基于MATLAB的语音信号的处理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章语音信号的特点与采集

第一节语音信号采集的介绍

在Matlab环境中,主要可以通过以下几种方法驱动声卡,采集语音信号:

1.将声卡作为对象处理采集语音信号Matlab将声卡作为对象处理,其后的一切操作都不与硬件直接相关,而是通过对该对象的操作来作用于硬件设备(声卡)。操作时首先要对声卡产生一个模拟输入对象(ai),给ai对象添加一个通道设置采样频率后,就可以启动设备对象,开始采集数据,采集完成后停止对象并删除对象。

2.调用wavrecord功能函数采集语音信号。wavrecord功能函数只适用于windows95/98/N平台,它使用windows声音输入设备录制声音。函数调用方式:wavrecord(N,fs,ch,nbits); N:采集的样本数据量; fs:样本采集频率,为8000Hz、11025Hz、22050Hz和44100Hz之一,默认值为11025Hz; ch:样本采集通道,1为单声道,2为双声道,默认值为1(单声道); nbits:每个样本的位数(或称解析度),‘double’、‘single’或‘int16’为16位,‘uint8’为8位;

3.运用audiorecorder对象采集语音信号audiorecorder(fs,nbits,ch)可以创设一个audiorecorder对象。fs:样本采集频率,为8000Hz、11025Hz、22050Hz和44100Hz之一,默认值为8000Hz; nbits:每个样本的位数,8位或16位,默认值为8位; ch:样本采集通道,1为单声道,2为双声道,默认值为1(单声道); audiorecorder对象创设后,就可以进行相应的录音、暂停、停止、播放以及数据读取等操作。第二节语音信号的特点

通过对大量语音信号的观察和分析发现,语音信号主要有下面两个

特点:

①在频域内,语音信号的频谱分量主要集中在300~3400Hz 的范围内。利用这个特点,可以用一个防混迭的带通滤波器将此范围内的语音信号频率分量取出,然后按8kHz 的采样率对语音信号进行采样,就可以得到离散的语音信号。

②在时域内,语音信号具有“短时性”的特点,即在总体上,语音信号的特征是随着时间而变化的,但在一段较短的时间间隔内,语音信号保持平稳。在浊音段表现出周期信号的特征,在清音段表现出随机噪声的特征。

下面是一段语音信号的时域波形图(图1-1)和频域图(图1-2),由这两个图可以看出语音信号的两个特点。

00.51 1.52 2.5

3 3.5

4 4.55-0.8-0.6-0.4

-0.2

00.2

0.4

0.6Time(s)

00.51 1.5

2 2.5x 10400.05

0.1

0.150.2

0.25

0.3

0.350.4

0.45

Frequency(Hz)

图1-1语音信号时域波形图 图1-2语音信号频域波形图

第三节 语音信号的采集

在将语音信号进行数字化前,必须先进行防混叠预滤波,预滤波的目的有两个:①抑制输入信导各领域分量中频率超出fs/2的所有分量(fs 为采样频率),以防止混叠干扰。②抑制50Hz 的电源工频干扰。这样,预滤波器必须是一个带通滤波器,设其上、下截止颜率分别是fH 和

fL,则对于绝大多数语音编译码器,fH=3400Hz、fL=60~100Hz、采样率为fs=8kHz;而对语音识别而言,当用于电话用户时,指标与语音编译码器相同。当使用要求较高或很高的场合时fH=4500Hz或8000Hz、fL=60Hz、fs=10kHz或20kHz。

为了将原始模拟语音信号变为数字信号,必须经过采样和量化两个步骤,从而得到时间和幅度上均为离散的数字语音信号。采样也称抽样,是信号在时间上的离散化,即按照一定时间间隔△t在模拟信号x(t)上逐点采取其瞬时值。采样时必须要注意满足奈奎斯特定理,即采样频率fs必须以高于受测信号的最高频率两倍以上的速度进行取样,才能正确地重建波它是通过采样脉冲和模拟信号相乘来实现的。

在采样的过程中应注意采样间隔的选择和信号混淆:对模拟信号采样首先要确定采样间隔。如何合理选择△t涉及到许多需要考虑的技术因素。一般而言,采样频率越高,采样点数就越密,所得离散信号就越逼近于原信号。但过高的采样频率并不可取,对固定长度(T)的信号,采集到过大的数据量(N=T/△t),给计算机增加不必要的计算工作量和存储空间;若数据量(N)限定,则采样时间过短,会导致一些数据信息被排斥在外。采样频率过低,采样点间隔过远,则离散信号不足以反映原有信号波形特征,无法使信号复原,造成信号混淆。根据采样定理,当采样频率大于信号的两倍带宽时,采样过程不会丢失信息,利用理想滤波器可从采样信号中不失真地重构原始信号波形。量化是对幅值进行离散化,即将振动幅值用二进制量化电平来表示。量化电平按级数变化,实际的振动值是连续的物理量。具体振值用舍入法归到靠近的量化电平上。

在实际工作中,我们可以利用windows自带的录音机录制语音文件,图2-3是基于PC机的语音信号采集过程,声卡可以完成语音波形的A/D

转换,获得WAVE文件,为后续的处理储备原材料。调节录音机保存界面

的“更改”选项,可以存储各种格式的WAVE文件。

声音麦克风声卡滤波采样A/D转换Wav

Windows自带的录音机

图1-3 基于PC机的语音信号采集过程

采集到语音信号之后,需要对语音信号进行分析,如语音信号的时

域分析、频谱分析、语谱图分析以及加噪滤波等处理。

第二章语音信号的分析

第一节语音信号分析技术

语音信号分析是语音信号处理的前提和基础,只有分析出可表示语音信号本质特征的参数,才有可能利用这些参数进行高效的语音通信、语音合成和语音识别等处理。而且,语音合成的音质好坏,语音识别率的高低,也都取决于对语音信号分桥的准确性和精确性。因此语音信号分析在语音信号处理应用中具有举足轻重的地位。

贯穿于语音分析全过程的是“短时分析技术”。因为,语音信号从整体来看其特性及表征其本质特征的参数均是随时间而变化的,所以它是一个非乎稳态过程,不能用处理乎稳信号的数字信号处理技术对其进行分析处理。但是,由于不同的语音是由人的口腔肌肉运动构成声道某种形状而产生的响应,而这种口腔肌肉运动相对于语音频率来说是非常缓慢的,所以从另一方面看,虽然语音倍号具有时变特性,但是在一个短时间范围内(一般认为在10~30ms的短时间内),其特性基本保持不变即相对稳定,因面可以将其看作是一个准稳态过程,即语音信号具有短时平稳性。所以任何语音信号的分析和处理必须建立在“短时”的基础上.即进行“短时分析”,将语音信号分为一段一段来分析其特征参数,其中每一段称为一“帧”,帧长一般取为10~30ms。这样,对于整体的语音信号来讲,分析出的是由每一帧特征参数组成的特征参数时间序列。

根据所分析出的参数的性质的不同,可将语音信号分析分为时域分析、频域分析、倒领域分析等;时域分析方法具有简单、计算量小、物

相关文档
最新文档