神经网络例题与程序

合集下载

神经网络典型例题-2

神经网络典型例题-2

人工神经网络的工作原理
感知器模型
一个最简单的单计算节点感知器具有分类功能。其分类 原理是将分类知识存储于感知器的权向量(包含了阈值) 中,由权向量确定的分类判决界面将输入模式分为两类。
x1
oj
-1
x2
单层感知器的局限性是:仅对线性可分问题具有分 类能力。
经典的人工神经网络算法
BP算法
oj x2
n
-1
y f ( wi xi )
i 1
y f ( wi xi )
i 1
n
• 参数识别:假设函数形式已知,则可以从已有的 输入输出数据确定出权系数及阈值。
人工神经网络的工作原理
感知器模型(单层前向神经网络)
输出类别指示 输入样本
X ( x1,x2 ,...xi ,...,xn )T
j 1
i 1,2
同样,取
3
a1 (3) 1,
j 1
w2 (1,3)
1 a2 (1) 1 exp(u2 (1))
u2 (1) w2 (1, j )a1 ( j )
具体算法如下:
令p=0
(1)随机给出两个权矩阵的初值;例如用MATLAB软件时可 以用以下语句:
W1( 0) =rand(2,3);
则由方程w1jx1+w2jx2-Tj=0确定了二维平面上的一条分 界线
人工神经网络的工作原理
感知器模型
具体的: 则由方程w1jx1+w2jx2-Tj=0确定了二维平面上的一条分 界线(Why?) w1j x1+w2j x2 – Tj = 0 w1j x1 = Tj - w2j x2 x1 = (Tj -w2j x2) / w1j = - ( w2j/ w1j ) x2 +Tj / w1j = a x2 +c

人工智能与神经网络考试试题

人工智能与神经网络考试试题

人工智能与神经网络考试试题一、选择题(每题 5 分,共 30 分)1、以下哪个不是人工智能的应用领域?()A 医疗诊断B 金融投资C 艺术创作D 传统手工制造业2、神经网络中的神经元通过什么方式进行连接?()A 随机连接B 全连接C 部分连接D 以上都不对3、在训练神经网络时,常用的优化算法是()A 随机梯度下降B 牛顿法C 二分法D 以上都是4、下列关于人工智能和神经网络的说法,错误的是()A 人工智能包括神经网络B 神经网络是实现人工智能的一种方法C 人工智能就是神经网络D 神经网络具有学习能力5、下面哪种激活函数常用于神经网络?()A 线性函数B 阶跃函数C Sigmoid 函数D 以上都是6、神经网络的层数越多,其性能一定越好吗?()A 一定B 不一定C 肯定不好D 以上都不对二、填空题(每题 5 分,共 30 分)1、人工智能的英文缩写是_____。

2、神经网络中的“学习”是指通过调整_____来优化模型性能。

3、常见的神经网络架构有_____、_____等。

4、训练神经网络时,为了防止过拟合,可以采用_____、_____等方法。

5、深度学习是基于_____的一种机器学习方法。

6、神经网络中的损失函数用于衡量_____与_____之间的差异。

三、简答题(每题 10 分,共 20 分)1、请简要说明人工智能和机器学习的关系。

答:人工智能是一个广泛的概念,旨在让计算机能够像人类一样思考和行动,实现智能的表现。

机器学习则是实现人工智能的重要手段之一。

机器学习专注于让计算机通过数据和算法进行学习,自动发现数据中的模式和规律,从而能够对新的数据进行预测和决策。

机器学习为人工智能提供了技术支持,使计算机能够从大量数据中获取知识和技能,不断提升智能水平。

可以说机器学习是人工智能的核心组成部分,但人工智能不仅仅局限于机器学习,还包括其他技术和方法,如知识表示、推理、规划等。

2、简述神经网络中反向传播算法的原理。

神经网络例题汇总

神经网络例题汇总

一、名词解释(共5题,每题5分,共计25分)1、泛化能力答:泛化能力又称推广能力,是机器学习中衡量学习机性能好坏的一个重要指标。

泛化能力主要是指经过训练得到的学习机对未来新加入的样本(即测试样本)数据进行正确预测的能力。

2、有监督学习答:有监督学习又被称为有导师学习,这种学习方式需要外界存在一个“教师”,她可以对一组给定输入提供应有的输出结果,学习系统可根据已知输出与实际输出之间的差值来调节系统参数。

