液压缸的结构和材料

合集下载

液压油缸的结构及工作原理

液压油缸的结构及工作原理

液压油缸的结构及工作原理液压油缸是一种主要应用于机械和工业设备的液压系统中的元件,它是一种能够将压缩空气或液体转化为基于压力驱动的直线运动的装置。

在现代工业中,液压油缸广泛应用于各种机械、机床、冶金设备、造船、军工以及石油化工等领域。

此篇文章将详细介绍液压油缸的结构与工作原理。

一、液压油缸的结构液压油缸主要由缸筒、缸盖、活塞、密封圈、杆等基本部件构成。

1.缸体:缸体是液压油缸内的主体部件,通常采用无缝钢管或铸造而成,其内壁平滑。

缸体与缸盖固定在一起,并通过螺纹或卡簧连接到其他部件上。

2.缸盖:缸盖是液压油缸顶部的盖子,通常由铁或铝制成,固定在缸体的一端,用于密封和支撑活塞,并与其他部件形成紧密连接。

在缸盖上还配有进口和出口,用于液体的顺序进入和排出。

3.活塞:活塞是一个密封工作的部件,它与缸体紧密相连,并与缸体内的密封形成密封腔,防止液压油泄漏或外部杂质的进入。

活塞与杆连接,使其能够与缸体内的液体进行压力交换。

活塞杆可以分为单向杆、双向杆、中空杆等多个种类。

4.密封圈:密封圈是液压油缸中的重要部件,用于防止液体泄漏,保证油缸的密封性。

密封圈通常由丁基橡胶、氟橡胶或聚氨酯等材料制成,具有良好的耐油性和耐高温性能。

5.杆:杆是活塞的延伸部分,将活塞上的力传递给其他部件。

杆的材料通常采用高强度合金钢或不锈钢等材料。

二、液压油缸的工作原理液压油缸的工作公式为:F=S×P,其中F是作用在杆上的力,S是活塞面积,P是压力。

液压油缸的工作原理是通过压力传输介质(一般为液体)的作用,来实现液压能量的转换,从而驱动活塞杆实现直线运动。

具体来说,当压力传输介质进入液压油缸时,液体将会推动活塞向前运动,压缩空气或液体同时驱动活塞杆,并将杆上的力传递给机械设备或其他装置。

当液体被冲出时,活塞杆将返回原位置,完成一个工作周期。

在液压油缸的工作过程中,液体需要保持在一定的压力范围内,以确保液压油缸的稳定工作。

在设计液压系统时,需要合理调整压力、流量和工作介质的选择,从而达到最佳的操作效果。

液压缸结构特点

液压缸结构特点

液压缸结构特点
液压缸是利用液体压力来驱动柱塞或活塞实现运动的装置。

它的结构特点包括:
1. 主体结构:液压缸主要由缸体、缸盖、活塞、活塞杆以及密封元件等组成。

缸体和缸盖通常为钢制或铸铁制成,具有较高的强度和刚性。

2. 活塞和活塞杆:活塞是液压缸内部的移动部件,可以沿着缸内壁进行往复运动。

活塞杆连接在活塞上,通过活塞杆来传递力量。

3. 密封装置:液压缸具有多种密封装置,包括密封圈、密封带、密封垫等。

它们起到密封作用,防止液体泄漏,并减少摩擦。

4. 缸腔和油孔:液压缸内部分为两个缸腔,通过油孔和液道与液压系统相连。

当液体进入其中一个缸腔时,另一个缸腔的液体会被顶出,从而驱动活塞进行运动。

5. 隔板和支架:液压缸内部还有隔板和支架来支撑和固定活塞,保证其正常运动,并减少与其他部件的摩擦。

6. 其他辅助部件:液压缸还可能包括缓冲装置、吸油过滤器、排气装置等,以满足不同的工作要求和操作环境。

以上是液压缸的主要结构特点,不同类型和规格的液压缸在具体设计中可能会有一些差异。

液压缸工作原理

液压缸工作原理

液压缸工作原理液压系统广泛应用于各个工业领域中,而液压缸作为其中重要的组成部分,其工作原理对于理解整个系统的运行机制至关重要。

本文将介绍液压缸的工作原理,并探讨其在工程中的应用。

一、液压缸的基本结构液压缸是由缸体、活塞、活塞杆、密封元件等部分组成。

其中,缸体是液压缸的主体结构,由耐压强度高的金属材料制成。

活塞则是在缸体内可以移动的部件,它连接了活塞杆和缸体,并通过密封元件与缸体形成密封空间。

二、液压缸的工作原理1. 压力传递液压缸的工作原理基于压力传递。

当液体被泵入缸体内时,液体的压力通过缸体传递给活塞,从而产生力。

液体通过密封元件的作用,使缸体与活塞之间形成了密封空间,保证了压力的传递效果。

2. 动力转换液压缸的工作原理还涉及到动力转换。

液压缸通过接受压力传递的液体力量,将液压能转变为机械能。

当液体压力作用于活塞上时,活塞会受到推动力,并沿着缸体内壁移动。

而活塞杆则通过与活塞的连接,将活塞上的力传递给外部工作负荷。

3. 控制调节液压缸的工作原理还包括控制调节。

液压缸的运动速度和力量可以通过控制液体的流量和压力来调节。

通过调整液体的流入和流出速度,可以控制液压缸的运动速度。

而通过调节液体的压力大小,可以实现对液压缸的力量调节。

三、液压缸的应用液压缸的广泛应用于各个工程领域中,包括机械制造、工程建设、冶金矿山等。

其中,液压缸主要用于以下几个方面:1. 机械加工在机械加工领域,液压缸被广泛应用于各类机床设备中。

例如,数控机床中的切削加工、弯曲成型等过程都需要借助液压缸来实现力的传递和机械运动。

2. 工程建设在工程建设领域,液压缸通常用于起重设备、挖掘机械等工程机械中。

液压缸能够提供足够的力量,使得这些机械能够顺利地完成各项工程任务。

3. 冶金矿山在冶金矿山领域,液压缸常用于滚动轧机和矿山起重设备中。

液压缸的高效力量传递和稳定性能,能够提高生产效率,并确保设备的安全可靠运行。

综上所述,液压缸作为液压系统中的重要组成部分,其工作原理基于压力传递、动力转换和控制调节。

液压缸基本结构

液压缸基本结构

液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。

上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。

活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。

下面对液压缸的结构具体分析。

3.2.1 缸体组件•缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,较高的表面精度可靠的密封性。

3.2.1.1 缸筒与端盖的连接形式常见的缸体组件连接形式如图3.10所示。

(1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。

(2)半环式连接(见图b),分为外半环连接和内半环连接两种连接形式,半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。

