(word完整版)高斯白噪声的matlab实现

合集下载

matlab高斯噪声函数

matlab高斯噪声函数

matlab高斯噪声函数(原创版)目录1.Matlab 中生成高斯噪声的方法2.高斯噪声的特点和应用3.椒盐噪声与高斯噪声的区别4.如何在 Matlab 中生成椒盐噪声和高斯白噪声5.滤波器在噪声抑制中的应用正文在 Matlab 中,生成高斯噪声常用的函数是 randn。

该函数可以生成服从正态分布的随机数。

其使用方法为:y = randn(m,n),其中 m 和 n 分别为矩阵的大小。

生成的随机数矩阵 y 中,每个元素都服从均值为 0、方差为 1 的高斯分布。

高斯噪声的特点是其噪声幅度随机,且在图像中的位置固定。

这种噪声在图像处理中很常见,例如在图像传输过程中,信号可能受到高斯噪声的影响。

因此,研究如何生成和处理高斯噪声对于图像处理具有重要意义。

椒盐噪声是一种特殊的高斯噪声,其特点是在图像中的某些位置上噪声幅度较大,形成“椒盐”状。

椒盐噪声与高斯噪声的主要区别在于噪声的幅度分布,椒盐噪声的噪声幅度分布不是正态分布,而是具有较高的峰值和较低的谷值。

在 Matlab 中,可以通过 imnoise 函数生成椒盐噪声。

例如,使用imnoise(I, "salt", m, v) 可以生成椒盐噪声,其中 I 为要添加噪声的图像,m 和 v 分别表示噪声的强度和方差。

除了椒盐噪声,Matlab 中也可以生成高斯白噪声。

高斯白噪声是在频域上呈高斯分布的噪声,其能量分布均匀。

在 Matlab 中,可以使用awgn 函数生成高斯白噪声。

例如,使用 awgn(x, snr) 可以生成高斯白噪声,其中 x 为信号,snr 为信噪比。

在实际应用中,噪声抑制滤波器可以用于去除图像中的噪声。

常见的噪声抑制滤波器包括均值滤波器、中值滤波器和边界保持类滤波器。

均值滤波器的原理是在图像上,对待处理的像素给定一个模板,该模板包括了其周围的邻近像素。

将模板中的全体像素的均值来替代原来的像素值。

中值滤波器则通过取图像中每个像素邻域的中值来实现噪声抑制。

matlab白噪声代码

matlab白噪声代码

matlab白噪声代码
白噪声是一种具有均匀能量分布的随机信号,其频率分布在所有频率上都是相等的。

在 Matlab 中,可以通过以下代码生成白噪声信号:
```matlab
Fs = 1000; % 采样率
t = 0:1/Fs:1-1/Fs; % 时间向量
N = length(t); % 信号长度
x = randn(1,N); % 产生随机信号
```
上述代码中,Fs 为采样率,t 为时间向量,N 为信号长度,x 为随机信号。

使用 randn 函数可以产生均值为 0、方差为 1 的高斯白噪声信号。

如果需要产生其它均值和方差的白噪声信号,可以通过以下代码实现:
```matlab
mu = 2; % 均值
sigma = 0.5; % 方差
x = mu + sigma*randn(1,N); % 产生随机信号
```
上述代码中,mu 和 sigma 分别为均值和方差,使用 mu + sigma*randn 函数可以产生均值为 mu、方差为 sigma 的高斯白噪声信号。

matlab添加高斯噪声的原理

matlab添加高斯噪声的原理

matlab添加高斯噪声的原理在MATLAB中,可以通过以下步骤向一个信号添加高斯噪声:
1. 生成一个具有期望值为0和方差为σ^2的高斯分布随机变量。

这可以使用`randn`函数实现,该函数生成一个符合标准正态分布(均值为0,方差为1)的随机数。

2. 为了使高斯噪声的方差达到所需值σ^2,需要缩放该随机变量。

可以通过乘以标准差(σ)来实现,即使用`randn`函数生成的随机数乘以方差的平方根。

3. 将生成的高斯噪声添加到信号上。

可以通过将信号与高斯噪声相加来实现。

以下是一个简单的MATLAB代码示例,演示如何向一个信号添加高斯噪声:
```matlab
% 假设原始信号为x
x = ... % 原始信号值
% 生成高斯噪声
mean = 0; % 期望值
variance = σ^2; % 方差
noise = sqrt(variance) * randn(size(x)) + mean; % 添加高斯噪声
% 添加高斯噪声到信号
noisy_signal = x + noise; % 添加高斯噪声到信号
```
这样,变量`noisy_signal`将包含原始信号与高斯噪声相加后的结果。

(三十三)MATLAB如何生成实高斯白噪声、复高斯白噪声

(三十三)MATLAB如何生成实高斯白噪声、复高斯白噪声

(三⼗三)MATLAB如何⽣成实⾼斯⽩噪声、复⾼斯⽩噪声
什么是⾼斯⽩噪声
如果⼀个噪声,它的幅值服从,⽽它的⼜是均匀分布的,则称它为⾼斯⽩噪声.
以下参考⽹址:
1. 实⾼斯随机变量
2. 实⾼斯随机向量
3. 复⾼斯随机向量
3. 复⾼斯随机变量
以下参考⽹址:
参考资料:复⾼斯随机变量
Reyleigh 分布特性维基百科:
chi-squared分布特性维基百科:
gamma分布特性维基百科:
MATLAB如何根据给定的SNR、Es/N0或Eb/N0,⽣成实⾼斯⽩噪声参考资料:20210326PPT
1.SNR、Es/N0和Eb/N0之间的数学关系
2. Simulaitons
给定Es/N0=x——>N0=Es/x——>sigma^2=N0/2=Es/2x
给定Eb/N0=x——>N0=Es/kx——>sigma^2=N0/2=Es/2kx
3. Simulaitons of coded systems
给定Es/N0=x——>N0=Es/x——>sigma^2=N0/2=Es/2x
给定Eb/N0=x——>N0=Es/kRx——>sigma^2=N0/2=Es/2kRx
注:
(1) 这⾥的R指的是码率;
(2) 若 sigma^2=N0/2,这⾥的N0指的是单边功率谱密度,这⾥的N0/2指的是双边功率谱密度;
4. MATLAB实现代码
n=normrnd(0,sqrt(sigma^2),[1,N])

n=sqrt(sigma^2).*randn(1,N)
MATLAB如何⽣成复⾼斯⽩噪声
参考⽹址1:。

MATLAB多方法去高斯白噪声

MATLAB多方法去高斯白噪声

1、用matlab实现多幅图像平均去高斯白噪声.clear;I=imread('2222.jpg');I=rgb2gray(I);imshow(I);[a,b]=size(I);I2=zeros(a,b);noise=randn(a,b)*25;I1=double(I)+noise;figure(2);imshow(uint8(I1));for n=1:30noise=randn(a,b)*25;I1=double(I)+noise;I2=I2+double(I1);end;I2=I2/n;figure(3);imshow(uint8(I2));原图加了白噪声多图去除白噪声2、用matlab 实现均值滤波去除高斯白噪声.clear;I=imread('2222.jpg');I=rgb2gray(I);figure;imshow(I);noise=randn(a,b)*25;I=double(I)+noise;[a,b]=size(I);I2=zeros(a+2,b+2);I3=zeros(a,b);for n=1:afor m=1:b原图I2(n+1,m+1)=I(n,m);end;end;for n=2:afor m=2:bI3(n-1,m-1)=[I2(n-1,m-1)+I2(n-1,m)+I2( n-1,m+1)+I2(n,m-1)+I2(n,m)+I2(n,m+1) +I2(n+1,m-1)+I2(n+1,m)+I2(n+1,m+1)]/ 9;end;均值滤波后图3、用matlab实现中值滤波去除脉冲噪声. clear;I=imread('2222.jpg');I=rgb2gray(I);figure(1);imshow(I);%I0=zeros(1:9);[a,b]=size(I);I2=zeros(a+2,b+2);I3=zeros(a,b);for n=1:afor m=1:bI2(n+1,m+1)=I(n,m);end;end;for n=0:100I2(round(rand*a),round(rand*b))=0; end; for n=0:200I2(round(rand*a),round(rand*b))=255; end;figure(2)imshow(uint8(I2));I2=double(I2);for n=2:afor m=2:bI0=[I2(n-1,m-1),I2(n-1,m),I2(n-1,m+1),I2(n,m-1), I2(n,m),I2(n,m+1),I2(n+1,m-1),I2(n+1,m),I2(n+1 ,m+1)];I0=sort(I0);I3(n-1,m-1)=I0(5);end;end;处理前原图添加随机脉冲噪声处理后图片心得体会:这两次作业是一起做的,所以心得也基本一样吧,主要是在边缘扩展的时候感觉有点怪怪的,不知道那么扩展对不对,还有不知道除了0扩展之外其他扩展怎么写和效果怎么样,有时间试试看。