3、过学习答:过学习(over -fitting ),也叫过拟和。

在机器学习中,由于学习机器过于复杂,尽管保证了分类精度很高(经验风险很小),但由于VC 维太大,所以期望风险仍然很高。

也就是说在某些情况下,训练误差最小反而可能导致对测试样本的学习性能不佳,发生了这种情况我们称学习机(比如神经网络)发生了过学习问题。

典型的过学习是多层前向网络的BP 算法4、Hebb 学习规则答:如果两个神经元同时兴奋(即同时被激活),则它们之间的突触连接加强。

如果用i v 、j v 表示神经元i 和j 的激活值(输出),ij ϖ表示两个神经元之间的连接权,则Hebb 学习规则可以表示为:ij i j w v v α∆=,这里α表示学习速率。

Hebb 学习规则是人工神经网络学习的基本规则,几乎所有神经网络的学习规则都可以看作Hebb 学习规则的变形。

5、自学习、自组织与自适应性答:神经网络结构上的特征是处理单元的高度并行性与分布性,这种特征使神经网络在信息处理方面具有信息的分布存储与并行计算而且存储与处理一体化的特点。

而这些特点必然给神经网络带来较快的处理速度和较强的容错能力。

能力方面的特征是神经网络的自学习、自组织与自适应性。

自适应性是指一个系统能改变自身的性能以适应环境变化的能力,它包含自学习与自组织两层含义。

自学习是指当外界环境发生变化时,经过一段时间的训练或感知,神经网络能通过自动调整网络结构参数,使得对于给定输入能产生期望的输出。

神经网络设计知识测试 选择题 45题

神经网络设计知识测试 选择题 45题

1. 神经网络中的激活函数的主要作用是什么?A. 增加网络的复杂性B. 计算损失值C. 引入非线性特性D. 调整权重2. 在卷积神经网络(CNN)中,卷积层的主要功能是什么?A. 降低数据维度B. 提取图像特征C. 增加数据维度D. 计算梯度3. 反向传播算法在神经网络中的作用是什么?A. 初始化权重B. 计算前向传播C. 更新权重D. 选择激活函数4. 下列哪项不是神经网络的常见类型?A. 循环神经网络(RNN)B. 自组织映射(SOM)C. 决策树D. 长短期记忆网络(LSTM)5. 在神经网络训练过程中,什么是过拟合?A. 模型在训练数据上表现不佳B. 模型在测试数据上表现不佳C. 模型在训练数据上表现良好,但在测试数据上表现不佳D. 模型在训练和测试数据上都表现良好6. 下列哪项是防止神经网络过拟合的常用方法?A. 增加网络层数B. 减少训练数据C. 使用正则化D. 增加学习率7. 在神经网络中,什么是梯度消失问题?A. 梯度变得非常大B. 梯度变得非常小C. 梯度保持不变D. 梯度变为零8. 下列哪项是解决梯度消失问题的有效方法?A. 使用Sigmoid激活函数B. 使用ReLU激活函数C. 增加网络层数D. 减少训练数据9. 在神经网络中,什么是批量归一化(Batch Normalization)?A. 一种初始化权重的方法B. 一种正则化技术C. 一种加速训练过程的方法D. 一种计算损失的方法10. 下列哪项是神经网络中的损失函数?A. ReLUB. SigmoidC. Cross-EntropyD. Tanh11. 在神经网络中,什么是交叉熵损失函数?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种用于分类任务的损失函数D. 一种用于回归任务的损失函数12. 下列哪项是神经网络中的优化算法?A. K-meansB. AdamC. PCAD. SVM13. 在神经网络中,什么是Adam优化算法?A. 一种初始化权重的方法B. 一种计算梯度的方法C. 一种自适应学习率的优化算法D. 一种正则化技术14. 在神经网络中,什么是学习率?A. 网络层数B. 权重更新步长C. 激活函数D. 损失函数15. 下列哪项是调整学习率的有效方法?A. 增加网络层数B. 使用学习率衰减C. 减少训练数据D. 增加激活函数16. 在神经网络中,什么是Dropout?A. 一种初始化权重的方法B. 一种正则化技术C. 一种计算梯度的方法D. 一种激活函数17. 下列哪项是神经网络中的正则化技术?A. L1正则化B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数18. 在神经网络中,什么是L2正则化?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种正则化技术D. 一种激活函数19. 下列哪项是神经网络中的初始化方法?A. Xavier初始化B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数20. 在神经网络中,什么是Xavier初始化?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数21. 下列哪项是神经网络中的评估指标?A. 准确率B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数22. 