工业锅炉用生物质成型燃料
生物质成型燃料优点分析

生物质成型燃料优点分析
1.可再生性:生物质成型燃料以植物纤维、农产品废弃物、木材屑等
生物质为原料制作,具有可再生性。
相对于有限的化石燃料储量,生物质
成型燃料能够源源不断地生产,有助于降低对化石燃料的依赖,减轻能源
短缺的压力。
2.环境友好:生物质成型燃料在燃烧过程中释放的二氧化碳与植物在
生长过程中吸收的二氧化碳相平衡,呈现几乎零排放的特点。
相比之下,
化石燃料燃烧会释放大量的二氧化碳,导致温室效应和气候变化。
生物质
成型燃料的使用有助于减少温室气体的排放,保护环境。
3.能源利用效率高:生物质成型燃料经过加工处理,其热值可以达到
或接近化石燃料的热值水平。
通过技术手段改善生物质的物理和化学特性,可以提高生物质成型燃料的燃烧性能和能源利用效率,使其在工业、农业
和家庭供暖等领域替代化石燃料。
4.应用范围广泛:生物质成型燃料可以用于工业锅炉、发电厂的燃料
以及民用炉具、壁炉等的供暖燃料。
由于其可再生性和环境友好性,生物
质成型燃料在能源供应领域的应用前景非常广阔。
同时,生物质成型燃料
的生产也有助于农村和农业废弃物资源化利用,推动农村经济发展。
综上所述,生物质成型燃料具有可再生性、环境友好、能源利用效率高、应用范围广泛以及多样性和灵活性等优点。
随着对可再生能源需求的
不断增长和相关技术的进步,生物质成型燃料有望在未来的能源供应中发
挥更重要的作用,减少对化石燃料的依赖,实现可持续发展目标。
专用锅炉燃用的生物质成型燃料标准

专用锅炉燃用的生物质成型燃料标准
专用锅炉燃用的生物质成型燃料标准通常根据不同国家或地区的标准和法规来制定。
以下是一些常见的生物质成型燃料标准:
1. 欧洲标准:欧洲联盟制定了EN标准系列,其中包括EN 14961-2生物质固体燃料标准,涵盖了不同类型的生物质成型燃料,如木屑颗粒、木质颗粒、蔗渣颗粒等。
2. 美国标准:美国环境保护署(EPA)制定了生物质颗粒燃料标准,包括EPA方法 28的质量和规格要求,以及烟雾和灰分排放标准。
3. 加拿大标准:加拿大国家标准协会(CSA)制定了CAN/CSA-
B415.1-10标准,该标准规定了生物质燃料的质量和规格要求,包括水分含量、热值、灰分含量等指标。
4. 中国标准:中国制定了GB/T标准系列,其中包括GB/T 23331生物质颗粒燃料标准,该标准规定了生物质颗粒燃料的物理和化学指标,包括颗粒大小、水分含量、热值、灰分含量等。
以上只是一些常见的生物质成型燃料标准,具体标准要根据不同国家或地区的法规和需求来制定。
工业锅炉用生物质成型燃料教程文件

广东省地方标准DB44/T 1052-2012————————————————工业锅炉用生物质成型燃料Biomass Molded Fuel of Industrial Boiler前言本标准按GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写》的规则进行编制。
本标准负责起草单位:广州市特种承压设备检测研究院。
本标准参加起草单位:广州迪森热能技术股份有限公司,广州迪宝能源技术有限公司。
本标准主要起草人:李茂东、牟乐、马革、叶向荣、陈志刚、张振顶、杜玉辉、郁家清、尹宗杰、陈平、张强、刘安庆、赵军明、周嘉伟、何兆文、上官斌、李榕根。
1 范围本标准规定了工业锅炉用生物质成型燃料的分类与命名、规格及性能指标、检验方法、检验规则、标志、包装、运输和使用管理。
本标准适用于以木屑、刨花、树枝、树皮、竹子、农作物秸秆、花生壳、甘蔗渣等为主要原料生产的生物质成型燃料。
2 规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 213煤的发热量测定方法GB/T 214煤中全硫的测量方法GB/T 3558煤中氯的测定方法GBT 19227煤和焦炭中氮的测定方法半微量蒸汽法NY/T 1879生物质固体成型燃料采样方法NY/T 1880生物质固体成型燃料样品制备方法NY/T 1881.2生物质固体成型燃料试验方法第2部分:全水分NY/T 1881.4生物质固体成型燃料试验方法第4部分:挥发分NY/T 1881.5生物质固体成型燃料试验方法第5部分:灰分NY/T 1881.7生物质固体成型燃料试验方法第7部分:密度3 术语与定义下列术语和定义适用于本标准。
3.1生物质成型燃料biomass molded fuel以草本植物或木本植物为主要原料,经过机械加工成型,具有规则形状的粒状、块状和棒状固体燃料产品。
2024年生物质成型燃料(BMF)市场需求分析

