第三讲函数专题归纳【精选】

合集下载

第三讲 函数的奇偶性(教师版)

第三讲 函数的奇偶性(教师版)

第三讲函数的奇偶性1.奇、偶函数的概念一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.奇函数的图象关于原点对称;偶函数的图象关于y轴对称.2.奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(2)在公共定义域内①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数,一个偶函数的积是奇函数.3.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.一条规律奇、偶函数的定义域关于原点对称.函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.两个性质(1)若奇函数f(x)在x=0处有定义,则f(0)=0.(2)设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.三种方法判断函数的奇偶性,一般有三种方法:(1)定义法;(2)图象法;(3)性质法.三条结论(1)若对于R上的任意的x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.(2)若对于R上的任意x都有f(2a-x)=f(x),且f(2b-x)=f(x)(其中a<b),则:y=f(x)是以2(b -a )为周期的周期函数.(3)若f (x +a )=-f (x )或f (x +a )=1f (x )或f (x +a )=-1f (x ),那么函数f (x )是周期函数,其中一个周期为T =2a ;(3)若f (x +a )=f (x +b )(a ≠b ),那么函数f (x )是周期函数,其中一个周期为T =2|a -b |.1.(课本改编题)已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________.2.(课本改编题)下列函数中,所有奇函数的序号是________.①f (x )=2x 4+3x 2;②f (x )=x 3-2x ;③f (x )=x 2+1x ;④f (x )=x 3+1.3.(2011·广东)设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.4.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________.5.定义在R 上的函数y =f (x )是奇函数,且满足f (1+x )=f (1-x ).当x ∈[-1,1]时,f (x )=x 3,则f (2 013)的值是( )A .-1B .0C .1D .26.(2011·全国)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=( ). A.-12 B.-14 C.14 D.127.(2012·福州一中月考)f (x )=1x -x 的图象关于( ).A .y 轴对称B .直线y =-x 对C .坐标原点对称D .直线y =x 对称8.(2011·广东)设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ).A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C .|f (x )|+g (x )是偶函数D .|f (x )|-g (x )是奇函数10.(2011·浙江)若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解析 法一 ∵f (-x )=f (x )对于x ∈R 恒成立,∴|-x +a |=|x +a |对于x ∈R 恒成立,两边平方整理得ax =0对于x ∈R 恒成立,故a =0. 法二 由f (-1)=f (1), 得|a -1|=|a +1|,得a =0. 答案011.(2005年北京西城区模拟题)定义在R 上的奇函数f (x )在(0,+∞)上是增函数,又f (-3)=0,则不等式xf (x )<0的解集为 A.(-3,0)∪(0,3) B.(-∞,-3)∪(3,+∞) C.(-3,0)∪(3,+∞) D.(-∞,-3)∪(0,3)解析:由奇偶性和单调性的关系结合图象来解. 答案:A12.定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )单调递减,若g (1-m )<g (m ),求m 的取值范围________.解:由g (1-m )<g (m )及g (x )为偶函数,可得g (|1-m |)<g (|m |).又g (x )在(0,+∞)上单调递减,∴|1-m |>|m |,且|1-m |≤2,|m |≤2,解得-1≤m <21.题型一 函数奇偶性的判断及奇偶性质的运用 例1 判断下列函数的奇偶性.(1)f (x )=9-x 2+x 2-9; (2)f (x )=(x +1)1-x 1+x ; (3)f (x )=4-x 2|x +3|-3. 探究提高 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域对解决问题是有利的;(2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数))是否成立. 分段函数指在定义域的不同子集有不同对应关系的函数,分段函数奇偶性的判断,要分别从x >0或x <0来寻找等式f (-x )=f (x )或f (-x )=-f (x )成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.判断下列函数的奇偶性.(1)f (x )=lg 1-x 1+x ;(2)f (x )=(x -1) 2+x2-x;(3)f (x )={ x 2+x (x >0), x 2-x (x <0);(4)f (x )=lg (1-x 2)|x 2-2|-2.例2已知函数1222)(+-+⋅=xx a a x f 是定义在实数集上的奇函数,求函数的解析式。

高中数学提升专题第三讲:函数的奇偶性和周期性

高中数学提升专题第三讲:函数的奇偶性和周期性

高中数学提升专题第三讲:函数的奇偶性和周期性一、知识储备1.函数的奇偶性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.【知识拓展】1.如果一个奇函数f (x )在原点处有定义,即f (0)有意义,那么一定有f (0)=0.2.如果函数f (x )是偶函数,那么f (x )=f (|x |).3.对f (x )定义域内任一自变量的值x :(1)若f (x +a )=-f (x ),则T =2a ;(2)若f (x +a )=1f (x ),则T =2a . 4.对称性的三个常用结论(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称;(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称;(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.二、知识导学题型一 判断函数的奇偶性例1 判断下列函数的奇偶性:(1)f (x )=x 3-x ;(2)f (x )=(x +1)1-x 1+x ; (3)f (x )=⎩⎪⎨⎪⎧ x 2+x , x <0,-x 2+x , x >0.例2(1)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )的奇偶性是( )A .F (x )是奇函数,G (x )是奇函数B .F (x )是偶函数,G (x )是奇函数C .F (x )是偶函数,G (x )是偶函数D .F (x )是奇函数,G (x )是偶函数题型二 函数的周期性例2 (1)定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 017)=________.(2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.题型三 函数性质的综合应用例3 (1)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)等于( )A .-3B .-1C .1D .3(2)(2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.例4 (1)(2015·石家庄一模)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( ) A .(-1,4) B .(-2,0)C .(-1,0)D .(-1,2)(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)[方法与技巧]1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.利用函数奇偶性可以解决以下问题①求函数值;②求解析式;③求函数解析式中参数的值;④画函数图象,确定函数单调性.3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用.[失误与防范]1.f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.应用时要注意函数的定义域并进行检验.2.判断分段函数的奇偶性时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域的奇偶性.三、练出高分1.下列函数中,既是偶函数又在区间(1,2)上单调递增的是( )A .y =log 2|x |B .y =cos 2xC .y =2x -2-x 2D .y =log 22-x 2+x2.已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12等于( ) A .-1 B .0 C .1 D .23.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)等于( )A .-2B .2C .-98D .984.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( ) A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)5.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)6.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________.7.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是____________________.8.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝ ⎛⎭⎪⎫12+f (1)+f ⎝ ⎛⎭⎪⎫32+f (2)+f ⎝ ⎛⎭⎪⎫52=________. 9.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 016).11.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.。

微积分第三讲函数的连续性

微积分第三讲函数的连续性

第三讲函数的连续性(The Continuity of function )阅读:第二章2.4pp.44pp.44——50,预习:第三章3.1pp.51pp.51——58,练习pp49--50习题 2.4:1至8;9,(1),(2),(3);10,(1),(3);14;15.作业pp49--50习题 2.4:9,(4);10,(2);11;12;13.2-4函数连续的定义及其性质2-4-1函数连续性的定义(1)定义:函数的连续性描述函数)(x f y =的渐变性态,在通常意义下,我们对函数连续性有三种描述:其一,当自变量x 有微小变化时,其函数y 的变化也是微小的;其二,自变量x 的微小变化不会引起因变量y 跳跃;其三,从几何上理解,连续函数的图形可以一笔画成,无间断.以上只是连续性的直观理解,实质上是相意的反复,在数学上要确切地刻画函数连续性概念,必须用极限作定量地描述:定义1:设函数f 在0x 的某邻域中有定义,若)()(lim 00x f x f x x =→,则称函数f 在点0x 连续,0x 称为是f 的一个连续点;否则就称f 在点0x 间断,0x 称为是f 的一个间断点.注一:函数f 在点x 0连续蕴含以下三个条件,缺一不可:(1)f 在x 0的某邻域有定义;(2)f 在点x 0的极限存在;(3)极限值等于函数值。

以上三条中带本质性的是第二条极限的存在性。

注二:函数f 在点x 0连续意味着极限运算与函数运算可交换,即)()lim ()(lim 000x f x f x f x x x x ==→→定义2:设函数f 在],(0x a 有定义,且)()(lim 00x f x f x x =−→,则称函数f 在点x 0左连续;设函数f 在),[0b x 有定义,且)()(lim 00x f x f x x =+→,则称函数f 在点x 0右连续.定义3:如果函数f 在开区间),(b a 中每一个点都连续,则称f 在),(b a 连续,记作),(b a C f ∈;如果函数f 在),(b a 连续,并且在点a 右连续、在点b 左连续,称f 在闭区间],[b a 上连续,记作],[b a C f ∈.(2)间断点分类:根据间断点的不同情况,可以将间断点分成以下三类:1可去间断点:若)(lim 0x f x x →存在,但不等于)(0x f ,称0x 是f 的可去间断点。

第三讲:函数的单调性

第三讲:函数的单调性

第三讲:函数单调性与应用一.知识点梳理 1. 函数单调性的定义(1) 一般地,对于给定区间上的函数f(x),如果对于属于这个区间的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2)(或都有f(x 1)>f(x 2)),那么就说f(x)在这个区间上是单调增函数(或单调减函数).(2) 如果函数y=f(x)在某个区间上是单调增函数(或单调减函数),那么就说f(x)在这个区间上具有(严格的)单调性,这个区间叫作f(x)的单调区间.若函数是单调增函数,则称该区间为单调增区间;若函数为单调减函数,则称该区间为单调减区间. 2. 复合函数的单调性对于函数y=f(u)和u=g(x),如果当x ∈(a,b)时,u ∈(m,n),且u=g(x)在区间(a,b)上和y=f(u)在区间(m,n)上同时具有单调性,则复合函数y=f[g(x)]在区间(a,b)上具有单调性,并且具有这样的规律:同增异减(即内外函数的单调性相同则为增 ,内外函数的单调性相反则为减) 3.和函数的单调性 同增为增,同减为减,不同步不确定。

4. 积函数的单调性 (1) 同增同正,得增;(2) 同增同负,得减;(3) 同减同正,得减;(4) 同减同负,得增; (5) 一增一减,一正一负,单调性与原函数中函数值为负的函数相同; (6) 其余情况,可增可减,亦可为常数函数.5. 求函数单调区间或证明函数单调性的方法:(1) 函数单调性的定义法; (2) 函数的图象法; (3) 导函数法;(4)利用已知函数的单调性法 二.考点突破 1.函数单调性的判断例1:判断下列函数在区间(0,2)上的单调性:(1) y=-x+1; (2) y=; (3) y=x 2-2x+5; (4) y=2x .例2:设函数()f x =()f x 的单调性;例3:求下列函数的增单调区间(1)2()(3),(1))x f x x e x =-⋅∈-⋃+∞; (2)22()log (1)(2)f x x x x =+++变式:1. 函数f(x)=x 2-2x 的单调增区间为 . 2.给定下列函数:①y=12x ;②12log (1)y x =+;③y=-|x-1|;④y=2x+1.其中在区间(0,1)上单调递减的函数是 .(填序号)3.求函数f(x)=ln(4+3x-x 2)的单调减区间是 .4.求函数2()23f x x x =-++的单调增区间5.若函数1,0()0,01,0x f x x x >⎧⎪==⎨⎪-<⎩,2()()g x x f x =⋅,求函数()g x 的单调减区间6.已知函数f(x)= 是(-∞,+∞)上的单调减函数,那么实数a 的取值范围是 。

第3讲函数的表示方法

第3讲函数的表示方法

问题研究
求函数解析式通常有哪些方法?
典型例题1
例1 分别根据下列条件,求函数f(x)的解析式:
⑴已知 f ( x 1) x 2 x ;
⑵已知 f ( x)是一次函数,且f f x 9x 8; ⑶已知 3 f x 2 f x 2x 5; ⑷已知 f 0 0,且对任意x,y R,有
例2
已知函数
f
( x)满足:f

x

1 x


x2
1, x2
求函数 f ( x)的解析式.