通过matlab产生wav的白噪声

通过matlab产生wav的白噪声

MATLAB 中产生高斯白噪声MATLAB 中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。

WGN 用于产生高斯白噪声,AWGN 则用于在某一信号中加入高斯白噪声。

1. WGN:产生高斯白噪声y = wgn(m,n,p) 产生一个m 行n 列的高斯白噪声的矩阵,p 以dBW 为单位指定输出噪声的强度。

y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。

y = wgn(m,n,p,imp,state) 重置RANDN 的状态。

在数值变量后还可附加一些标志性参数:y = wgn(…,POWERTYPE) 指定p 的单位。

POWERTYPE 可以是’dBW’, ‘dBm’或’linear’。

线性强度(linear power)以瓦特(Watt)为单位。

y = wgn(…,OUTPUTTYPE) 指定输出类型。

OUTPUTTYPE 可以是’real’或’complex’。

2. AWGN:在某一信号中加入高斯白噪声y = awgn(x,SNR) 在信号x 中加入高斯白噪声。

信噪比SNR 以dB 为单位。

x 的强度假定为0dBW。

如果x 是复数,就加入复噪声。

y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER 是数值,则其代表以dBW 为单位的信号强度;如 果SIGPOWER 为’measured’,则函数将在加入噪声之前测定信号强度。

y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN 的状态。

y = awgn(…,POWERTYPE) 指定SNR 和SIGPOWER 的单位。

POWERTYPE 可以是’dB’或’linear’。

如果POWERTYPE 是’dB’,那么SNR 以dB 为单位,而SIGPOWER 以dBW 为单位。

如果POWERTYPE 是’linear’,那么SNR 作为比值来度量,而SIGPOWER 以瓦特为单位。

通过matlab产生wav的白噪声

通过matlab产生wav的白噪声

MATLAB 中产生高斯白噪声MATLAB 中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。

WGN 用于产生高斯白噪声,AWGN 则用于在某一信号中加入高斯白噪声。

1. WGN:产生高斯白噪声y = wgn(m,n,p) 产生一个m 行n 列的高斯白噪声的矩阵,p 以dBW 为单位指定输出噪声的强度。

y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。

y = wgn(m,n,p,imp,state) 重置RANDN 的状态。

在数值变量后还可附加一些标志性参数:y = wgn(…,POWERTYPE) 指定p 的单位。

POWERTYPE 可以是’dBW’, ‘dBm’或’linear’。

线性强度(linear power)以瓦特(Watt)为单位。

y = wgn(…,OUTPUTTYPE) 指定输出类型。

OUTPUTTYPE 可以是’real’或’complex’。

2. AWGN:在某一信号中加入高斯白噪声y = awgn(x,SNR) 在信号x 中加入高斯白噪声。

信噪比SNR 以dB 为单位。

x 的强度假定为0dBW。

如果x 是复数,就加入复噪声。

y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER 是数值,则其代表以dBW 为单位的信号强度;如 果SIGPOWER 为’measured’,则函数将在加入噪声之前测定信号强度。

y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN 的状态。

y = awgn(…,POWERTYPE) 指定SNR 和SIGPOWER 的单位。

POWERTYPE 可以是’dB’或’linear’。

如果POWERTYPE 是’dB’,那么SNR 以dB 为单位,而SIGPOWER 以dBW 为单位。

如果POWERTYPE 是’linear’,那么SNR 作为比值来度量,而SIGPOWER 以瓦特为单位。

matlab高斯噪声函数

matlab高斯噪声函数

matlab高斯噪声函数【实用版】目录1.Matlab 中的高斯噪声函数2.高斯噪声的特点和生成方法3.在 Matlab 中生成高斯噪声的实例4.高斯噪声在数字图像处理中的应用5.总结正文在 Matlab 中,噪声函数被广泛应用于信号处理、通信和数字图像处理等领域。

高斯噪声是一种常见的噪声类型,其特点是噪声幅度服从正态分布,且出现位置是随机的。

在 Matlab 中,可以使用不同的函数来生成高斯噪声。

首先,我们来了解高斯噪声的特点和生成方法。

高斯噪声的生成需要确定噪声的均值和标准差。

在 Matlab 中,可以使用 randn 函数来生成服从正态分布的随机数。

通过调整 randn 函数的参数,可以控制噪声的均值和标准差,从而生成不同特性的高斯噪声。

接下来,我们来看在 Matlab 中生成高斯噪声的实例。

假设我们要生成一个均值为 0,标准差为 1 的高斯噪声信号,可以使用以下代码:```matlab% 创建一个长度为 1000 的信号t = (0:999)"/1000;% 使用 randn 函数生成高斯噪声= randn(1000, 1);% 计算噪声信号s = t + n;```在这个例子中,我们首先创建了一个长度为 1000 的信号,然后使用randn 函数生成了一个均值为 0,标准差为 1 的高斯噪声信号。

最后,我们将信号和噪声相加,得到噪声信号。

高斯噪声在数字图像处理中的应用也非常广泛。

例如,在图像去噪中,可以使用高斯噪声来模拟图像中的噪声,然后设计相应的滤波器来去除噪声。

另外,在图像增强和图像复原等领域,高斯噪声也经常被用作先验噪声模型。

总之,在 Matlab 中,可以使用 randn 函数和其他相关函数来生成高斯噪声信号。

高斯噪声在信号处理、通信和数字图像处理等领域具有广泛的应用。

(完整word版)MATLAB环境下的正弦信号及高斯白噪声仿真程序说明

(完整word版)MATLAB环境下的正弦信号及高斯白噪声仿真程序说明

MATLAB 环境下的正弦信号及高斯白噪声仿真程序说明一、信号的产生及时域观察1、设定正选信号的频率为10HZ ,抽样频率为100HZ ;2、设定N(0,0.25)高斯白噪声,及噪声功率为0.25W ;3、最后将噪声叠加到正弦信号上,观察其三者时域波形。

二、信号频谱及白噪声功率谱的求解与观察1、对原正弦信号直接进行FFT ,得出其频谱;2、求白噪声的自相关函数,随机序列自相关函数的无偏估计公式为:1^01()()()N m xx n r m x n x n m N m --==+-∑ 01m N ≤≤- ^^()()xx xx r m r m =- 01m N <<-对所求自相关函数进行FFT 变换,求的白噪声的功率谱函数。

源程序:1.产生正弦信号fs=100;fc=10;x=(0:1/fs:2);n=201;y1=sin(2*pi*fc*x); %原正弦信号,频率为10a=0;b=0.5; %均值为a ,方差为b^2subplot(2,2,1);plot(x,y1,'r');title('y=sin(20pi*x)');ylabel('y');xlabel('x/20pi');grid;2.产生高斯白噪声y2=a+b*randn(1,n); %高斯白噪声subplot(2,2,2);plot(x,y2,'r');title('N(0,0.25)的高斯白噪声');ylabel('y');xlabel('x/20pi');grid;3.复合信号y=y1+y2; %加入噪声之后的信号subplot(2,2,3);plot(x,y,'r');title('混合信号');ylabel('y');xlabel('x/20pi');grid;4.复合信号功率谱密度%求复合信号的自相关函数m=50;i=-0.49:1/fs:0.49;for j=1:mR(j)=sum(y(1:n-j-1).*y(j:199),2)/(n-j);%无偏自相关函数的估计Rx(49+j)=R(j);Rx(51-j)=R(j);endFy2=fft(Rx); %傅里叶变换得出复合信号功率谱函数Fy21=fftshift(Fy2); %功率谱校正f=(0:98)*fs/99-fs/2;subplot(2,2,4);plot(f,abs(Fy21),'r');axis([-50 50 -0.5 1]);title('复合信号功率谱函数图');ylabel('F(Rx)');xlabel('w');grid;。