2024年生物质成型燃料(BMF)市场需求分析引言生物质成型燃料(Bio-mass Molded Fuel,BMF)是一种使用农林废弃物、农作物秸秆等可再生生物质材料经过处理、成型而成的燃料。
随着对环境保护和可再生能源需求的不断增加,生物质成型燃料在各个领域逐渐得到了广泛关注。
本文将对生物质成型燃料市场的需求进行分析,以期帮助企业制定合适的市场策略。
市场规模及趋势根据调研报告显示,生物质成型燃料市场在过去几年里经历了快速增长。
据统计数据显示,2019年全球生物质成型燃料市场规模已经达到XXX亿美元。
预计未来几年,生物质成型燃料市场将继续保持较高的增长率,预计到XXXX年市场规模将超过XXX亿美元。
由于生物质成型燃料具有可再生性和环保性的优势,且对于减少温室气体排放具有积极意义,因此未来几年内,生物质成型燃料将继续受到政府政策的支持和鼓励。
同时,不同行业对于可再生能源的需求也将继续推动生物质成型燃料市场的增长。
市场需求分析1. 能源行业在能源行业中,生物质成型燃料作为一种可再生能源的代表,对于替代传统化石燃料具有重要意义。
由于生物质成型燃料在燃烧过程中的二氧化碳的排放量较低,因此在减缓全球气候变化和减少空气污染方面具有巨大潜力。
预计未来几年内,能源行业对于生物质成型燃料的需求将继续增长。
2. 工业领域生物质成型燃料在工业领域应用较为广泛,特别是在锅炉、电厂、发电厂等行业。
传统的燃料如煤炭和天然气对环境造成较大污染,而生物质成型燃料具有低碳排放和环保的特点,因此在工业领域中替代传统燃料的需求逐渐增加。
3. 家庭取暖在一些地区,家庭取暖主要依赖于传统的煤炭等化石燃料。
然而,这种燃料燃烧会产生大量的有害气体和颗粒物,对空气和人体健康造成严重威胁。
因此,越来越多的家庭开始转向使用生物质成型燃料作为取暖燃料,以减少对环境的影响和保护家庭成员的健康。
4. 农业和林业生物质成型燃料的原料主要来自农林废弃物、农作物秸秆等农业和林业资源。
生物质成型燃料及锅炉

一、什么是BMF燃料?金土地能源生物质成型燃料(Biomass pellet or Biomass Moulding Fuel,简称“BMF”)是应用农林废弃物(如秸秆、锯末、甘蔗渣、稻糠等)作为原材料,经过粉碎、混合、挤压、烘干等工艺,制成各种成型(如颗粒状)的,可直接燃烧的一种新型清洁燃料。
▶生物质成型燃料BMF成分构成BMF燃料由可燃质、无机物和水分组成,经广东省技术监督煤炭产品质量监督检验站(广东站)检验,BMF的指标参数如下:元素构成图如右所示→二、生物质成型燃料BMF的特性1、可实现温室气体CO2生态“零”排放:BMF的能量来源于自然界光合作用固定于植物上的太阳能,其燃烧时排放的CO2来自于其生长时对自然界CO2的吸收,因此,BMF具有CO2生态“零”排放的特点。
2、典型的低碳绿色能源:①低碳能源:BMF燃烧以挥发份为主,其固定碳含量仅为15%左右,因此是典型的低碳燃料。
②减少SO2排放:BMF含硫量比柴油还低,仅为0.05%,不需设置脱硫装置就可实现SO2减排。
③粉尘排放达标:BMF灰份为1.81%,是煤基燃料的1/10左右,设置简单的除尘装置就可实现粉尘排放达标。
④减少NO x的生成:BMF氮含量低,氧含量高,燃烧时温度低,可以减少NO x的生成。
3、典型的循环经济项目:BMF来源于农林废弃物,与以粮食为原料的生物质醇基燃料和以油料作物为原料的生物质柴油相比,不会产生“与人争粮”和“与人争地”的社会问题,原料分布广泛多样、含量大、成本低、循环生长、取之不尽、用之不竭,是典型的循环经济项目。
4、安全方便:BMF密度大,体积小,固体成型,密封包装,运输贮存安全方便。
一、B MF工业蒸汽锅炉①性能特点:自动给料、出渣,鼓风机引风机变频调节,锅炉全自动运行,可根据负荷变化自动调整燃料量,蒸汽输出稳定。
具有压力、水位、排烟温度等多项保护和报警措施,保证锅炉安全运行。
②适用范围:为工业和民用客户提供蒸汽,适合于大型工厂、宾馆、医院等厂所。
生物质成型燃料技术及应用前景

生物质成型燃料技术及应用前景摘要:分析了现国内生物质电厂集中存在的燃料问题,而生物质成型燃料能够解决秸秆运输、储存、防火等问题,具有广阔的发展前景。
对比介绍了生物质成型技术,分析生物质成型燃料的燃料特性。
结果表明,生物质成型燃料可以改善燃烧特性,燃烬时间长,有利于提高生物质灰熔点。
前言能源是人类社会发展进步的物质基础,但煤、石油、天然气等化石燃料日益枯竭,环境污染也日益严重。
我国提出了节能减排、发展清洁可持续再生能源的口号,哥本哈根会议规定我国到2020年每单位国内生产总值的二氧化碳排放比2005年下降40%~45%。
生物质的利用在这方面有着巨大的优势,我国每年仅秸秆类生物质(玉米秸秆、稻草、木屑、树权、豆秸、棉秆等农林废弃物)产量就达7亿,t可开发的生物质能资源总量近期约为5亿t标准煤,远期可达到10亿t 标准煤。
我国生物质发电技术,特别是生物质直燃发电技术近几年得到了较快的发展,但未经加工的生物质本身具有挥发分高,含水率高,氯、钾等碱金属含量高等特点,当秸秆含水率超过40%时,直接利用生物质作为燃料时,燃烧不稳定,热效率低。
而我国生物质原料(如农林废弃物)产量虽然巨大,但产地分散、能量密度低、随季节变化性强,自然干燥失重大,储存和运输过程中占用大量的空间、损耗大,由此给生物质的高效清洁利用造成困难。
生物质直接发电产业是“小电厂、大燃料”,目前生物质电厂基本都存在着燃料生产、收集、预处理、运输、储存、输送上料过程中的各种问题。
因此农作物散装秸秆只能作为生物质能源化利用的初级燃料,难以满足生物质发电、供热等工业化需求。
而生物质成型燃料技术为生物质的运输、存储及消防等难题提出了解决方向,具有广阔的发展前景,也将带来燃料能源的变革,产生巨大的经济效益和社会效益。
1生物质燃料成型技术生物质燃料成型技术是指在一定温度与压力条件下,将各类原本松散细碎的生物质废弃物压制成具有形状规则的棒状、块状、颗粒状成型燃料的高新技术,以解决生物质运输、储存、防火等问题。
Ⅱ型生物质成型燃料锅炉的设计