在神经网络中,什么是准确率?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数23. 下列哪项是神经网络中的评估指标?A. 召回率B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数24. 在神经网络中,什么是召回率?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数25. 下列哪项是神经网络中的评估指标?A. F1分数B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数26. 在神经网络中,什么是F1分数?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数27. 下列哪项是神经网络中的评估指标?A. 精确率B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数28. 在神经网络中,什么是精确率?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数29. 下列哪项是神经网络中的评估指标?A. ROC曲线B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数30. 在神经网络中,什么是ROC曲线?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数31. 下列哪项是神经网络中的评估指标?A. AUCB. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数32. 在神经网络中,什么是AUC?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数33. 下列哪项是神经网络中的评估指标?A. 均方误差(MSE)B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数34. 在神经网络中,什么是均方误差(MSE)?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数35. 下列哪项是神经网络中的评估指标?A. 均方根误差(RMSE)B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数36. 在神经网络中,什么是均方根误差(RMSE)?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数37. 下列哪项是神经网络中的评估指标?A. 平均绝对误差(MAE)B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数38. 在神经网络中,什么是平均绝对误差(MAE)?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数39. 下列哪项是神经网络中的评估指标?A. 决定系数(R^2)B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数40. 在神经网络中,什么是决定系数(R^2)?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数41. 下列哪项是神经网络中的评估指标?A. 混淆矩阵B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数42. 在神经网络中,什么是混淆矩阵?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数43. 下列哪项是神经网络中的评估指标?A. 精确召回曲线B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数44. 在神经网络中,什么是精确召回曲线?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数45. 下列哪项是神经网络中的评估指标?A. 准确率-召回率曲线B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数答案1. C2. B3. C4. C5. C6. C7. B8. B9. C10. C11. C12. B13. C14. B15. B16. B17. A18. C19. A20. C21. A22. B23. A24. B25. A26. B27. A28. B29. A30. B31. A32. B33. A34. B35. A36. B37. A38. B39. A40. B41. A42. B43. A44. B45. A。

