人教版八年级数学上册分式的乘除
人教版八年级数学上册15.2.1分式的乘除ppt精品课件
大拖拉机工作效率:
a
mb
小拖拉机工作效率:
n
工作效率倍数:
a b
mn
复习 1.计算:
(1) 3 15 52
(2) 3 15 52
你能说出分数的乘除法法则吗?
探究
Ⅰ.根据分式乘法变形:
ac bd
Ⅱ.根据分式除法法变形:[来源:]
ac a d b d bc
归纳
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
15.2.1.1分式的乘除一
导入
1.一个长方体容器的容积为V,底面 的长为a,宽为b,当容器的水占容器
的 m 时,水的高是多少?[来源:学_科_网] n
容器高: V ab
水高: V m ab n
导入
2.大拖拉机m天耕地a公顷,小拖拉
机n天耕地b公顷,大拖拉机的工作效
率是小拖拉机的工作效率的多少倍?
归纳
分式相乘方法:
1. (多项式)先分解因式; 2.再约分; 3.后相乘。
分式相除方法:
除法转化为乘法。
巩固
2.计算:
(1)3a3b 25a2b3 10ab a2 b2
人教版八年级数学分式的乘除分式的乘方课件
a c ac b d bd
2 4 2 5 25 (3) = = 3 5 3 4 3 4
a c ? b d
分式的除法法则:分式除以分式,把除式的分子、分母 颠倒位置后,与被除式相乘. 用符号语言表达:a c a d a d .
b d b c bc
【跟踪训练】
1.计算:
a 4a 4 a 1 2 . 2 a 2a 1 a 4
2
2
(a 2) a 1 解:原式 2 (a 1) (a 2)(a 2) (a 2) 2 (a 1) 2 (a 1) (a 2)(a 2) a2 . (a 1)(a 2)
a 1
4 5 4 4 4 4 4 45 1 024 ( ) 5 . 3 3 3 3 3 3 3 243
4 n 4 4 ( ) 3 3 3
4 44 3 33
n
4 4n n. 3 3
对于任意一个正整数n,有
f n f ( ) = n . g g
500 a2 1
500 , ∴“丰收2号”小麦的单位面积产量高. 2 (a 1)
500 500 500 a 2 1 a 1 (2) 2 , ቤተ መጻሕፍቲ ባይዱ 2 (a 1) a 1 (a 1) 500 a 1
∴“丰收2号”小麦的单位面积产量是“丰收1号”小 麦的单位面积产量的 a 1 倍.
【例题】
4x y 【例1】 计算: (1) . 3 3y 2x
ab3 5a 2 b 2 (2) 2 . 2c 4cd
4x y 4 xy 2 3= 3 2. 【解析】 (1) 3 y 2 x 6 x y 3x
最新人教版初中八年级数学上册《分式的乘除》精品教案
15.2 分式的运算15.2.1 分式的乘除第1课时 分式的乘除1.经历探索分式的乘除法运算法则,通过类比分数的乘除法法则,提高联想能力和推理能力.(重点)2.熟练地进行分式的乘除运算,并能利用它解决实际问题.(难点)一、情境导入观察下列运算: 23×45=2×43×5 57×29=5×27×9, 23÷45=23×54=2×53×457÷29=57×92=5×97×2. 以上是以前学习的分数的乘法与除法,分数乘法与除法的运算法则分别是什么?今天我们仿照分数的乘除来研究分式的乘除.二、合作探究探究点一:分式的乘法计算:(1)ab 22c 2·4cd -3a 2b2; (2)x 2+3x x 2-9·3-x x +2. 解析:找出公因式,然后进行约分,约分时能分解因式的先分解因式.解:(1)ab 22c 2·4cd -3a 2b 2=-ab 2·4cd 2c 2·3a 2b 2=-4ab 2cd 6a 2b 2c 2=-2d 3ac ; (2)x 2+3x x 2-9·3-x x +2=x (x +3)(x +3)(x -3)·3-x x +2=x x -3·-(x -3)x +2=-x x +2. 方法总结:分子和分母都是单项式的分式的乘法,直接按“分子乘分子,分母乘分母”进行运算,其运算步骤为:(1)符号运算;(2)按分式的乘法法则运算;(3)各分式中的分子、分母都是多项式时,先因式分解,再约分.探究点二:分式的除法【类型一】 利用分式的除法法则进行计算计算:(1)-3xy ÷2y 23x ; (2)(xy -x 2)÷x -y xy. 解析:先将除法变为乘法,再利用分式的乘法法则进行运算,做乘法运算时要注意先把分子、分母能因式分解的先分解,再约分.解:(1)-3xy ÷2y 23x =-3xy ·3x 2y 2=-9x 22y; (2)(xy -x 2)÷x -y xy =(xy -x 2)·xy x -y =-x (x -y )·xy x -y=-x 2y . 方法总结:确定商的符号,再把除式的分子、分母的位置颠倒与被除式相乘.【类型二】 分式的化简求值先化简,再求值:(1)3x +3y 2x 2y ·4xy 2x 2-y 2,其中x =12,y =13; (2)x 2-x x +1÷x x +1,其中x =3+1. 解析:(1)利用分式的乘法法则进行计算化简.(2)将除法转化为乘法后约分化简,然后代入求值.解:(1)原式=3(x +y )2xy ·x ·2xy ·2y (x +y )(x -y )=6y x (x -y ),当x =12,y =13时,原式=24; (2)原式=x 2-x x +1·x +1x =x (x -1)x +1·x +1x=x -1,当x =3+1时,原式= 3. 方法总结:根据分式乘除法法则将代数式进行计算化简,再代入求值.【类型三】 根据分式的除法,判断分式中字母的取值范围若式子x +1x +2÷x +3x +4有意义,则x 的取值范围是( ) A .x ≠-2,x ≠-4B .x ≠-2C .x ≠-2,x ≠-3,x ≠-4D .x ≠-2,x ≠-3解析:∵x +3x +4≠0,x +2≠0,∴x +3≠0且x +4≠0,解得x ≠-2,x ≠-3,x ≠-4,故选C. 方法总结:在分式的除法中,求字母的取值范围时要使被除式的分母不为0,同时还要使除式的分子、分母不为0.【类型四】 分式乘除法的应用老王家种植两块正方形土地,边长分别为a 米和b 米(a ≠b ),老李家种植一块长方形土地,长为2a 米,宽为b 米.他们种的都是花生,并且总产量相同,试问老王家种植的花生单位面积产量是老李家种植的单位面积产量的多少倍?解析:不妨设花生的总产量是1,老王家种植的总面积为(a 2+b 2)平方米,老李家种植的总面积为2ab 平方米,分别求出单位面积产量,再相除即可.解:设花生的总产量是1,1a 2+b 2÷12ab =2ab a 2+b 2(倍). 答:老王家种植的花生单位面积产量是老李家种植的单位面积产量的2ab a 2+b 2倍. 方法总结:此题考查分式乘除运算的运用,注意理清题意,正确列式计算即可.三、板书设计分式的乘除1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相除.本节是从分数的乘除法则的角度引导学生通过观察、探究、归纳总结出分式的乘除法则.这种温故而知新的做法不仅有利于学生接受新知识,而且能体现由数到式的发展过程.在学生得出分式的乘除法则时,要求他们分别用文字和式子两种形式进行表述,这样不仅加深了学生对法则的理解,而且锻炼了他们的数学表达能力.为了进一步加深学生对基本法则的理解和运用,又由浅到深设计了一些练习题,这样学生就会把所学的知识融会贯通.作者留言:非常感谢!您浏览到此文档。
人教版数学八年级上册15.2.1分式的乘除(第2课时)教学设计
3.教师引导学生观察分式乘除法与整式乘除法之间的联系,如乘法分配律、交换律等,帮助学生更好地理解分式乘除法。
4.教师通过讲解典型例题,让学生了解分式乘除法在实际问题中的应用,培养学生将数学知识应用于解决实际问题的能力。