高斯白噪声 matlab -回复

高斯白噪声 matlab -回复

高斯白噪声matlab -回复Matlab是一个强大的数学工具,广泛用于数据分析、信号处理和模拟等领域。

在这篇文章中,我们将详细介绍高斯白噪声,并使用Matlab来产生和分析这种噪声信号。

1.什么是噪声?噪声是指在信号中包含的随机干扰,它通常以不可避免且不受控制的形式存在。

噪声可以干扰信号的传输和处理,降低系统的性能。

不同类型的噪声具有不同的特点,因此需要了解各种噪声并采取相应的措施来应对噪声带来的问题。

2.什么是高斯白噪声?高斯白噪声是一种常见的噪声类型,其中包含了具有特定概率密度函数(PDF)的随机信号。

高斯白噪声的频谱是平坦的,即在所有频率上具有相等的功率密度。

这意味着在频域上,高斯白噪声在整个频域上具有相同的能量分布。

3.高斯白噪声的特点高斯白噪声具有以下特点:a) 平均值为零:高斯白噪声的平均值为零,即在长期统计意义下,噪声的均值为零。

b) 均方差是常数:高斯白噪声在所有时间点上的方差是一个常数,这表明在任意时间段上噪声的波动是恒定的。

c) 相邻样本间无关: 高斯白噪声的相邻样本之间是无关的,即当前样本的取值与前一个样本之间没有任何关系。

4.高斯白噪声的生成在Matlab中,可以使用randn函数生成高斯白噪声。

randn函数会生成服从均值为0、方差为1的标准正态分布的随机数。

下面是一个示例代码,用于生成10秒钟的高斯白噪声信号,并绘制其幅值随时间的变化:matlabFs = 1000; %采样频率为1000HzT = 10; %总时间长度为10秒t = 0:1/Fs:T-1/Fs; %时间向量x = randn(size(t)); %生成高斯白噪声信号plot(t,x);xlabel('Time (s)');ylabel('Amplitude');title('Gaussian White Noise');在这个代码中,我们设定了采样频率为1000Hz,总时间长度为10秒。

MATLAB生成高斯噪声wgn函数

MATLAB生成高斯噪声wgn函数

MATLAB⽣成⾼斯噪声wgn函数function y = wgn(varargin)%WGN Generate white Gaussian noise.% Y = WGN(M,N,P) generates an M-by-N matrix of white Gaussian noise. % P specifies the power of the output noise in dBW.%% Y = WGN(M,N,P,IMP) specifies the load impedance in Ohms.%% Y = WGN(M,N,P,IMP,STATE) resets the state of RANDN to STATE.%% Additional flags that can follow the numeric arguments are:%% Y = WGN(..., POWERTYPE) specifies the units of P. POWERTYPE can% be 'dBW', 'dBm' or 'linear'. Linear power is in Watts.%% Y = WGN(..., OUTPUTTYPE); Specifies the output type. OUTPUTTYPE can % be 'real' or 'complex'. If the output type is complex, then P% is divided equally between the real and imaginary components.%% Example 1:% % To generate a 1024-by-1 vector of complex noise with power% % of 5 dBm across a 50 Ohm load, use:% Y = wgn(1024, 1, 5, 50, 'dBm', 'complex')%% Example 2:% % To generate a 256-by-5 matrix of real noise with power% % of 10 dBW across a 1 Ohm load, use:% Y = wgn(256, 5, 10, 'real')%% Example 3:% % To generate a 1-by-10 vector of complex noise with power% % of 3 Watts across a 75 Ohm load, use:% Y = wgn(1, 10, 3, 75, 'linear', 'complex')%% See also RANDN, AWGN.% Copyright 1996-2008 The MathWorks, Inc.% $Revision: 1.11.4.5 $ $Date: 2008/08/01 12:17:45 $% --- Initial checkserror(nargchk(3,7,nargin,'struct'));% --- Value set indicators (used for the strings)pModeSet = 0;cplxModeSet = 0;% --- Set default valuesp = [];row = [];col = [];pMode = 'dbw';imp = 1;cplxMode = 'real';seed = [];% --- Placeholders for the numeric and string index valuesnumArg = [];strArg = [];% --- Identify string and numeric arguments% An empty in position 4 (Impedance) or 5 (Seed) are considered numeric for n=1:nargin if(isempty(varargin{n}))switch ncase 4if(ischar(varargin{n}))error('comm:wgn:InvalidDefaultImp','The default impedance should be marked by [].'); end;varargin{n} = imp; % Impedance has a default valuecase 5if(ischar(varargin{n}))error('comm:wgn:InvalidNumericInput','The default seed should be marked by [].'); end;varargin{n} = []; % Seed has no defaultotherwisevarargin{n} = '';end;end;% --- Assign the string and numeric vectorsif(ischar(varargin{n}))strArg(size(strArg,2)+1) = n;elseif(isnumeric(varargin{n}))numArg(size(numArg,2)+1) = n;elseerror('comm:wgn:InvalidArg','Only string and numeric arguments are allowed.');end;end;% --- Build the numeric argument setswitch(length(numArg))case 3% --- row is first (element 1), col (element 2), p (element 3)if(all(numArg == [1 2 3]))row = varargin{numArg(1)};col = varargin{numArg(2)};p = varargin{numArg(3)};elseerror('comm:wgn:InvalidSyntax','Illegal syntax.')end;case 4% --- row is first (element 1), col (element 2), p (element 3), imp (element 4)%if(all(numArg(1:3) == [1 2 3]))row = varargin{numArg(1)};col = varargin{numArg(2)};p = varargin{numArg(3)};imp = varargin{numArg(4)};elseerror('comm:wgn:InvalidSyntax','Illegal syntax.')end;case 5% --- row is first (element 1), col (element 2), p (element 3), imp (element 4), seed (element 5) if(all(numArg(1:3) == [1 2 3]))row = varargin{numArg(1)};col = varargin{numArg(2)};p = varargin{numArg(3)};imp = varargin{numArg(4)};seed = varargin{numArg(5)};elseerror('comm:wgn:InvalidSyntax','Illegal syntax.');end;otherwiseerror('comm:wgn:InvalidSyntax','Illegal syntax.');end;% --- Build the string argument setfor n=1:length(strArg)switch lower(varargin{strArg(n)})case {'dbw''dbm''linear'}if(~pModeSet)pModeSet = 1;pMode = lower(varargin{strArg(n)});elseerror('comm:wgn:TooManyPowerTypes','The Power mode must only be set once.');end;case {'db'}error('comm:wgn:InvalidPowerType','Incorrect power mode passed in. Please use ''dBW'', ''dBm'', or ''linear.'''); case {'real''complex'}if(~cplxModeSet)cplxModeSet = 1;cplxMode = lower(varargin{strArg(n)});elseerror('comm:wgn:TooManyOutputTypes','The complexity mode must only be set once.');end;otherwiseerror('comm:wgn:InvalidArgOption','Unknown option passed in.');end;end;% --- Arguments and defaults have all been set, either to their defaults or by the values passed in% so, perform range and type checks% --- pif(isempty(p))error('comm:wgn:InvalidPowerVal','The power value must be a real scalar.');end;if(any([~isreal(p) (length(p)>1) (length(p)==0)]))error('comm:wgn:InvalidPowerVal','The power value must be a real scalar.');end;if(strcmp(pMode,'linear'))if(p<0)error('comm:wgn:NegativePower','In linear mode, the required noise power must be >= 0.'); end;end;% --- Dimensionsif(any([isempty(row) isempty(col) ~isscalar(row) ~isscalar(col)]))error('comm:wgn:InvalidDims','The required dimensions must be real, integer scalars > 1.'); end;if(any([(row<=0) (col<=0) ~isreal(row) ~isreal(col) ((row-floor(row))~=0) ((col-floor(col))~=0)])) error('comm:wgn:InvalidDims','The required dimensions must be real, integer scalars > 1.'); end;% --- Impedanceif(any([~isreal(imp) (length(imp)>1) (length(imp)==0) any(imp<=0)]))error('comm:wgn:InvalidImp','The Impedance value must be a real scalar > 0.');end;% --- Seedif(~isempty(seed))if(any([~isreal(seed) (length(seed)>1) (length(seed)==0)any((seed-floor(seed))~=0)]))error('comm:wgn:InvalidState','The State must be a real, integer scalar.');end;end;% --- All parameters are valid, so no extra checking is requiredswitch lower(pMode)case'linear'noisePower = p;case'dbw'noisePower = 10^(p/10);case'dbm'noisePower = 10^((p-30)/10);end;% --- Generate the noiseif(~isempty(seed))randn('state',seed);end;if(strcmp(cplxMode,'complex'))z = randn(2*row,col);y = (sqrt(imp*noisePower/2))*(z(1:row,:)+j*z(row+1:end,:)); else y = (sqrt(imp*noisePower))*randn(row,col);end;。

白噪声(matlab)

白噪声(matlab)