配方,得f

x

1 x



x

1 x
2
-2,
f ( x) x2 -2.
错!
思考1 解题是否就此结束?
定义域!
思考2 函数定义域是{x∈R︱x≠0},对吗?
求解过程
x 0且x 1.
1
-1 O 1
x
回顾反思
(1)求解步骤:
①确定函数的定义域;
y
②化简函数的解析式;
③作出函数的图象. (2)思维误区:
1
-1 O 1
x
①不会化简,无从下手;
②范围有误,图象失真;
③忽视细节,作图粗糙.
思路分析
例3 画出下列函数的图象:(2) y x 1 x 2 .
①×3- ②×2,解得 f(x)=2x+1.
回顾反思
(1)基本策略:解方程组,实施消元. (2)数学思想:函数与方程思想. (3)思维障碍:无法找到另一个方程,思维受阻.
思路分析
例1 ⑷已知f(0) =1,且对任意x,y∈R,有 f(x-y)=f(x)-y(2x-y+1),求f(x). 赋值法!

高考数学一轮复习第三章第三讲两角和与差及二倍角的三角函数公式课件

高考数学一轮复习第三章第三讲两角和与差及二倍角的三角函数公式课件

3sin 17°=12.
②解:因为 tan 60°=tan(25°+35°)=1t-ant2an5°2+5°ttaann3355°°= 3,
则原式= 3(1-tan 25°tan 35°)+ 3tan 25°·tan 35°= 3.
考向 2 公式的变形
[例
3](1)存在角
θ,已知
(1+sin θ∈(0,π),则
答案:12
【题后反思】公式的一些常用变形
①1±sin α=sin
α 2±cos
α22;
②sin 2α=s2ins2inα+αccoossα2α=ta2nt2aαn+α 1;
③cos2α=ccooss22αα+-ssiinn22αα=11+-ttaann22αα;
④tanα±tan β=tan (α±β)(1∓tan αtan β). ⑤sin αcos β=21[sin (α+β)+sin (α-β)]; sin αsin β=12[cos (α-β)-cos (α+β)]; cos αcos β=12[cos (α-β)+cos (α+β)];
【变式训练】
1.(2022 年全国Ⅱ卷)若 sin (α+β)+cos (α+β)=2 2cos α+π4sin β,
Байду номын сангаас则( )
A.tan(α-β)=1
B.tan(α+β)=1
C.tan(α-β)=-1
D.tan(α+β)=-1
解析:由题意可得,sin αcos β+cos αsin β+cos αcos β-sin αsin β
答案:B
(2)(2023 年宿迁市校级月考)计算下列各式的值:
①2sin
47°- 2cos
3sin 17°

第3讲(学生)一次函数的图象和性质讲义

第3讲(学生)一次函数的图象和性质讲义

第3讲(学生)一次函数的图象和性质讲义编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(第3讲(学生)一次函数的图象和性质讲义)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为第3讲(学生)一次函数的图象和性质讲义的全部内容。

第3讲一次函数的图象和性质(1)学习目标:学会用图表描述变量的变化规律,会准确地画出函数图象,结合函数图象,能体会出函数的变化情况学习重点:函数的图象学习难点:函数图象的画法学习过程引入:信息1:下图是一张心电图,信息2:下图是自动测温仪记录的图象,他反映了北京的春季某天气温T如何随时间的变化二变化,你从图象中得到了什么信息?问题:正方形的边长x与面积S的函数关系为S=x2,你能想到更直观地表示S与x 的关系的方法吗?一般地,对于一个函数,如果把自变量与函数的每对对应诃子分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象(graph).•已经知道了形如y=•kx•(k•是常数, k ≠0 )的函数,•叫做正比例函数,其中k 叫做比例系数.那么正比例函数的图象有什么特征呢?范例:例1.画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.1.y=2x 2.y=—2x2.y=列表表示几组对应值:y3.两个图象的共同点:都是经过原点的直线.不同点:函数y=2x 的图象从左向右呈上升状态,即随着x 的增大y 也增大;经过第一、三象限.函数y=—2x 的图象从左向右呈下降状态,即随x 增大y 反而减小;•经过第二、四象限. 1比较可以看出:两个图象都是经过原点的直线.函数y=x•的图象从左向右上升,经过一、三象限,即随x增大y也增大;函数y=—x•的图象从左向右下降,经过二、四象限,即随x增大y反而减小.归纳:正比例函数图象的规律:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.•当x〉0时,图象经过一、三象限,从左向右上升,即随x的增大y也增大;当k〈0时,•图象经过二、四象限,从左向右下降,即随x增大y反而减小.正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,•我们可以称它为直线y=kx.思考:经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,•怎样画最简单?为什么?经过原点与点(1,k)的直线是函数y=kx的图象.画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k).因为两点可以确定一条直线.Ⅲ.练习用你认为最简单的方法画出下列函数图象:1.y=x 2.y=-3x练习1、某函数具有下面的性质:(1).它的图象是经过原点的一条直线.(2).y随x增大反而减小.121232请你举出一个满足上述条件的函数,写出解析式,画出图象.2。

第三讲 函数极限

第三讲  函数极限

x
x x+
证明:Q xf (x) 1 xf (x) xf (x)
当x 0时,有f (x) 1 xf (x) f (x)
xx
而 lim f (x) lim ( f (x) 1) a
x
x
x
xf (x)
lim
a
x x
第三讲 一元函数的极限
6、利用等价无穷小
例 3.9 设 lim f (x) (为常数),
2、利用四则运算法则
例 3.3 求 lim x x x3-
解: 当 2 x 3时, x x x 2
lim x 2 3 2 1
原式 x3
第三讲 一元函数的极限
例 3.4 设二次方程式 ax2 bx c 0 的系数 a 趋于 0 系数 b 与 c 为常数,且 b c ,试研究此二次方程式之二根 x1 与 x2 的性质
xx0
xx0
①若 U 0 x0; , 使 x U 0 x0; 时,有 f x gx,则 A B
②若 A B ,则 0, 当 x U 0 x0; 时,有 f x gx
(5)迫敛性 (6)四则运算法则
第三讲 一元函数的极限
(7)复合函数的极限
设函数
f
u

U
0
u
0
内有定义,且
lim
u u0
x ~ ln1 x ~ ex 1 ,1- cosx ~ x2
2
1 x 1 ~ x , ax 1 ~ x ln a 等
第三讲 一元函数的极限
4、函数极限存在的条件
(1) lim xx0
f x
A
lim
xx0
f x
lim
xx0

第三讲 函数的奇偶性与对称性 教学及辅导讲义(最新修订版)

第三讲 函数的奇偶性与对称性 教学及辅导讲义(最新修订版)