2.学生分享自己在学习分式乘除法过程中的收获和感悟,以及遇到的困难和问题。
3.教师针对学生的反馈,进行针对性的解答和指导,巩固学生的知识点。
4.教师布置课后作业,要求学生在课后继续巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的分式乘除知识,培养学生的数学思维能力,特布置以下作业:
(三)学生小组讨论
1.教师将学生分成小组,每组挑选一道具有代表性的分式乘除题目进行讨论。
2.学生在小组内部分享自己的解题思路和方法,互相交流,共同探讨。
3.各小组在讨论过程中,教师巡回指导,关注学生的解题过程,及时发现问题并给予指导。
4.讨论结束后,各小组派代表进行汇报,分享本组的讨论成果和心得体会。
5.练习巩固:设计难易程度不同的练习题,让学生独立完成,巩固所学知识。针对学生的错误,教师要及时给予指导和纠正。
6.知识拓展:引导学生将分式乘除法与整式乘除法进行对比,总结它们之间的联系与区别,提高学生的数学思维能力。
7.总结反馈:在教学结束时,教师对本节课的内容进行总结,强调重点和难点。同时,鼓励学生分享自己的学习心得,以便教师了解学生的学习情况。
4.实践题:结合生活实际,设计一道与分式乘除相关的实际问题,要求学生运用所学知识解决问题,并简要说明解题思路。此举旨在培养学生的知识运用能力和创新意识。
5.小组讨论题:以小组为单位,共同探讨以下问题:“分式乘除法在生活中的应用有哪些?”并撰写一篇简要的讨论报告,培养学生的合作意识和沟通能力。
人教版八年级数学上册 15.2 分式的运算(含答案)
15.2 分式的运算知识要点: 1.分式的乘除 ①乘法法则:db c a d c b a ⋅⋅=⋅。
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。
分式乘方要把分子、分母分别乘方。
④整数负指数幂:1nna a -=。
2.分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。
①同分母分式的加减:a b a b c c c±±=; ②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=一、单选题 1.化简a ÷b •1b的结果是( ) A .2a b B .aC .ab 2D .ab2.化简的结果是( )A.x +3B.x –9C.x -3D.x +93.计算的结果为( )A. B. C.D.4.下列计算正确的是( ) A.B.C.D.5.已知P=999999,Q= 990119,则P 、Q 的大小关系是( )A .P >QB .P =QC .P <QD .无法确定6.化简2m mn mnm n m n +÷--的结果是( ) A .m nn+B .2m m n-C .m nn- D .2m7.计算22m n m n n m+--的结果为( ) A.22m n + B.m n + C.m n - D.n m -8.化简的结果是( )A.x+1B.C.x-1D.9.若分式运算结果为 ,则在“□”中添加的运算符号为( )A.+B.—C.—或÷D.+或×10.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084( )A .68.410⨯B .78410-⨯C .50.8410-⨯D .68.410-⨯11.22--的值是( ) A.4 B.4-C.14-D.14二、填空题12.若3m =4,3n =2,则92m-n =________.13.某种生物孢子的直径为0.0000016cm ,把该数用科学记数法表示为________.14.计算:20191009142⎛⎫-⨯= ⎪⎝⎭______.15.()0201927318--⎛⎫-+-+-= ⎪⎝⎭__________________.16.老师设计了接力游戏,甲、乙、丙、丁四位同学用合作的方式完成分式化简规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简过程如图所示接力中,自己负责的一步出现错误的同学是_____.三、解答题 17.计算:(1)×3-21()2-+|1;(2)2m n mm n n m++--. 18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.先化简,再求值:22923693x x x x x x -⎛⎫+-- ⎪+++⎝⎭,其中1x =-.20.阅读下面的解题过程已知2212374y y =++,求代数式21461y y +-的值. 解:由2212374y y =++,取倒数得,223742y y ++=,即2231y y +=, 所以()2246122312111y y y y +-=+-=⨯-=则可得211461y y =+-. 该题的解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目:已知32321x x +=+++,求35--2242x x x x -⎛⎫÷ ⎪--⎝⎭的值.答案1.A 2.C 3.B 4.D 5.B6.A7.B8.A9.C10.D 11.C 12.64 13.-61.610⨯14.1 2 -15.1 9 -16.乙和丁17.(1) 225;(2) -1 18.(1)3;(2)25x;19.4x-;-5.2032+。
最新人教版八年级数学上册《15.2.1 分式的乘除(第1课时)》优质教学课件
15.2
分式的运算
15.2.1 分式的乘除
第1课时
导入新知
通过前面分式的学习,我们知道分式和
分数有很多的相似性,如基本性质、约分和
通分.那么在运算上它们有相似性吗?
素养目标
2.能准确地进行分式的乘除法的计算.
1.知道并熟记分式乘除法法则.
探究新知
知识点
分式的乘除法法则
500
a 2 -1 a +1
2
(2)
=
=
.
2
2
(a -1) a -1 (a -1) 500
a -1
∴“丰收2号”小麦的单位面积产量是“丰收1号”小麦的
单位面积产量的
倍.
巩固练习
取一条长度为1个单位的线段AB,如图
第一步,把线段AB三等分,以中间
的一段为边作等边三角形,然后去掉这
一段,就得到由4条长度相等的线段组
则,说出分式的乘除法法则吗?
怎样用字母来表示分式的乘除法法则呢?
探究新知
分式的乘除法法则
a c
ac
a
c
a d
a d
;
.
b d
bd
b
d
b c
bc
乘法法则:
分式乘分式,用分子的积作为积的分子,分母的积作为积的
分母.
除法法则:
分式除以分式,把除式的分子、分母颠倒位置后,与被除式
相乘.
C.ab
D.
课堂检测
基础巩固题
−
1.化简
A.
2.计算:
15.2.1.2 分式的乘方及乘除混合运算(课件)人教版数学八年级上册
3
2)原式=
2 2
2=
(3np) 9n p
小组讨论
1. 请同学们根据刚才有关分式乘方的练习,总结一下进行分
式乘方时,有哪些需要注意的地方.
要先确定乘方结果的符号,负的分式的偶次方为正,奇次方为负
2.如果将分式的乘方和乘除运算混合在一起,运算顺序应该
例
1
a-b2 -a 3
÷2
5:计算:
2.
·
a -b
ab b-a
2
3
(a-b)2
a
+ab
a
解:原式= a2b2 ·
(a+b)(a-b)= b2 .
3·
(a-b)
例
ab2
6:已知(a-3)2+|b-4|=0,求a+b2
1
ab3
的值.
÷2
2·
a -b 2(a-b)
3.通过经历转化过程,感受事物间辩证统一的相互关系,
让学生在探索讨论中养成与他人合作交流的习惯,并培
养克服困难的勇气和信心.
旧识回顾
2x
3
4b 25ac3
请同学们计算:(1)
÷
;(2)5a·6b2 .