半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。

(3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。

•(4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。

只适用于长度不大的中、低压液压缸。

(5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变形。

3.2.1.2 缸筒、端盖和导向套的基本要求•缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要求表面粗糙度在 0.1~0.4μm,使活塞及其密封件、支承件能顺利滑动,从而保证密封效果,减少磨损;缸筒要承受很大的液压力,因此,应具有足够的强度和刚度。

液压的缸基本结构

液压的缸基本结构

液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。

上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。

活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。

下面对液压缸的结构具体分析。

3.2.1 缸体组件•缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,较高的表面精度可靠的密封性。

3.2.1.1 缸筒与端盖的连接形式常见的缸体组件连接形式如图3.10所示。

(1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。

(2)半环式连接(见图b),分为外半环连接和内半环连接两种连接形式,半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。

半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。

(3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。

•(4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。

只适用于长度不大的中、低压液压缸。

(5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变形。

3.2.1.2 缸筒、端盖和导向套的基本要求•缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要求表面粗糙度在 0.1~0.4μm,使活塞及其密封件、支承件能顺利滑动,从而保证密封效果,减少磨损;缸筒要承受很大的液压力,因此,应具有足够的强度和刚度。

液压缸工作原理

液压缸工作原理

液压缸工作原理液压缸是一种通过液压能量来产生线性运动的执行元件。

液压缸通常由缸筒、活塞、活塞杆、密封件和连接件等部件组成。

液压缸通过液压油的压力来产生推力,从而实现工作装置的线性运动。

下面将详细介绍液压缸的工作原理。

1. 液压缸的基本结构液压缸的基本结构包括缸筒、活塞、活塞杆、密封件和连接件等部件。

缸筒是一个密封的容器,内部充满液压油。

活塞是密封在缸筒内的活动部件,活塞杆则是与活塞连接的部件,通过活塞杆可以传递推力。

密封件主要用于防止液压油泄漏,保证液压缸的正常工作。

连接件则用于连接液压缸与其他部件,如工作装置等。

2. 液压缸的工作原理液压缸的工作原理是利用液压油的压力来产生推力,从而实现线性运动。

当液压油进入液压缸的缸筒内时,液压油的压力作用在活塞上,活塞受到压力的作用产生推力,推动活塞杆向外运动。

反之,当液压油从液压缸的缸筒内排出时,活塞受到外部的作用力,从而产生向内的运动。

通过控制液压油的流入和流出,可以实现液压缸的正常工作。

3. 液压缸的工作过程液压缸的工作过程一般包括四个阶段:进油、工作、排油和回程。

进油阶段是指液压油进入液压缸的缸筒内,活塞受到压力产生推力向外运动的过程。

工作阶段是指液压缸根据需要完成工作的阶段,活塞保持在一定的位置,输出力或位移。

排油阶段是指液压油从液压缸的缸筒内排出,活塞受到外部作用力向内运动的过程。

回程阶段是指活塞恢复到初始位置的过程,为下一个工作循环做准备。

4. 液压缸的应用领域液压缸广泛应用于各种工业领域,如冶金、矿山、建筑、机械、航空航天等。

在冶金领域,液压缸常用于冶炼设备的启闭、夹紧和卸料等工序。

在矿山领域,液压缸常用于采矿设备的提升、输送和支撑等工序。

在建筑领域,液压缸常用于起重机、挖掘机和压路机等设备的动作执行。

在机械领域,液压缸常用于液压机床、注塑机和起重设备等设备的动作执行。

在航空航天领域,液压缸常用于飞机起落架、襟翼和方向舵等部件的动作执行。

总之,液压缸是一种通过液压能量来产生线性运动的执行元件,其工作原理是利用液压油的压力来产生推力,从而实现工作装置的线性运动。

液压缸

液压缸

活塞式液压缸
活塞式液压缸由缸体、活塞和活塞杆、端盖等 主要部件组成。 活塞式液压缸通常有单杆和双杆两种形式。又 有缸体固定、活塞移动与活塞杆固定、缸体移动 两种运动方式。
双杆活塞缸
结构特点: 结构特点:活塞两侧均装有活塞杆,两侧有效 工作面积一样。
双杆活塞式液压缸, 双杆活塞式液压缸,活塞两侧都装有活 塞杆,由于两腔的有效面积相等, 塞杆,由于两腔的有效面积相等,故供油压力 和流量不变时, 和流量不变时,活塞往返的作用力和运动速度 都相等, 都相等,即 :
柱塞缸(单作用)
●单向液压驱动,回程靠外力(垂直放 置时的重力或弹簧的弹力等外力)。
柱塞上的作用力:
F = pA = p
π
4
d2
柱塞的速度:
v= q A = 4q
柱塞式液压缸
πd 2
双柱塞缸(两个柱塞缸合用)
●双向液压驱动
摆动式液压缸
•摆动式液压缸也称摆动马达。 当它通入液压油时, 它的主轴输出小于360°的摆动运动。
π 2 π 2 2 F2 = p1 A2 − p2 A1 = p1 ( D − d ) − p2 D 4 4 q 4q υ2 = = A2 π( D2 − d 2 )
比较两种形式,即无杆腔进油(活塞杆伸出) 时,推力大,速度低,有杆腔进油时(活塞杆缩 回),推力小,速度高。
适用于往返运动速度及推力不同的场合, 一个方向有较大负载但运行速度较低,另一 个方向空载快速退回。
气体的来源
气体对液压系统的影响
排气方法 1 、 排气孔 对要求不高的液压缸将油口设置在 液压缸最高处,使空气随油液排往油箱。 2 、 排气阀和排气塞 对速度平稳性要求高的液 压缸,则要求设置排气阀或排气塞排气。