第三讲 函数的奇偶性与对称性【知识清单】1.判断函数的奇偶性(1)函数的定义域要关于原点对称;(2)化简解析式,(3)根据f (-x )与f (x )的关系作出判断. 2.奇偶性类型:(1)奇函数(2)偶函数(3)即是奇函数也是偶函数(4)非奇非偶函数3.奇函数性质 (1)奇函数图像关于原点对称(2)若f (x )是奇函数且在x=0处有意义则(0)0f =4.偶函数性质 (1)偶函数图像关于y 轴对称(2)若函数f (x )是偶函数,则()()f x f x =5.分段函数奇偶性的判断(1)分类讨论:要分别从x >0或x <0来寻找等式f (-x )=f (x )或f (-x )=-f (x )成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性. (2)数形结合法[例1-1] (1)若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数(2)下列函数:①f (x )=1-x 2+x 2-1;②f (x )=x 3-x ;③f (x )=(x +1) 1-x1+x;④f (x )=ln(x +x 2+1)其中奇函数的________.【互动探究】若将本例(2)中①对应的函数改为“f (x )=1-x +x -1”,试判断其奇偶性.【1-2】 判断下列各函数的奇偶性:(1)f (x )=lg (1-x 2)|x -2|-2; (2)f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x ,x >0.[例2-1] (1)已知f (x )g (1)等于( )A .4B .3C .2D .1(2)已知函数f (x )=ax 3+b x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))=( ) A .-5 B .-1 C .3 D .4(3)函数y =f (x )是R 上偶函数,且在(-∞,0]上是减函数,若f (a )≥f (2),则a 的取值范围是________.【互动探究】若本例(3)中的f (x )为奇函数,求实数a 的取值范围.【变式训练2-2】若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x -e -x B.12(e x +e -x ) C.12(e -x -e x ) D.12(e x -e -x )【变式训练2-3】设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( )A .-3B .-1C .1D .3【方法总结】1. 若对于R 上的任意x 都有f (a +x )=f (b-x )成立,则y =f (x )的图象关于直线2a bx +=对称. 2. 对于函数y =f (x ),则y =f (a +x )与 y =f (b-x )关于直线2b ax -=成立 [例3-1] 函数()f x 关于直线2x =-对称,且f (x +2)=f (x ),当[3,2]x ∈--时,2()(2)f x x =+,则5()2f = ( ) A .0 B .14 C .116D .1【通关指南】 对函数性质综合应用的考查主要有以下几个命题角度:(1)单调性与奇偶性相结合;(2) 单调性、奇偶性与周期性相结[例4-1] (1)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A .y =1xB .y =e -x C .y =-x 2+1 D .y =lg|x |(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)(3)设函数f (x )是定义在R 上的偶函数且f (x +2)=f (x ),当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=________.【通关训练】1.f (x )是满足 f (x +4)=f (x )的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( )A .(1,3) B .(-1,1) C .(-1,0)∪(1,3) D .(-1,0)∪(0,1) 2.已知函数f (x +1)是定义在R 上的奇函数,若对于任意给定的不相等实数x 1、x 2, 不等式(x 1-x 2)·[f (x 1)-f (x 2)]<0恒成立,则不等式f (1-x )<0的解集为________. 【易错警惕】【易错题4-2】若函数f (x )=k -2x1+k ·2x 在定义域上为奇函数,则实数k =________.A 级 基础巩固练1.下面四个命题:①偶函数的图象一定与y 轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数一定是f (x )=0(x ∈R).其中正确命题有( ) A .1个 B .2个 C .3个 D .4个2.设函数f (x ),g (x )的定义域都为R ,且ƒ(x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数 B.||f (x )g (x )是奇函数 C .f (x )||g (x )是奇函数 D.||f (x )g(x )是奇函数3.已知函数f (x )的定义域为(3-2a ,a +1),且f (x +1)为偶函数,则实数a 的值为( )A.23B.2 C .4 D.64.设f (x )是定义在R 上的奇函数,且y =f (x )的图像关于直线x =13对称,则f ⎝⎛⎭⎫-23=( ) A .0 B.1 C .-1 D.25.已知f (x )是定义在R 上的奇函数,对任意x ∈R ,都有f (x +4)=f (x ),若f (-2)=2,则f (2 014)等于( )A .2 012 B.2 C .2 013 D.-26.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),则实数m 的取值范围____.7.若函数f (x )、g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有( )A .f (2)<f (3)<g (0)B .g (0)<f (3)<f (2)C .f (2)<g (0)<f (3)D .g (0)<f (2)<f (3)8.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x ,x ≥0,x 2-2x ,x <0,若f (a )-f (-a )≤2f (1),则a 的取值范围是( )A .[1,+∞) B.(-∞,1] C .[-1,1] D.[-2,2]9.已知y =f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-4x ,则x <0时,f (x )解析式为________.10.已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是__________.11.已知集合M 是满足下列条件的函数f (x )的全体:(1)f (x )既不是奇函数也不是偶函数;(2)方程f (x )=0有实根.那么在函数①f (x )=|x |-1,②f (x )=2x -1,③f (x )=⎩⎪⎨⎪⎧x -2,x >0,0,x =0,x +2,x <0,④f (x )=x 2-x -1+ln x 中,属于M 的有________.12.函数f (x )的定义域D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明.13.设f (x )是定义域为R 的周期函数,对任意x ∈R ,都有f (x +2)=f (x ),且f (1+x )=f (1-x ),当-1≤x ≤0时,f (x )=-x .(1)判定f (x )的奇偶性;(2)试求出函数f (x )在区间[-1,2]上的表达式.B 级 能力提升练14.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,11()2xf x -⎛⎫= ⎪⎝⎭,则:①函数f (x )在(1,2)上_____,在(2,3)上_____.15.若函数(21)1()1a x f x x ++=++为奇函数,则a =________.16.已知函数)(x f 对任意R x ∈都有)2(2)()4(f x f x f =-+,若)1(-=x f y 的图象关于1=x 对称,且2)1(=f ,则=)2013(f ( )A 、2 B 、3 C 、4 D 、617.已知定义在R 上的函数y =f (x )在区间(-∞,a )上是增函数,且函数y =f (x +a )是偶函数,当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,有( )A .f (x 1)>f (x 2)B .f (x 1)≥f (x 2)C .f (x 1)<f (x 2)D .f (x 1)≤f (x 2)18.下列函数中,与函数f (x )=e x -e -x3的奇偶性、单调性均相同的是( )A .y =ln(x +x 2+1)B .y =x 2C .1y x=D .y =e x19.已知函数y =f (2x )+x 是偶函数,且f (2)=1,则f (-2)=( )A .2 B .3 C .4 D .520.定义在R 上的偶函数()f x 满足:(4)(2)0f f =-=,在区间(,3)-∞-与[]3,0-上分别递增和递减,则不等式()0xf x >的解集为( ) A .(,4)(4,)-∞-+∞ B .(4,2)(2,4)--C .(,4)(2,0)-∞--D .(,4)(2,0)(2,4)-∞--21.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.22.已知f (x )为奇函数,且当x <0时f (x )=x 2+3x +2.若当x ∈[1,3]时,n ≤f (x )≤m 恒成立,求m -n 的最小值.23.已知函数f (x )=x 2+|x -a |+1,a ∈R.(1)试判断f (x )的奇偶性; (2)若-12≤a ≤12,求f (x )的最小值.24.已知函数()y f x =在定义域[-1,1]上既是奇函数,又是减函数.(1)求证:对任意x 1,x 2∈[-1,1],有[f (x 1)+f (x 2)]·(x 1+x 2)≤0; (2)若2(1)(1)0f a f a -+-<,求实数a 的取值范围.。

高考数学热点必会题型第3讲-函数与方程和零点问题与嵌套函数(解析版)

高考数学热点必会题型第3讲-函数与方程和零点问题与嵌套函数(解析版)