5x-3 25x2-9
2x
3
(1) 原 式 =
÷
=
5x-3
(5x+3)(5x-3)
2
2x (5x+3)(5x-3) 10x +6x
15.2分式的运算
15.2.1分式的乘除
15.2.1.2
分式的乘方及乘除混合运算
学习目标
1. 通过转化思想将乘除混合运算统一为乘法运算,熟练地
2024年人教版八年级上册第十五章 分式分式的运算
15.2.1 分式的乘除 第1课时 分式的乘除课时目标1.通过类比分数的乘除法法则得出分式的乘除法法则,从中体会“数式通性”和类比转化的思想方法,发展学生的抽象能力.2.使学生经历分式的乘除运算规律的发现过程,培养学生自主探索、自主学习、自主归纳知识的意识,进一步提高学生的运算能力.3.通过运用分式的乘除法法则进行运算,解决一些与分式乘除法有关的实际问题,使学生养成理论联系实际的习惯,发展实践能力,培养应用意识. 学习重点运用分式的乘除法法则进行运算. 学习难点分子、分母为多项式的分式的乘除运算. 课时活动设计回顾引入大家之前学习过分数的乘除法法则,现在是否还有印象?师生活动:教师在黑板列出2道分数乘除法的题目,并请两位学生上台板书. 计算:(1)23×56; (2)23÷56.解:(1)23×56 = 2×53×6 = 59. (2)23÷56 = 23×65= 2×63×5 = 45.设计意图:通过回顾分数的乘除法法则引入新课,为学习分式的乘除法法则作铺垫.探究新知问题1:一个长方体容器的容积为V ,底面的长为a ,宽为b ,高为h ,当容器内的水占容积的mn 时,水高多少?解:水高=h ×mn =Vab ×m n =Vmabn.问题2:大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?解:倍数=大拖拉机的工作效率小拖拉机的工作效率=a m ÷b n =a m ×n b =an bm.问题3:观察下列运算.23×45=2×43×5;57×29=5×27×9;23÷45=23×54=2×53×4;57÷92=5×27×9.猜一猜:a b ×dc =?b a ÷dc =? 解:a b ×d c =a×db×c , b a ÷d c =b a ·c d =b×ca×d.类比分数的乘除法法则,你能说出分式的乘除法法则吗?师生活动:通过教学活动1中的具体例子,引导学生回忆前面学过的分数的乘除法法则,利用类比的方法得出分式的乘除法法则.乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 用式子表示为:a b ·c d =a·c b·d ,a b ÷c d =a b ·d c =a·db·c.设计意图:以此活动激活学生原有的知识体系,充分体现学生的学习是在原有知识的基础上自我生成的一个过程,有利于让学生更好地掌握类比的学习方法.典例精讲 例1 计算:(1)4x3y ·y2x 3; (2)ab 32c 2÷-5a 2b 24cd .解:(1)原式= 4xy6x 3y = 23x 2.(2)原式=ab 32c 2·4cd-5a 2b 2=-4ab 3cd10a 2b 2c 2=-2bd5ac .例2 计算:(1)a 2-4a+4a 2-2a+1·a -1a 2-4; (2)149−m 2÷1m 2-7m .解:(1)原式=(a -2)2(a -1)2·a -1(a -2)(a+2)=(a -2)2(a -1)(a -1)2(a -2)(a+2) =a -2(a -1)(a+2). (2)原式=1(7+m)(7-m)×m(m -7)1=-m7+m .例3 如图,“丰收1号”小麦的试验田是边长为a m 的正方形去掉一个边长为1 m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)m 的正方形,两块试验田的小麦都收获了500 kg .(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?解:(1)“丰收1号”小麦的试验田面积是(a 2-1)m 2,单位面积产量是500a 2-1 kg/m 2; “丰收2号”小麦的试验田面积是(a -1)2 m 2,单位面积产量是500(a -1)2 kg/m 2. ∵a >1,∴(a -1)2>0,a 2-1>0.∵(a -1)2-(a 2-1)=2-2a <0,∴(a -1)2<a 2-1. ∴500a 2-1<500(a -1)2.所以“丰收2号”小麦的单位面积产量高. (2)500(a -1)2÷500a 2-1=500(a -1)2·a 2-1500=(a+1)(a -1)(a -1)2=a+1a -1.所以“丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的a+1a -1倍.设计意图:通过例题,使学生掌握分式的乘除法法则,引导学生用分式的乘除法解决生活中的实际问题,提高“用数学”的意识,让学生感受到学以致用,体会到能够完整解决问题的喜悦,同时训练学生的书面表达能力,培养学生解决问题的能力.巩固训练 1.计算:(1)3a 5b ·2b6a 2; (2)2x5mn ÷y4x .解:(1)原式=3a·2b5b·6a 2=15a .(2)原式= 2x5mn ×4xy = 2x·4x5mn·y = 8x 25mny . 2.计算:(1)a -b2ab ·3a 2b3a 2-3b 2; (2)9y 2-x 2x 2+2x+1÷2x -6yx+1. 解:(1)原式= (a -b)·3a 2b2ab·3(a+b)(a -b) = a2a+2b . (2)原式= 9y 2-x 2x 2+2x+1·x+12x -6y=(3y -x)(3y+x)·(x+1)(x+1)2·2(x -3y)=-3y+x2x+2.设计意图:通过巩固训练,及时巩固本节课所学知识,帮助学生熟练掌握分式的乘除法法则.课堂小结1.本节课探究了分式的哪些问题?2.分式的乘法法则:a b ·c d =a·cb·d .3.分式的除法法则:a b ÷c d =a b ·d c =a·d b·c.设计意图:通过课堂小结,回顾本节课所学知识,及时查漏补缺.课堂8分钟.1.教材第138页练习第2,3题,第146页习题15.2第1,2题.2.七彩作业.第1课时 分式的乘除一、分式的乘除法法则:分式的乘除{乘法法则:a b ·cd =a·cb·d ;除法法则:a b ÷c d =a b ·d c =a·d b·c .二、例题讲解.注意:1.运用法则时注意符号的变化; 2.因式分解在分式乘除法中的应用; 3.结果要化成最简分式或整式. 三、课堂评价.教学反思第2课时 分式的乘方及乘除混合运算课时目标1.让学生经历分式的乘方法则的生成过程,培养学生自主探索、自主学习、交流合作的意识,提高学生的总结归纳能力.2.运用分式的乘除法法则、分式的乘方法则解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的运算能力.3.类比分数的乘除法、乘方混合运算,进行分式的乘除法、乘方混合运算,让学生体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力. 学习重点会进行分式的乘方运算,分式的乘除法、乘方混合运算. 学习难点分式的乘除法、乘方混合运算以及运算中符号的确定. 课时活动设计回顾引入引导学生用自己的语言描述分式的乘除法法则. 教师在黑板上列出分式的乘除法法则: 分式的乘法法则:a b ·cd = a·cb·d ;分式的除法法则:a b ÷cd=a·d b·c.设计意图:通过回顾分式的乘除法法则,来确认学生是否掌握了分式的乘法、除法运算,为本节课的学习打好基础.探究新知问题1:计算:2x5x -3÷325x 2-9·x5x+3.解:原式=2x 5x -3·25x 2-93·x5x+3=2x 23.问题2:计算下列各题:(1)(a b )2; (2)(a b )3; (3)(a b )4; (4)(a b )n.