液压缸的结构和材料

液压缸的结构和材料
液压缸的材料可以根据工作介质的压力大小及工作缸的尺寸大
小来选择,选择范围很广,对那些低压小的尺寸的液压缸,可使用 灰口铸铁,常用的为HT200到HT350之间,要求高一些的,则可选用 球墨铸铁QT450-10、QT500-7及QT600-3等。要求再高的可以采用铸 钢,如ZG230-450、ZG270-500、ZG310-570等。对那些大、中型锻造 液压机,就常用35或40锻钢,有时也用20MnMo等低合金钢来制造 烟台液压缸。而在一些大吨位的锻造或模锻液压机中,液压缸的材 料有时选用18MnMoNb合金钢,用大的钢锭直接锻造成液压缸的毛 坯。
单杆活塞液压缸结构
缸体组件
缸体组件包括: -缸体、端盖、导向套、连接件等
缸筒与端盖的连接方式 -法兰连接 -螺纹连接 -半环连接 -拉杆连接 -焊接
缸体组件(2/4)
(a)法兰式。法兰式连接结构简单,加工方便,连 接可靠,但要求缸筒端部有足够的壁厚,用以安装 螺栓或旋入螺钉。缸筒端部一般用铸造、镦粗或焊 接方式制成粗大的外径。它是常用的一种连接形式。
4.1.4 液压缸的典型结构和材料 1.液压缸典型结构
缸体组件 活塞组件 密封组件 缓冲组-套环;4-卡环;5-活塞;6-O形密封圈; 7-支承环;8-挡圈;9-YX 形密封圈;10-缸体;11-管接头; 12-导向套;13-缸盖;14-防尘圈;15-活塞杆;16-定位螺钉; 17-耳环
缸体组件(3/4)
(d)拉杆式。拉杆式连接结构简单,工艺性好,通 用性强,但端盖的体积和质量较大,拉杆受力后会 拉伸变长,影响密封效果,只适用于长度不大的中 低压缸。
(e)焊接式。焊接式连接强度 高,制造简单,但焊接时易引起 缸筒变形。
(f)钢丝连接。结构简单,尺寸 小,重量轻。但是轴向尺寸略有 增加,承载能力小。