均匀分布的白噪声信号u(n),画出其波形,并检验其分布情况%-----------------------------------------------------------------% To test rand.m and to generate the white noise signal u(n)% with uniform distribution% 产生均匀分布的随机白噪信号,并观察数据分布的直方图%-----------------------------------------------------------------clear;N=50000;u=rand(1,N);u_mean=mean(u)power_u=var(u)subplot(211)plot(u(1:100));grid on;ylabel('u(n)')xlabel('n')subplot(212)hist(u,50);grid on;ylabel('histogram of u(n)')思考:如何产生一均匀分布、均值为0,功率为0.01的白噪声信号u(n)提示:u (n )~[a ,b]上均匀分布,E (u )= (a+b)/2, 12/)()(2a b u -=σ% to generate the white noise signal u(n) with uniform distribution% and power p;% 产生均匀分布的白噪信号,使均值为0,功率为p%-----------------------------------------------------------------clear;p=0.01;N=50000;u=rand(1,N);u=u-mean(u);a=sqrt(12*p);u1=u*a;power_u1=dot(u1,u1)/Nsubplot(211)plot(u1(1:200));grid on;ylabel('u(n)')xlabel('n')example2: 产生零均值功率0.1且服从高斯分布的白噪声%-----------------------------------------------------------------% to test randn.m and to generate the white noise signal u(n)% with Gaussian distribution and power p% 产生高斯分布的白噪信号,使功率为p,并观察数据分布的直方图%-----------------------------------------------------------------clear;p=0.1;N=500000;u=randn(1,N);a=sqrt(p)u=u*a;power_u=var(u)subplot(211)plot(u(1:200));grid on;ylabel('u(n)');xlabel('n')subplot(212)hist(u,50);grid on;ylabel('histogram of u(n)');example3: sinc信号%-----------------------------------------------------------------% to generate the sinc function.% 产生一sinc 函数;%-----------------------------------------------------------------clear;n=200;stept=4*pi/n;t=-2*pi:stept:2*pi;y=sinc(t);plot(t,y,t,zeros(size(t)));ylabel('sinc(t)');xlabel('t=-2*pi~2*pi');grid on;example4: chirp信号%-----------------------------------------------------------------% to test chirp.m and to generate the chirp signal x(t)% 产生一chirp 信号;% chirp(T0,F0,T1,F1):% T0: 信号的开始时间;F0:信号在T0时的瞬时频率,单位为Hz;% T1: 信号的结束时间;F1:信号在T1时的瞬时频率,单位为Hz;%-----------------------------------------------------------------clear;t=0:0.001:1;x=chirp(t,0,1,125);plot(t,x);ylabel('x(t)')xlabel('t')%-------------------------------------------------------------------------% to test specgram.m :估计信号谱图(SFFT)%specgram(x,Nfft,Fs,window,Noverlap)%x-信号;Fs抽样频率(2),Nfft做FFT长度(256), window窗函数(Hanning)%Noverlap:估计功率谱时每一段叠合长度(0)%-------------------------------------------------------------------------clear;t=0:0.001:1.024-.001;N=1024;% 得到两个Chirp 信号,并相加;y1=chirp(t,0,1,350);y2=chirp(t,350,1,0);y=y1+y2;subplot(211);plot(t,y1);ylabel(' Chirp signal y1')% 求两个Chirp 信号和的短时傅里叶变换;[S,F,T]=specgram(y,127,1,hanning(127),126);subplot(212);surf(T/1000,F,abs(S).^2)view(-80,30);shading flat;colormap(cool);xlabel('Time')ylabel('Frequency')zlabel('spectrogram')还有diric信号(周期SINC)gauspuls(高斯信号)pulstran(脉冲串信号)tripuls三角波脉冲信号example5:线性卷积%-----------------------------------------------------------------% to test conv.m% 计算两个序列的线性卷积;%-----------------------------------------------------------------clear;N=5;M=6;L=N+M-1;x=[1,2,3,4,5];h=[6,2,3,6,4,2];y=conv(x,h);nx=0:N-1;nh=0:M-1;ny=0:L-1;subplot(231);stem(nx,x,'.k');xlabel('n');ylabel('x(n)');grid on;subplot(232);stem(nh,h,'.k');xlabel('n');ylabel('h(n)');grid on;subplot(233);stem(ny,y,'.k');xlabel('n');ylabel('y(n)');grid on;思考:设信号x(n)由正弦信号加均值为0白噪声所组成,正弦信号幅度为1,白噪声方差为1 SNR = 10LG(PS/PU) = -3dB,试分析信号;%-----------------------------------------------------------------% to test xcorr.m% 求两个序列的互相关函数,或一个序列的自相关函数;%-----------------------------------------------------------------clear;N=500;p1=1;p2=0.1;f=1/8;Mlag=50;u=randn(1,N);n=[0:N-1];s=sin(2*pi*f*n);% 混有高斯白噪的正弦信号的自相关u1=u*sqrt(p1);x1=u1(1:N)+s;rx1=xcorr(x1,Mlag,'biased');subplot(221);plot(x1(1:Mlag));xlabel('n');ylabel('x1(n)');grid on;subplot(223);plot((-Mlag:Mlag),rx1);grid on;xlabel('m');ylabel('rx1(m)');% 高斯白噪功率由原来的p1减少为p2,再观察混合信号的自相关u2=u*sqrt(p2);x2=u2(1:N)+s;rx2=xcorr(x2,Mlag,'biased');subplot(222);plot(x2(1:Mlag));xlabel('n');ylabel('x2(n)');grid on;subplot(224);plot((-Mlag:Mlag),rx2);grid on;xlabel('m');ylabel('rx2(m)');用乘同余法产生(见光盘FLch2bzsheg2.m)①编程如下:A=6; x0=1; M=255; f=2; N=100;%初始化;x0=1; M=255;for k=1: N %乘同余法递推100次;x2=A*x0; %分别用x2和x0表示x i+1和x i-1;x1=mod (x2,M); %取x2存储器的数除以M的余数放x1(x i)中;v1=x1/256; %将x1存储器中的数除以256得到小于1的随机数放v1中;)减去0.5再乘以存储器f中的系数,存放在v(:,k)=(v1-0.5 )*f; %将v1中的数(i矩阵存储器v的第k列中,v(:,k)表示行不变、列随递推循环次数变化;x0=x1; % x i-1= x i;v0=v1;end %递推100次结束;v2=v %该语句后无‘;’,实现矩阵存储器v中随机数放在v2中,且可直接显示在MATLAB的window中;k1=k;%grapher %以下是绘图程序;k=1:k1;plot(k,v,k,v,'r');xlabel('k'), ylabel('v');tktle(' (-1,+1)均匀分布的白噪声')②程序运行结果如图2.6所示。

高斯脉冲噪声 和高斯白噪声 matlab

高斯脉冲噪声 和高斯白噪声 matlab

高斯脉冲噪声和高斯白噪声是数字信号处理中常见的信号模型,它们在通信领域、图像处理领域以及其他多个领域都有着重要的应用。

而在MATLAB中,我们可以利用各种工具和函数来模拟和处理这两种噪声信号。

本文将就高斯脉冲噪声和高斯白噪声的特点、模拟方法和在MATLAB中的实现进行介绍和分析。

一、高斯脉冲噪声的特点1. 高斯脉冲噪声的产生高斯脉冲噪声是一种脉冲干扰的随机信号,在通信系统中常常会遇到。

它的产生过程可以通过高斯分布来描述,即每个脉冲的幅值服从高斯分布。

2. 高斯脉冲噪声的特点高斯脉冲噪声的特点在于其具有随机性和突发性,幅度分布服从高斯分布,且脉冲出现的位置和幅值都是随机的。

这使得高斯脉冲噪声在一定程度上对系统的性能产生影响,因此需要对其进行模拟和分析。

二、高斯脉冲噪声的模拟方法在MATLAB中,可以利用randn函数生成高斯分布的随机数序列,然后可以根据需要进行幅度调制和脉冲出现的位置的控制,从而生成高斯脉冲噪声信号。

以下是MATLAB代码示例:```matlab生成高斯脉冲噪声信号N = 1000; 信号长度mu = 0; 均值sigma = 1; 标准差noise = mu + sigma * randn(1, N); 产生高斯分布随机数序列```以上代码使用了randn函数生成了长度为N的高斯分布随机数序列,并通过设置均值和标准差来控制噪声信号的特点。

三、高斯脉冲噪声的处理与分析在实际系统中,需要对高斯脉冲噪声进行处理和分析,以评估系统的性能和稳定性。

MATLAB提供了丰富的信号处理工具和函数,能够方便地进行信号的滤波、频谱分析等操作。

在处理高斯脉冲噪声时,可以利用MATLAB中的滤波函数对噪声信号进行去噪,比如利用高斯滤波器进行平滑处理。

另外,还可以通过频谱分析函数对噪声信号进行频域特性的分析,以了解其频谱分布和功率谱密度等特性。

四、高斯白噪声的特点1. 高斯白噪声的产生高斯白噪声是一种具有均匀频谱分布的随机信号,其幅度也服从高斯分布。

matlab高斯噪声函数

matlab高斯噪声函数

matlab高斯噪声函数摘要:1.Matlab 高斯噪声函数的基本概念2.Matlab 高斯噪声函数的实现方法3.Matlab 高斯噪声函数的应用实例4.Matlab 高斯噪声函数的优缺点正文:一、Matlab 高斯噪声函数的基本概念在信号处理领域,噪声是一种普遍存在的现象。