(n 为正整数) 解:(1)原式=a b ·a b =a·a b·b =a 2b 2.(2)原式=a b ·a b ·a b =a·a·a b·b·b =a 3b 3.(3)原式=a b ·a b ·a b ·a b =a·a·a·a b·b·b·b =a 4b 4.师生活动:教师引导学生观察前三个小问中等式两边有怎样的联系,再根据乘方的意义和分式乘法的法则推导出分式乘方的运算法则:(a b )n =ab ×ab ×…×a b ⏟ n 个=a×a×…×a⏞ n 个b×b×…×b ⏟ n 个=a n b n,即(a b )n =a nb n .(n 为正整数) 教师引导学生用文字描述分式乘方的运算法则:分式乘方要把分子、分母分别乘方.设计意图:先引导学生观察若干特例,再归纳出分式乘方的运算法则.在这个过程中学生可以通过比较、联想、探索,从直观中归纳出理性的规律,促使学生学习从特殊到一般的认识事物的思维方法.典例精讲 例 计算: (1)(-2a 2b 3c)2; (2)(a 2b-cd 3)3÷2a d 3·(c2a)2.解:(1)原式=(-2a 2b)2(3c)2=4a 4b 29c 2.(2)原式= a 6b 3-c 3d 9 ÷2a d 3·c 24a 2 = a 6b 3-c 3d 9·d 32a ·c 24a 2= -a 3b 38cd 6.设计意图:引导学生回忆前面学过的分数的乘除法、乘方混合运算,利用类比的方法进行分式的乘除法、乘方混合运算,体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,提高学生的运算能力.巩固训练 1.计算:(1)2x 2-3y 2·-5y6x ÷10y-21x 2; (2)a 2-1a 2-4a+4÷a+12−a ·2+a1−a ;(3)(-x 2y )2·(-y 2x)3÷(-y x )4.解:(1)原式=2x 2-3y 2·-5y 6x ·-21x 210y =-7x 36y 2.(2)原式=(a+1)(a -1)(a -2)2·-(a -2)a+1·a+2-(a -1)=a+2a -2.(3)原式=x 4y 2·(-y 6x 3)·x 4y4=-x 5. 2.先化简,再求值:a -1a+2·a 2-4a 2-2a+1÷1a 2-1,其中a 满足a 2-a =0. 解:原式=a -1a+2·(a+2)(a -2)(a -1)2·(a +1)(a -1)=(a -2)(a +1)=a 2-a -2=-2.设计意图:通过巩固训练,让学生自主探索、充分交流,在运算的过程中使学生掌握基础知识、基本的运算方法,体会运算法则和运算顺序,内化自身的运算认知,在循序渐进的运算中,提高自己的运算能力,同时通过具体的解题步骤,让学生感受到数学的严谨性,规范解题步骤和书写格式.课堂小结1.本节课探究了分式的哪些问题?2.分式乘方的运算法则:分式乘方要把分子、分母分别乘方.3.分式的乘除混合运算.设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第139页练习第1,2题,第146页习题15.2第3题.2.七彩作业.第2课时 分式的乘方及乘除混合运算一、分式的乘除法运算.分式的乘除法运算归根结底是乘法运算. 二、分式的乘方:(a b )n =a nb n ,即分式乘方要把分子、分母分别乘方. 三、例题讲解. 四、课堂评价.教学反思15.2.2分式的加减第1课时分式的加减课时目标1.让学生经历分式的加减法法则的生成过程,培养学生自主探索、自主学习、自主归纳知识的意识,提高学生知识的类比迁移能力.2.运用分式的加减法法则解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的运算能力.3.类比分数的加减法运算,进行分式的加减法运算,让学生体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力.学习重点运用分式的加减运算法则进行运算.学习难点异分母分式的加减运算.课时活动设计情境引入甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?教师引导分析,学生思考、交流.解:甲工程队一天完成这项工程的1n ,乙工程队一天完成这项工程的1n+3,两队共同工作一天完成这项工程的(1n +1n+3).设计意图:通过具体问题情境导入新课,让学生感受到分式的加减运算是由实际需要产生的,激发学生的学习兴趣,提高学生的学习效率.探究新知问题1:2009年、2010年、2011年某地的森林面积(单位:km 2)分别是S 1,S 2,S 3,2011年与2010年相比,森林面积增长率提高了多少?学生小组讨论,选取两名学生分别列出2010年、2011年的森林面积增长率: 解:2010年的森林面积增长率是S 2-S 1S 1,2011年的森林面积增长率是S 3-S 2S 2.根据2010年、2011年的森林面积增长率,得出结论: 解:2011年与2010年相比,森林面积增长率提高了S 3-S 2S 2-S 2-S 1S 1.教学中讨论这两个问题时,重点放在列出算式,为引出分式的加减法法则做准备.问题2:请同学们先填空,再观察下列分数加减运算的过程:15+25= (35),15-25 = (-15); 12+13=(36)+(26)=(56),12-13=(36)-(26)=(16). 追问:你能根据上面的式子,类比分数加减法法则,得出分式的加减法法则吗? 师生活动:学生先观察分数加减运算的过程,然后选一名学生用符号总结前两个分数加减运算的规律:a c ±bc = a±b c;再选一名学生用符号总结后两个分数加减运算的规律:a b ±cd = ad bd ±bcbd=ad±bc bd .教师引导学生用文字表述分式的加减法法则: 同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.设计意图:从学生已有的数学经验出发,建立新旧知识之间的联系.类比同分母与异分母分数的加减,学生很容易归纳出同分母分式与异分母分式加减的方法,培养学生交流合作能力和创新实践能力.典例精讲 例 计算: (1)m+n n+m -n n; (2)a 2a -b -b 2a -b ; (3)5x+3y x 2-y 2-2xx 2-y 2.解:(1)原式=(m+n)+(m -n)n=2mn . (2)原式=a 2-b 2a -b =(a+b)(a -b)a -b =a +b. (3)原式=3x+3yx 2-y2=3(x+y)(x+y)(x -y)=3x -y.设计意图:设置一组同分母分式的加减法运算,目的是让学生掌握同分母分式加减法法则:同分母分式相加减,分母不变,把分子相加减,同时内化运算法则,提升运算能力.巩固训练 1.计算: (1)a 2b 2ab-ab -b 2ab -a2; (2)a 2+b 2a -b-a -b ; (3)12p+3q +12p -3q.解:(1)原式=ab -b(a -b)a(b -a)=ab +b a =a 2b+ba.(2)原式=a 2+b 2-(a -b)(a+b)a -b=2b 2a -b .(3)原式=2p -3q+2p+3q(2p+3q)(2p -3q)=4p4p 2-9q 2.2.观察下列分式的加减的运算过程是否正确,如果不正确,请把正确的运算过程写下来.(1)a 2+b 2ab -a 2-b 2ab =a 2+b -a 2-b2ab =0;(2)x 2x -1-x -1=x 2x -1-x -11=x 2-(x -1)2x -1=2x -1x -1.解:(1)不正确,a 2+b 2ab -a 2-b 2ab =a 2+b -a 2+b2ab=2b 2ab =1a .(2)不正确,x 2x -1-x -1=x 2x -1-x+11=x 2-(x -1)(x+1)x -1=x 2-x 2+1x -1==1x -1.设计意图:通过设置巩固训练,巩固本节课所学知识,及时查漏补缺.课堂小结1.