液压油缸设计标准

液压油缸设计标准

液压油缸设计标准1. 结构和材料液压油缸的主要结构应设计为耐高压、高强度和耐疲劳的结构。

缸体应采用高强度材料,如铸钢、合金钢或不锈钢。

对于关键部位,如活塞和活塞环,应选择耐磨、耐腐蚀的材料,如不锈钢或高强度合金钢。

2. 密封和防泄漏液压油缸的密封系统应设计为防止内部和外部泄漏。

活塞和活塞环之间应采用高性能的密封圈或密封环,以防止液压油的泄漏。

此外,缸盖和缸体之间也应采用密封圈或密封环,以确保缸体的密封性。

3. 性能要求液压油缸应具有良好的性能,包括推力、速度、精度和稳定性。

推力应足够大,以适应各种应用场景的需要。

速度应可调,以满足不同操作速度的要求。

精度应高,以实现精确的控制。

稳定性应强,以确保在各种操作条件下都能保持稳定的工作状态。

4. 安装和维护液压油缸的安装和维护应简单易行。

在安装过程中,应确保各部件的正确安装和调整,避免因安装不当而引起的泄漏或损坏。

在维护过程中,应定期检查液压油的清洁度和浓度,以及各部件的磨损情况,及时进行更换或维修。

5. 表面处理和涂层液压油缸的表面处理和涂层应能够抵抗腐蚀和磨损。

缸体和活塞等部件应进行防腐蚀处理,如镀锌、喷涂防腐涂料等。

此外,为了提高耐磨性,活塞环等摩擦表面应进行耐磨涂层处理。

6. 环境和安全要求液压油缸的设计应考虑环境和安全要求。

在操作过程中,液压油缸可能会产生热量和压力,因此应确保液压油缸能够安全地承受这些条件。

此外,在设计和制造过程中,应考虑到环境保护的要求,尽可能减少对环境的影响。

7. 测试和检验液压油缸在出厂前应进行严格的测试和检验。

测试应包括性能测试、密封性测试、耐压测试等。

检验应包括外观检验、尺寸检验等。

只有经过合格的测试和检验,液压油缸才能被视为符合设计标准。

8. 标记和文档液压油缸应有清晰的标记和完整的文档。

标记应包括产品名称、型号、规格、生产日期等基本信息。

文档应包括设计图纸、使用说明书、维护手册等。

这些标记和文档应易于理解和使用,以便于用户正确地使用和维护液压油缸。

液压缸的结构

液压缸的结构

液压缸的结构液压缸是一种将流体能转换为机械能的装置。

它是液压传动系统中的重要组成部分,广泛应用于机械设备、工程机械、冶金设备、船舶等领域。

液压缸的结构包含哪几部分呢?下面就进行详细介绍。

1. 油缸(Cylinder)油缸,即液压缸的主体部分,是一个筒形结构,一般由钢管制成。

油缸内部分为前后两个区域,前端区域连接着液压的进油口,后端区域连接着气体的排气口。

在液压系统中,液体从进油口流入前端区域,使缸体前部的压力增加,以推动活塞运动。

油缸内部还有一个活塞(Piston),它能在油缸内自由上下移动,并将能量转化为动力输出。

2. 活塞杆(Piston Rod)活塞杆是液压缸的运动部分,它连接着液压缸与外部负载。

活塞杆内部也有一定的压力,但其一侧气室内的气压与外部大气压平衡,使活塞杆运动更加平稳。

活塞杆一般由铬钢制成,表面经过光滑处理,以减少磨损和摩擦。

3. 密封件(Seals)密封件是液压缸的重要组成部分,主要起到防止漏油、防止外界杂质进入油缸、减少摩擦等作用。

液压缸的密封件一般包括 O形圈、密封垫、活塞杆密封件等。

密封件通常由橡胶、化学纤维、金属等材料制成。

4. 壳体(Shell)壳体是液压缸的外壳,它保护液压缸内部的主要构件不受外界损坏。

液压缸壳体主要采用轻质合金、钢材、FRP等材质制成,以便提高整机的重量比和耐用性。

5. 支撑杆(Guides)支撑杆是在液压缸中起到支撑活塞杆和缸体的作用。

支撑杆一般由合金钢等材质制成,有助于提高液压缸的稳定性和负载能力。

在安装时,支撑杆应根据负载方向选取合适的数量和位置,以确保机器的平稳性和安全性。

以上就是液压缸结构的主要组成部分,如有其他结构可根据需要适当添加。

在实际应用时,需要根据负载需求和液压系统参数等因素选择适当的液压缸,以便获得最佳的机器运动性和效率。

液压缸设计常用结构参数及计算表

液压缸设计常用结构参数及计算表

螺栓承载 147000
螺栓安全系数
螺栓个数
1.25
螺栓应力
安全系数
20
12363.75 11.8895966
结论
OK, 螺栓设计参数正确
五、缸筒法兰抗压强度及受拉螺栓的验算
缸径
杆径(mm)
屈服强度
抗拉强度
工作压力
220
220
335
590
25
1. 法兰挤压强度的计算(铸钢件许用挤压应力=80MPa)
挤压外径

70
P>7时:
70
最小导向长度 H≥L/20+D/2
导向套滑动面长度
缸径(mm) 行程(mm)
缸径<80时按缸径取:
100
300
60

100
最小导向长度
65
缸径>80时按杆径取:
缸筒
30

50
稳定性计算、速度比、推拉力 (欧拉公式)
弹性模数
安装及导向系
数K
E=MPa
自由+固定
双铰+导向
固定+铰+导向
负载率 结论
缸筒各设计参数的确定及验算
一、缸筒的初步确定及验算
初定壁厚 缸径
条件
安全系数 3
13.33333333 安全系数5
外径
δ/D
屈服强度
200
240
0.1
800
计算条件
0.08 NO, 右边计算结果不考虑
22.22222222 抗拉强度
900 计算壁厚
20.625
>0.08<0.3
OK, 右边计算结果正确
双固定+导向

液压缸的工作原理

液压缸的工作原理

液压缸的工作原理液压技术在各个领域中得到广泛应用,其中液压缸作为液压系统的核心部件,起着至关重要的作用。

本文将介绍液压缸的工作原理,以及其在实际应用中的一些特点和使用注意事项。

一、液压缸的基本结构液压缸是一种将液体能量转化为机械运动能量的装置,它主要由缸体、活塞、密封件和液压阀等组成。

1. 缸体:液压缸的外壳,通常由钢材或铝合金制成,具有足够的强度和刚度。

2. 活塞:液压缸中的移动部件,通常由铸铁或铝合金制成,其表面光洁度要求较高,以减少摩擦损失和泄漏。

3. 密封件:用于密封液压缸内外的介质,防止泄漏和外界的污染。

4. 液压阀:控制液体进出液压缸的装置,根据实际需求可以选择不同类型的阀门。

二、液压缸的工作原理基于液体的不可压缩性和容积不变原理。

一般来说,液压缸内的工作介质通常为油液,其主要原理如下:1. 工作介质的输送:在液压缸工作开始时,通过液压系统将液体经过液压阀流入液压缸的工作腔。

液体的输入使工作腔内产生一定的压力,从而推动活塞运动。

2. 活塞运动的产生:当液体经过液压阀进入液压缸的一个工作腔时,由于工作腔的体积减小,液体压力增大。

根据液体的不可压缩性,液体的压力作用在活塞上,推动活塞运动。

3. 力的放大与转移:液压缸中的活塞与机械装置相连接,当活塞受到液体的推动而运动时,活塞上的力通过连接杆或其他机械装置传递给被控制的工作对象。

4. 液体排出:当液压缸需要回程时,液压阀控制液体从液压缸流出,同时另一腔的液体经过液压阀进入液压缸,实现液压缸的往复运动。

三、液压缸的特点和应用液压缸作为一种高效、精准的执行元件,具有以下特点:1. 承载能力强:液压缸可承受较大的力矩和载荷,适用于需要高承载的工作环境。

2. 运动平稳:由于液体的不可压缩性,液压缸的运动平稳,无冲击和震动,能够满足对运动要求较高的工作场合。

3. 可靠性好:液压缸的密封性能好,且寿命长,能够在各种恶劣环境中可靠工作。

4. 可调性强:液压缸的推力和速度可通过调整液压系统中的压力和流量来调节,满足不同工况的需求。

液压缸的典型结构和组成

液压缸的典型结构和组成
Page ▪ 6
液压缸9 密封装置
液压缸的典型结构和组成
(4) 缓冲装置 缓冲装置的工作原理是利用活塞或缸筒在其走向行程终端时封住
活塞和缸盖之间的部分油液,强迫它从小孔或细缝中挤出,以产生 很大的阻力,使工作部件受到制动,逐渐减慢运动速度,达到避免 活塞和缸盖相互撞击的目的。
1.耳环;2.螺母;3.防尘圈;4,17.弹簧挡圈;5.套;6,15.卡键; 7,14.O形密封圈;8,12.Y形密封圈;9.缸盖兼导向套;10.缸筒; 11.活塞;13.耐磨环;16.卡键帽;18.活塞杆;19.衬套;20.缸底.
液压、液力与气压传动技术
Page ▪ 2
液压缸的典型结构和组成
Page ▪ 3
图4.7 缸筒和缸盖常见结构
1.缸盖; 2.缸筒; 3.压板; 4.半环; 5.防松螺帽; 6.拉杆
液压缸的典型结构和组成
(2)活塞与活塞杆 图4.8所示为几种常见的活塞与活塞杆的连接形式。 图4.8(a)所示为活塞与活塞杆之间采用螺母连接; 图4.8(b)和(c)所示为卡环式连接方式; 图4.8(d)所示是一种径向销式连接结构。
液压、液力与气压传动技术
液压缸的典型结构和组成
1.1 液压缸的组成
液压缸的结构基本上可以分为缸筒和缸盖、活塞和活塞杆、密封 装置、缓冲装置和排气装置五个部分。
(1) 缸筒和缸盖 工作压力p<10MPa时,使用铸铁; p<20MPa时,使用无缝钢管; p>20MPa时,使用铸钢或锻钢。
图4.7所示为缸筒和缸盖的常见结构形式。 图4.7(a)所示为法兰连接式; 图4.7(b)所示为半环连接式; 图4.7(c)所示为螺纹连接式图; 图4.7(d)所示为拉杆连接式; 图4.7(e)所示为焊接连接式。