高考数学热点必会题型第3讲 函数与方程和零点问题与嵌套函数 ——每天30分钟7天轻松掌握一、重点题型目录【题型】一、零点存在定理法判断函数零点所在区间 【题型】二、方程法判断函数零点个数 【题型】三、数形结合法判断函数零点个数 【题型】四、转化法判断函数零点个数 【题型】五、利用函数的零点或方程有根求参数 【题型】六、利用函数的交点或交点个数求参数 【题型】七、一元二次不等式恒成立问题 【题型】八、一元二次不等式能成立问题 二、题型讲解总结第一天学习及训练【题型】一、零点存在定理法判断函数零点所在区间 例1.(2023·全国·高三专题练习)函数()2ln 1f x x x =--的零点所在的区间是( ) A .()1,2 B .()2,3C .()3,4D .()4,5【答案】B【分析】利用零点存在性定理求解即可【详解】函数()2ln 1f x x x =--在()1,+∞ 上单调递增,且在()1,+∞上连续. 因为()22ln 2ln 22021f =-=-<-,()23ln 3ln 31031f =-=->-, 所以()()230f f <,所以函数的零点所在的区间是()2,3. 故选:B例2.(2023·全国·高三专题练习)已知函数()f x 的定义域为(0,)+∞,对任意,()0x ∈+∞,都有()2()log 20f f x x -=.现已知()()17f a f a +'=,那么( ) A .(1,1.5)a ∈ B .(1.5,2)a ∈C .(2,2.5)a ∈D .(2.5,3)a ∈【答案】D【分析】先由()2()log 20f f x x -=求出2()16log f x x =+,再由()()17f a f a +'=得到21log 10ln 2a a --=,结合单调性和零点存在定理进行判断即可. 【详解】不妨设2()log f x x m -=,则()20f m =,所以2log 2016m m m +=⇒=,得2()16log f x x =+,1()ln 2f x x '=, 因为()()17f a f a +'=,所以21log 10ln 2a a --=.令21()log 1ln 2g a a a =--,易得()g a 在(0,)+∞上单调递增,因为227ln118(3)log 3103ln 23ln 2g -=--=>,52531255ln 2ln 25ln 21ln 42410244(2.5)log 2.5102.5ln 25ln 25ln 25ln 25ln 2g ⎛⎫--- ⎪-⎝⎭=--===<<, 由零点存在定理知:(2.5,3)a ∈. 故选:D .例3.(2023·全国·高三专题练习)已知()=ln f x x ,()e xg x =,若()()f s g t =,则当s t-取得最小值时,()g t 所在区间是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,e 2⎛⎫ ⎪⎝⎭C .()ln 2,1D .1,ln 22⎛⎫ ⎪⎝⎭【答案】D【分析】由已知条件构造函数()e ln ah a a =-,利用导数求出最值,由零点存在性定理验证001e 0a a -=的根的范围即可. 【详解】令()()f s g t a ==,即e ln 0t s a ==>, ∴ln t a =,e a s =, ∴e ln (0)a s t a a -=->,令()e ln ah a a =-,则()1e a h a a'=-,令()1e a m a a =-,则()21e a m a a '=+,∴()m a 在()0,∞+上单调递增,且()1e 10m =->,1202m ⎛⎫=< ⎪⎝⎭∴存在唯一0a a =使得()0h a '=,当00a a <<时,1e a a <, ()0h a '<,当0a a >时,1e aa>, ()0h a '>,∴()0()min h h a a =,即s t -取得最小值时,0()f s a a ==,由零点的存在定理验证01e 0aa -=的根的范围,当012a =时,001e 0a a -<,当0ln2a =时,001e 0aa ->,故01(,ln 2)2a ∈, 故选:D .例4.(2023·全国·高三专题练习)已知函数()()2e 0-=->x af x x a 有两个极值点1x 和2x ,且12x x <,则下列结论正确的是( ) A .101x << B .2101xx e << C .()101f x << D .()1ln 2,a ∈-+∞【答案】ACD 【分析】函数()()2e0-=->x af x x a 有两个极值点1x 和2x ,令()0f x '=,则e2e =xa x判断函数()e x g x x =的单调性,由题知()e xg x x=与2e =a y 有两个交点,借助图像求出a 的取值范围,判断D ;再根据零点存在性定理判断A ;又根据11e 2-=x ax ,求出()1f x 的取值范围,判断C ;由()()1200f x f x ⎧'=='⎪⎨⎪⎩,得2112e e x xx x =,由于101x <<,21x >,所以12e 1>x x ,从而判断B.【详解】已知()2e -=-x a f x x ,则()e 2-'=-x af x x ,令()0f x '=,则e2e =xa x考虑函数()e xg x x =,则()()2e 1x x g x x-'=, 当(),0x ∈-∞时,()0g x '<,即()g x 在(),0∞-上单调递减; 当()0,1x ∈时,()0g x '<,即()g x 在()0,1上单调递减; 当()1,x ∈+∞时,()0g x '>,即()g x 在()1,+∞上单调递增; 故()g x 的图象大致如图:依题意,若()f x 有两个极值点,则2e e >a ,即1ln 2a >-,因此选项D 正确; 由图易知,101x <<,21x >,故选项A 正确; 又11e 2-=x ax ,故()()122211111e 211-=-=-=--x a f x x x x x ,因为101x <<,所以()101f x <<,故选项C 正确; 因为()()1200f x f x ⎧'=='⎪⎨⎪⎩,即1212e 2e 2x a x a x x --⎧=⎨=⎩,故1212e e =x x x x ,即2112e e x xx x =. 由于101x <<,21x >,所以12e 1>x x ,从而21e 1>xx ,故选项B 错误.故答案为:ACD.【题型】二、方程法判断函数零点个数例5.(2023·全国·高三专题练习)关于函数()ln ||ln |2|f x x x =+-有下述四个结论: ①()f x 的图象关于直线1x =对称 ②()f x 在区间(2,)+∞单调递减 ③()f x 的极大值为0 ④()f x 有3个零点 其中所有正确结论的编号为( ) A .①③ B .①④C .②③④D .①③④【答案】D【分析】根据给定函数,计算(2)-f x 判断①;探讨()f x 在(2,)+∞上单调性判断②;探讨()f x在(0,1)和(1,2)上单调性判断③;求出()f x 的零点判断④作答.【详解】函数()ln ||ln |2|f x x x =+-的定义域为(,0)(0,2)(2,)-∞⋃⋃+∞, 对于①,(,0)(0,2)(2,)x ∈-∞⋃⋃+∞,则2(,0)(0,2)(2,)x -∈-∞⋃⋃+∞, (2)ln |2|ln ||()f x x x f x -=-+=,()f x 的图象关于直线1x =对称,①正确;对于②,当2x >时,()ln ln(2)f x x x =+-,()f x 在(2,)+∞单调递增,②不正确; 对于③,当0x <时,()ln()ln(2)f x x x =-+-,()f x 在(,0)-∞单调递减,当02x <<时,2()ln ln(2)ln[(1)1]f x x x x =+-=--+,()f x 在(0,1)上单调递增,在(1,2)上单调递减,又()f x 在(2,)+∞单调递增,因此()f x 在1x =处取极大值(1)0f =,③正确;对于④,由()0f x =得:2|2|1x x -=,即2210x x --=或2210x x -+=,解得1x =1x =,于是得()f x 有3个零点,④正确, 所以所有正确结论的编号为①③④. 故选:D【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.例6.(2023·全国·高三专题练习)若()f x 为奇函数,且0x 是()2e x y f x =-的一个零点,则0x -一定是下列哪个函数的零点( ) A .()e 2x y f x -=-- B .()e 2x y f x =+ C .()e 2x y f x =- D .()e 2x y f x =-+【答案】B【分析】根据()f x 是奇函数可得()()f x f x -=-,因为0x 是()2e =-xy f x 的一个零点,代入得()002e xf x =,利用这个等式对A 、B 、C 、D 四个选项进行一一判断可得答案.【详解】()f x 是奇函数,()()f x f x ∴-=-且0x 是()2e =-xy f x 的一个零点,所以()002e xf x =,把0x -分别代入下面四个选项,对于A ,()()0020e e 222-=-x x f x ,不一定为0,故A 错误;对于B ,()()0000e 2e x xf x f x ---+=-0012e e 20x x -+=-⋅⋅+=,所以0x -是函数()e 2x y f x =+的零点,故B 正确;对于C ,()000224e 2e ---=--=-x f x ,故C 不正确;对于D ,()0000e22e e +24--+==x x x f x ,故D 不正确;故选:B.例7.(2023·全国·高三专题练习)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为( ) A .1个 B .2个 C .3个 D .4个【答案】C【分析】解三角方程求得()f x 的零点即可解决【详解】由()()2cos 2cos 2cos cos 1cos 12cos 10x x x x x x +=+-=+-=可得cos 1x =-或1cos 2x =,又[]0,2πx ∈,则πx =,或π3x =,或5π3x =则()f x 的零点个数为3 故选:C例8.(2023·全国·高三专题练习)()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x =在区间[]6,6-内解的个数的最小值是_______. 【答案】13【分析】根据函数周期性和奇偶性的性质,进行递推即可. 【详解】()f x 是定义在R 上的以3为周期的奇函数,()()3f x f x ∴+=,且()()f x f x -=-,则()00f =,则()()()()()()36600330f f f f f f ==-==-=-=,,()20f =,()()()()514050f f f f ∴=-=-=-=,, ()10f =,()40f =,()20f -=,方程的解至少有0,3,6,6-,3-,2,5,5-,2-,1-,1,4,4-,共13个. 故答案为:13第二天学习及训练【题型】三、数形结合法判断函数零点个数例9.(2023·全国·高三专题练习)已知函数()33f x x x =-,则函数()()h x f f x c =-⎡⎤⎣⎦,[]2,2c ∈-的零点个数( )A .5或6个B .3或9个C .9或10个D .5或9个【答案】D【分析】设()t f x =,求导分析()33f x x x =-的最值与极值,画出图形,再分析()f t c =与()t f x =的根的范围与个数即可【详解】设()t f x =,则由()()0h x f f x c =-=⎡⎤⎣⎦, 得()f f x c =⎡⎤⎣⎦,即()f t c =,()t f x = 又()()()233311f x x x x '=-=-+, 由0fx得1x <-或1x >,此时函数单调递增,由()0f x '<得11x -<<,此时函数单调递减,即函数在=1x -处取得极大值()()()311312f -=--⨯-=,函数在1x =处取得极小值()311312f =-⨯=-,又由()()()322322f -=--⨯-=-,()322322f =-⨯=可得图象:若()f t c =,()2,2c ∈-,则方程有三个解, 满足121t -<<-,211t -<<,312t <<, 则当121t -<<-时,方程()t f x =,有3个根, 当211t -<<时,方程()t f x =,有3个根, 当312t <<时,方程()t f x =,有3个根, 此时共有9个根,若()f t c =,2c =,则方程有两个解, 满足11t =-,22t =,则当11t =-时,方程()t f x =,有3个根, 当22t =,有2个根, 此时共有5个根,同理()f t c =,2c =-,也共有5个根 故选:D .例10.(2023·全国·高三专题练习)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( ) A .1 B .2C .3D .4【答案】D【分析】由题意知,f (x )是周期为2的偶函数,将函数零点转化为求两个函数图象交点的个数即可,作出图象观察得出结论.【详解】由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如下:观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点. 故选:D.例11.(2023·全国·高三专题练习)已知函数()()e 2,1ln 1,1x x f x x x -⎧-≤⎪=⎨->⎪⎩,则函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是( )A .4B .5C .6D .7【答案】B【分析】令()t f x =,()0g x =,则()21f t t =-,分别作出函数()y f t =和直线21y t =-的图象,得到10t =,212t <<,再分别作出函数()y f x =和直线y t =的图象,得到方程()0f x =和方程()2t f x =的根的个数,进而得到函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数. 【详解】令()t f x =,()0g x =,则()210f t t -+=,即()21f t t =-, 分别作出函数()y f t =和直线21y t =-的图象,如图所示,由图象可得有两个交点,横坐标设为1t ,2t , 则10t =,212t <<,对于()t f x =,分别作出函数()y f x =和直线2y t =的图象,如图所示,由图象可得,当()10f x t ==时,即方程()0f x =有两个不相等的根, 当()2t f x =时,函数()y f x =和直线2y t =有三个交点, 即方程()2t f x =有三个不相等的根, 综上可得()0g x =的实根个数为5,即函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是5. 故选:B.例12.