研究生神经网络试题A卷参考答案

研究生神经网络试题A卷参考答案

研究生神经网络试题A卷参考答案一、简答题1. 神经网络的基本原理是什么?神经网络是一种模仿人脑神经元网络结构和工作方式的计算模型。

它由大量的节点(神经元)和连接它们的边(突触)构成。

每个神经元接收多个输入信号,并通过激活函数进行处理后,将输出信号传递给其他神经元。

通过多层的神经元连接,神经网络能够对复杂的非线性问题进行建模和求解。

2. 神经网络训练的过程及原理是什么?神经网络的训练过程分为前向传播和反向传播两个阶段。

在前向传播过程中,将输入信号通过网络的各层神经元传递,并经过激活函数的作用,最终得到输出结果。

在反向传播过程中,通过与真实输出值的比较,计算网络输出的误差,然后将误差逆向传播回网络,根据误差进行权重和偏置的调整,以减小误差。

反复进行前向传播和反向传播的迭代训练,直到达到预定的训练精度或收敛条件。

3. 神经网络的主要应用领域有哪些?神经网络广泛应用于各个领域,包括图像识别、语音识别、自然语言处理、机器翻译、推荐系统等。

在图像识别领域,卷积神经网络(CNN)被广泛应用于图像分类、目标检测和图像分割等任务。

在自然语言处理领域,循环神经网络(RNN)和长短时记忆网络(LSTM)在语言模型、机器翻译和文本生成等方面表现出色。

此外,神经网络还可以用于金融预测、智能控制和模式识别等其他领域。

4. 神经网络中的激活函数有哪些常用的?它们的作用是什么?常用的激活函数包括sigmoid函数、ReLU函数和tanh函数。

它们的作用是在神经网络中引入非线性,增加网络的表达能力。

sigmoid函数将输入映射到0和1之间,主要用于二分类问题。

ReLU函数在输入大于0时返回该值,否则返回0,可以有效地缓解梯度消失问题,目前在深度学习中得到广泛应用。

tanh函数将输入映射到-1和1之间,具有对称性,使得网络的输出更加均匀。

5. 神经网络中的损失函数有哪些常用的?它们的作用是什么?常用的损失函数包括均方误差损失函数(MSE)、交叉熵损失函数和对数损失函数。

《人工神经网络:模型、算法及应用》习题参考答案

《人工神经网络:模型、算法及应用》习题参考答案

习题2.1什么是感知机?感知机的基本结构是什么样的?解答:感知机是Frank Rosenblatt在1957年就职于Cornell航空实验室时发明的一种人工神经网络。

它可以被视为一种最简单形式的前馈人工神经网络,是一种二元线性分类器。

感知机结构:2.2单层感知机与多层感知机之间的差异是什么?请举例说明。

解答:单层感知机与多层感知机的区别:1. 单层感知机只有输入层和输出层,多层感知机在输入与输出层之间还有若干隐藏层;2. 单层感知机只能解决线性可分问题,多层感知机还可以解决非线性可分问题。

2.3证明定理:样本集线性可分的充分必要条件是正实例点集所构成的凸壳与负实例点集构成的凸壳互不相交.解答:首先给出凸壳与线性可分的定义凸壳定义1:设集合S⊂R n,是由R n中的k个点所组成的集合,即S={x1,x2,⋯,x k}。

定义S的凸壳为conv(S)为:conv(S)={x=∑λi x iki=1|∑λi=1,λi≥0,i=1,2,⋯,k ki=1}线性可分定义2:给定一个数据集T={(x1,y1),(x2,y2),⋯,(x n,y n)}其中x i∈X=R n , y i∈Y={+1,−1} , i=1,2,⋯,n ,如果存在在某个超平面S:w∙x+b=0能够将数据集的正实例点和负实例点完全正确地划分到超平面的两侧,即对所有的正例点即y i=+1的实例i,有w∙x+b>0,对所有负实例点即y i=−1的实例i,有w∙x+b<0,则称数据集T为线性可分数据集;否则,称数据集T线性不可分。

必要性:线性可分→凸壳不相交设数据集T中的正例点集为S+,S+的凸壳为conv(S+),负实例点集为S−,S−的凸壳为conv(S−),若T是线性可分的,则存在一个超平面:w ∙x +b =0能够将S +和S −完全分离。