Ⅱ型生物质成型燃料锅炉的设计3.1Ⅱ型生物质成型燃料锅炉的结构布置实践证明I型生物质成型燃料锅炉所采用的下吸式的燃烧方式,实现了秸秆成型燃料的分步燃烧,缓解秸秆燃烧速度,达到燃烧需氧与供氧的匹配,使秸秆成型燃料稳定持续完全燃烧,起到了消烟除尘作用。
因此,改进设计的Ⅱ型生物质成型燃料锅炉同样采取下吸式燃烧的形式。
保留两个炉门,上炉门仍常开,作为投燃料与供应空气之用;把I型的中炉门与下炉门合二为一,用于清除灰渣及供给少量空气,正常运行时微开,在清渣时打开。
这样既保留了I型的全部功能,又减少了由于炉门多而造成的散热损失。
水冷炉排将炉膛空间分为上炉膛和下炉膛两部分,上炉膛又相当于风室,下炉膛后墙上设有烟气出口,烟气出口不宜过高,以免烟气短路,影响可燃气体的燃烧和火焰充满炉膛,但也不宜过低,以保证下炉排有必要的灰渣层厚度(100~200 mm)。
Ⅱ型生物质成型燃料锅炉由上炉门、下炉门、水冷炉排、辐射受热面、风室、下炉膛、降尘室、对流受热面、排汽管、烟道、引风机、烟囱等部分组成,其结构布置如图2所示。
其工作过程为:一定粒径秸秆成型燃料经上炉门加在炉排上下吸式燃烧,水冷炉排漏下的秸秆屑和灰渣到下炉膛底部继续燃烧并燃尽。
秸秆成型燃料在上炉排上燃烧后形成的烟气和部分可燃气体透过燃料层、灰渣层进入下炉膛进行燃烧,并与炉膛底部的燃料产生的烟气一起,经出烟口流向后面的对流受热面。
3.2 Ⅱ型生物质成型燃料锅炉炉塍及炉排的设计在大量试验的基础上,Ⅱ型生物质成型燃料锅炉的炉膛和炉排都采取了新的设计参数,由式(1)、(2)口明可计算出锅炉炉膛及炉排尺寸。
由于改进设计时,将I型生物质成型燃料锅炉的中炉门与下炉门合二为一,因此Ⅱ型生物质成型燃料锅炉可省去I型锅炉的下炉排,让未燃烬的燃料及灰渣落在下炉膛的底部,只采用一个水冷炉排。
由图1、图2可见,I型生物质成型燃料锅炉由于水冷炉排与水箱相连,所以有两个连箱;而改进后的Ⅱ型生物质成型燃料锅炉水冷排与上方锅筒相连,因此直接做成弯管插入锅筒中。
生物质固体成型燃料

生物质固体成型燃料(BBDF)一概述生物质固体成型燃料,简称BBDF,是利用新技术及专用设备将农作物秸秆、木屑、锯末、花生壳、玉米芯、稻壳、麦秸麦糠、树皮、干草等压缩炭化成型的新型燃料。
无任何添加剂。
可直接用于燃煤锅炉(改造)设备上,可代替传统的煤碳,是一种可再生的清洁能源。
二能源地位与定义继煤、石油、天然气之后的可再生的第四大能源,是一种符合环保要求,可替代煤碳的清洁燃料。
三生物质固体成型燃料的样品四生物质燃料的主要技术参数密度800—1100kg/m3热值3500--4000kcal/kg灰分--20%水分≤12%挥发份60--70%含硫量0.02—0.21%(煤含硫量0.32—3%)五燃烧后的废气排放CO2--------零排放NO2---------微量SO2--------低于46。
2mg/m3粉尘------低于70mg/m3六使用BBDF经济合算吗?BBDF的热值约为3600Kcal/kg,生物质燃料点火易,升火快,不存在封火消耗,节能燃料。
表二:几种能源的能效对比:(以10 吨锅炉为计算参照)技术等影响较大。
七生物质燃料能保证供应吗?1 我们有强大的技术支持:技术成熟,成型设备可靠性好,耐磨性高,生产效益高。
2 建立了一套从原料收集,成型加工,仓储运输,终端客户的网络,可实现产业化,规模化运营。
3 已在燃料使用地50--100公里范围内建立原料收购站和所需的生产基地及大型仓库,保证锅炉用户需求。
八BBDF价格会大幅度涨价吗?由于BBDF原料来源广泛,且可再生,我国每年农作物秸秆产重约为7亿千吨,在广大农村秸秆禁止焚烧,其处理成了农民的大问题,也是基层乡镇干部头疼的问题,做为燃料,变废为宝,既解决了头疼问题,又增加了收入,深受农民欢迎,所以,原料价格相比较稳定。
再者,BBDF最大的消耗为电能,但目前电价基本稳定,且受国家控制,所以电价不会大幅度上涨,即使电价上涨,其涨幅占整个成本的比例也是有限的,且其它能源的价格也会随之上涨。
专用锅炉燃用的生物质成型燃料标准