(2023·上海·高三专题练习)对于给定的正整数n (n ≥2),定义在区间[0,n ]上的函数y =f (x )满足:当01x ≤≤时,2()2f x x x =-+,且对任意的x ∈[1,n ],都成立f (x )=f (x ﹣1)+1.若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解,则关于x 的方程f (x )=knx 的实数解的个数为____. 【答案】2n ﹣1##12-+n【分析】数形结合,画出y =f (x )在区间[0,n ]上的图象,根据y =knx 与y =f (x )的图象交点分析即可.【详解】由题意,画出y =f (x )在区间[0,1]上的图象, 又对任意的[1,n ],都成立f (x )=f (x ﹣1)+1.可理解为区间[n ﹣1,n ]的图象由区间[n ﹣2,n ﹣1]的图象向右平移一个单位所得, 即可画出y =f (x )在区间[0,n ]上的图象,如图所示,故若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解, 则y =knx 与y =f (x )在区间[n ﹣1,n ]上的图象相切,且易得y =f (x )的图象在y =x 与区间[0,1],[1,2],[2,3],⋯[n ﹣1,n ]上的公切线之间,故y =knx 与y =f (x )在区间[0,1],[1,2],[2,3],⋯[n ﹣1,n ]上均有2个交点, 故关于x 的方程f (x )=knx 的实数解的个数为2(n ﹣1)+1=2n ﹣1个.故答案为:2n ﹣1.【题型】四、转化法判断函数零点个数例13.(2022·全国·高三专题练习)已知()f x 的定义域为[)0,∞+,且满足()[)()[)1,0,121,1,xe xf x f x x ⎧-∈⎪=⎨-∈+∞⎪⎩,若()()g x f x π=-,则()g x 在[]0,10内的零点个数为( ) A .8 B .9 C .10 D .11【答案】B【分析】求出函数()f x 在区间[)(),109,n n n n N +≤≤∈值域及单调性,由此可得出结论.【详解】当[)0,1x ∈时,()[)10,1xf x e e =-∈-,当[)1,2x ∈时,[)10,1x -∈,则()()[)210,22f x f x e =-∈-,当[)2,3x ∈时,[)20,1x -∈,则()()()[)21420,44f x f x f x e =-=-∈-,以此类推,当[)(),109,x n n n n N ∈+≤≤∈时,()()())20,21n nf x f x n e ⎡=-=-⎣,且函数()f x 在区间[)(),109,n n n n N +≤≤∈上为增函数,122e e π-<<-,所以,函数()g x 在区间[)(),119,n n n n N +≤≤∈上有且只有一个零点,且()()()101010200g f f ππ=-=-<,因此,()g x 在[]0,10内的零点个数为9. 故选:B.【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.例14.(2022·全国·高三专题练习(文))已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<- 【答案】C【分析】A 根据函数奇偶性的定义即可判断()f x 的奇偶性;B 利用放缩法,当0x >易证()1f x >,由奇函数的对称性知0x <时()1f x <-,即可知()f x 与sin y x =的交点情况;C :由()2f x =变形可得112713xx⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭,设()11327xxg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭只需判断()1g x =解得个数即可;D 根据函数解析式求出()()2,1f f --比较大小即可. 【详解】A :()f x 定义域为{|0}x x ≠且()()()()()()333391log log 91log 91log 9191120x x x x x f x f x x x x x -⎛⎫+ ⎪+++⎝⎭-+=-+-=--=-,故()f x 为奇函数,错误;B :当0x >时有()3log 91211xf x x>-=-=,又()f x 为奇函数,则当0x <时,()1f x <-,即在R 上()f x ∈()(),11,-∞-⋃+∞,则()f x 的图象与sin y x =没有交点,错误, C :若()2f x =,则有()3log 9112x x+-=,即()3log 913x x +=,变形得9127x x+=,即112713x x⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭, 设()11327x xg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则()g x 为减函数且其值域为0,,则()1g x =有且只有一个解,即()f x 的图象与2y =只有一个交点,正确,D :()()2333182log 1log 2log 918181211222f -⎛⎫⎛⎫++ ⎪+ ⎪⎝⎭-=-=--=- ⎪- ⎪⎝⎭3182log 29=-⨯3log =-,而()333110101log 11log 1log 993f ⎛⎫⎛⎫-=-+-=-+=- ⎪ ⎪⎝⎭⎝⎭,则有()()21f f ->-,错误.故选:C.【点睛】关键点点睛:A 利用奇偶性定义判断函数的奇偶性,B 放缩法及奇函数的对称性,结合正弦函数的性质判断交点情况,C 将交点问题,通过恒等变形转化为方程是否有解的问题,D 通过函数解析式求函数值,进而比较大小.例15.(2022·全国·高三专题练习)高斯被人认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列结论正确的是( ) A .函数()f x 是R 上的单调递增函数 B .函数2()()3g x f x x =-有2个零点 C .()f x 是R 上的奇函数D .对于任意实数,a b ,都有()()()f a f b f a b +≤+ 【答案】BD【分析】对于AC ,举例判断,对于B ,利用取整函数和零点的定义判断即可,对于D ,定义{}[]a a a -=这样一个函数,就会有{}10a >≥,然后结合高斯函数的定义判断即可【详解】对于A ,(1.1)1f =,(1.2)1f =,(1.1)(1.2)f f =,()f x ∴在R 上不是单调增函数,所以A 错.对于B ,由()[]f x x =,可得1()x f x x -<≤,所以1()33x xg x -<≤,若函数()g x 要有零点,则1033x x -<≤,得[0,3)x ∈,因为()g x 要想为0,必须23x 也为整数,在这个范围内,只有30,2x x ==两个点,所以B 正确, 对于C ,(1.1)1f =,( 1.1)2(1.1)f f -=-≠-,()f x ∴不是奇函数,所以C 错, 对于D ,如果我们定义{}[]a a a -=这样一个函数,就会有{}10a >≥,同时有{}{}{}{}()([][])[[][]]f a b f a b a b a b a b +=+++=+++,当{}{}1a b +≥时,会有()[][]()()f a b a b f a f b +=+=+,当{}{}01a b <+<时,()[][]()()f a b a b f a f b +>+=+,所以D 正确,故选:BD.第三天学习及训练【题型】五、利用函数的零点或方程有根求参数例16.(2023·全国·高三专题练习)函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值为( )A .-14B .0C .14D .0或-14【答案】D【分析】通过a 是否为0,然后求解函数的零点即可.【详解】解:当0a =时,函数()1f x x =--仅有一个零点,满足题意;当0a ≠时,函数2()1f x ax x =--仅有一个零点,可得140a ∆=+=,解得14a =-.故选:D例17.(2023·全国·高三专题练习)已知函数1,1()1()1,12x a x f x x -=⎧⎪=⎨+≠⎪⎩,若方程22()(23)()30-++=f x a f x a 有5个不同的实数解,则a 的范围是( )A .33(1,)(,2)22⋃B .(1,2)(2,3)C .(1,)+∞D .(1,3)【答案】A【分析】解方程22()(23)()30-++=f x a f x a 得()f x a =或3()2f x =,根据a 的取值分类讨论即可.【详解】方程22()(23)()30-++=f x a f x a ,解得()f x a =或3()2f x =, 若32a =,13,132()12()1,12x x f x x -⎧=⎪⎪==⎨⎪+≠⎪⎩, 解得1x =或0或2,不符合题意,所以32a ≠, 由3()2f x =,可得原方程有3个不等实根1x =或0或2; 所以只要|1|1()12x a -+=有2个不等实根即可.由|1|0x ->可得|1|10()12x -<<,即有12a <<,综上可得33(1,)(,2)22a ⋃∈.故选:A .例18.(2023·全国·高三专题练习)已知函数()2ln ,043,0x x f x x x x >⎧=⎨---≤⎩,若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦【答案】D【分析】画出()f x 的图像,结合函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,结合图像列不等式来求得m 的取值范围.【详解】当0x ≤时,()f x 是开口向下的二次函数,对称轴为2x =-,()()24831,03f f -=-+-==-.由243=0x x ---解得=1x -或3x =-. 由此画出()f x 的图像如下图所示,依题意,函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点, 令()t f x =,则21y t mt =++,根据图像可知,函数21y t mt =++在区间[)3,1-上有两个不相等的实数根,则()222Δ403310110312m m m m ⎧=->⎪--+≥⎪⎪⎨++>⎪⎪-<-<⎪⎩,解得1023m <≤,所以m 的取值范围是102,3⎛⎤ ⎥⎝⎦.故选:D例19.(2023·全国·高三专题练习)已知函数()2221,0log ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若关于x 的方程2[()]()40f x mf x ++=有6个不同的实数根,则m 的取值范围是( )A .13(,5),43⎡⎫-∞-⋃--⎪⎢⎣⎭B .13,43⎡⎫--⎪⎢⎣⎭ C .134,(5,)3⎛⎤⋃+∞ ⎥⎝⎦ D .134,3⎛⎤ ⎥⎝⎦【答案】A【分析】画出()f x 的图象,令()t f x =,则先讨论240t mt ++=的零点,根据二次函数判别式与韦达定理,结合()f x 的图象可得240t mt ++=的较小根的范围,进而根据m 与较小根的关系式结合函数的单调性求解即可.【详解】画出()f x 的图象如图,令()t f x =,则先讨论240t mt ++=的零点. 当2440m ∆=-⨯<,即44m -<<时,不合题意;当2440m ∆=-⨯=,即4m =±时,易得2t =或2t =-,此时当()2f x =或()2f x =-时均不满足有6个零点,不合题意;故2440m ∆=-⨯>,4m >或4m <-,设240t mt ++=的两根为12,t t ,不妨设12t t <,由韦达定理124t t =,且12,2t t ≠.①当12,0t t <时,()1f x t =与()2f x t =均无零点,不合题意; ②当12,0t t >时:1. 若101t <<,则24t >,此时()1f x t =有4个零点,()2f x t =有2个零点,合题意;2. 若112t ≤<,此时()1f x t =有3个零点,则()2f x t =有且仅有3个零点,此时223t <≤,故1423t ≤<; 综上可得101t <<或1423t ≤<. 又12t t m +=-,故()12114m t t t t ⎛⎫=-+=-+ ⎪⎝⎭,结合4y t t =+在()0,2上为减函数可得114m t t ⎛⎫=-+ ⎪⎝⎭在()0,1,4,23⎡⎫⎪⎢⎣⎭上为增函数.故13(,5),43m ⎡⎫∈-∞-⋃--⎪⎢⎣⎭故选:A【点睛】本题主要考查了数形结合解决复合函数零点的问题,需要换元先分析二次函数的零点情况,数形结合判断零点所在的区间,进而得出()f x 零点所在的区间,并结合二次函数的性质与韦达定理求解.属于难题.例20.(2023·全国·高三专题练习)已知函数()()23,0,3,0,x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩以下结论正确的是( )A .()f x 在区间[7,9]上是增函数B .()()220222f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619i i x ==∑D .若方程()1f x kx =+恰有3个实根,则11,3k ⎛⎫∈-- ⎪⎝⎭【答案】BC【分析】A 根据()f x 的周期性判断区间单调性;B 利用周期性求得()() 202230f f =-=即可判断;C 转化为y b =与()y f x =的交点问题,应用数形结合法及对称性求零点的和;D 根据函数图象求得1y kx =+与()y f x =交点个数为2或3时的临界值,即可得范围. 【详解】A :由题意,当3x ≥-时()f x 以3为周期的函数,故()f x 在[7,9]上的单调性与()f x 在[-2,0]上的单调性相同,而当0x <时()23924x x f ⎛⎫=-++ ⎪⎝⎭,∴()f x 在[-2,0]上不单调,错误;B :()22f -=,()() 202230f f =-=,故()()2 20222f f -+=,正确;C :作出()y f x =的函数图象如图所示:由于()y f x b =-在(),6-∞上有6个零点,故直线y b =与()y f x =在(),6-∞上有6个交点,不妨设1i i x x +<,i =1,2,3,4,5,由图象知:1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称,∴513392229222i i x ==-⨯+⨯+⨯=∑,正确;D :若直线1y kx =+经过(3,0),则13k =-,若直线1y kx =+与()230y x x x =--<相切,则消元可得:()2103x k x ++=+,令Δ0=可得()2340k +-=,解得k =-1或k =-5(舍),若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性得:k =1. 