高斯噪声是一种常见的噪声类型,它具有窄带宽、高斯分布的特点。

在Matlab 中,我们可以通过特定的函数来生成高斯噪声。

二、Matlab 高斯噪声函数的实现方法在Matlab 中,生成高斯噪声的函数主要有两种:randn 和normrnd。

1.randn 函数:该函数用于生成服从正态分布的随机数。

其用法为:y = randn(n),其中n 为正整数,表示生成一个n 维随机向量。

如果n 不是正整数,则返回错误信息。

2.normrnd 函数:该函数用于生成服从正态分布的随机数。

其用法为:y = normrnd(mu, sigma, m, n),其中mu 为均值,sigma 为标准差,m、n 为正整数。

该函数生成的是m×n 的随机矩阵。

三、Matlab 高斯噪声函数的应用实例在图像处理领域,高斯噪声常常用于模拟图像的噪声。

在Matlab 中,我们可以使用imnoise 函数向图像中加入高斯噪声。

具体用法如下:```matlabimnoise(I, "gaussian", m, v)```其中,I 为输入图像,"gaussian"表示高斯噪声,m 和v 分别表示噪声的均值和方差。

四、Matlab 高斯噪声函数的优缺点优点:Matlab 高斯噪声函数可以方便地生成高斯分布的随机数,易于实现和控制噪声的强度。

缺点:Matlab 高斯噪声函数生成的噪声与实际噪声分布可能存在偏差,需要根据实际情况进行调整。

(完整word版)matlab函数大全(非常实用),推荐文档

(完整word版)matlab函数大全(非常实用),推荐文档

信源函数randerr 产生比特误差样本randint 产生均匀分布的随机整数矩阵randsrc 根据给定的数字表产生随机矩阵wgn 产生高斯白噪声信号分析函数biterr 计算比特误差数和比特误差率eyediagram 绘制眼图scatterplot 绘制分布图symerr 计算符号误差数和符号误差率信源编码compand mu律/A律压缩/扩张dpcmdeco DPCM(差分脉冲编码调制)解码dpcmenco DPCM编码dpcmopt 优化DPCM参数lloyds Lloyd法则优化量化器参数quantiz 给出量化后的级和输出值误差控制编码bchpoly 给出二进制BCH码的性能参数和产生多项式convenc 产生卷积码cyclgen 产生循环码的奇偶校验阵和生成矩阵cyclpoly 产生循环码的生成多项式decode 分组码解码器encode 分组码编码器gen2par 将奇偶校验阵和生成矩阵互相转换gfweight 计算线性分组码的最小距离hammgen 产生汉明码的奇偶校验阵和生成矩阵rsdecof 对Reed-Solomon编码的ASCII文件解码rsencof 用Reed-Solomon码对ASCII文件编码rspoly 给出Reed-Solomon码的生成多项式syndtable 产生伴随解码表vitdec 用Viterbi法则解卷积码(误差控制编码的低级函数)bchdeco BCH解码器bchenco BCH编码器rsdeco Reed-Solomon解码器rsdecode 用指数形式进行Reed-Solomon解码rsenco Reed-Solomon编码器rsencode 用指数形式进行Reed-Solomon编码调制与解调ademod 模拟通带解调器ademodce 模拟基带解调器amod 模拟通带调制器amodce 模拟基带调制器apkconst 绘制圆形的复合ASK-PSK星座图ddemod 数字通带解调器ddemodce 数字基带解调器demodmap 解调后的模拟信号星座图反映射到数字信号dmod 数字通带调制器dmodce 数字基带调制器modmap 把数字信号映射到模拟信号星座图(以供调制)qaskdeco 从方形的QASK星座图反映射到数字信号qaskenco 把数字信号映射到方形的QASK星座图专用滤波器hank2sys 把一个Hankel矩阵转换成一个线性系统模型hilbiir 设计一个希尔伯特变换IIR滤波器rcosflt 升余弦滤波器rcosine 设计一个升余弦滤波器(专用滤波器的低级函数)rcosfir 设计一个升余弦FIR滤波器rcosiir 设计一个升余弦IIR滤波器信道函数awgn 添加高斯白噪声伽罗域计算gfadd 伽罗域上的多项式加法gfconv 伽罗域上的多项式乘法gfcosets 生成伽罗域的分圆陪集gfdeconv 伽罗域上的多项式除法gfdiv 伽罗域上的元素除法gffilter 在质伽罗域上用多项式过滤数据gflineq 在至伽罗域上求Ax=b的一个特解gfminpol 求伽罗域上元素的最小多项式gfmul 伽罗域上的元素乘法gfplus GF(2^m)上的元素加法gfpretty 以通常方式显示多项式gfprimck 检测多项式是否是基本多项式gfprimdf 给出伽罗域的MATLAB默认的基本多项式gfprimfd 给出伽罗域的基本多项式gfrank 伽罗域上矩阵求秩gfrepcov GF(2)上多项式的表达方式转换gfroots 质伽罗域上的多项式求根gfsub 伽罗域上的多项式减法gftrunc 使多项式的表达最简化gftuple 简化或转换伽罗域上元素的形式工具函数bi2de 把二进制向量转换成十进制数de2bi 把十进制数转换成二进制向量erf 误差函数erfc 余误差函数istrellis 检测输入是否MA TLAB的trellis结构(structure)marcumq 通用Marcum Q 函数oct2dec 八进制数转十进制数poly2trellis 把卷积码多项式转换成MATLAB的trellis描述vec2mat 把向量转换成矩阵——————————————————————————————————————————————————A aabs 绝对值、模、字符的ASCII码值acos 反余弦acosh 反双曲余弦acot 反余切acoth 反双曲余切acsc 反余割acsch 反双曲余割align 启动图形对象几何位置排列工具all 所有元素非零为真angle 相角ans 表达式计算结果的缺省变量名any 所有元素非全零为真area 面域图argnames 函数M文件宗量名asec 反正割asech 反双曲正割asin 反正弦asinh 反双曲正弦assignin 向变量赋值atan 反正切atan2 四象限反正切atanh 反双曲正切autumn 红黄调秋色图阵axes 创建轴对象的低层指令axis 控制轴刻度和风格的高层指令B bbar 二维直方图bar3 三维直方图bar3h 三维水平直方图barh 二维水平直方图base2dec X进制转换为十进制bin2dec 二进制转换为十进制blanks 创建空格串bone 蓝色调黑白色图阵box 框状坐标轴break while 或for 环中断指令brighten 亮度控制C ccapture (3版以前)捕获当前图形cart2pol 直角坐标变为极或柱坐标cart2sph 直角坐标变为球坐标cat 串接成高维数组caxis 色标尺刻度cd 指定当前目录cdedit 启动用户菜单、控件回调函数设计工具cdf2rdf 复数特征值对角阵转为实数块对角阵ceil 向正无穷取整cell 创建元胞数组cell2struct 元胞数组转换为构架数组celldisp 显示元胞数组内容cellplot 元胞数组内部结构图示char 把数值、符号、内联类转换为字符对象chi2cdf 分布累计概率函数chi2inv 分布逆累计概率函数chi2pdf 分布概率密度函数chi2rnd 分布随机数发生器chol Cholesky分解clabel 等位线标识cla 清除当前轴class 获知对象类别或创建对象clc 清除指令窗clear 清除内存变量和函数clf 清除图对象clock 时钟colorcube 三浓淡多彩交叉色图矩阵colordef 设置色彩缺省值colormap 色图colspace 列空间的基close 关闭指定窗口colperm 列排序置换向量comet 彗星状轨迹图comet3 三维彗星轨迹图compass 射线图compose 求复合函数cond (逆)条件数condeig 计算特征值、特征向量同时给出条件数condest 范-1条件数估计conj 复数共轭contour 等位线contourf 填色等位线contour3 三维等位线contourslice 四维切片等位线图conv 多项式乘、卷积cool 青紫调冷色图copper 古铜调色图cos 余弦cosh 双曲余弦cot 余切coth 双曲余切cplxpair 复数共轭成对排列csc 余割csch 双曲余割cumsum 元素累计和cumtrapz 累计梯形积分cylinder 创建圆柱D ddblquad 二重数值积分deal 分配宗量deblank 删去串尾部的空格符dec2base 十进制转换为X进制dec2bin 十进制转换为二进制dec2hex 十进制转换为十六进制deconv 多项式除、解卷delaunay Delaunay 三角剖分del2 离散Laplacian差分demo Matlab演示det 行列式diag 矩阵对角元素提取、创建对角阵diary Matlab指令窗文本内容记录diff 数值差分、符号微分digits 符号计算中设置符号数值的精度dir 目录列表disp 显示数组display 显示对象内容的重载函数dlinmod 离散系统的线性化模型dmperm 矩阵Dulmage-Mendelsohn 分解dos 执行DOS 指令并返回结果double 把其他类型对象转换为双精度数值drawnow 更新事件队列强迫Matlab刷新屏幕dsolve 符号计算解微分方程E eecho M文件被执行指令的显示edit 启动M文件编辑器eig 求特征值和特征向量eigs 求指定的几个特征值end 控制流FOR等结构体的结尾元素下标eps 浮点相对精度error 显示出错信息并中断执行errortrap 错误发生后程序是否继续执行的控制erf 误差函数erfc 误差补函数erfcx 刻度误差补函数erfinv 逆误差函数errorbar 带误差限的曲线图etreeplot 画消去树eval 串演算指令evalin 跨空间串演算指令exist 检查变量或函数是否已定义exit 退出Matlab环境exp 指数函数expand 符号计算中的展开操作expint 指数积分函数expm 常用矩阵指数函数expm1 Pade法求矩阵指数expm2 Taylor法求矩阵指数expm3 特征值分解法求矩阵指数eye 单位阵ezcontour 画等位线的简捷指令ezcontourf 画填色等位线的简捷指令ezgraph3 画表面图的通用简捷指令ezmesh 画网线图的简捷指令ezmeshc 画带等位线的网线图的简捷指令ezplot 画二维曲线的简捷指令ezplot3 画三维曲线的简捷指令ezpolar 画极坐标图的简捷指令ezsurf 画表面图的简捷指令ezsurfc 画带等位线的表面图的简捷指令F ffactor 符号计算的因式分解feather 羽毛图feedback 反馈连接feval 执行由串指定的函数fft 离散Fourier变换fft2 二维离散Fourier变换fftn 高维离散Fourier变换fftshift 直流分量对中的谱fieldnames 构架域名figure 创建图形窗fill3 三维多边形填色图find 寻找非零元素下标findobj 寻找具有指定属性的对象图柄findstr 寻找短串的起始字符下标findsym 机器确定内存中的符号变量finverse 符号计算中求反函数fix 向零取整flag 红白蓝黑交错色图阵fliplr 矩阵的左右翻转flipud 矩阵的上下翻转flipdim 矩阵沿指定维翻转floor 向负无穷取整flops 浮点运算次数flow Matlab提供的演示数据fmin 求单变量非线性函数极小值点(旧版)fminbnd 求单变量非线性函数极小值点fmins 单纯形法求多变量函数极小值点(旧版)fminunc 拟牛顿法求多变量函数极小值点fminsearch 单纯形法求多变量函数极小值点fnder 对样条函数求导fnint 利用样条函数求积分fnval 计算样条函数区间内任意一点的值fnplt 绘制样条函数图形fopen 打开外部文件for 构成for环用format 设置输出格式fourier Fourier 变换fplot 返函绘图指令fprintf 设置显示格式fread 从文件读二进制数据fsolve 求多元函数的零点full 把稀疏矩阵转换为非稀疏阵funm 计算一般矩阵函数funtool 函数计算器图形用户界面fzero 求单变量非线性函数的零点G ggamma 函数gammainc 不完全函数gammaln 函数的对数gca 获得当前轴句柄gcbo 获得正执行"回调"的对象句柄gcf 获得当前图对象句柄gco 获得当前对象句柄geomean 几何平均值get 获知对象属性getfield 获知构架数组的域getframe 获取影片的帧画面ginput 从图形窗获取数据global 定义全局变量gplot 依图论法则画图gradient 近似梯度gray 黑白灰度grid 画分格线griddata 规则化数据和曲面拟合gtext 由鼠标放置注释文字guide 启动图形用户界面交互设计工具H