专用锅炉燃用的生物质成型燃料标准1. 引言专用锅炉燃用的生物质成型燃料标准是指为了确保生物质成型燃料在专用锅炉中的安全、高效、环保燃烧而制定的一系列技术要求和质量指标。
随着生物质能源的不断发展和应用,专用锅炉燃用的生物质成型燃料标准在能源领域中扮演着重要角色。
本文将对专用锅炉燃用的生物质成型燃料标准进行深入探讨,旨在为相关领域提供参考和指导。
2.生物质成型燃料的特点与分类生物质成型燃料具有以下特点:可再生、低碳、环保、高效利用。
根据原料的不同,生物质成型燃料可分为以下几类:(1)木质素类生物质成型燃料:以木屑、木糠、木质纤维等为原料,经过压缩成型而成。
(2)农业废弃物类生物质成型燃料:以玉米秸秆、麦秸秆、油菜籽壳等农业废弃物为原料,经过压缩成型而成。
(3)城市生活垃圾类生物质成型燃料:以生活垃圾中的有机物为原料,经过发酵、干燥、压缩成型而成。
(4)工业废弃物类生物质成型燃料:以工业废弃物如污泥、锯末、果壳等为原料,经过处理和压缩成型而成。
3.生物质成型燃料专用锅炉的技术要求生物质成型燃料专用锅炉应具备以下技术要求:(1)锅炉结构:采用立式或卧式结构,以适应生物质燃料的燃烧特性。
(2)燃烧设备:采用层状燃烧技术,使生物质燃料燃烧更加充分、稳定。
(3)通风设备:保证充足的氧气供应,以促进生物质燃料的燃烧。
(4)保温性能:具有良好的保温性能,降低能耗,提高锅炉效率。
(5)自动化控制:实现燃烧过程的自动化控制,确保安全、稳定、高效的燃烧。
4.生物质成型燃料标准的制定与实施生物质成型燃料标准的制定应遵循以下原则:(1)环保性:降低污染物排放,减轻环境污染。
(2)安全性:确保生物质成型燃料的燃烧过程安全可靠。
(3)经济性:提高生物质成型燃料的利用率,降低成本。
(4)可持续性:促进生物质能源的可持续发展。
在实施生物质成型燃料标准时,应注意以下几点:(1)加强对生物质成型燃料生产、销售、使用的监管。
(2)加大政策扶持力度,鼓励生物质成型燃料的研发和推广。
科技成果——生物质成型燃料(BMF)代油节能技术

科技成果——生物质成型燃料(BMF)代油节能技术所属行业热工设备行业适用范围工业、民用领域成果简介1、技术原理迪森生物质成型燃料(简称:BMF)是应用农林废弃物(如秸秆、锯末、甘蔗渣、稻糠等)作为原料,通过加入高效添加剂,经过粉碎、挤压、烘干等工艺,制成各种成型的(如颗粒状),可在迪森研制的BMF锅炉直接燃烧的新型清洁燃料。
可以替代各种燃料油用户工业锅炉。
2、关键技术生物质成型燃料(BMF)代油节能技术关键技术主要有:生物质成型技术、高效添剂技术、生物质锅炉制造技术,其中锅炉制造技术包括:给料系统、燃烧系统、吹灰系统、烟风系统及自控系统等的设计和升级。
3、工艺流程设备的选型、燃料型号的选取、锅炉设计及生产、锅炉房的设计及施工、工程项目的审批、设备的安装及调试、工程的验收及运行等。
主要技术指标生物质成型燃料(BMF)具有如下的技术性能特点:1、热值高:4200kcal/kg;2、安全方便:BMF密度大、体积小、固体成型、密封包装、运输贮存安全方便;3、典型的低碳绿色能源:低碳、低硫、低氮、低粉尘;是典型的循环经济项目:BMF来源于农林废弃物,不会产生“与人争粮”和“与粮争地”的社会问题,原料分布广泛多样,循环生长,取之不尽,用之不竭。
应用情况目前公司与客户签订的BMF代油节能技术项目合同将近40家,遍及珠三角地区并辐射到广西、福建、江西等地,用户反映使用情况良好。
公司已具备年产10万吨生物质成型燃料的生产规模,并根据市场的需求进行扩建,燃料供应充足。
典型案例佛山市顺德区彩辉纺织材料有限公司、深圳卓宝科技股份有限公司防水材料厂、顺德区勒流百安饲料有限公司、佛山特固力士工业皮带有限公司、广州浪奇实业有限公司、广州珠江特纸有限公司等。
市场前景根据《可在生能源发展“十一五”规划》的生物质能源方面的发展目标是:到2010年,农林生物质固体成型燃料年利用量要达到100万吨。
《可再生能源中长期发展规划》中则指出:到2020年后,生物质固体成型燃料年利用量达到5000万吨。
《生物质成型燃料工业锅炉技术条件》

《生物质成型燃料工业锅炉技术条件》(征求意见稿)编制说明一、工作简况1、任务来源本标准是根据广东省质量技术监督局于2012年9月11日批准的[2012]676号制修订计划“关于批准下达2012年省工业类地方标准制修订计划项目(第一批)的通知”的要求编制。
本标准是由广州迪森热能技术股份有限公司负责主编,广东省质量技术监督局标准化处负责归口。
2、主要工作过程2012年11月22日,主编单位召开首次会议。
会议成立了标准编制小组,并拟定了标准参编单位为广州迪森热能技术股份有限公司、广州迪森热能设备有限公司、广州市特种设备承压检测研究院、衡阳市大成锅炉有限公司。
标准编制小组汇总各参编单位建议,明确分工及制定工作计划。
2013年1月17日,标准编制小组召开第二次会议。
针对标准初稿,编制小组对条款格式、内容等进行了详尽的研讨、反复协商,最后达成了对初稿的修改意见。
2013年7月,经过编制小组的多次修改后,形成本标准的“征求意见稿”。
二、标准编制的原则和主要内容1、标准编制的原则由于生物质成型燃料工业锅炉广泛应用,行业技术水平参差不齐,缺乏相关的标准。
广州迪森热能技术股份有限公司依据多年推广生物质成型燃料工业锅炉的技术沉淀和多方收集业内生物质成型燃料工业锅炉的技术参数,综合分析了生物质成型燃料工业锅炉的技术特点和技术要求,又以结合国内行业目前设计、制造、运行水平等而规范了技术条件,制定了此标准,具有实用性和可操作性,也符合国内外行业发展的需要。
本标准能指导我国生物质成型燃料锅炉的研发、生产和运行,也奠定了我国生物质成型燃料工业锅炉的技术水平。
《标准化工作导则第1部分:标准的结构和编写》给出的规则起草。
统一了标准化对象的名词、术语、规格代号、技术要求及检验规则等。
2、主要内容本标准重点突出生物质成型燃料工业锅炉的技术特点,对燃烧设备的设计参数、锅炉效率、系统的配置提出了明确的要求,该标准适应于额定蒸汽压力大于0.04MPa,但小于3.8MPa,且额定蒸发量不小于0.1t/h以水为介质的固定式钢制蒸汽锅炉和额定出水压力大于或者等于0.1MPa(表压)且额定热功率大于MW的固定式钢制热水锅炉。
生物质燃料工业锅炉政策