因为()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =有3个交点, ∴113k -<<-或k =1,错误,故选:BC .例21.(2023·全国·高三专题练习)若函数()()2e 2xf x x x a =-++在区间(),1a a +上存在最大值,则实数a 的取值范围为_______【答案】2⎫⎪⎪⎝⎭【分析】根据开区间上连续函数的最值点必为导函数的零点,然后求导,数形结合,根据零点存在性定理建立不等式即可求解【详解】因为()()()22e 222e 2x xf x x x a x x a '=-++-+=-++,且函数()f x 在区间(),1a a +上存在最大值, 故只需()22h x x a =-++满足()()>0+1<0h a h a ⎧⎪⎨⎪⎩,所以()22++2>0+1++2<0a a a a --⎧⎪⎨⎪⎩,2a <<.故答案为:2⎫⎪⎪⎝⎭【题型】六、利用函数的交点或交点个数求参数例22.(2023·全国·高三专题练习)已知定义在R 上的奇函数,满足()()20f x f x -+=,当(]0,1x ∈时,()2log f x x =-,若函数()()sin()F x f x x π=-,在区间[]1,m -上有10个零点,则m 的取值范围是( ) A .[)3.5,4 B .(]3.5,4 C .(]3,4 D .[)3,4【答案】A【分析】由已知得出函数()f x 是周期函数,周期为2,函数()F x 的零点个数转化为函数()f x 的图象与sin()y x π=的图象的交点个数,作出函数的图象(其中()f x 的图象由奇偶性与周期性结合作出),然后分析交点个数得出参数范围. 【详解】由(2)()0f x f x -+=得(2)()f x f x +=--,又()f x 是奇函数,所以(2)()()f x f x f x +=--=,即()f x 是周期函数,周期为2,sin()y x π=也是周期函数,且最小正周期是22ππ=,由奇偶性和周期性作出函数()f x 的图象,再作出sin()y x π=的图象,如图,函数()()sin()F x f x x π=-的零点个数即为函数()y f x =的图象与函数sin()y x π=的图象交点个数,()f x 是R 上的奇函数,所以(0)0f =,从而20()f k =,Z k ∈,易知它们在[1,1)-上有4个交点,从而在[1,3)上也有4个交点,而4x =时,点(4,0)是一个交点,所以4m <,在(0,1)上,2()log f x x =-,11()1sin 22f π==,即1(,1)2是(0,1)上交点,从而在(1,0)-上交点上交点为1(,1)2--,由周期性在(3,4)上两函数图象交点为7(,1)2-,所以72m ≥. 综上,724m ≤<.故选:A .例23.(2023·全国·高三专题练习)已知函数()2cos()1(0,0π)f x x ωϕωϕ=+-><<经过(0,0)点,且()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】运用代入法,结合余弦型函数的性质、函数零点的定义进行求解即可. 【详解】因为()2cos()1f x x ωϕ=+-经过(0,0)点, 所以12cos 10cos 2ϕϕ-=⇒=,因为0πϕ<<,所以π3ϕ=,即π()2cos()13f x x ω=+-,令ππ1()2cos()10cos()332f x x x ωω=+-=⇒+=,因为π()0,x ∈,所以πππ(,π)333x ωω+∈+,因为()f x 在(0,π)上只有一个零点0x ,所以有5πππ43327ππ3π33ωωω⎧<+⎪⎪⇒<≤⎨⎪≤+⎪⎩,所以ω的最大值为2, 故选:C例24.(2023·全国·高三专题练习)已知函数π()2cos()1(0,0)2f x x ωϕωϕ=+-><<,在0x =处的切线斜率为,若()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】求出函数()f x 的导数,利用导数的几何意义求出ϕ,再由零点信息列出不等式,求解作答.【详解】依题意,()2sin()f x x ωωϕ'=-+,则(0)2sin f ωϕ'=-=,即sin ϕ=,而π02ϕ<<,解得π3ϕ=, 因此,π()2cos()13f x x ω=+-,由()0f x =得:π1cos()32x ω+=,又π()0,x ∈,有πππ(,π)333x ωω+∈+,因()f x 在(0,π)上只有一个零点0x ,于是得5ππ7ππ333ω<+≤,解得423ω<≤, 所以ω的最大值为2. 故选:C例25.(2023·全国·高三专题练习)定义在R 上的偶函数()f x 满足()22)(f x f x -+=,当[0,2]x ∈时,()xf x =,若在区间[0,10]x ∈内,函数()()(1)mg x f x x =-+有个5零点,则实数m 的取值范围是( ) A .()110,log e B .(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭C .111log e,2⎛⎫ ⎪⎝⎭D .11711log e,,log e 22⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B【分析】根据函数的奇偶性求出函数在[2,0]-上的解析式,将问题转化为函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,结合图形即可得出结果.【详解】由题意知,函数()f x 为偶函数,且(2)(2)f x f x -=+,令2x x →+,则(22)()(4)()f x f x f x f x --=-=+=, 所以函数()f x 是以4为周期的函数. 当[2,0]x ∈-时,[0,2]x -∈,所以()x f x --=,即当[2,0]x ∈-时()x f x -=, 因为函数()()(1)m g x f x x =-+在[0,10]上有5个零点, 所以方程()(1)0m f x x -+=在[0,10]上有5个根,即函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,如图,当[0,2]x ∈时,()xf x =,()121e 2x f x '=,()102f '=,设()(1)mp x x =+,则()1(1)m p x m x -'=+,()0p m '=,当12m ≤,()()00p f '≤', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+只有一个零点,此时,若要使图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点, 则()()11010mf +≤,11log e m ≤,所以110log e m <≤; 当12m >时,()()00p f '>', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+有两个零点,所以()()166m f +<且()()11010mf +>,即7e11e m m ⎧<⎨>⎩,解得71log e 2m <<,故m 的取值范围为(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭.故选:B.例26.(2023·全国·高三专题练习)已知函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩,若函数()()g x f x kx k =-+恰好有两个零点,则实数k 的取值范围是( )A .[)1,+∞B .0,1C .()1,+∞D .()(),00,1-∞⋃【答案】C【分析】根据已知条件画出函数()f x 的图象,将函数()()g x f x kx k =-+恰好有两个零点转化为函数()f x 与直线()1y k x =-图象恰有两个交点即可求解.【详解】由题意知,画出函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩的简图,如图所示由()()g x f x kx k =-+恰好有两个零点转化为()f x 与直线()1y k x =-有两个不同的交点, 由图知,当直线经过点()()1,0,0,1-两点的斜率为10101k --==-,则1k >. 所以实数k 的取值范围为()1,+∞.故选: C.例27.(2023·全国·高三专题练习)已知()e xx f x =.则下列说法正确的有( )A .函数()y f x =有唯一零点0x =B .函数()y f x =的单调递减区间为()(),01,-∞⋃+∞C .函数()y f x =有极大值1eD .若关于x 的方程()f x a =有三个不同的根.则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭【答案】ACD【分析】根据零点的定义判断A ,利用导数分析函数的单调性,作出函数()f x 的图象,根据图象判断其余选项.【详解】由()0f x =得:0x =,即0x =,故函数()f x 有唯一零点0x = 由题可知:(),0e e ,0e xx xxx x f x x x ⎧≥⎪⎪==⎨⎪-<⎪⎩设()e ex x xg x x -==⋅,x ∈R ,则()()1x g x x e -'=-⋅, 由()()1e 0x g x x -⋅'=-≥得:1x ≤;由()()1e 0xg x x -⋅'=-≤得;1x ≥;故()g x 在(],1-∞上单调递增﹐在[)1,+∞上单调递减,作出()y g x =图象,并将0x <的部分图象关于x 轴对称可得()y f x =的图象如下:观察图象可得函数()y f x =的单调递减区间为(),0∞-,()1,+∞,B 错, 函数()y f x =在1x =时有极大值1e,C 对,方程()f x a =有三个不同的根,则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭,D 对,故选:ACD.第四天学习及训练【题型】七、一元二次不等式恒成立问题例28.(2023·全国·高三专题练习)已知m 是区间[]0,4内任取的一个数,那么函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率是( )A .14B .13C .12D .23【答案】C【分析】首先得到220()4f x x x m '=-≥+恒成立,则解出m 的范围,再根据其在[0,4]内取数,利用几何概型公式得到答案. 【详解】22()4f x x x m '=-+,3221()233f x x x m x =-++在x ∈R 上是增函数22()40f x x x m '∴=-+≥恒成立21640m ∴∆=-≤解得2m ≥或2m ≤- 又m 是区间[0,4]内任取的一个数24m ∴≤≤由几何概型概率公式得函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率42142P -== 故选:C .例29.(2023·全国·高三专题练习)当13x ≤≤时,关于x 的不等式210ax x -<+恒成立,则实数a 的取值范围是( ) A .1,4⎛⎤-∞- ⎥⎝⎦B .,⎛⎫-∞- ⎪⎝⎭14C .,1,4∞⎛⎫-+ ⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭【答案】B【分析】分离参变量得211a x x ⎛⎫<- ⎪⎝⎭恒成立,只用2min11a x x ⎡⎤⎛⎫<-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦可求解. 【详解】当13x ≤≤时,由210ax x -<+恒成立可得,211a x x⎛⎫<- ⎪⎝⎭恒成立, 令2211111()()24f x x x x ⎛⎫=-=-- ⎪⎝⎭,1113,,13x x ⎡⎤≤≤∴∈⎢⎥⎣⎦,∴当111,123x ⎡⎤=∈⎢⎥⎣⎦,即当2x =时, ()f x 取得最小值为()()min124f x f ==-, 因为211a x x⎛⎫<- ⎪⎝⎭恒成立,所以()min a f x <,即14a <-.故选:B .例30.(2023·全国·高三专题练习)已知函数()312x f x x +=+,()()42e xg x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是( ) A .6eB.(2eC.(2eD .2e【答案】AB【分析】本题的含义是不等式左边的最大值小于等于右边的最小值,t 是常数, 因此先要算出左边的最大值和右边的最小值,再计算不等式即可.【详解】因为()()3253153222x x f x x x x +-+===-+++,所以()f x 在[)0,∞+上单调递增, 所以对[0,)x ∀∈+∞,()()102f x f ≥=; ()()42e xg x x =-,所以()()()'2e 42e 21e x x x g x x x =-+-=- ,当1x >时,()'0g x < ;当01x <<时,()'0g x > ,函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,∴()max ()12e g x g ==;因为0t >,任意[)12,0,x x ∈+∞,不等式()()()()2221e e t g x t f x +≤+恒成立,即()()221e 2e e 2t t +⋅≤+,整理得224e 3e 0t t --≥,解得(2e t ≤或(2e t ≥,所以正数t 的取值范围为()2e,⎡+∞⎣;6e 与(2e 均在区间()2e,⎡+∞⎣内, (2e +与2e 均不在区间()2e,⎡+∞⎣内; 故选:AB .【题型】八、一元二次不等式能成立问题31.(2023·全国·高三专题练习)已知命题:R p x ∀∈,20x x a -+>,若p ⌝是真命题,则实数a 的取值范围是( )A .1,4⎛⎤-∞ ⎥⎝⎦B .1,)4-∞(C .11,42⎛⎫ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】由题意得到20x x a -+≤有解,进而由根的判别式列出不等式,求出实数a 的取值范围.【详解】若p ⌝是真命题,由题意知不等式20x x a -+≤有解,140a ∴∆=-≥,解得:14a ≤. 因此,实数a 的取值范围是1,4⎛⎤-∞ ⎥⎝⎦. 故选:A例32.(2023·全国·高三专题练习)若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使2210x x λ-+<成立,则实数λ的取值范围是______________.【答案】)+∞【分析】利用不等式的基本性质分离参数,利用函数的单调性求相应最值即可得到结论.【详解】由2210x x λ-+<可得,221x x λ>+, 因为1,22x ⎡⎤∈⎢⎥⎣⎦,所以12x x λ>+,根据题意,min 12x x λ⎛⎫+ ⎪⎝⎭>即可, 设()12f x x x =+,易知()f x在12⎛ ⎝⎭单调递减,在2⎫⎪⎪⎝⎭单调递增, 所以()min f x f ==⎝⎭所以λ>故答案为:)+∞。