本节课探究了分式的哪些问题?2.分式的加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第141页练习第1,2题,第146页习题15.2第4,5题.2.七彩作业.第1课时分式的加减一、分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,用式子表示为ac ±bc=a±bc;异分母分式相加减,先通分,变为同分母的分式,再加减,用式子表示为ab ±cd=adbd±bcbd=ad±bcbd.二、例题讲解:(1)分式加减运算的结果要化成最简分式或整式;(2)同分母分式相加减时要注意:“把分子相加减”就是把各个分式的分子“整体”相加减,在这里要注意分数线的括号作用;(3)异分母分式加减法的一般步骤:①通分;②加减;③合并;④约分;(4)整式可以看成是分母为1的分式.三、课堂评价.教学反思第2课时分式的混合运算课时目标1.通过类比分数的混合运算顺序,归纳得出分式的混合运算顺序,体会数与式的发展过程,感悟数与式在运算法则和运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力.2.通过运用分式的混合运算解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的实践能力.3.通过使学生经历分式混合运算的过程,培养学生积极思考、自主探索、合作交流和辨析提高的学习意识,提高学生的运算能力.学习重点熟练地进行分式的混合运算.学习难点熟练地进行分式的混合运算及化简求值问题.课时活动设计情境引入有一财主死后,他的两个儿子高兴地打开父亲留下的藏宝地图,看到上面有一段文字记录:计算x 2-2x+1x2-1÷x-1x2+x-x的值,就是我留给你们的全部宝物.老大拿出纸笔一算,一气之下将藏宝图一把扔了,老二连忙捡起,经过仔细思考算出后,生气地一把火烧掉了它.财主忘记了写x的值,两个儿子是怎么计算出宝物的情况的呢?财主到底留下了多少宝物呢?通过本节课的学习,你就会明白其中的道理了.设计意图:设置故事情境引入新课,让枯燥的计算问题变得更具吸引力,调动起学生学习的积极性,激发他们的求知欲.探究新知 问题1:计算:(x 2-4x+4x 2-4-x x+2)÷x -1x+2.解:原式=[(x -2)2(x -2)(x+2)-xx+2]·x+2x -1=(-2x+2)·x+2x -1=-2x -1.教师引导学生类比分数的混合运算顺序,总结分式的混合运算顺序: 先乘方,再乘除,最后算加减,有括号的先算括号里面的. 教师针对这类题目给学生提供以下建议:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算更简便; (2)计算乘除时,要随时对分子、分母进行因式分解; (3)注意括号的“添”或“去”; (4)结果要化为最简分式或整式.设计意图:从学生已有的数学经验出发,建立新旧知识之间的联系.学生通过类比、思考,激活原有知识,让学生感悟自己的学习是在原有知识的基础上自我生成的过程.典例精讲 例 计算:(1)(2a b )2·1a -b -a b ÷b4; (2)(m +2+52−m )·2m -43−m ;(3)(x+2x 2-2x -x -1x 2-4x+4)÷x -4x .解:(1)原式=4a 2b 2·1a -b -a b ·4b =4a 2b 2(a -b)-4ab 2=4a 2b 2(a -b)-4a(a -b)b 2(a -b)=4a 2-4a 2+4ab b 2(a -b)=4ab b 2(a -b)=4aab -b 2.(2)原式=(m +2+52−m )·2m -43−m =9−m 22−m ·2(m -2)3−m=(3-m)(3+m)2−m·-2(2-m)3−m=-2(m +3)=-2m -6.(3)原式=[x+2x(x -2)-x -1(x -2)2]·xx -4=(x+2)(x -2)-(x -1)x x(x -2)2·xx -4 =x 2-4-x 2+x(x -2)2(x -4)=1(x -2)2.设计意图:设置这一组分式的混合运算的例题,目的是让学生进一步掌握分式混合运算时的运算顺序,培养学生良好的运算习惯,让学生在运算的过程中体会运算顺序和各项法则,内化自身的运算认知,在循序渐进的运算中,提高自己的运算能力.巩固训练 1.计算:(1)x 2x -1-x -1; (2)(1−2x+1)2÷x -1x+1;(3)2ab(a -b)(a -c)+2bc(a -b)(c -a); (4)(1x -y +1x+y )÷xyx 2-y 2.解:(1)原式=x 2x -1-(x+1)(x -1)x -1=x 2-x 2+1x -1=1x -1.(2)原式=(x+1x+1-2x+1)·x+1x -1=x -1x+1·x+1x -1=1.(3)原式=2ab -2bc(a -b)(a -c)=2b(a -c)(a -b)(a -c)=2ba -b . (4)原式=[x+y(x -y)(x+y)+x -y(x+y)(x -y)]·(x+y)(x -y)xy=2x(x+y)(x -y)]·(x+y)(x -y)xy=2y .2.先化简再求值:1x+1-1x 2-1·x 2-2x+1x+1,其中x =√2-1. 解:原式=1x+1-1(x+1)(x -1)·(x -1)2x+1 =1x+1-x -1(x+1)2=x+1−(x -1)(x+1)2=2(x+1)2.当x =√2-1时,原式=(√2-1+1)2=(√2)2=22=1. 设计意图:通过巩固训练,及时巩固本节课所学知识,帮助学生更好地掌握分式的乘除法法则,熟练地进行分式的混合运算.课堂小结1.本节课探究了分式的哪些问题?2.分式的混合运算顺序:先乘方,再乘除,最后算加减,有括号的先算括号里面的.3.进行分式的混合运算时注意的问题:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算更简便;(2)计算乘除时,要随时对分子、分母进行因式分解;(3)注意括号的“添”或“去”;(4)结果要化为最简分式或整式.设计意图:通过课堂小结,回顾本节课所学知识,及时查漏补缺.课堂8分钟.1.教材第142页练习第2题,第146页习题15.2第6题.2.七彩作业.第2课时分式的混合运算一、分式的混合运算顺序:先乘方,再乘除,最后算加减,有括号的先算括号里面的.二、例题讲解:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算简便;(2)计算乘除时,要随时对分子、分母进行因式分解;(3)注意括号的“添”或“去”;(4)结果要化为最简分式或整式.三、课堂评价.教学反思15.2.3整数指数幂第1课时整数指数幂的运算性质课时目标1.让学生经历负整数指数幂运算性质的得出过程,提高学生归纳、类比和抽象的能力,培养学生的创新意识.2.通过经历整数指数幂的获得过程,让学生感受到数学知识间合理的内在逻辑,培养学生的合情推理,提高学生的推理能力.3.让学生在运用整数指数幂的运算性质进行计算的过程中逐步内化自身的认知,提高学生的运算能力.学习重点掌握整数指数幂的运算性质.学习难点负整数指数的性质的理解和应用.课时活动设计复习回顾我们知道,当n是正整数时,a n=a·a·a·…·a⏟n个.回忆正整数指数幂的运算性质:(1)a m·a n=a m+n(m,n是正整数);(2)a m÷a n=a m-n(a≠0,m,n是正整数,并且m>n);(3)(a m)n=a mn(m,n是正整数);(4)(ab)n=a n b n(n是正整数);(5)(ab )n=anb n(n是正整数);(6)a 0= 1 (a ≠0).a m 中的指数m 可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么? 设计意图:引导学生回忆正整数指数幂的运算性质,温故而知新,唤醒学生已有的知识体系,通过复习正整数指数幂和0指数幂的性质,引入负整数指数幂,为新知识的合理介入指明了方向,有利于学生知识的完整构建,为本节课的学习作铺垫.