液压缸结构图示

液压缸结构图示

液压缸的结构·液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏;在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置;在前端盖外侧;还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖;液压缸端部还设置缓冲装置;有时还需设置排气装置..上图给出了双作用单活塞杆液压缸的结构图;该液压缸主要由缸底 1、缸筒 6、缸盖 10、活塞 4、活塞杆 7 和导向套 8 等组成;缸筒一端与缸底焊接;另一端与缸盖采用螺纹连接..活塞与活塞杆采用卡键连接;为了保证液压缸的可靠密封;在相应位置设置了密封圈 3、5、9、11 和防尘圈 12..下面对液压缸的结构具体分析..3.2.1缸体组件·缸体组件与活塞组件形成的密封容腔承受油压作用;因此;缸体组件要有足够的强度;较高的表面精度可靠的密封性..缸筒与端盖的连接形式常见的缸体组件连接形式如图 3.10 所示..1法兰式连接见图 a;结构简单;加工方便;连接可靠;但是要求缸筒端部有足够的壁厚;用以安装螺栓或旋入螺钉;它是常用的一种连接形式..2半环式连接见图 b;分为外半环连接和内半环连接两种连接形式;半环连接工艺性好;连接可靠;结构紧凑;但削弱了缸筒强度..半环连接应用十分普遍;常用于无缝钢管缸筒与端盖的连接中.. 3螺纹式连接见图 f、c;有外螺纹连接和内螺纹连接两种;其特点是体积小;重量轻;结构紧凑;但缸筒端部结构复杂;这种连接形式一般用于要求外形尺寸小、重量轻的场合..·4拉杆式连接见图 d;结构简单;工艺性好;通用性强;但端盖的体积和重量较大;拉杆受力后会拉伸变长;影响效果..只适用于长度不大的中、低压液压缸..5焊接式连接见图 e;强度高;制造简单;但焊接时易引起缸筒变形..·缸筒、端盖和导向套的基本要求·缸筒是液压缸的主体;其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造;要求表面粗糙度在 0.1~0.4μm;使活塞及其密封件、支承件能顺利滑动;从而保证密封效果;减少磨损;缸筒要承受很大的液压力;因此;应具有足够的强度和刚度..·端盖装在缸筒两端;与缸筒形成封闭油腔;同样承受很大的液压力;因此;端盖及其连接件都应有足够的强度..设计时既要考虑强度;又要选择工艺性较好的结构形式..导向套对活塞杆或柱塞起导向和支承作用;有些液压缸不设导向套;直接用端盖孔导向;这种结构简单;但磨损后必须更换端盖..缸筒、端盖和导向套的材料选择和技术要求可参考液压工程手册..3.2.2活塞组件活塞组件由活塞、活塞杆和连接件等组成..随液压缸的工作压力、安装方式和工作条件的不同;活塞组件有多种结构形式..活塞与活塞杆的连接形式如图 3.11 所示;活塞与活塞杆的连接最常用的有螺纹连接和半环连接形式;除此之外还有整体式结构、焊接式结构、锥销式结构等..螺纹式连接如图a所示;结构简单;装拆方便;但一般需备螺母防松装置;·半环式连接如图b所示;连接强度高;但结构复杂;装拆不便;半环连接多用于高压和振动较大的场合..活塞组件的密封·活塞装置主要用来防止液压油的泄漏;良好的密封是液压缸传递动力、正常动作的保证;根据两个需要密封的耦合面间有无相对运动;可把密封分为动密封和静密封两大类..设计或选用密封装置的基本要求是具有良好的密封性能;并随压力的增加能自动提高密封性;除此以外;摩擦阻力要小、耐油、抗腐蚀、耐磨、寿命长、制造简单、拆装方便..·常见的密封方法有以下几种..1间隙密封间隙密封是一种常用的密封方法;它依靠相对运动零件配合面间的微小间隙来防止泄漏;由环形缝隙轴向流动理论可知;泄漏量与间隙的三次方成正比;因此可用减小间隙的办法来减小泄漏..一般间隙为 0.01~0.05mm;这就要求配合面有很高的加工精度..在活塞的外圆表面一般开几道宽 0.3~0.5mm、深 0.5~l mm、间距 2~5mm的环形沟槽;称平衡槽;其作用如下:a使活塞具有自位性能;由于活塞的几何形状和同轴度误差;工作压力油在密封间隙中的不对称分布将形成一个径向不平衡力;称为液压卡紧力;它使摩擦力增大;开平衡槽后;使得径向油压力趋于平衡;使活塞能够自动对中;减小了摩擦力;b由于同心环缝的泄漏要比偏心环缝小得多;活塞的对中减少了油液的泄漏量;提高了密封性能;c自润滑作用;油液储存在平衡槽内;使活塞能自动润滑..间隙密封的特点是结构简单、摩擦力小、耐用;但对零件的加工精度要求较高;且难以完全消除泄漏..故只适用于低压、小直径的快速液压缸..2活塞环密封活塞环密封依靠装在活塞环形槽内的弹性金属环紧贴缸筒内壁实现密封;如图所示..它的密封效果较间隙密封好;适用的压力和温度范围很宽;能自动补偿磨损和温度变化的影响;能在高速条件下工作;摩擦力小;工作可靠;寿命长;但不能完全密封..活塞环的加工复杂;缸筒内表面加工精度要求高;一般用于高压、高速和高温的场合..3 密封圈密封密封圈密封是液压系统中应用最广泛的一种密封;密封圈有 O 形、V 形、Y 形及组合式等数种;其材料为耐油橡胶、尼龙、聚氨酯等..·①O 形密封圈O 形密封圈的截面为圆形;主要用于静密封和速度较低的滑动密封;其结构简单紧凑;安装方便;价格便宜;可在-40~120°C的温度范围内工作..但与唇形密封圈相比;其寿命较短;密封装置机械部分的精度要求高;启动阻力较大..·O 形圈密封的原理如图所示;O 形圈装入密封槽后;其截面受到压缩后变形..在无液压力时;靠 O 形圈的弹性对接触面产生预接触压力;实现初始密封;当密封腔充入压力油后;在液压力的作用下;O 形圈挤向槽一侧;密封面上的接触压力上升;提高了密封效果..·任何形状的密封圈在安装时;必须保证适当的预压缩量;过小不能密封;过大则摩擦力增大;且易于损坏;因此;安装密封圈的沟槽尺寸和表面精度必须按有关手册给出的数据严格保证..在动密封中;当压力大于 10MPa时;O 形圈就会被挤入间隙中而损坏;为此需在 O 形圈低压侧设置聚四氟乙烯或尼龙制成的挡圈;其厚度为1.25~2.5mm;双向受高压时;两侧都要加挡圈;其结构如图所示..· ② V 形密封圈·V形圈的截面为 V 形;如图所示;V形密封装置是由压环、V形圈和支承环组成..当工作压力高于 10MPa时;可增加 V 形圈的数量;提高密封效果..安装时;V 形圈的开口应面向压力高的一侧..·V形圈密封性能良好;耐高压;寿命长;通过调节压紧力;可获得最佳的密封效果;但 V形密封装置的摩擦阻力及结构尺寸较大;主要用于活塞杆的往复运动密封;它适宜在工作压力 p>50MPa、温度-40~80℃的条件下工作..③ Y 形密封圈Y形密封圈的截面为 Y 形;属唇形密封圈..它是一种密封性、稳定性和耐压性较好;摩擦阻力小;寿命较长的密封圈;故应用很普遍..Y形圈主要用于往复运动的密封;根据截面长宽比例的不同;Y 形圈可分为宽断面和窄断面两种形式;宽断面 Y 形圈一般适用于工作压力 p<20MPa..窄断面 Y 形圈一般适用于工作压力 p<32MPa..图 3.15 所示为宽断面 Y 形密封圈..·Y形圈的密封作用取决于它的唇边对耦合圆的紧密接触程度;在压力油作用下;唇边对耦合面产生较大的接触压力;从而达到密封的目的;当液压力升高时;唇边与藕合面贴得更紧;接触压力更高;密封性能更好..Y 形圈安装时;唇口端面应对着压力高的一侧;当压力变化较大、滑动速度较高时;要使用支承环;以固定密封圈;如图 3.15b所示..3.2.3缓冲装置·当液压缸拖动负载的质量较大、速度较高时;一般应在液压缸中设缓冲装置;必要时还需在液压传动系统中设缓冲回路;以免在行程终端发生过大的机械碰撞;导致液压缸损坏..缓冲的原理是当活塞或缸筒接近行程终端时;在排油腔内增大回油阻力;从而降低液压缸的运动速度;避免活塞与缸盖相撞..·液压缸中常用的缓冲装置如图所示..圆柱形环隙式缓冲装置播放动画如图a;当缓冲柱塞进入缸盖上的内孔缸盖和缓冲活塞间形成缓冲油腔;被封闭油液能从环形间隙δ排出;产生缓冲压力;从而实现减速缓冲..这种缓冲装置在冲过程中;由于其节流面积不变;故缓冲开始时;产生的缓冲制动力很大;快就降低了..其缓冲效果较差;但这种装置结单;制造成本低;所以在系列化的成品液压缸中多采用这种缓冲装置..如图b;由于缓冲柱塞为圆锥形;所以缓冲环形间隙δ随位移量而改变;即节流面积随缓冲行程的增大而缩小;使机械能的吸收较均匀;其缓冲效果较好..如图 3.16c;在缓冲柱塞上开有由浅渐深的三角节流槽;节流面积随着缓冲行程的增大而逐渐减小;缓冲压力变化平缓..可调节流孔式缓冲装置如图 3.16d;在缓冲过程中;缓冲腔油液经小孔节流排出;调节节流孔的大小;可控制缓冲腔内缓冲压力的大小;以适应液压缸不同的负载和速度工况对缓冲的要求;同时当活塞反向运动时;高压油从单向阀进入液压缸内;活塞也不会因推力不足而产生启动缓慢或困难等现象..3.2.4排气装置液压传动系统中往往会混入空气;使系统工作不稳定;产生振动、爬行或前冲等现象;严重时会使系统不能正常工作..因此;设计液压缸时;必须考虑空气的排除;对于要求不高的液压缸;往往不设计专门的排气装置;而是将油口布置在缸筒两端的最高处;这样也能使空气随油液排往油箱;再从油箱溢出;对于速度稳定性要求较高的液压缸和大型液压缸;常在液压缸的最高处设置专门的排气装置;如排气塞、排气阀等..。