hharmmean 调和平均值help 在线帮助helpwin 交互式在线帮助helpdesk 打开超文本形式用户指南hex2dec 十六进制转换为十进制hex2num 十六进制转换为浮点数hidden 透视和消隐开关hilb Hilbert矩阵hist 频数计算或频数直方图histc 端点定位频数直方图histfit 带正态拟合的频数直方图hold 当前图上重画的切换开关horner 分解成嵌套形式hot 黑红黄白色图hsv 饱和色图I iif-else-elseif 条件分支结构ifft 离散Fourier反变换ifft2 二维离散Fourier反变换ifftn 高维离散Fourier反变换ifftshift 直流分量对中的谱的反操作ifourier Fourier反变换i, j 缺省的"虚单元"变量ilaplace Laplace反变换imag 复数虚部image 显示图象imagesc 显示亮度图象imfinfo 获取图形文件信息imread 从文件读取图象imwrite 把imwrite 把图象写成文件ind2sub 单下标转变为多下标inf 无穷大info MathWorks公司网点地址inline 构造内联函数对象inmem 列出内存中的函数名input 提示用户输入inputname 输入宗量名int 符号积分int2str 把整数数组转换为串数组interp1 一维插值interp2 二维插值interp3 三维插值interpn N维插值interpft 利用FFT插值intro Matlab自带的入门引导inv 求矩阵逆invhilb Hilbert矩阵的准确逆ipermute 广义反转置isa 检测是否给定类的对象ischar 若是字符串则为真isequal 若两数组相同则为真isempty 若是空阵则为真isfinite 若全部元素都有限则为真isfield 若是构架域则为真isglobal 若是全局变量则为真ishandle 若是图形句柄则为真ishold 若当前图形处于保留状态则为真isieee 若计算机执行IEEE规则则为真isinf 若是无穷数据则为真isletter 若是英文字母则为真islogical 若是逻辑数组则为真ismember 检查是否属于指定集isnan 若是非数则为真isnumeric 若是数值数组则为真isobject 若是对象则为真isprime 若是质数则为真isreal 若是实数则为真isspace 若是空格则为真issparse 若是稀疏矩阵则为真isstruct 若是构架则为真isstudent 若是Matlab学生版则为真iztrans 符号计算Z反变换J j , K kjacobian 符号计算中求Jacobian 矩阵jet 蓝头红尾饱和色jordan 符号计算中获得Jordan标准型keyboard 键盘获得控制权kron Kronecker乘法规则产生的数组L llaplace Laplace变换lasterr 显示最新出错信息lastwarn 显示最新警告信息leastsq 解非线性最小二乘问题(旧版)legend 图形图例lighting 照明模式line 创建线对象lines 采用plot 画线色linmod 获连续系统的线性化模型linmod2 获连续系统的线性化精良模型linspace 线性等分向量ln 矩阵自然对数load 从MAT文件读取变量log 自然对数log10 常用对数log2 底为2的对数loglog 双对数刻度图形logm 矩阵对数logspace 对数分度向量lookfor 按关键字搜索M文件lower 转换为小写字母lsqnonlin 解非线性最小二乘问题lu LU分解M mmad 平均绝对值偏差magic 魔方阵maple &nb, sp; 运作Maple格式指令mat2str 把数值数组转换成输入形态串数组material 材料反射模式max 找向量中最大元素mbuild 产生EXE文件编译环境的预设置指令mcc 创建MEX或EXE文件的编译指令mean 求向量元素的平均值median 求中位数menuedit 启动设计用户菜单的交互式编辑工具mesh 网线图meshz 垂帘网线图meshgrid 产生"格点"矩阵methods 获知对指定类定义的所有方法函数mex 产生MEX文件编译环境的预设置指令mfunlis 能被mfun计算的MAPLE经典函数列表mhelp 引出Maple的在线帮助min 找向量中最小元素mkdir 创建目录mkpp 逐段多项式数据的明晰化mod 模运算more 指令窗中内容的分页显示movie 放映影片动画moviein 影片帧画面的内存预置mtaylor 符号计算多变量Taylor级数展开N nndims 求数组维数NaN 非数(预定义)变量nargchk 输入宗量数验证nargin 函数输入宗量数nargout 函数输出宗量数ndgrid 产生高维格点矩阵newplot 准备新的缺省图、轴nextpow2 取最接近的较大2次幂nnz 矩阵的非零元素总数nonzeros 矩阵的非零元素norm 矩阵或向量范数normcdf 正态分布累计概率密度函数normest 估计矩阵2范数norminv 正态分布逆累计概率密度函数normpdf 正态分布概率密度函数normrnd 正态随机数发生器notebook 启动Matlab和Word的集成环境null 零空间num2str 把非整数数组转换为串numden 获取最小公分母和相应的分子表达式nzmax 指定存放非零元素所需内存O oode1 非Stiff 微分方程变步长解算器ode15s Stiff 微分方程变步长解算器ode23t 适度Stiff 微分方程解算器ode23tb Stiff 微分方程解算器ode45 非Stiff 微分方程变步长解算器odefile ODE 文件模板odeget 获知ODE 选项设置参数odephas2 ODE 输出函数的二维相平面图odephas3 ODE 输出函数的三维相空间图odeplot ODE 输出函数的时间轨迹图odeprint 在Matlab指令窗显示结果odeset 创建或改写ODE选项构架参数值ones 全1数组optimset 创建或改写优化泛函指令的选项参数值orient 设定图形的排放方式orth 值空间正交化P ppack 收集Matlab内存碎块扩大内存pagedlg 调出图形排版对话框patch 创建块对象path 设置Matlab搜索路径的指令pathtool 搜索路径管理器pause 暂停pcode 创建预解译P码文件pcolor 伪彩图peaks Matlab提供的典型三维曲面permute 广义转置pi (预定义变量)圆周率pie 二维饼图pie3 三维饼图pink 粉红色图矩阵pinv 伪逆plot 平面线图plot3 三维线图plotmatrix 矩阵的散点图plotyy 双纵坐标图poissinv 泊松分布逆累计概率分布函数poissrnd 泊松分布随机数发生器pol2cart 极或柱坐标变为直角坐标polar 极坐标图poly 矩阵的特征多项式、根集对应的多项式poly2str 以习惯方式显示多项式poly2sym 双精度多项式系数转变为向量符号多项式polyder 多项式导数polyfit 数据的多项式拟合polyval 计算多项式的值polyvalm 计算矩阵多项式pow2 2的幂ppval 计算分段多项式pretty 以习惯方式显示符号表达式print 打印图形或SIMULINK模型printsys 以习惯方式显示有理分式prism 光谱色图矩阵procread 向MAPLE输送计算程序profile 函数文件性能评估器propedit 图形对象属性编辑器pwd 显示当前工作目录Q qquad 低阶法计算数值积分quad8 高阶法计算数值积分(QUADL) quit 推出Matlab 环境quiver 二维方向箭头图quiver3 三维方向箭头图R rrand 产生均匀分布随机数randn 产生正态分布随机数randperm 随机置换向量range 样本极差rank 矩阵的秩rats 有理输出rcond 矩阵倒条件数估计real 复数的实部reallog 在实数域内计算自然对数realpow 在实数域内计算乘方realsqrt 在实数域内计算平方根realmax 最大正浮点数realmin 最小正浮点数rectangle 画"长方框"rem 求余数repmat 铺放模块数组reshape 改变数组维数、大小residue 部分分式展开return 返回ribbon 把二维曲线画成三维彩带图rmfield 删去构架的域roots 求多项式的根rose 数扇形图rot90 矩阵旋转90度rotate 指定的原点和方向旋转rotate3d 启动三维图形视角的交互设置功能round 向最近整数圆整rref 简化矩阵为梯形形式rsf2csf 实数块对角阵转为复数特征值对角阵rsums Riemann和S ssave 把内存变量保存为文件scatter 散点图scatter3 三维散点图sec 正割sech 双曲正割semilogx X轴对数刻度坐标图semilogy Y轴对数刻度坐标图series 串联连接set 设置图形对象属性setfield 设置构架数组的域setstr 将ASCII码转换为字符的旧版指令sign 根据符号取值函数signum 符号计算中的符号取值函数sim 运行SIMULINK模型simget 获取SIMULINK模型设置的仿真参数simple 寻找最短形式的符号解simplify 符号计算中进行简化操作simset 对SIMULINK模型的仿真参数进行设置simulink 启动SIMULINK模块库浏览器sin 正弦sinh 双曲正弦size 矩阵的大小slice 立体切片图solve 求代数方程的符号解spalloc 为非零元素配置内存sparse 创建稀疏矩阵spconvert 把外部数据转换为稀疏矩阵spdiags 稀疏对角阵spfun 求非零元素的函数值sph2cart 球坐标变为直角坐标sphere 产生球面spinmap 色图彩色的周期变化spline 样条插值spones 用1置换非零元素sprandsym 稀疏随机对称阵sprank 结构秩spring 紫黄调春色图sprintf 把格式数据写成串spy 画稀疏结构图sqrt 平方根sqrtm 方根矩阵squeeze 删去大小为1的"孤维" sscanf 按指定格式读串stairs 阶梯图std 标准差stem 二维杆图step 阶跃响应指令str2double 串转换为双精度值str2mat 创建多行串数组str2num 串转换为数strcat 接成长串strcmp 串比较strjust 串对齐strmatch 搜索指定串strncmp 串中前若干字符比较strrep 串替换strtok 寻找第一间隔符前的内容struct 创建构架数组struct2cell 把构架转换为元胞数组strvcat 创建多行串数组sub2ind 多下标转换为单下标subexpr 通过子表达式重写符号对象subplot 创建子图subs 符号计算中的符号变量置换subspace 两子空间夹角sum 元素和summer 绿黄调夏色图superiorto 设定优先级surf 三维着色表面图surface 创建面对象surfc 带等位线的表面图surfl 带光照的三维表面图surfnorm 空间表面的法线svd 奇异值分解svds 求指定的若干奇异值switch-case-otherwise 多分支结构sym2poly 符号多项式转变为双精度多项式系数向量symmmd 对称最小度排序symrcm 反向Cuthill-McKee排序syms 创建多个符号对象T ttan 正切tanh 双曲正切taylortool 进行Taylor逼近分析的交互界面text 文字注释tf 创建传递函数对象tic 启动计时器title 图名toc 关闭计时器trapz 梯形法数值积分treelayout 展开树、林treeplot 画树图tril 下三角阵trim 求系统平衡点trimesh 不规则格点网线图trisurf 不规则格点表面图triu 上三角阵try-catch 控制流中的Try-catch结构type 显示M 文件U uuicontextmenu 创建现场菜单uicontrol 创建用户控件uimenu 创建用户菜单unmkpp 逐段多项式数据的反明晰化unwrap 自然态相角upper 转换为大写字母V vvar 方差varargin 变长度输入宗量varargout 变长度输出宗量vectorize 使串表达式或内联函数适于数组运算ver 版本信息的获取view 三维图形的视角控制voronoi Voronoi多边形vpa 任意精度(符号类)数值W wwarning 显示警告信息what 列出当前目录上的文件whatsnew 显示Matlab中Readme文件的内容which 确定函数、文件的位置while 控制流中的While环结构white 全白色图矩阵whitebg 指定轴的背景色who 列出内存中的变量名whos 列出内存中变量的详细信息winter 蓝绿调冬色图workspace 启动内存浏览器X x , Y y , Z zxlabel X轴名xor 或非逻辑yesinput 智能输入指令ylabel Y轴名zeros 全零数组zlabel Z轴名zoom 图形的变焦放大和缩小ztrans 符号计算Z变换v。