假设对于所有的正例点x i ,有:w ∙x i +b =εi易知εi >0,i =1,2,⋯,|S +|。

神经网络题目汇总

神经网络题目汇总

神经网络课程作业1.要求程序具有以下功能:能对6输入单节点网络进行训练;能选用不同的学习规则;能选用不同的转移函数;能选用不同的训练样本程序调试通过后,自己设计一组数据进行训练,训练时应给出每一步的净输入和权向量调整结果。

2.下面给出的训练集由玩具兔和玩具熊组成。

输入样本向量的第一个分量代表玩具的重量,第二分量代表玩具耳朵的长度,教师信号为-1表示玩具兔,教师信号为1表示玩具熊。

{X=[1,4],d=-1}, {X=[1,5],d=-1},{X=[2,4],d=-1}, {X=[2,5],d=-1},{X=[3,1],d=1}, {X=[3,2],d=1},{X=[4,1],d=1}, {X=[4,2],d=1}.1. 用MATLAB训练一个感知器,求解此分类问题。

2. 用输入样本对所训练的感知器进行验证。

3. 根据BP流程图上机编程实现三层前馈神经网络的BP学习算法。

要求程序具有以下功能:1. 允许选择各层节点数;2. 允许选用不同的学习率;3. 能对权值进行初始化,初始化用[-1,1]区间的随机数4.允许选用单极性或双极性两种不同Sigmoid型转移函数程序调试通过后,可用以下题目提供的数据进行训练。

设计一个神经网络对下面三类线性不可分模式进行分类。

期望输出向量分别用(1,-1,-1),(-1,1,-1),(-1,-1,1)代表三类,输入用下面9个样本坐标,要求:选择合适的隐节点数;用BP算法训练网络对下面9个样本进行正确分类第一类:(1/4,1/4)(3/4,1/8)(3/4,3/4)第二类:(1/2,1/8)(3/4,1/4)(3/4,1/4)第三类:(1/4,1/2)(1/2,1/2)(3/4,1/2)4.给定5个4维输入模式如下: (1,0,0,0),(1,1,0,0),(1,1,1,0),(0,1,0,0),(1,1,1,1)试设计一个具有5*5神经元平面阵的SOM网,建议学习率在前1000步训练中从0.5线性下降至0.04,然后在训练到10000步时减小至0.优胜领域半径初值设为2个节点(即优胜领域覆盖整个输出平面),1000个训练步时减至0(即只含获胜节点)。

机器学习与人工智能(人工神经网络)习题与答案

机器学习与人工智能(人工神经网络)习题与答案

1.非线性机器学习算法具有以下的什么特性?A.针对难以用准则来描述的复杂模型B.能够达到更深层次的抽象C.能够进行广泛使用的分类算法D.以上都是正确答案:D2.神经网络的学习步骤包括:1、求得权重等参数,2、定义代价函数,3、对测试数据进行预测,4、根据样本数据和标签采用梯度下降法进行学习,步骤的正确顺序为:A.4213B.2413C.2143D.4123正确答案:B二、判断题1.单层感知器能对线形可分的数据集进行分类,能解决逻辑问题异或。

正确答案:×2.前馈神经网络中偏置单元可以有输入。

正确答案:×3.在某种意思上,小批量梯度下降算法是以迭代次数换取算法的运行速度。

正确答案:√4.神经网络中的神经元有两个状态:兴奋、抑制。

这两个状态由阈值决定。

正确答案:√5.前馈式神经网络层间有反馈。

6.小批量梯度下降法在迭代的每一步中,参数的更新只用了小批量样本的信息。

正确答案:√7.小批量梯度下降法和随机梯度下降算法收敛可能需要更多的迭代次数正确答案:√三、多选题1.使用均方误差作为代价函数,有什么特点?( )A.形式简单B.通俗易懂C.容易出现饱和现象D.容易陷入局部最优解正确答案:A、B、C、D2.感知器可以解决一下哪些问题?( )A.实现逻辑关系中的与B.实现逻辑关系中的或C.实现逻辑关系中的非D.线性分类和线性回归问题正确答案:A、B、C、D3.神经网络具有下面哪几个特点?( )A.能充分逼近复杂的非线性关系B.具有高度的容错能力C.具有自组织能力D.可以并行分布处理正确答案:A、B、C、D4.以下会造成梯度消失的激活函数有( )。