第三讲函数的连续性

第三讲函数的连续性
而 y
(端点为单侧连续)
cos x 1 的定义域为
因此它无连续点
数学教研室
医用高等数学
3.闭区间上连续函数的性质
Th1.5 (最值定理) 闭区间 a, b 上的连续函数f x 在该区间 上必能取到最大值M 和最小值m
说明:(1)若函数在开区间上连续, (2)在闭区间内有间断点, 结论不一定成立.
x x0
lim f x f (lim x
x x0
数学教研室
医用高等数学
例 求极限 lim cos( x 1)
x 0
1 x
1 x
1 x 解: lim cos( x 1) = cos lim( x 1) x 0 x 0
数学教研室
医用高等数学
24.计算下列极限
x 2a x (7) lim ( ) x x a x 2a x 2a 2 a 2 a (1 ) lim[(1 ) ] 2a e x 3a x x 原式 lim e x a x a x ( ) e a (1 ) lim[(1 ) a ]( a ) x x x
x1
y
1
1 2
x 1 为其可去间断点 . x 1 , x 0 (5) y f ( x) 0 , x 0 x 1 , x 0 f (0 ) 1, f (0 ) 1
x 0 为其跳跃间断点 .
数学教研室
o
1
x
y
1
o
1
x
医用高等数学 三、连续函数的性质
数学教研室
医用高等数学
内容小结
基本初等函数在定义区间内连续 连续函数的四则运算的结果连续 连续函数的反函数连续 连续函数的复合函数连续

高考数学重难点第三讲 函数值域的常见求法8大题型(原卷及答案)(全国通用)(学生专用)

高考数学重难点第三讲 函数值域的常见求法8大题型(原卷及答案)(全国通用)(学生专用)

重难点第三讲函数值域的求法8大题型——每天30分钟7天掌握函数值域的求法8大题型【命题趋势】函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。

在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。

第1天认真研究满分技巧及思考热点题型【满分技巧】一、求函数值域的常见方法1、直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2、逐层法:求12(())n f f f x 型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3、配方法:配方法是二次型函数值域的基本方法,即形如“(0)x y ax bx c a =++≠”或“2[()]()(0)y a f x bf x c a =++≠”的函数均可用配方法求值域;4、换元法:利用换元法将函数转化为易求值域的函数,常用的换元有(1)y=或y ax b=+t =”换元;(2)y ax b =+±(,,,a b c d 均为常数,0,0a c ≠≠)t =”换元;(3)y bx =±型的函数,可用“cos ([0,])x a θθπ=∈”或“sin ([,])22x a ππθθ=∈-”换元;5、分离常数法:形如(0)ax by ac cx d+=≠+的函数,应用分离常数法求值域,即2()ax b a bc ady d cx d c c x c+-==+++,然后求值域;6、基本不等式法:形如(0)by ax ab x=+>的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a b +≥求函数的值域(或最值)时,应满足三个条件:①0,0a b >>;②a b +(或ab )为定值;③取等号的条件为a b =,三个条件缺一不可;7、函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)。

高一函数第三章知识点归纳

高一函数第三章知识点归纳

高一函数第三章知识点归纳函数是数学中的重要概念,在高一数学中,函数的学习是一个重要的环节。

在高一函数第三章中,我们学习了一些与函数相关的知识点,下面我将对这些知识点进行归纳总结。

一、函数的性质1. 定义域和值域:对于一个函数,其定义域是指可以使函数有意义的变量的取值范围,而值域是函数在定义域上所取得的全部函数值的集合。

2. 单调性:函数的单调性可以分为单调递增和单调递减两种类型。

如果对于定义域内的任意两个不同的实数,函数值满足随着自变量增大(减小)而增大(减小),则函数是单调递增(递减)的。

3. 奇偶性:当函数满足$f(-x)=f(x)$时,函数为偶函数;当函数满足$f(-x)=-f(x)$时,函数为奇函数。

4. 周期性:如果存在一个正数T,对于定义域内任意一点x,有$f(x+T)=f(x)$,则函数具有周期性。

5. 最值与最值点:函数在定义域内的最大值和最小值分别称为最大值和最小值,在最值点处取得最大值和最小值的点称为最值点。

二、函数的图像与性质1. 基本型函数的图像:包括常函数、一次函数、二次函数和绝对值函数等基本型函数,我们需要了解这些函数的图像和性质。

2. 函数的平移和伸缩:通过对基本型函数进行平移和伸缩变换,可以得到其他种类的函数。

平移和伸缩的参数可以使函数的图像发生左右平移、上下平移、水平压缩、垂直拉伸等变化。

3. 函数的对称性:函数的对称性分为关于y轴对称、关于x轴对称和关于原点对称三种情况。

通过函数的表达式可以确定函数是否具有对称性。

4. 零点和零点的个数:函数的零点是函数值为0的自变量的取值,函数可能存在一个或多个零点,我们可以通过方程的求解来确定函数的零点个数。

三、函数的运算1. 函数的加法和减法:两个函数的加法和减法的定义是将两个函数对应的函数值相加(或相减),而这两个函数在同一定义域上有意义。

2. 函数的乘法和除法:两个函数的乘法和除法的定义是将两个函数对应的函数值相乘(或相除),需要注意的是,当除法运算时,被除数函数的值不能为零。

第三讲+函数的奇偶性与周期性课件-2025届高三数学一轮复习

第三讲+函数的奇偶性与周期性课件-2025届高三数学一轮复习

f(x)=x-2-x22-x,2xx,≥x0<,0, 画出函数 f(x)的图
象,如图 2-3-1,观察图象可知,函数 f(x)的图象
关于原点对称,故函数 f(x)为奇函数,且在(-1,
1)上单调递减.故选 C.
图 2-3-1
答案:C
(2)(多选题)(2023 年辽宁省月考)已知 f(x)是定义在 R 上不恒为 0 的偶函数,g(x)是定义在 R 上不恒为 0 的奇函数,则( )
答案:C
考向 2 周期性与奇偶性的综合问题 通性通法:此类问题多考查求值问题,常利用奇偶性及周期 性进行变换,将所求函数值的自变量转化到已知解析式的函数定 义域内求解.
[例 4](2023 年未央区模拟)定义在 R 上的奇函数 f(x)满足 f(x)
=f(2-x),当 x∈[0,1]时,f(x)=ax3+2x+a+1,则 f(2 023)=
(3)奇函数在关于原点对称的区间上具有相同的单调性;偶函
数在关于原点对称的区间上具有相反的单调性.
2.函数的周期性 (1)周期函数:一般地,对于函数 f(x),如果存在一个非零常数 T,使得当 x 取定义域内的每一个值时,都有 f(x+T)=f(x),那么 函数 f(x)就叫做周期函数,非零常数 T 叫做这个函数的周期. (2)最小正周期:如果在周期函数 f(x)的所有周期中存在一个最 小的正数,那么这个最小正数就叫做 f(x)的最小正周期.
即(-x+a)ln
22xx+ -11=(-x+a)ln
22xx+-11-1=(x-a)ln
2x-1 2x+1
=(x+a)ln 22xx- +11,
∴x-a=x+a,得-a=a,得 a=0.故选 B. 答案:B
(2)已知函数 f(x)是定义在 R 上的偶函数,且在区间[0,+∞)

数学第三章函数知识点总结

数学第三章函数知识点总结

数学第三章函数知识点总结在数学中,函数是一种特殊的数学关系,它描述了两个变量之间的对应关系。

函数在数学中扮演着非常重要的角色,它们被广泛应用于各种数学领域和实际问题中。

在数学的第三章中,我们将学习如何定义和描述函数,以及函数的性质和应用。

1. 函数的定义函数是一种特殊的数学关系,它将一个或多个输入映射到一个输出。

这种映射可以用一个数学公式、图形、表格或者文字描述。

函数通常用f(x)的形式表示,其中x是输入,f(x)是输出。

函数也可以用其他变量表示,如y = f(x)。

在数学中,函数通常有两个集合:定义域和值域。

定义域是所有可能的输入值的集合,值域是所有可能的输出值的集合。

函数将定义域中的元素映射到值域中的元素。

2. 函数的表示函数可以通过各种方式来表示,最常见的是用表格、图形和公式来描述。

在函数的图形表示中,我们通常使用直角坐标系来显示函数的图像。

函数的图像是一条曲线,它显示了输入和输出之间的关系。

函数的表格表示中,我们列出了函数的输入和输出值。

函数的公式表示中,我们用数学公式来描述输入和输出之间的关系。

3. 函数的性质函数有许多重要的性质,这些性质可以帮助我们理解和分析函数。

其中一些重要的性质包括:- 定义域和值域:函数的定义域是所有可能的输入值的集合,值域是所有可能的输出值的集合。

- 单调性:函数的单调性描述了函数的增减趋势。

一个函数有可能是递增的(y随x的增加而增加)或者是递减的(y随x的增加而减小)。

- 奇偶性:函数的奇偶性描述了函数在坐标系中的对称性。

一个函数有可能是奇函数(f(-x) = -f(x))或者是偶函数(f(-x) = f(x))。

- 周期性:周期函数是一种具有周期性的函数,它的图像在特定的区间内会周期性地重复。

4. 函数的应用函数在数学中有着广泛的应用,它们被应用于各种数学领域和实际问题中。

在微积分中,函数被用来描述曲线的斜率、凹凸性和积分。

在代数中,函数被用来解方程和不等式。

第三讲 函数的方程与迭代

第三讲 函数的方程与迭代

第三讲 函数的方程迭代1、函数迭代定义和符号设f(x)是定义在集合M 上并在M 上取值的函数,归纳地定义函数迭代如下: f (1)(x)=f(x) (x ∈M) f (n)(x)=f(f (n-1)(x)) (x ∈M) (n ≥2) f (n)(x)称为函数f(x)的n 次迭代。