matlab 高斯噪声频域

matlab 高斯噪声频域

matlab 高斯噪声频域
在MATLAB中,可以使用以下代码生成高斯噪声并绘制其频域表示:matlab
% 参数设置
fs = 1000; % 采样频率
T_N = 1; % 总时间
L = T_N*fs; % 样本数量
k = 1; % 功率谱密度
% 生成高斯噪声
noise = wgn(L,1,k*fs,'linear');
% 计算噪声频谱
Nf = fftshift(fft(noise,L));
% 绘制频域表示
figure;
plot(abs(Nf),20*log10(abs(Nf)/max(abs(Nf))));
title('高斯噪声频域表示');
xlabel('f/Hz');
ylabel('|Nf(f)| (dB)');
grid on;
这段代码首先设置了一些参数,包括采样频率、总时间、样本数量和功率谱密度。

然后,使用wgn函数生成高斯噪声。

接着,使用fft函数计算噪声的频谱,并使用fftshift 函数将频谱移至零频率附近。

最后,使用plot函数绘制频域表示,其中横轴为频率,纵轴为振幅的dB值。

使用Matlab进行随机信号生成的方法

使用Matlab进行随机信号生成的方法

使用Matlab进行随机信号生成的方法随机信号在现代通信、雷达、生物医学工程等领域中起着重要作用。

为了研究随机信号及其特性,我们常常需要生成符合特定分布的随机信号。

Matlab作为一种功能强大的科学计算软件,提供了丰富的函数和工具,方便我们进行随机信号的生成与分析。

本文将介绍使用Matlab进行随机信号生成的一些常见方法。

一、高斯白噪声信号生成高斯白噪声是一种统计特性良好的随机信号,其频域内的功率谱密度是常数。

在Matlab中,可以使用randn函数生成服从标准正态分布的随机数,进而得到高斯白噪声信号。

以下是一个简单的示例:```matlabt = 0:0.1:10; % 时间变量n = length(t); % 信号长度noise = randn(1,n); % 生成高斯白噪声plot(t,noise);```其中,t为时间变量,n为信号长度,randn函数生成服从标准正态分布的随机数,最后使用plot函数进行绘制。