A.sigmoid函数B.tanh函数C.ReLU函数D.softplus函数正确答案:A、B四、填空1.在()模型中,每个神经元同时将自身的输出作为输入信号反馈给其他神经元。

正确答案:反馈神经网络。

【最新精选】神经网络习题

【最新精选】神经网络习题

神经网络习题1.由单神经元构成的感知器网络,如下图所示:已知:x0 = 1 w0 = -1 w1= w2 = w3= w4 = 0.5假设:神经元的变换函数为符号函数:即:11y⎧=⎨-⎩ss≥<若该网络输入端有十种不同的输入模式:即: x1 x2 x3 x4 = 0 0 0 0 - 1 0 0 1 试分析该感知器网络对以上输入的分类结果。

2、对于图1所示的多层前馈神经网络,试利用BP算法训练该神经网络,使其能实现如下异或逻辑关系,即(0)(0)(2)x x x120 0 00 1 11 0 11 1 0 Array图1要求:(1)提交编写的程序;(2)对已训练的BP网络进行测试,并画出相应的学习曲线。

3、设有如下的二维非线性函数)cos()sin(),(2121x x x x f ππ=其中]1,1[1 x -∈,]1,1[2 x -∈。

试利用多层前馈神经网络实现该非线性映射。

建议按10.021==x x ∆∆的间隔均匀取点,利用上述解析式进行理论计算,将其结果用以构造输入输出训练样本集。

为了构造输入输出测试样本集,建议按12.021==x x ∆∆的均匀间隔进行采样。

要求:(1)提交编写的程序;(2)给出对网络进行测试后的精度分析结果,并画出相应的学习曲线;(3)分别画出按解析式计算的输出结果及已训练BP 神经网络输出结果的三维图形。

【附加总结类文档一篇,不需要的朋友可以下载后编辑删除,谢谢】2015年文化馆个人工作总结在XXXX年X月,本人从XXXX学院毕业,来到了实现我梦想的舞台--XX区文化馆工作。

在这里我用艰辛的努力,勤劳的付出,真诚而认真地工作态度认真的做好自身的每一项文化馆相关工作,取得了较为良好的工作业绩。

随着一场场活动的成功举办、一台台戏剧的成功出演,在这个带有着梦想和希望的舞台上,转眼之间我已在这里渡过了XX年的青春事业,我亦与舞台共同成长,逐步由一名青涩的毕业生,历练成为了今天的XXX。