有时还规定f (0)(x)=f(x) (x ∈M) 2、不定方程有一个古老的传说:一个老人有11匹马,他打算把21分给大儿子,41分给二儿子,61分给小儿子,应该怎样分呢?这个传说的另一个“版本”略有不同:一个老人有17头牛,他打算把21分给大儿子,31分给二儿子,91分给小儿子,应该怎样分呢?问题:一个老人有n 头马,他打算把a1分给大儿子,b 1分给二儿子,c1分给小儿子,并满足A<b<c, a|n+1, b|n+1, c|n+1, (a1+b1+c 1)(n+1)=n 问老人的马的匹数n 有多少种可能分法?显然就是求方程a1+b1+c1=1n n 满足条件a<b<c且a|n+1, b|n+1, c|n+1的整数解的问题,像这样未知数的个数多于方程的个数,且未知数受到某些限制(例如有理数、整数、或正整数)的方程或方程组,就称为不定方程。

3、高斯函数[x]定义:[x]-表示不超过x 的最大整数,称[x]为高斯函数又叫取整函数,与它相伴随的是x 的小数部分函数y={x}, {x}=x -[x]。

图象:性质: ① y=[x]的定义域为R ,值域为Z ,y={x}定义域为R ,值域为[0,1),是周期函数。

y=[x] y={x}② 对任意实数x ,有x -1<[x]≤[x]+1; ③ [x]是不减函数,即当x ≤y 时,有[x]≤[y];④ [x+m]=[x]+m ⇔m ∈Z ;⑤ 对一切实数x,y 有[x]+[y]≤[x+y]≤[x]+[y]+1, {x+y}≤{x}+{y}; ⑥若x ≥0, y ≥0,则[xy]≥[x]·[y];⑦ [-x]=⎩⎨⎧---不是整数 为整数 x x x x 1][][⑧ 若n ∈N*, x ∈R ,则[nx]≥n[x]; ⑨⎥⎦⎤⎢⎣⎡n x =⎥⎦⎤⎢⎣⎡n x ][,其中x ∈(0,+∞), n ∈N*; ⑩ 把n!中素数p 的最高次记为p(n!),则p(n!)=⎥⎦⎤⎢⎣⎡p n +⎥⎦⎤⎢⎣⎡2p n +…+⎥⎦⎤⎢⎣⎡k p n ,这里p k ≤n ≤p k+1; 取整函数[x]在18世纪为大数学家高斯采用以来,在数论和其他数学分支中有广泛的应用。

函数的单调性和奇偶性精品讲义

函数的单调性和奇偶性精品讲义

第三讲 函数的单调性、奇偶性一、知识点归纳函数的单调性〔1〕定义:设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)〔f (x 1)>f (x 2)〕,那么就说f (x )在区间D 上是增函数〔减函数〕,区间D 为函数y =f (x )的增区间〔减区间〕概括起来,即1212121212121212()()()()()()()()x x x x f x f x f x f x x x x x f x f x f x f x ⎧⎧<>⎧⎪⎪⎨⎨<>⎪⎩⎪⎩⎨⎧<>⎧⎪⎪⎨⎨⎪><⎪⎩⎩⎩增函数或“同增异减”减函数或 〔2〕函数单调性的证明的一般步骤:①设1x ,2x 是区间D 上的任意两个实数,且12x x < ②作差12()()f x f x -,并通过因式分解、配方、通分、有力化等方法使其转化为易于判断正负的式子;③确定12()()f x f x -的符号;④给出结论证明函数单调性时要注意三点:①1x 和2x 的任意性,即从区间D 中任取1x 和2x ,证明单调性时不可随意用量额特殊值代替;②有序性,即通常规定12x x <;③同区间性,即1x 和2x 必须属于同一个区间。

〔3〕设复合函数()[]x g f y =是定义区间M 上的函数,假设外函数f(x)与内函数g(x)的单调性相反,那么()[]x g f y =在区间M 上是减函数;假设外函数f(x)与内函数g(x)的单调性相同,那么()[]x g f y =在区间M 上是增函数。

概括起来,即“同增异减II 号〞 〔4〕简单性质: ①()f x()f x 与()f x -及1()f x 单调性相反 ②在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。

专题1第3讲基本初等函数精品课件大纲人教版课件.ppt

专题1第3讲基本初等函数精品课件大纲人教版课件.ppt

第3讲│ 主干知识整合
2.指数函数 y=ax(a>0,a≠1)的图象和性质 (1)图象:均过定点(0,1),图象均在第一和第二两个象限; 若底数 a>1,则图象是上升的,若底数 0<a<1,则图象是下 降的.但虽然底数都大于 1(或者都大于 0 小于 1),底数取不 同的值,其图象“高低”仍不相同,此时,我们可以根据指 数函数 y=ax 的图象一定过点(1,a)加以区分,显然,在 y 轴 右侧,底数越大,则图象的位置越靠上. (2)性质:定义域均为 R;值域均为(0,+∞);当 a>1 时 为增函数,当 0<a<1 时为减函数.
第3讲│ 要点热点探究
【点评】 本题考查函数、最值等基础知识,同 时考查运用数学知识解决实际问题的能力.解实际应 用题就是在阅读材料、理解题意的基础上,把实际问 题抽象转化成数学问题,然后再用相应的数学知识去 解决.本题涉及分段函数的最值,处理时一定要逐段 进行讨论,对两段的结果进行比较后最后选择正确结 论.
第3讲 基本初等函数
第3讲 基本初等函数
第3讲 │ 主干知识整合
主干知识整合
1.二次函数 f(x)=ax2+bx+c(a≠0)的图象和性质 (1)二次函数的图象 ①二次函数 f(x)=ax2+bx+c(a≠0)的图象是抛物线,对 称轴方程是 x=-2ba,顶点坐标是-2ba,4ac4-a b2. ②当 Δ=b2-4ac>0 时,设 f(x)=ax2+bx+c(a≠0)的图 象 与 x 轴 的 两 交 点为 M(x1,0), N(x2,0), 则 有 |x1 - x2| = b2-4ac |a| .
(1)当 0≤x≤200 时,求函数 v(x)的表达式; (2)当车流密度 x 为多大时,车流量(单位时间内通过桥上 某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大, 并求出最大值.(精确到 1 辆/小时)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 集合的“包含关系”与集合的“交、并、补”是学习集合 的中心内容,给定集合可以进行集合之间的运算,通过集 合之间的运算,可以求集合的元素,求一些参数的值或者 范围。
综合练习
4 已知集合A={x︱(x-2) ·(x-3a-1) <0},函
数y=㏒ 2a x x (a2 1)
的定义域为集合B
yx²-2(y+1)x+2y-1=0,若y=0,则解得x=- 2 ,所以 y=0是函数值域中的一个值,若y≠0,则由△=【-2(y+1) 】
²-4y(2y-1) ≥0,得 4y=)2cco分ossxx离1常3 数法的:值5常域用,来因求为“原分式式=2型c5-os”5x 函1 数的,值而域c,os如x+求11属函 (0,2】,所以- cos x 1 ∈(-∞,- 2】,故y∈(-∞,- 2】。
黄冈数学
高二第三讲
一 热点专题归纳
专题一:集合及元素的特征 空集是指不含任何元素的集合;明确{0},∮
和{∮}的区别及0与三者之间的关系。空集是任何 集合的子集,是任何非空集合的真子集。(条件为
A B,不要忘了A=空集的情况。)
例1
1 (2009江西) 定义集合运算:A*B={z︱ z=xy,x∈A,y∈B},设A={1,2},B={0,2}则集合A *B 的所有元素之和( )
(7) 图象法:若函数图像较易做出,就用作图法求解。
6 (09.宁夏)用min{a,b,c}表示a,b,c三个数 中的最小值,设f(x)=min{2x,x+2,10-x} (x≥0),则f(x)的最大值为( )
A4 B5 C6 D7
7 已知 反比例函数y=f(x)(x>0)的图像过点A(1,4)和B (4,1),点p(x,y)为该图像上一动点,过p点分别做x轴、y 轴的垂线,垂足为C,D.记四边形OCPD(O为坐标原点)与三 角形OAB的公共部分面积为S。 (1)求S关于x的表达式。 (2)求S的最大值及此时x的值。
(5) 利用函数的单调性求值域:如求函数y=2x4-x²+2(x∈
【-1,2】)的值域。
因为y/=8x³-2x=2x(4x²-1)=2x(2x+1)(2x-1),故函数y= y=2x4-x²+2( x∈【-1,2】)在(-1,-1/2)上递减,在(-1/2, 0)上递增,在(0,1/2)上递减,在(1/2,2)上递增,从而可 得所求值域【15/8,30】。
2019/10/7
10/7/2019
(1) 若4≮B,求实数a的取值范围。
(2) 求使B A的实数a的取值范围。
5 已知集合A={x︱x²-2x-3≤0,x∈R},B={x ︱x²-2mx+m²-4 ≤ 0,x ∈R } (1)A∩B=【1,3】,求实数m的值。
(2)若A CRB,求实数m的取值范围。
10/7/2019
专题三 函数的值域和最值
函数的值域是由其对应法则和定义域共同决定的,其类 型依解析式的特点可分为三类:(1)求常见函数值域; (2)求常见函数复合而成的函数的值域,求值域的几种常 用方法:
(1)配方法:对于(可化为)“二次函数型”的函数常用 配方法,如求函数y=-sin²x-2cosx+4,可变形为y=cos²x2cosx+3=(cosx-1)²+2解决。
(2)基本函数法:一些有基本函数复合而成的函数可以利 用基本函数的值域来求,如函数y=㏒2(-x²+2x+3)就是利用 函数y=㏒2u和u=-x²+2x+3的值域来求。 (求3函)数判y=别式x2法2-x2:x1通 2过的对值二域次,方由程y的=实x根22-的x2x判1别2 就得值域。如
1
A0 B2
C3
D6
2 已知集合M={-1,0,1},N={x︱x=ab,a、b∈M且a≠b},则集 合M与集合N的关系是( )
A M=N
B M ∈N
C N ∈M D M∩N=∮
3 设集合U={1,3,5,7},集合M={1,︱a-5︱},CuM={5,7},
则a的值为

• 专题二 集合的运算及应用
相关文档
最新文档