探究新知用正整数指数幂的运算性质(2)(将m >n 这一条件去掉)和分式的约分两种方式计算52÷55,并观察两种方式的计算结果,你能有什么发现?学生自己独立完成计算,分小组交流讨论,教师给出完整的计算过程并总结. 52÷55=52-5=5-3,52÷55=5255=153.观察这两个式子可以发现5-3=153.学生通过上面的内容可以得到a m ÷a n =a m -n 这条性质也适用于像52÷55这样的情形.一般地,当n 是正整数时,a -n =1a n (a ≠0).这就是说,a -n (a ≠0)是a n 的倒数. 引入负整数指数和0指数后,a m ·a n =a m +n (m ,n 是正整数)这条性质能否推广到m ,n 是任意整数的情形?教师通过以下计算过程引导学生发现规律,并进行总结. a 3·a -5=a3a 5=1a 2=a -2=a 3+(-5),即a 3·a -5=a 3+(-5);a -3·a -5=1a 3·1a 5=1a 8=a -8=a (-3)+(-5),即a -3·a -5=a (-3)+(-5); a 0·a -5=1·1a 5=1a 5=a -5=a 0+(-5),即a 0·a -5=a (0)+(-5). 归纳:1.a m ·a n =a m +n 这条性质对于m ,n 是任意整数的情形仍然适用; 2.随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质也推广到整数指数幂.设计意图:按照从特殊到一般、从具体到抽象的认识过程,让学生类比发现,自己总结结论,实现学生主动参与、探究新知识的目的,从而培养学生归纳、类比和抽象的能力.典例精讲例计算:(1)a-2÷a5;(2)(b 3a2)-2;(3)(a-1b2)3;(4)a-2b2·(a2b-2)-3.解:(1)a-2÷a5=a-2-5=a-7=1a7.(2)(b 3a2)-2=b-6a-4=a4b-6=a4b6.(3)(a-1b2)3=a-3b6=b 6a3 .(4)a-2b2·(a2b-2)-3=a-2b2·a-6b6=a-8b8=b 8a8.提醒:(1)解题时应直接运用这些性质,而不要急于转化为分式形式;(2)整数指数幂的运算性质也可以逆向进行;(3)通常计算的最后结果要写成分式的形式.设计意图:这是一组直接运用整数指数幂的运算性质进行计算的题目,通过例题使学生掌握指数由正整数拓展到整数后的新情形,熟练使用运算方法,掌握运算技能,提高运算能力.归纳总结根据整数指数幂的运算性质,当m,n为整数时,a m÷a n=a m-n,a m·a-n=a m+(-n)=a m-n,因此a m÷a n=a m·a-n,即同底数幂的除法a m÷a n可以转化为同底数幂的乘法a m·a-n,特别地,ab =a÷b=a·b-1,所以(ab)n=(a·b-1)n,即商的乘方(ab)n可以转化为积的乘方(a·b-1)n,这样,整数指数幂的运算性质可以归纳为:(1)a m÷a n=a m+n(m,n是整数);(2)(a m)n=a mn(m,n是整数);(3)(ab)n=a n b n(n是整数).设计意图:类比负数的引入可以使减法转化为加法,得到负指数幂的引入可以使幂的除法转化为幂的乘法、商可以转化为积这个结论,从而使分式的运算与整式的运算统一起来,将整数指数幂的运算性质进行总结.课堂8分钟.1.教材第145页练习第1,2题,第147页习题15.2第7题.2.七彩作业.第1课时整数指数幂的运算性质一、正整数指数幂的运算性质.二、负整数指数幂的运算性质.三、例题讲解.四、整数指数幂的运算性质.教学反思第2课时科学记数法课时目标1.让学生经历小于1的正数的科学记数的获得过程,感受数学知识之间的内在联系,提高学生的归纳、类比和抽象能力.2.通过对小于1的正数的科学记数的过程,让学生感受到数学知识的本质所在,培养学生观察、分析和总结的能力.学习重点会用科学记数法表示小于1的正数.学习难点知道用科学记数法表示小于1的正数时,a×10-n形式中n的取值与小数中左起第一个非0数字前0的个数的关系.课时活动设计回顾引入1.用科学记数法表示745 000,2 930 000.2.大于10的数用a ×10n 表示时,a ,n 应满足什么条件?3.负整数指数幂的公式是什么?学生自主交流,讨论.思考:我们已经学会了用科学记数法表示一些较大的数,你能用科学记数法表示较小的数吗?设计意图:引导学生完成上述问题,温故而知新,唤醒学生已有的知识体系,为本节课的学习作铺垫.同时,提出新的问题,为新知识的学习明确了方向.探究新知1.填空:10-1=110= 0.1 ;10-2=1102= 0.01 ;10-3=1103= 0.001 ;…;10-n = 110n = .反过来:0.1=110=1×10-1;0.01=1102= 1×10-2 ;0.001=1103= 1×10-3 ;…;=110n = 1×10-n .2.解决问题:(1)0.000 025=2.5× 1105 = 2.5×10-5 ;(2)0.000 000 025 7=2.57× 1108 = 2.57×10-8 .运用由特殊到一般和类比的数学思想归纳出=10-n ,让学生看到可以利用10的负整数次幂,用科学记数法表示一些小于1的正数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤a <10.设计意图:让学生通过这种亲自参与、探索研究数学知识获得的过程,感受数学知识之间的密切联系,深化自己的认知,从而构建科学记数法的完整知识体系.典例精讲例纳米(nm)是非常小的长度单位,1 nm=10-9 m.把1 nm3的物体放到乒乓球上,就如同把乒乓球放到地球上.1 mm3的空间可以放多少个1 nm3的物体(物体之间的间隙忽略不计)?解:1 mm=10-3 m,1 nm=10-9 m.(10-3)3÷(10-9)3=10-9÷10-27=10-9-(-27)=1018.所以1 mm3的空间可以放1018个1 nm3的物体.1018是一个非常大的数,它是1亿(即108)的100亿(即1010)倍.设计意图:运用数学知识解决实际问题是学习数学的重要目标,让学生在学习知识的过程中解决实际问题,体会数学的“学以致用”.巩固训练计算(结果用科学记数法表示):(1)(3×10-5)×(5×10-3);(2)(3×10-15)÷(5×10-4);(3)(1.5×10-16)×(-1.2×10-3); (4)(-1.8×10-10)÷(9×108).解:(1)1.5×10-7;(2)6×10-12;(3)-1.8×10-19;(4)-2×10-19.设计意图:设置这类计算题,不仅是为了巩固本节课的所学知识,还为了通过做题让学生意识到用科学记数法表示数能使运算更简便.课堂小结1.如何用科学记数法表示大于10的数?2.如何用科学记数法表示小于1的正数?设计意图:让学生自己总结本节课的内容,帮助学生巩固新的知识,培养学生的总结概括能力.课堂8分钟.1.教材第145页练习第1,2题,第147页习题15.2第8,9题.2.七彩作业.第2课时科学记数法一、大于10的数的科学记数:N=a×10n(其中n是正整数,1≤a<10).二、小于1的正数的科学记数:N=a×10-n(其中n是正整数,1≤a<10).三、例题讲解.教学反思。
【公开课】人教版八级数学上册 分式的乘除(课件)实用PPT
1、分式混合运算一定要按照运算顺序。 2、乘除混合运算统一为乘法运算。
⑴ 3a 3b • 8a2b a2 b2
4ab
2a
⑵ 2m2n • 5p2q 5mnp 3pq 2 4mn 3q
(3) ab 1 •ab
ab ab
复习
与幂运算有关的性质: 1、同底数幂相乘,底数不变,指数相加
动脑筋
填一填:
a2 b
ba
ba
ba22;
a3 b
aaa
bbb
ba 33;
a 4a
b b
a b
a b
a b
ba 44;
猜想
a n b
a n b n .