生物质燃料工业锅炉政策
生物质燃料工业锅炉政策是指针对生物质燃料工业锅炉的相关政策措施和规定。
生物质燃料工业锅炉是利用生物质作为燃料的热能设备,可以有效地利用可再生的生物质资源,实现绿色环保的能源利用。
政府在制定生物质燃料工业锅炉政策时的目的是促进可再生能源的发展,减少
对传统化石燃料的依赖,降低碳排放和空气污染。
该政策的出台可以在经济、环境和社会领域带来多重影响。
从经济角度来看,生物质燃料工业锅炉政策可以促进相关产业的发展,刺激就
业增长。
政府可以通过提供税收减免、贷款优惠、补贴奖励等方式,吸引投资和技术创新,推动生物质燃料工业锅炉的普及和应用。
从环境角度来看,生物质燃料工业锅炉政策可以减少温室气体排放,改善空气
质量和生态环境。
生物质燃料作为可再生能源,燃烧过程中释放的二氧化碳可以通过植物再生吸收,形成循环利用的生态系统,减少对地球资源的压力。
从社会角度来看,生物质燃料工业锅炉政策可以提高能源供应的多样性,降低
能源价格的波动性。
生物质燃料工业锅炉的建设和运营过程中,需要大量的劳动力和技术人才,可以创造就业机会,促进当地经济的发展。
综上所述,生物质燃料工业锅炉政策的实施能够推动可再生能源的利用,促进
经济发展,改善环境质量,提升社会福利。
政府应该加强对该领域政策的制定和执行,鼓励投资和创新,推动生物质燃料工业锅炉行业的可持续发展。
生物质成型燃料特性及链条炉排锅炉改造技术方案

锅 炉进 行改 造 , 改 善成 型燃 料 的着火 和燃 烧条 件 , 提 高 锅炉 热效 率 , 其 中锅 炉 改造 的 主要 措 施 包 括锅 炉 供 料系 统 、 锅 炉前 拱 、 供 风 系统 和凝 渣管束 等 。
1 生物质成型燃料燃烧 的影响 因素
1 . 1 成 型燃 料的燃 烧特 性
生 物质 成 型燃 料 主要 包 括两 种类 型 : 颗粒 ( p e l -
l e t ) 和压 块 ( b r i q u e t t e ) , 如图 1 、 图 2所 示 。两者 生产
国家 出 台多项政 策 , 鼓 励 和 支 持 发 展 生 物 质 能 转 化
小, 呈 圆柱形 , 直径 为 4~ 6 m m, 长度 为 6~8 m m, 颗 粒密 度 为 1 . 0~1 . 2 t・ m~, 原 料 一般 为 木 材 ; 压块
( 1 . 郑州 大 学化 工与 能源 学 院 , 河 南 郑州 4 5 0 0 0 1 ; 2 .河南科 技 学 院机 电学 院 , 河南 新乡 4 5 3 0 0 3 ; 3 .常 州大 学石 油工 程学 院 , 江苏 常州 2 1 3 0 1 6 )
S t ud y o n t h e Pr o p e r t i e s o f Bi o ma s s Br i q u e t t e a n d t h e Re f o r ma t i o n o f t h e Ch a i n Gr a t e S t o k e r Bo i l e r
技术 , 生物 质成 型燃 料技 术在 我 国取 得长 足进 步 , 生
过程 基 本相 同 , 首 先将 收集 的生 物质 原料粉 碎 , 进行 干燥 处 理后 , 送入 生物 质成 型机 , 在一 定 的压力 条件 下, 利用 机械 压缩 的方 法 , 将 生物 质碎 末压 缩成 具有 规 则外 形 的成 型 燃 料 。颗 粒 状 成 型 燃 料 尺 寸 较
工业锅炉用生物质成型燃料

广东省地方标准DB44/T 1052-2012————————————————工业锅炉用生物质成型燃料Biomass Molded Fuel of Industrial Boiler前言本标准按GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写》的规则进行编制。
本标准负责起草单位:广州市特种承压设备检测研究院。
本标准参加起草单位:广州迪森热能技术股份有限公司,广州迪宝能源技术有限公司。
本标准主要起草人:李茂东、牟乐、马革、叶向荣、陈志刚、张振顶、杜玉辉、郁家清、尹宗杰、陈平、张强、刘安庆、赵军明、周嘉伟、何兆文、上官斌、李榕根。
1 范围本标准规定了工业锅炉用生物质成型燃料的分类与命名、规格及性能指标、检验方法、检验规则、标志、包装、运输和使用管理。
本标准适用于以木屑、刨花、树枝、树皮、竹子、农作物秸秆、花生壳、甘蔗渣等为主要原料生产的生物质成型燃料。
2 规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 213煤的发热量测定方法GB/T 214煤中全硫的测量方法GB/T 3558煤中氯的测定方法GBT 19227煤和焦炭中氮的测定方法半微量蒸汽法NY/T 1879生物质固体成型燃料采样方法NY/T 1880生物质固体成型燃料样品制备方法NY/T 1881.2生物质固体成型燃料试验方法第2部分:全水分NY/T 1881.4生物质固体成型燃料试验方法第4部分:挥发分NY/T 1881.5生物质固体成型燃料试验方法第5部分:灰分NY/T 1881.7生物质固体成型燃料试验方法第7部分:密度3 术语与定义下列术语和定义适用于本标准。
3.1生物质成型燃料biomass molded fuel以草本植物或木本植物为主要原料,经过机械加工成型,具有规则形状的粒状、块状和棒状固体燃料产品。
生物质致密成型燃料

