满分12分) 22.八、(本题满分14分)23.(2)解:(方法一)延长AE ,DC 交于点N (如图1),由于四边形ABCD 是正方形, 所以AB CD ∥,∴N EAB ∠∠,又CEN BEA ∠∠,∴CEN BEA △∽△, 故CE CNBE BA,即BE CN AB CE ,∵AB BC ,2BE BC CE ,∴CNBE ,由AB DN ∥知,CN CG CFAMGMMB, 又AM MB ,∴FC CN BE ,不妨假设正方形边长为1,设BE x ,则由2BE BC CE ,得211x x , 解得1512x ,2512x (舍去),∴512BEBC , 于是51tan 2FC BE CBF BCBC∠, (方法二)∴AGB △是直角三角形,且90AGB ∠°,由(1)知BE CF ,于是51tan 2FC BE CBF BC BC ∠.。

相关文档
最新文档