分式的乘方法则:
分式的乘方,把分子分母分别乘方.
•
a 即:
a n b
n
b n
(n是正整数)
例题2:
(1)
( 3x )2
【 公 开 课 】 人教版 八级数 学上册 分 式的 乘除( 课件) 实用P PT
例 :已a知 15,求 a4a21的。值
a
a2
例: 已 知1 1 5,
xy
求 2x 3xy 2y的 值。
x 2xy y
例: 已知x 2,
y7
求 x2 3xy 2y2 的值。
2x2 3xy 7y2
(3x)2
32 x2
9x 2
2y
(2y)2 22 y 2
4y 2
(2)
(ab)3 2c
(ab )3
2c
(ab)3 (2c)3
a3b3 8c 3
(3) ( xy )3
(xy)
人教版数学八年级上册15.2.1.1《分式的乘除法》教学设计
人教版数学八年级上册15.2.1.1《分式的乘除法》教学设计一. 教材分析《分式的乘除法》是人教版数学八年级上册第15章的一部分,主要内容包括分式的乘法和除法。
这部分内容在数学知识体系中占据重要地位,是学生进一步学习函数、不等式等数学知识的基础。
通过学习分式的乘除法,学生能够理解和掌握分式的运算规律,提高解决问题的能力。
二. 学情分析八年级的学生已经掌握了分式的基本概念和性质,具备了一定的数学运算能力。
但学生在解决实际问题时,往往对分式的乘除法运用不够熟练,对分式运算规律的理解不够深入。
因此,在教学过程中,需要注重引导学生理解分式乘除法的运算规律,提高学生的运算能力和解决问题的能力。
三. 教学目标1.知识与技能:使学生理解和掌握分式的乘法和除法运算规律,能够熟练地进行分式的乘除运算。
2.过程与方法:通过自主学习、合作交流等方法,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:分式的乘法和除法运算规律。
2.难点:分式乘除法在实际问题中的应用。
五. 教学方法1.采用自主学习、合作交流的教学方法,鼓励学生主动探索,提高学生的问题解决能力。
2.运用实例讲解,引导学生理解分式乘除法的运算规律。
3.注重练习,巩固所学知识,提高学生的运算能力。
六. 教学准备1.准备相关的教学材料,如PPT、例题、练习题等。
2.准备教学工具,如黑板、粉笔等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的乘除法,激发学生的学习兴趣。
2.呈现(10分钟)呈现分式的乘法和除法运算规律,引导学生理解分式乘除法的运算规律。
3.操练(10分钟)让学生进行分式的乘除运算练习,及时反馈,指导学生纠正错误。
4.巩固(10分钟)通过一些典型例题,让学生进一步理解和掌握分式的乘除法运算规律。
5.拓展(10分钟)引导学生运用分式的乘除法解决实际问题,提高学生的问题解决能力。
15.2.1 分式的乘除 课件 人教版数学八年级上册
3
(2)
a4b2 -3c2
;
3
a4b2 -3c2
=((-a43bc22))33=-a2172cb66;
知3-练
感悟新知
3
(3)
xy x-y
;
3
解:
xy x-y
=(x(x-y)y3)3=(xx-3yy3)3 ;
(4)
a2-b2 ab
2
.
a2-b2 ab
2=[(a+(ba)b(a)2-b)]2=(a+ba)22b(a2-b)2.
课堂小结
分式的乘除
分式的乘除 分式的乘方 转化 分式的乘法 转化 分式的除法
混合运算
感悟新知
知1-练
例 1 计算: (1)3xy2·145xy32;(2)65xy2·(-4xy2);(3)ab4+ab2b2·a62-a2bb2.
解题秘方:利用分式的乘法法则进行计算.
感悟新知
(1)3xy2·145xy32;
解:3xy2·145xy32=1152xx23yy2=45xy;
知1-练
(2)65xy2·(-4xy2);
算后再约分;
(2)若分子、分母中有多项式,可先对多项式分解因式,
看能否约分,再进行乘法运算;
(3)若分式乘整式,可把整式看成分母为1 的“分式”参
与运算.
感悟新知
知1-讲
特别解读 分式乘法运算的基本步骤: 1. 确定积的符号,写在积中分式的前面; 2. 运用法则,将分子与分母分别相乘,是多项式的要带括号; 3. 约分,将结果化成最简分式或整式.
感悟新知
例 4 [母题 教材P139练习T1]计算:
知4-练
(1)98ax2yb÷23xb·32axb3y2; (2)1-3x2-x+12x2÷(x+1)·x42--x1.
人教版八年级数学上册课件 15.2.1分式的乘除(第1课时)
应化为最简分式或整式.
计算.计算结果
解:(1) 4x 3y
y 2x3
4xy 6x3 y
2 3x2
;
(2) ab3 5a2b2 ab3 4cd 4ab3cd 2bd . 2c2 4cd 2c2 5a2b2 10a2b2c2 5ac
例2:计算:
(1)
a2 a2
4a 4 2a 1
.
a2 1 (a 1)2
∴“丰收2号”小麦的单位面积产量高.
(2)
500 (a 1)2
500 a2 1
500 (a 1)2
a2 1 500
(a 1)(a 1) (a 1)2
a 1. a 1
∴“丰收2号”小麦的单位面积产量
是“丰收1号”小麦的单位面积产量
的
a 1 a 1
倍.
小结
(1)分式的乘除法法则; (2)运用法则时,注意符号的变化; (3)因式分解在分式乘除法中的应用; (4)步骤要完整,结果要最简,最后结果 中的分子、分母既可保持乘积的形式, 也可以写成一个多项式的形式.
1.(2014•济南中考)化简
m 1 m 1 m m2
1
1
A.m B.m C.m-1 D.m 1
(a
a 1 2)(a
2)
(a 2)2 (a 1)
a2
(a 1)2 (a 2)(a 2) (a 1)(a 2) ;
(2)
1 49 m2
m2
1 7m
49
1 m2
m2
7m 1
49
1
15.2.1分式的乘除 课件17张-2024—2025学年人教版数学八年级上册
解:(1)原式 解:(2)原式
注意:分子或分母是多项式的分式乘除法的解题一般步骤是: ①把各分式中分子或分母里的多项式分解因式; ②除法转化为乘法; ③约去分子与分母的公因式。
(1) 解:原式
(2)
解:原式
1.分式的分子、分母都是几个因式的积的形式,可先约去分子、分 母的公因式,再按照法则进行计算.
注意:计算结果要化为最简分式或整式
人教版(2012)八年级数学上册
感谢聆听
主讲:
人教版(2012)八年级数学上册
第十五章 分式
15.2 分式的运算 15.2.1 分式的乘除
(第1课时)
主讲:
情景导入
问题1 一个长方体容器的容积为V,底面的长为a,宽为b,当容器
内的水占容积的
时,水高多少?
长方体容器的高为:
水高为:
问题2 大拖拉机m天耕地a公顷,小拖拉机n天耕地 b公顷,大 拖拉机的工作效率是小拖拉机的工作效率的多少倍?