第四章:液 压 缸

第四章:液 压 缸

第四章液压缸液压缸又称为油缸,它是液压系统中的一种执行元件,其功能就是将液压能转变成直线往复式的机械运动。

一、液压缸的类型和特点液压缸的种类很多,其详细分类可见表4-2。

表4-2 常见液压缸的种类及特点图4-5双杆活塞缸下面分别介绍几种常用的液压缸。

1.活塞式液压缸活塞式液压缸根据其使用要求不同可分为双杆式和单杆式两种。

(1)双杆式活塞缸。

活塞两端都有一根直径相等的活塞杆伸出的液压缸称为双杆式活塞缸,它一般由缸体、缸盖、活塞、活塞杆和密封件等零件构成。

根据安装方式不同可分为缸筒固定式和活塞杆固定式两种。

如图4-5(a)所示的为缸筒固定式的双杆活塞缸。

它的进、出口布置在缸筒两端,活塞通过活塞杆带动工作台移动,当活塞的有效行程为l时,整个工作台的运动范围为3l,所以机床占地面积大,一般适用于小型机床,当工作台行程要求较长时,可采用图4-5(b)所示的活塞杆固定的形式,这时,缸体与工作台相连,活塞杆通过支架固定在机床上,动力由缸体传出。

这种安装形式中,工作台的移动范围只等于液压缸有效行程l的两倍(2l),因此占地面积小。

进出油口可以设置在固定不动的空心的活塞杆的两端,但必须使用软管连接。

由于双杆活塞缸两端的活塞杆直径通常是相等的,因此它左、右两腔的有效面积也相等,当分别向左、右腔输入相同压力和相同流量的油液时,液压缸左、右两个方向的推力和速度相等。