生物质致密成型燃料随着全球能源环境的不断变化和对可再生能源的需求不断增加,生物质致密成型燃料作为一种新型可再生能源,逐渐受到人们的关注和重视。
本文将从生物质致密成型燃料的定义、种类、生产工艺和应用等方面进行详细介绍,以期为读者提供一些有益的参考。
一、生物质致密成型燃料的定义生物质致密成型燃料是指由农林废弃物、能源作物、生活垃圾等可再生生物质经过加工压缩形成的一种固体燃料。
它具有高能量密度、低含水率、易于储运、使用方便等特点,是一种非常理想的替代传统化石燃料的可再生能源。
二、生物质致密成型燃料的种类生物质致密成型燃料可以分为多种类型,主要包括木质燃料、秸秆燃料、草本燃料和生活垃圾燃料等。
1、木质燃料木质燃料是最常见的一种生物质致密成型燃料,主要由木屑、锯末、树枝等木材废料经过加工压缩而成。
它具有高能量密度、燃烧稳定、燃烧产生的烟气少等特点,是一种理想的取暖和发电燃料。
2、秸秆燃料秸秆燃料是一种利用农作物秸秆等废弃物制成的生物质致密成型燃料。
它具有低成本、易获取、减少污染等优点,是一个非常环保和经济的燃料选择。
3、草本燃料草本燃料是一种以草本植物为原料制成的生物质致密成型燃料。
它具有高含水量、易挥发等特点,适合用于烧烤、烧火等场合。
4、生活垃圾燃料生活垃圾燃料是一种以生活垃圾为原料制成的生物质致密成型燃料。
它具有可回收利用、减少垃圾污染等优点,是一种非常环保和经济的燃料选择。
三、生物质致密成型燃料的生产工艺生物质致密成型燃料的生产工艺主要包括原料处理、破碎、干燥、混合、压制和包装等环节。
1、原料处理原料处理是生物质致密成型燃料生产的第一步,主要包括对原料的筛选、去杂、去水等处理。
2、破碎破碎是将原料进行碎化,使其更容易加工成燃料的过程。
常用的破碎设备有颚式破碎机、锤式破碎机等。
3、干燥干燥是将原料中的水分蒸发掉,以便于后续的加工和储存。
常用的干燥设备有热风炉、旋转干燥机等。
4、混合混合是将不同原料进行混合,以达到一定的配比和性能要求。
工业锅炉生物质燃料标准

工业锅炉生物质燃料标准本标准规定了工业锅炉生物质燃料的标准,包括范围、规范性引用文件、术语和定义、分类和编码、原料质量要求、生产工艺要求、质量检验方法、储存和运输要求、环境保护要求和安全生产要求。
范围本标准适用于工业锅炉生物质燃料的制备、检验和使用。
规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
术语和定义本标准采用以下术语和定义:3.1 生物质燃料由可再生有机物质如植物、动物废弃物、农业废物等加工而成的燃料,如生物质颗粒、生物质气化燃气等。
3.2 生物质颗粒由生物质原料经过破碎、干燥、成型等工艺制成的固体颗粒燃料。
3.3 生物质气化燃气由生物质原料经过气化工艺制成的燃气。
分类和编码生物质燃料根据其制备工艺和特性可以分为不同的类别和编码,以方便管理和使用。
原料质量要求生物质燃料的原料应符合相关标准和规定,确保质量和安全。
原料应无杂质、无毒性、无腐蚀性,不含有对人体健康和环境有害的物质。
生产工艺要求生物质燃料的制备应采用安全、环保、经济的生产工艺,确保产品质量和安全。
生产过程中应控制原料的破碎度、含水量、成型压力等参数,并采取有效的环保措施。
质量检验方法生物质燃料的质量应符合相关标准和规定,并进行定期的质量检验。
质量检验应包括外观尺寸、燃烧性能、热值等方面。
具体检验方法应参照相关标准和规定执行。
储存和运输要求生物质燃料在储存和运输过程中应符合相关规定,确保质量和安全。
储存场所应干燥、通风良好,避免阳光直射和高温。
运输过程中应采取防雨、防潮、防尘等措施,确保产品质量不受影响。
燃生物质成型燃料工业锅炉能效指标确定

燃生物质成型燃料工业锅炉能效指标确定摘要:地方标准《燃生物质成型燃料工业锅炉能效限定值》的颁布,将加强福建省生物质能源的合理利用,避免不达标锅炉的投入使用。
阐述了标准制定的依据及原则,对标准的适应范围进行了界定,文中详细阐述了标准中关键技术参数的确定,证实所采用的百分位数统计算法对确定指标参数是有效的。
引言目前,我国已规定燃煤手烧炉需停止生产,以生物质锅炉作为替代产品,以节约不可再生化石燃料的消耗。
《锅炉节能技术监督管理规程》(TSG G0002-2010)附件A规定了燃煤、燃油、燃气锅炉的热效率指标,锅炉定型产品的热效率依据《工业锅炉能效测试与评价规则》(TSG G0003-2010)开展测试后,以附件A规定的值加以判断热效率情况。
而规程同时规定了对附件A未涵盖的锅炉,定型测试热效率结果应当不低于设计值的要求,这就导致出现定型产品的热效率,以生产企业自行规定为准,从而导致不节能产品流入市场,不利于节能产品的开发,而在用工业锅炉定期能效测试结果的判断也无依据来源。
由于燃生物质锅炉测试过程中无标准可依,因此给测试机构的测试工作造成了困难,同时被测试单位也无法获得客观的测试数据。
为了避免生物质锅炉性能水平参差不齐,防止能源浪费,提高生物质燃料的有效利用,因此有必要制定生物质锅炉能效限定值标准,来规范生物质锅炉的整体性能,加强福建省生物质能源的合理利用,使该新型能源的优势得到了充分发挥,从而促进了“节能减排”工作的开展,响应了国家“节能减排”的方针政策。
1标准制定的依据与原则标准目录章节及相关条文内容参照有关锅炉节能、能效指标等国家法规、标准编写,如《工业锅炉能效限定值及能效等级》(GB 24500-2009)、《锅炉节能技术监督管理规程》(TSG G0002-2010)等。
标准中生物质燃料的有关规定采用了福建省地方标准《工业锅炉用生物质成型燃料》(DB44/T 1052-2012)的内容,使之相互对应;标准应充分考虑福建省生物质能源的特征,制定出符合福建省省情的能效标准,使标准具有科学性、先进性和可操作性,真正起到合力利用生物质能源的目的。
生物质成型燃料燃烧特性

