最新第4章交通工程学交通流理论习题解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《交通工程学 第四章 交通流理论》习题解答4-1 在交通流模型中,假定流速 V 与密度 k 之间的关系式为 V = a (1 - bk )2,试依据两个边界条件,确定系数 a 、b 的值,并导出速度与流量以及流量与密度的关系式。
解答:当V = 0时,j K K =, ∴ 1j
b k =; 当K =0时,f V V =,∴ f a V =;
把a 和b 代入到V = a (1 - bk )2
∴ 2
1f j K V V K ⎛⎫=- ⎪ ⎪⎝
⎭, 又 Q KV = 流量与速度的关系1j f V Q K V V ⎛⎫=- ⎪ ⎪⎝⎭
流量与密度的关系 2
1f j K Q V K K ⎛⎫=- ⎪ ⎪⎝⎭ 4-2 已知某公路上中畅行速度V f = 82 km/h ,阻塞密度K j = 105 辆/km ,速度与密度用线性关系模型,求:
(1)在该路段上期望得到的最大流量;
(2)此时所对应的车速是多少?
解答:(1)V —K 线性关系,V f = 82km/h ,K j = 105辆/km
∴ V m = V f /2= 41km/h ,K m = K j /2= 52.5辆/km ,
∴ Q m = V m K m = 2152.5辆/h
(2)V m = 41km/h
4-3 对通过一条公路隧道的车速与车流量进行了观测,发现车流密度和速度之间的关系具有如下形式: 式中车速s V 以 km/h 计;密度 k 以 /km 计,试问在该路上的拥塞密度是多少?
解答:18035.9ln V k
= 拥塞密度K j 为V = 0时的密度,
∴ 180ln 0j
K = ∴ K j = 180辆/km 4-5 某交通流属泊松分布,已知交通量为1200辆/h ,求:
(1)车头时距 t ≥ 5s 的概率; (2)车头时距 t > 5s 所出现的次数;
(3)车头时距 t > 5s 车头间隔的平均值。
解答:车辆到达符合泊松分布,则车头时距符合负指数分布,Q = 1200辆/h
(1)1536003(5)0.189Q t t t P h e e e λ-⨯-⨯-≥====
(2)n = (5)t P h Q ≥⨯ = 226辆/h
(3)55158s t t e tdt e dt λλλλλ
+∞-+∞-⎰⋅=+=⎰ 4-6 已知某公路 q =720辆/h ,试求某断面2s 时间段内完全没有车辆通过的概率及其
出现次数。
解答:(1)q = 720辆/h ,1/s 36005
q λ==辆,t = 2s n = 0.67×720 = 483辆/h
4-7 有优先通行权的主干道车流量N =360辆/ h ,车辆到达服从泊松分布,主要道路允许次要道路穿越的最小车头时距=10s ,求
(1) 每小时有多少个可穿空档?
(2) 若次要道路饱和车流的平均车头时距为t 0=5s ,则该路口次要道路车流穿越主要道路车流的最大车流为多少? 解答:
(1) 如果到达车辆数服从泊松分布,那么,车头时距服从负指数分布。
根据车头时距不低于t 的概率公式,t e t h p λ-=≥)(,可以计算车头时距不低于10s 的概率是
主要道路在1小时内有360辆车通过,则每小时内有360个车头时距,而在360个车头时距中,不低于可穿越最小车头时距的个数是(总量×发生概率)
360×0.3679=132(个)
因此,在主要道路的车流中,每小时有132个可穿越空挡。
(2) 次要道路通行能力不会超过主要道路的通行能力,是主要道路通行能力乘以一个小于1的系数。同样,次要道路的最大车流取决于主要道路的车流的大小、主要道路车流的可穿越空挡、次要道路车流的车头时距,可记为),,(0t t S S 主次
1t t e e S S λλ---=主次337136053600360103600360=-⨯=⨯-⨯-e e
因此,该路口次要道路车流穿越主要道路车流的最大车辆为337辆/h 。 4-8 在非信号交叉口,次要道路上的车辆为了能横穿主要道路上的车流,车辆通过主要车流的极限车头时距是6s ,次要道路饱和车流的平均车头时距是3s ,若主要车流的流量为1200量/h 。试求
(1) 主要道路上车头时距不低于6s 的概率是多少?次要道路可能通过的车辆是多少?
(2) 就主要道路而言,若最小车头时距是1s ,则已知车头时距大于6s 的概率是多少?而在该情况下次要道
路可能通过多少车辆?
解答:
(1) 计算在一般情况下主要道路上某种车头时距的发生概率、可穿越车辆数。
把交通流量换算成以秒为单位的流入率,λ=Q /3600 =1/3 (pcu/s)
根据车头时距不低于t 的概率公式,t e t h p λ-=≥)(,计算车头时距不低于极限车头时距6s 的概率,
次要道路通行能力不会超过主要道路的通行能力,是主要道路通行能力乘以一个小于1的系数。同样,次要道路的最大车流取决于主要道路的车流的大小、主要道路车流的可穿越空挡、次要道路车流的车头时距,
(2) 计算在附加条件下主要道路上某种车头时距的发生概率、可穿越车辆数。
根据概率论中的条件概率定律的()(|)()P A P A B P B =⋅,在主要道路上最小车头时距不低于1s 的情况下,车头时距不低于6s 的概率是
次要道路的最大车流取决于主要道路的车流的大小、主要道路车流的可穿越空挡、次要道路车流的车头时距,
(2) 关于第2问还存在另外一种解答。负指数分布的特点是“小车头时距大概率”,即车头时距愈短出现的概率