当活塞的直径为D,活塞杆的直径为d,液压缸进、出油腔的压力为p1和p2,输入流量为q时,双杆活塞缸的推力F和速度v为:F=A(p1-p2)=π (D2-d2) (p1-p2) /4 (4-18)v=q/A=4q/π(D2-d2) (4-19) 式中:A为活塞的有效工作面积。

双杆活塞缸在工作时,设计成一个活塞杆是受拉的,而另一个活塞杆不受力,因此这种液压缸的活塞杆可以做得细些。

(2)单杆式活塞缸。

如图4-6所示,活塞只有一端带活塞杆,单杆液压缸也有缸体固定和活塞杆固定两种形式,但它们的工作台移动范围都是活塞有效行程的两倍。

液压增压油缸结构原理

液压增压油缸结构原理

液压增压油缸结构原理液压增压油缸是目前普遍采用的一种液压元件,其结构与工作原理相对简单,但却能够面对高压、高速、双向工作等各种极其苛刻的工况,被广泛应用于冶金、电力、机械、矿山、建筑等行业。

本文将详细介绍液压增压油缸的结构原理,并分析其特点和优点。

1. 主体结构液压增压油缸主要由外围管体、套管、活塞杆、活塞和密封元件等部分组成。

它们通过紧密配合和各自的功能协作来实现液压增压的作用。

外围管体为增压油缸的主体,是由角钢、工字钢等型材焊接而成。

套管是通过连接管与外围管体相结合,作为增压油缸外部液压油的连接端。

活塞杆上装有活塞,通过密封元件与套管连接,从而分隔出内腔和外腔。

液压增压油缸的内腔称为上腔,外腔称为下腔。

2. 液压系统液压增压油缸的液压系统主要由功率机构、控制阀和油路管路组成。

功率机构是液压系统的驱动元件,控制阀则是用来控制液压增压器内部油液流动,并通过油路管路将增压油缸内外的油液相互连接。

1. 低压油液进入增压油缸的下腔,同时下腔内的活塞向上移动,将油液挤压至上腔。

2. 介质油液在上腔内向四面八方传递,使上腔内的压力快速提高,通过液压控制阀,使油液正向流入增压油缸的套管部分,以保持内部压力平稳。

3. 随着上腔内油液压力的增加,上腔内的活塞杆也随之向下移动,直到整个工作过程结束。

需要注意的是,当活塞受到额外的来自工作部件的载荷时,会产生较强的反作用力,这会影响到增压油缸的正常工作。

增压油缸必须设计为双向工作的,并根据实际情况调整其内部压力,以保证其稳定性和可靠性。

三、液压增压油缸的特点和优点1. 高压能力液压增压油缸的增压能力高,可以支持高达2千兆帕的压力值,这超出了常见的一般液压设备的工作测试要求。

在一些高时间、高速、高压的自动化生产线上,液压增压油缸可以胜任各项要求。

2. 双向工作液压增压油缸可以双向工作,通常是额定压力的2/3至3/4。

并且能够稳定性地实现其工作,且具有精确度高的特点。

3. 高效输出液压增压油缸通过增压油液来提供较大的力或力矩输出,相比于机械设备等其他方式,其效率更高、精度更高、速度更快。

液压缸的结构和组成..

液压缸的结构和组成..

第4章
第二节 液压缸的结构和组成
第4章
5 排气装置
第二节 液压缸的结构和组成
型式:排气孔、排气塞
第4章
第二节 液压缸的结构和组成
4 缓冲装置 作用:吸收高速运动的油缸停止时的惯性力,以防活塞和缸底
相撞。 原理:利用对油液的节流原理来实现对运动部件的制动。当活 塞行走到行程末端,将排油腔的油封闭起来,迫使其通过节流装置 流走,以增加排油阻力,降低活塞速度。 型式:间隙缓冲装置(缓冲压力不可调,缓冲行程较长,适用 于惯性力不大,速度低的场合);可调节流缓冲(节流口可调,缓 冲压力可调,适用范围大);可变节流缓冲(实现缓冲过程中自动 改变节流口的大小,即随着活塞运动速度的降低而相应关小节流口, 缓冲作用均匀,冲击压力小,制动精度高)。
双杆活塞缸简图
第4章
第二节 液压缸的结构和组成
液压缸的安装 当缸筒和机架之间没有相对运动时,可采用支座和法兰连接。 当缸筒和机架之间有相对运动时,可采用轴销、耳环或球头 连接。不管采用那种安装方式,当液压缸两端有底座时,一般一 端固定,另一端浮动,以适应热胀冷缩的需要。特别是在液压缸 行程较长时。
第四章
第二节
一、液压缸的典型结构
液压缸
液压缸的结构和组成
第4章
二、液压缸的组成
第二节 液压缸的结构和组成
1 缸筒组件 包括缸筒和前后端盖 工作压力小:铸铁缸体,法兰连接; 工作压力大:无缝钢管缸体,半环连接、螺纹连接、焊接结构 缸筒和端盖的连接及其优缺点
第4章
第二节 液压缸的结构和组成
第4章
第二节 液压缸的结构和组成
第4章
第二节 液压缸的结构和组成
2 活塞组件 包括活塞和活塞杆 负载小:螺纹连接, 负载大:非螺纹连接 活塞:铸铁, 活塞杆:钢