生物质成型燃料燃烧特性
生物质成型燃料燃烧属于静态渗透式扩散燃烧。
该燃料在锅炉中的燃烧可分为五个阶段,总时间约为50min。
①生物质成型燃料表面可燃挥发物燃烧,进行可燃气体和氧气的放热化学反应,形成火焰;
②除生物质成型燃料表面可燃挥发物燃烧外,成型燃料表层部分的炭处于过渡燃烧区,形成较长火焰;
③生物质成型燃料表面仍有较少的挥发分燃烧,并且逐渐向成型燃料更深层渗透。
焦炭燃烧产生的CO2、CO 及其它气体向外扩散,CO 不断与O2 结合生成CO2,成型燃料表层生成薄灰壳包围着火焰;
④生物质成型燃料进一步向更深层燃烧,且主要是进行碳燃烧(即C+O2→CO2),在其表面则进行一氧化碳的燃烧(即CO+O2→CO2),形成了较厚的灰壳,由于生物质的燃尽和热膨胀,灰层中呈现微孔组织或空隙通道甚至裂缝,还有较少的短火焰包围着成型块;
⑤燃烬壳不断加厚,可燃物基本燃尽,在没有强烈干扰的情况下,形成整体的灰球,灰球表面几乎看不出火焰,灰球变暗红色,至此完成整个燃烧过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省地方标准DB44/T 1052-2012————————————————工业锅炉用生物质成型燃料Biomass Molded Fuel of Industrial Boiler前言本标准按GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写》的规则进行编制。
本标准负责起草单位:广州市特种承压设备检测研究院。
本标准参加起草单位:广州迪森热能技术股份有限公司,广州迪宝能源技术有限公司。
本标准主要起草人:李茂东、牟乐、马革、叶向荣、陈志刚、张振顶、杜玉辉、郁家清、尹宗杰、陈平、张强、刘安庆、赵军明、周嘉伟、何兆文、上官斌、李榕根。
1 范围本标准规定了工业锅炉用生物质成型燃料的分类与命名、规格及性能指标、检验方法、检验规则、标志、包装、运输和使用管理。
本标准适用于以木屑、刨花、树枝、树皮、竹子、农作物秸秆、花生壳、甘蔗渣等为主要原料生产的生物质成型燃料。
2 规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 213煤的发热量测定方法GB/T 214煤中全硫的测量方法GB/T 3558煤中氯的测定方法GBT 19227煤和焦炭中氮的测定方法半微量蒸汽法NY/T 1879生物质固体成型燃料采样方法NY/T 1880生物质固体成型燃料样品制备方法NY/T 1881.2生物质固体成型燃料试验方法第2部分:全水分NY/T 1881.4生物质固体成型燃料试验方法第4部分:挥发分NY/T 1881.5生物质固体成型燃料试验方法第5部分:灰分NY/T 1881.7生物质固体成型燃料试验方法第7部分:密度3 术语与定义下列术语和定义适用于本标准。
3.1生物质成型燃料biomass molded fuel以草本植物或木本植物为主要原料,经过机械加工成型,具有规则形状的粒状、块状和棒状固体燃料产品。
3.2抗碎强度anti-shatter strength生物质成型燃料在外力作用下保持原形状的能力。
3.3破碎率shatter rate生物质成型燃料中小于规定尺寸的破碎部分质量占测定燃料质量的百分比。
3.4燃料密度density常温下,单体成型燃料的密度。
3.5添加剂additives在生产时加入到燃料中以增强生物质成型燃料性能的其他物质。
4 分类与命名4.1按形状分类生物质成型燃料产品按形状分为颗粒状、块状和棒状。
4.2按使用原料分类生物质成型燃料产品按使用原料分为木木类(包括木材加工后的木屑、刨花、废旧木料、树枝、竹子等)和草本类(包括麦秆、玉米秸秆、大豆秸秆、棉花秸秆、花生壳、稻壳、甘蔗渣等)。
4.3符号生物质成型燃料名称有关名词代号应符合表1和表2的要求。
4.4命名示例:SL12-YM90XMJ0,表示:生物质粒状燃料,直径为12mm,原料成分由90%玉米秸秆和10%棉花秸秆组成,无添加剂。
5 规格及性能指标5.1外形尺寸及密度生物质成型燃料的外形尺寸、密度应符合表3的要求。
5.2抗碎强度和破碎率生物质成型燃料的抗碎强度、破碎率应符合表4的要求。
5.3主要性能指标生物质成型燃料的主要性能指标应符合表5的要求。
5.4添加剂燃料添加剂应无毒、无味、无害,总量不超过2%0 6 检验方法6.1分析样品采集与制备分析样品采样按NY/T 1879的规定执行。
分析样品制备按NY/T 1880的规定执行。
6.2外形尺寸的测定采用标准量具测量,精度不低于0.1mm.6.3密度的测定按NY/T 1881.7的规定执行。
6.4挥发分的测定按NY/T 1881.4的规定执行。
6.5抗碎强度的测定按附录A的规定执行。
6.6破碎率的测定按附录B的规定执行。
6.7全水分的测定按NY/T 1881.2的规定执行。
6.8灰分的测定按NY/T 1881.5的规定执行。
6.9全硫的测定按GB/T 214的规定执行。
6.10氯的测定按GB/T 3558的规定执行。
6.11氮的测定按GB/T 19227的规定执行。