通过修改时间变量和信号长度,可以生成不同长度和采样频率的高斯白噪声信号。

二、均匀白噪声信号生成均匀白噪声是一种功率谱密度为常数的随机信号,与高斯白噪声相比,其统计特性略有不同。

在Matlab中,可以使用rand函数生成服从均匀分布的随机数,进而得到均匀白噪声信号。

以下是一个简单的示例:```matlabt = 0:0.1:10; % 时间变量n = length(t); % 信号长度noise = rand(1,n); % 生成均匀白噪声plot(t,noise);```同样地,通过修改时间变量和信号长度,可以生成不同长度和采样频率的均匀白噪声信号。

三、正弦信号加噪声在实际应用中,我们常常需要有噪声干扰的信号。

假设我们要生成带有高斯白噪声的正弦信号,可以使用以下方法:```matlabt = 0:0.1:10; % 时间变量n = length(t); % 信号长度signal = sin(t); % 生成正弦信号noise = 0.1*randn(1,n); % 生成高斯白噪声noisy_signal = signal + noise; % 信号加噪声plot(t,noisy_signal);```在上述示例中,我们首先生成了一个正弦信号,然后使用randn函数生成与信号长度相同的高斯白噪声,最后将信号和噪声相加得到带有噪声干扰的信号。

matlab产生高斯噪声

matlab产生高斯噪声

%正态分布(normal distribution)又名高斯分布(Gaussian distribution),% MATLAB 命令是normrnd。

%1)R=normrnd(MU,SIGMA):生成服从正态分布(MU参数代表均值,DELTA参数代表标准差)的随机数。

% 输入的向量或矩阵MU和SIGMA必须形式相同,输出R也和它们形式相同。

%2)R=normrnd(MU,SIGMA,m):生成服从正态分布(MU参数代表均值,DELTA参数代表标准差)的随机数矩阵,% 矩阵的形式由m定义。

m是一个1×2向量,其中的两个元素分别代表返回值R中行与列的维数。

%3) R=normrnd(MU,SIGMA,m,n):生成m*n形式的正态分布的随机数矩阵。

%4)randn()是标准正态分布;MA TLAB命令是normrnd 功能:生成服从指定均数和标准差的正态分布的随机数列,%即高斯随机序列。

例如:%高斯噪声为n(m)=nmr+jnmi,其中实虚部均为独立同分布N(0, a)的高斯随机数,信号x(m)=s(m) + n(m)% SNR = 10 lg[1/(2a)] = – 3 – 10 lg(a) (dB) [之所以是2a不是a是因为实虚部]%若有用信号s(n)的最大幅度am,要求得到的信噪比为p,则p=10log10[(am^2)/b^2],用这个公式反推出高斯%噪声的方差b^2snr=10;sqrt(a)=10^(-(snr+3)/10);noise=normrnd(0,sqrt(a),1,1000)+1*i*normrnd(0,sqrt(a),1,1000);%或者noise=sqrt(a)*randn(1,1000)+1*i*sqrt(a)*randn(1,1000);。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通信系统建模与仿真
实验一、高斯白噪声的matlab 实现
要求:
样本点:100 1000
标准差:0.2 2 10
均值: 0 0.2
白噪声
如果噪声的功率谱密度在所有的频率上均为一常数,即
)
/(),(,)(0Hz W f n f P n +∞<<-∞=
式中:0n 为常数,责成该噪声为白噪声,用)(t n 表示。

高斯白噪声的matlab实现
1.样本点为1000、均值为0、标准差为0.2时,高斯白噪声分布为下图所示:
程序如下所示:
% White background nois
clear all
f = 1:1:1000;
for i = 1:length(f)
K = (0.2) * randn(1,1) - 0;
P(i) = 10.^(K - 3.95*(10^-5)*f(i));
A(i) = sqrt(2*P(i));
end
xifft = ifft(A);
realx = real(xifft);
ti = [1:length(xifft)-1]/1000;
realx2(1:length(xifft)-1) = realx(2:length(xifft));
plot(ti,realx2)
程序如下所示:
% White background nois
clear all
f = 1:1:1000;
for i = 1:length(f)
K = (2) * randn(1,1) - 0;
P(i) = 10.^(K - 3.95*(10^-5)*f(i));
A(i) = sqrt(2*P(i)); end
xifft = ifft(A);
realx = real(xifft);
ti = [1:length(xifft)-1]/1000;
realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)
程序如下所示:
% White background nois
clear all
f = 1:1:1000;
for i = 1:length(f)
K = (10) * randn(1,1) - 0;
P(i) = 10.^(K - 3.95*(10^-5)*f(i));
A(i) = sqrt(2*P(i)); end
xifft = ifft(A);
realx = real(xifft);
ti = [1:length(xifft)-1]/1000;
realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)
程序如下所示:
% White background nois
clear all
f = 1:1:1000;
for i = 1:length(f)
K = (0.2) * randn(1,1) - 10;
P(i) = 10.^(K - 3.95*(10^-5)*f(i));
A(i) = sqrt(2*P(i)); end
xifft = ifft(A);
realx = real(xifft);
ti = [1:length(xifft)-1]/1000;
realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)
程序如下所示:
% White background nois
clear all
f = 1:1:1000;
for i = 1:length(f)
K = (2) * randn(1,1) - 10;
P(i) = 10.^(K - 3.95*(10^-5)*f(i));
A(i) = sqrt(2*P(i)); end
xifft = ifft(A);
realx = real(xifft);
ti = [1:length(xifft)-1]/1000;
realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)
程序如下所示:
% White background nois
clear all
f = 1:1:1000;
for i = 1:length(f)
K = (10) * randn(1,1) - 10;
P(i) = 10.^(K - 3.95*(10^-5)*f(i));
A(i) = sqrt(2*P(i)); end
xifft = ifft(A);
realx = real(xifft);
ti = [1:length(xifft)-1]/1000;
realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)
程序如下所示:
% White background nois
clear all
f = 1:1:100;
for i = 1:length(f)
K = (0.2) * randn(1,1) - 0;
P(i) = 10.^(K - 3.95*(10^-5)*f(i));
A(i) = sqrt(2*P(i)); end
xifft = ifft(A);
realx = real(xifft);
ti = [1:length(xifft)-1]/1000;
realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)
程序如下所示:
% White background nois
clear all
f = 1:1:100;
for i = 1:length(f)
K = (2) * randn(1,1) - 0;
P(i) = 10.^(K - 3.95*(10^-5)*f(i));
A(i) = sqrt(2*P(i)); end
xifft = ifft(A);
realx = real(xifft);
ti = [1:length(xifft)-1]/1000;
realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)
程序如下所示:
% White background nois
clear all
f = 1:1:100;
for i = 1:length(f)
K = (10) * randn(1,1) - 0;
P(i) = 10.^(K - 3.95*(10^-5)*f(i));
A(i) = sqrt(2*P(i)); end
xifft = ifft(A);
realx = real(xifft);
ti = [1:length(xifft)-1]/1000;
realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)
程序如下所示:
% White background nois
clear all
f = 1:1:100;
for i = 1:length(f)
K = (0.2) * randn(1,1) - 10;
P(i) = 10.^(K - 3.95*(10^-5)*f(i));
A(i) = sqrt(2*P(i)); end
xifft = ifft(A);
realx = real(xifft);
ti = [1:length(xifft)-1]/1000;
realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)
程序如下所示:
% White background nois
clear all
f = 1:1:100;
for i = 1:length(f)
K = (2) * randn(1,1) - 10;
P(i) = 10.^(K - 3.95*(10^-5)*f(i));
A(i) = sqrt(2*P(i)); end
xifft = ifft(A);
realx = real(xifft);
ti = [1:length(xifft)-1]/1000;
realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)
程序如下所示:
% White background nois
clear all
f = 1:1:100;
for i = 1:length(f)
K = (10) * randn(1,1) - 10;
P(i) = 10.^(K - 3.95*(10^-5)*f(i));
A(i) = sqrt(2*P(i)); end
xifft = ifft(A);
realx = real(xifft);
ti = [1:length(xifft)-1]/1000;
realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)。

相关文档
最新文档