混凝土液压缸标准尺寸

混凝土液压缸标准尺寸

混凝土液压缸标准尺寸一、前言混凝土液压缸是工业生产中重要的液压机械部件之一,用于将液压油转换成机械能,驱动工业机械运动。

混凝土液压缸的标准尺寸是制造和使用过程中必须遵循的基本规范,本文旨在介绍混凝土液压缸的标准尺寸及其相关知识。

二、混凝土液压缸的基本结构混凝土液压缸由缸筒、活塞、密封件、活塞杆、支撑件、连接件等组成。

其中,缸筒是混凝土液压缸的主体部件,用于容纳活塞和密封件。

活塞则是液压缸的工作部件,通过液压油的作用力来推动活塞杆运动。

密封件则起到密封作用,防止液压油泄漏。

活塞杆则是连接活塞和支撑件的部件,支撑件则用于固定液压缸,连接件则用于与其他机械部件相连接。

三、混凝土液压缸的标准尺寸混凝土液压缸的标准尺寸主要包括缸径、活塞杆直径、缸筒长度、活塞行程等。

下面将分别进行介绍。

1. 缸径缸径是缸筒内径的大小,通常用毫米(mm)表示。

混凝土液压缸的缸径大小一般根据使用需求来确定,常见的有Φ80、Φ100、Φ125、Φ140、Φ160等尺寸。

其中,Φ80表示缸径为80mm。

具体选择哪个尺寸需要根据使用场景和液压缸的工作压力来选择,一般来说,使用场景越大,液压缸的缸径越大,工作压力越高。

2. 活塞杆直径活塞杆直径是活塞杆的直径大小,通常用毫米(mm)表示。

混凝土液压缸的活塞杆直径大小一般根据使用需求来确定,常见的有Φ40、Φ50、Φ63、Φ80、Φ100等尺寸。

其中,Φ50表示活塞杆直径为50mm。

具体选择哪个尺寸需要根据使用场景和液压缸的工作压力来选择,一般来说,使用场景越大,液压缸的活塞杆直径越大,工作压力越高。

3. 缸筒长度缸筒长度是缸筒的长度大小,通常用毫米(mm)表示。

混凝土液压缸的缸筒长度大小一般根据使用需求来确定,常见的有500mm、750mm、1000mm、1250mm、1500mm等尺寸。

具体选择哪个尺寸需要根据使用场景和液压缸的工作压力来选择,一般来说,使用场景越大,液压缸的缸筒长度越长,工作压力越高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(b)半环式。半环式连接分为外半环连接和内半环连接两种形式。 半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半 环连接是应用十分普遍的一种连接形式,常用于无缝钢管缸筒与端 盖的连接中。
(c)螺纹式。螺纹式连接有外螺纹连接和内螺纹连接两 种形式,其特点是体积小、质量小、结构紧凑,但缸筒 端部结构较复杂。这种连接形式一般用于要求外形尺寸 小、质量小的场合。
液压缸的安装定位
支座式 法兰式 轴销式 耳环式
4.1.4 液压缸的典型结构和材料
1.液压缸典型结构
缸体组件 活塞组件
密封组件
缓冲组件 排气组件
1-缸底;2-弹簧挡圈;3-套环;4-卡环;5-活塞;6-O形密封圈; 7-支承环;8-挡圈;9-YX 形密封圈;10-缸体;11-管接头; 12-导向套;13-缸盖;14-防尘圈;15-活塞杆;16-定位螺钉; 17-耳环
活塞杆
-实心的活塞杆用35、45钢 -空心的用35、45钢的无缝钢管
液压缸的材料一般有铸铁和无缝钢管两种。为保证活塞在液压 缸内移动顺利,对该液压缸内孔有圆柱度要求,对内孔轴线有直线 度要求,内孔轴线与两端面间有垂直度要求,内孔轴线对两端支承 外圆(Φ82h6)的轴线有同轴度要求。除了这些还特别要求:内孔 必须光洁无纵向刻痕;若为铸铁材料时,则要求其组织紧密,不得 有砂眼、针孔及疏松。 液压缸的材料可以根据工作介质的压力大小及工作缸的尺寸大 小来选择,选择范围很广,对那些低压小的尺寸的液压缸,可使用 灰口铸铁,常用的为HT200到HT350之间,要求高一些的,则可选用 球墨铸铁QT450-10、QT500-7及QT600-3等。要求再高的可以采用铸 钢,如ZG230-450、ZG270-500、ZG310-570等。对那些大、中型锻造 液压机,就常用35或40锻钢,有时也用20MnMo等低合金钢来制造 烟台液压缸。而在一些大吨位的锻造或模锻液压机中,液压缸的材 料有时选用18MnMoNb合金钢,用大的钢锭直接锻造成液压缸的毛 坯。 小的尺寸的液压缸也常用无缝钢管作坏料,加工余量小、工艺 性能好,生产准备周期短,适合于批量较大的生产。
活塞组件
活塞组件包括: -活塞、活塞杆、连接件等 活塞与活塞杆的连接方式 -整体式 -螺纹式
-半环式
-锥销式 -焊接
液压缸主要零件的材料
缸体材料 -机床用液压缸:多数采用高强度铸铁(HT200),压力 超过8MPa,采用无缝钢管 -工程机械用液压缸:可用35、45号无缝钢管
活塞
-整体式,多采用35、45钢 -装配式的,则用铸铁、耐磨铸铁或铝合金
缸体组ห้องสมุดไป่ตู้(3/4)
(d)拉杆式。拉杆式连接结构简单,工艺性好,通 用性强,但端盖的体积和质量较大,拉杆受力后会 拉伸变长,影响密封效果,只适用于长度不大的中 低压缸。
(e)焊接式。焊接式连接强度 高,制造简单,但焊接时易引起 缸筒变形。
(f)钢丝连接。结构简单,尺寸 小,重量轻。但是轴向尺寸略有 增加,承载能力小。
单杆活塞液压缸结构
缸体组件
缸体组件包括: -缸体、端盖、导向套、连接件等 缸筒与端盖的连接方式 -法兰连接 -螺纹连接
-半环连接
-拉杆连接 -焊接
缸体组件(2/4)
(a)法兰式。法兰式连接结构简单,加工方便,连 接可靠,但要求缸筒端部有足够的壁厚,用以安装 螺栓或旋入螺钉。缸筒端部一般用铸造、镦粗或焊 接方式制成粗大的外径。它是常用的一种连接形式。
缸筒与端盖的连接
缸体组件(4/4)
(2)缸筒、端盖和导向套 缸筒是液压缸的主体,其内孔一般采用镗削、 铰孔、滚压或珩磨等精密加工工艺制造,要求表 面粗糙度Ra值为0.1~0.4 m,以使活塞及其密 封件、支承件能顺利滑动和保证密封效果,减少 磨损。缸筒要承受很大的液压力,因此应具有足 够的强度和刚度。 端盖装在缸筒两端,与缸筒形成封闭油腔, 同样承受很大的液压力,因此它们及其连接部件 都应有足够的强度。设计时既要考虑强度,又要 选择工艺性较好的结构形式。 导向套对活塞杆或柱塞起导向和支承作用, 有些液压缸不设导向套,直接用端盖孔导向,这 种结构简单,但磨损后必须更换端盖。
相关文档
最新文档