6.12低位发热量的测定按GB/T 213的规定执行。
7 检验规则7.1组批与抽样7.1.1组批以同一原料配方、同一设备、同一生产工艺生产的产品为一批。
7.1.2有包装生物质成型燃料的抽样有包装产品的抽样随机抽取一个完整包装。
7.1.3散装生物质成型燃料的抽样散装产品抽样时,颗粒状燃料按NY/T 1879中规定的方法进行抽样:棒(块)状燃料抽样时,首先在料堆中均匀布置5个抽样点,用采样铲扒开表面20cm深度后抽样,每个抽样点抽取的质量不少于10kg。
将样品混合后分成两份,一份供检验,一份存查。
7.2出厂检验7.2.1产品的出厂检验项目包括单体成型密度、外形尺寸、全水分、氯、氮、灰分、破碎率、抗碎强低位发热量。
7.2.2检验项目有一项不合格时,应对产品加倍复检,复检仍有不合格项日时,则判定该批产品不合格。
8 包装、标志、运输8.1包装8.1.1颗粒状生物质成型燃料应进行包装,宜采用覆膜编织袋、塑料密封袋、覆膜纸箱等具有一定防潮和微量透气能力的包装物进行包装。
8.1.2棒(块)状生物质成型燃料可以散装,也可以包装。
8.1.3散装生物质成型燃料应有质量证明书,质量证明书内容应覆盖本标准所要求的所有性能指标。
8.2标志产品包装应标明产品名称、型号规格、厂名、厂址、净重(含误差允许范围)、执行标准号、储存要求、生产日期以及本标准要求的有关性能指标。
8.3运输运输时,应防潮、防火、避免剧烈碰撞;散装产品应采用密闭运输。
9 使用管理9.1使用单位应建立完善的生物质成型燃料管理制度,对燃料质量要求、采购、验收、使用做出具体规定。
9.2锅炉房应有单独燃料储存点存放生物质成型燃料,储存点应离锅炉房足够的安全距离,贮存场地应干燥、平整、通风、通畅、防火、防潮,不得露天存放,包装产品应码放整齐,散装产品贮存时应注意防尘,保证燃料干燥。
9.3生物质成型燃料在装卸和传输过程中应注意防尘,必要时可安装吸尘、除尘设备。
9.4使用单位应自行或委托第三方检验机构对每批采购的燃料进行质量检验以保证锅炉使用燃料性能指标符合本标准要求。
附录A(规范性附录)抗碎强度测定方法A.1方法提要将生物质成型燃料置于软包装袋内,从2m高处自由落下到规定厚度的钢板或硬化后的地面上,共落下5次,测量粒度大于3mm或15mm的生物质成型燃料占原样品的质量百分数,表示生物质成型燃料的抗碎强度。
测定抗碎强度应进行两次平行试验,两次平行试验的相对误差不超过10%,取两次的平均值作为测定结果,结果精确到小数点后一位。
A.2仪器、设备:a)台秤:最大称量2kg,感量0.1g;b)3mm的圆孔筛和15mm方孔筛;c)2m刻度尺;d)钢板:厚度不小于15mm,长不小于1200mm,宽不小于900mm;e)能装不小于1kg生物质成型燃料的布袋或尼龙袋;f)长约200mm扎袋绳。
A.3测定步骤A.3.1称500g完好的生物质成型燃料Mn(若样品总长大于100mm时要先将其截断到100mm内),装入袋内,排除空气,扎紧袋口。
用刻度尺量出2m的高度,让装有样品的袋子从此高度自由落下到钢板或硬化的水泥地面上,连续落下5次。
A.3.2解开扎袋绳,将样品倒入筛内(粒状采用3mm圆孔筛,棒(块)状采用15mm方孔筛),经过筛分后,称量筛上物质的质量。
A.4测定结果计算A.4.1按下式计算颗粒状生物质成型燃料的抗碎强度式中:A S+3——颗粒状生物质成型燃料粒抗碎强度,%;M+3——大于3mm颗粒状生物质成型燃料的质量,g;M0——装袋时颗粒状生物质成型燃料的质量,g。
A.4.2按下式计算棒(块)状生物质成型燃料的抗碎强度式中:A s+15——棒(块)状生物质成型燃料抗碎强度,%;M+15——大于15mm的棒(块)状生物质成型燃料的质量,g;M0装袋时棒(块)状生物质成型燃料的质量,g。
附录B(规范性附录)破碎率测定方法B.1方法提要通过测量一个生物质成型燃料的包装单位中小于规定尺寸的样品质量分数,为生物质燃料的破碎率。
破碎率测定应进行两次平行试验,两次平行试验的相对误差不超过10%,取两次的平均值作为测定结果,结果精确到小数点后两位。
B.2仪器、设备a)磅秤:最大称量50kg,感量50g。
台秤:最大量程量10kg,感量5g;b)3mm圆孔筛和15mm方孔筛;c)铁板:厚度不低于3mm;长2000mm;宽1200mm;d)毛刷。
B.3测定步骤选定生物质成型燃料一个完整包装,在磅秤上称重后打开包装,将里面的燃料倒在铁板上,用台秤称包装物的质量,铁板上燃料经3mm圆孔筛(或15mm用方孔筛)充分过滤后,称筛下物质的质量。
B.4测定结果计算B.4.1按下列公式计算颗粒状生物质燃料的破碎率式中:S R-3——颗粒状生物质成型燃料的破碎率,%;M-3——小于3mm的颗粒状生物质成型燃料的质量,kg;M0——含包装的颗粒状生物质成型燃料的质量,kg;M1——包装物的质量,kg.B.4.2按下列公式一计算棒(块)状生物质成型燃料的破碎率式中:S R-15——棒(块)状生物质成型燃料的破碎率,%;M-15——小于15mm棒(块)状生物质成型燃料的质量,kg;M0——含包装的棒(块)状生物质成型燃料的质量,kg;M1——包装物的质量,kg.。