大拖拉机的工作效率是
公顷/天,小拖拉机的工作效
率是 公顷/天,大拖拉机的工作效率是小拖拉机的工
作效率的( )倍。
从上面的问题可知,为讨论数量关系有时需要 进行分式的乘除运算。 分式和分数具有类似的形式,我们可以类比分 数的运算法则认识分式的运算法则。
填空:
想一想:
类比分数的乘除法法则,你能说出分式的乘除 法法则吗?
边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的
试验田是边长为
米的正方形,两块试验田的小麦
都收获了500千克.
(1)哪种小麦的单位面
积产量高?
(2)高的单位面积产量
是低的单位面积产量的
多少倍?
1m
八年级数学人教版(上册)分式的乘除法课件
a
a
巩固 练习
完成下列的计算:
(1)
3a 4b
16b 9a2
;
(2) 12xy 8x2 y 5a
(3) x y y x ; xy xy
4y2 x2
xy
(4) x2 + 2xy + y2 ÷2x2 + 2xy ;
巩固 练习
(1)
3a 4b
16b 9a2
;
解:原式
3a 16b 4b 9a2
4 3a
②完全平方公式: a2 2ab b2 (a b)2 如:a2 4a 4 (a 2)2
③ 提公因式法: 如2a2b 4ab2 2ab(a b)
小结
(4)步骤要完整,结果要最简,最后 结果中的分子、分母既可保持乘积的形式, 也可以写成一个多项式,如:
(a 1)2 或 a2 2a 1.
分数除以分数,把除数的分子、分母颠倒位置后,与被除数相乘。
探究 新知
思考:类比分数的乘除法法则,你能 说出分式的乘除法法则吗?
分式数的乘法法则:
分数式乘分式数,用分子的积作为积的分子, 分母的积作为积的分母。
用式子表示为: b d bd
ac
ac
分式数的除法法则:
分数 式除以分数式,把除数式 的分子、分母颠
x- y
(4) x2 + 2xy + y2 ÷2x2 + 2xy ;
解:原式 =
x2
4y2 - x2 + 2xy +
y2
2x2 + 2xy ×
x-2y
(2 y + x)(2 y - x) • 2x(x + y)
=
(x + y)2(x - 2y)
人教版八年级数学上第15章15.2《分式的乘除》教案
二、核心素养目标
(1)理解并掌握分式乘除法则,形成运算能力,培养逻辑推理和数学思维能力。
(2)通过分式乘除的实际应用,提高问题解决能力,增强数学在实际生活中的应用意识。
(3)在分式乘除运算过程中,培养严谨细致的学习态度,提高准确性和熟练度。
(4)通过合作交流,培养团队协作能力和语言表达能力,增强学生之间的互动交流。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式乘除的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分式乘除的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(5)在学习过程中,培养学生自主学习、探究学习的习惯,激发学习兴趣,提高数学素养。
三、教学难点与重点
1.教学重点
(1)分式乘除法则:学生需掌握分式乘法与除法的基本法则,能够熟练地进行分式的乘除运算。
-乘法法则举例:$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$
(4)符号的理解与运用:学生在进行分式乘除时,可能会对正负号的处理感到困惑。
-难点举例:$\frac{-2}{3} \times \frac{5}{7}$,学生需要理解负号在运算中的传递规律。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式的乘除》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算比例或分配数量的问题?”(如购物时打折、分食物等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式乘除的奥秘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考
取一条长度为1个单位的线段 AB,如图
第一步,把线段 AB 三等分,
A n=0
B
以中间的一段为边作等边三 角形,然后去掉这一段,就
n=1
得到由4条长度相等的线段
n=2
组成的折线,总长度为
第二步,把上述折线中每一条线段重复第一步的做法,便得到
由长度相等的线段组成的折线,总长度为
思考
按照上述方法一步一步地继续进行下去,在图 中画出了第一步至第五步所得到的折线的形状 . 你能推算出第五步得到的折线的总长度吗?
练习——混合运算
练习——多除单
练习——多除单
练习 1. 计算:
练习 2. 计算:
化简求值 当x=2004时,y=2005时
答案:原式= -(x+y)=-(2004+2005)=-4009
总结
这节课我们学会了什么?
1.分式乘除法法则:
2.分式乘方法则:
(n是正整数)
3.混合运算的顺序: 先乘方,再乘除.
归纳
分式乘除混合运算的注意事项: 1.把除法变为乘法. 2.把分子分母中的多项式分解因式. 3.能约分的先约分. 4.从左到右,依次计算. 5.注意运算符号.
例题 计算:
练习
练习
练习
练习 答案: 原式=y
思考
你能结合有理数乘方的概念和分式乘法的法则写出下列式子的结果吗?
10个a 10个b
小拖拉机的工作效率是:
大拖拉机的工作效率是小拖拉机工作效率的
思考 从上面的问题可知,为讨论数量关系,有时需要进行分式 的乘除运算. 为了得到分式的乘除法法则,我们可以先来回忆一下分数的 乘除法.
你能据此归纳出分式的乘法法则吗? 分式乘分式,用分子的积作为积的 分子,分母的积作为积的分母.
思考
乘法已经会了,再看看除法.
例题
1 m (a-1) m am
所以,“丰收2号”小面的单位面积产量高.
例题
练习
一条船往返于水路相距100 km 的A,B 两地之间,已知水流的 速度是每小时2 km,船在静水中的速度是每小时x km(x>2), 那么船在往返一次过程中,顺流航行的时间与逆流航行的时间 比是______.
例题 总结:乘除混合运算可以先统一为乘法,再运算.
对于任意一个正整数n,第n步得到的折线的 总长度是多少?
证明
n个a
n个b
分式的乘方法则
(n是正整数)
这就是说,分式乘方要把分子、分母分别乘方.
例题
例题
注意:式与数有相同的混合运算顺序:先乘法,后乘除.
练习——乘方 计算:
练习——混合运算 计算:
练习——混合运算
练习——混合运算
练习——混合运算
分式的乘除 分式乘除法的法则是什么? 分式乘方的法则是什么?
分式的乘除
知识回顾
约分(口答)
-2ab
-1
知识回顾
约分(口答)
思考 一个长方体容器的容积为 V,底面的长为 a,宽为b,当容器 内的水占容积的 时,水高多少?
思考 大拖拉机 m 天耕地 a 公顷,小拖拉机 n 天耕地 b 公顷,大 拖拉机的工作效率是小拖拉机的工作效率的多少倍?
大拖拉机的工作效率是:
练习
练习 2. 计算:
练习 3. 计算:
练习 计算:
练习 C
练习
练习 a
练习
练习
例题 如图,“丰收1号”小麦的试验田是边长为a m的正方形去掉一个 边长为1 m的正方形蓄水池后余下的部分,“丰收2号”小麦的试 验田是边长为(a-1) m的正方形,两块试验田的小麦都收获 了500kg. (1)哪种小麦的单位面积产量高? (2)高的单位面积产量是低的单位面积产量的多少倍?
你能据此归纳出分式的除法法则吗?
分式除以分式,把除式的分子、 分母颠倒位置后,与被除式分子的积作为积的分子,分母的积 作为积的分母.
分式除以分式,把除式的分子、分母颠倒位置后, 与被除式相乘.
例题 注意:运算结果一定要化为最简分式.
例题 注意:分子、分母是多项式时,通常先分解因式,再约分.