人体神经系统的结构与功能例题和知识点总结

人体神经系统的结构与功能例题和知识点总结

人体神经系统的结构与功能例题和知识点总结在我们的身体中,神经系统就如同一个高效的指挥中心,掌控着我们的一举一动、感知和思维。

为了更深入地理解它,让我们通过一些例题和知识点的总结来一探究竟。

首先,来了解一下神经系统的基本结构。

神经系统主要由中枢神经系统和周围神经系统两大部分组成。

中枢神经系统包括脑和脊髓,这可是整个神经系统的“核心指挥部”。

脑又分为大脑、小脑、脑干等部分,每一部分都有着独特的功能。

大脑是我们思考、感知、记忆和决策的中心。

比如说,当我们看到一个美丽的风景,大脑负责处理视觉信息,并产生欣赏和愉悦的感受。

小脑则主要负责协调身体的运动和平衡。

想象一下骑自行车,小脑就在背后默默工作,让我们保持平衡,流畅地骑行。

脊髓就像一条信息高速公路,连接着大脑和身体的各个部分,传递着各种神经信号。

周围神经系统则像延伸出去的“触角”,包括脑神经和脊神经。

它们将中枢神经系统与身体的各个器官、组织和细胞连接起来,实现信息的传递和反馈。

接下来,通过几个例题来加深对神经系统结构的理解。

例题一:当我们不小心踩到尖锐的物体,脚部会迅速缩回。

请问这个反应过程中,神经信号是如何传递的?在这个例子中,脚部的感觉神经末梢感受到疼痛刺激,将信号通过传入神经传递到脊髓。

脊髓接收到信号后,迅速做出反应,通过传出神经将指令传递给脚部的肌肉,使其收缩,从而实现脚部的缩回动作。

这整个过程非常迅速,是一种本能的反射,不需要经过大脑的思考。

再看一个例题。

例题二:某人因为车祸导致脊髓受损,下肢失去知觉和运动能力。

请解释这一现象。

由于脊髓是连接大脑和身体下部的重要通道,当脊髓受损时,神经信号无法正常传递。

大脑发出的指令无法下达给下肢的肌肉和组织,同时下肢的感觉信息也无法上传到大脑,从而导致下肢失去知觉和运动能力。

了解了神经系统的结构,再来看看它的功能。

神经系统的主要功能包括感觉功能、运动功能、调节功能和认知功能。

感觉功能让我们能够感知外界的各种刺激,如视觉、听觉、触觉、味觉和嗅觉等。

深度学习与神经网络考试试题

深度学习与神经网络考试试题

深度学习与神经网络考试试题一、选择题(每题 3 分,共 30 分)1、以下哪个不是深度学习常用的框架?()A TensorFlowB PyTorchC ScikitlearnD Keras2、神经网络中的激活函数的作用是?()A 增加模型的复杂度B 引入非线性C 加速模型的训练D 减少过拟合3、在卷积神经网络中,池化层的主要作用是?()A 特征提取B 减少参数数量C 增加模型的鲁棒性D 以上都是4、以下哪种情况可能导致神经网络过拟合?()A 训练数据过少B 模型过于简单C 正则化参数过大D 学习率过高5、反向传播算法用于计算?()A 输入层的误差B 输出层的误差C 各层神经元的误差D 损失函数的值6、以下哪个不是神经网络的优化算法?()A 随机梯度下降B 牛顿法C 模拟退火D 蚁群算法7、在循环神经网络中,用于解决长期依赖问题的机制是?()A 门控机制B 注意力机制C 池化机制D 卷积机制8、对于图像识别任务,以下哪种神经网络结构表现较好?()A 多层感知机B 卷积神经网络C 循环神经网络D 自编码器9、深度学习中的“深度”通常指的是?()A 数据的规模B 模型的复杂度C 网络的层数D 训练的时间10、以下哪个指标常用于评估分类模型的性能?()A 均方误差B 准确率C 召回率D 以上都是二、填空题(每题 3 分,共 30 分)1、神经网络中的神经元通过_____接收输入信号,并通过_____产生输出信号。

2、常见的激活函数有_____、_____、_____等。

3、卷积神经网络中的卷积核的大小通常为_____。

4、深度学习中的正则化方法包括_____、_____、_____等。

5、循环神经网络中的长短期记忆单元(LSTM)包含_____、_____、_____三个门。

6、图像分类任务中,数据增强的常见方法有_____、_____、_____等。

7、神经网络的训练过程包括_____和_____两个阶段。

第五章神经网络

第五章神经网络

1.一个单输入神经元的输入是2.0,其输入连接的权值1.3,偏置值是3.0。

如果它的输出分别为如下一些值,请根据表2-1回答,它分别可以采用哪些传输函数表2-1(1)1.6 (2)1.0 (3)0.9963 (4)-1.02.假设一个具有偏置值的单输入神经元,现希望当输入值小于3时输出是-1,而输入值大于等于3时,其输出值为+1。

请问:(1)需要什么类型的传输函数?(2)偏置值应该取多大?它与输入连接的权值相关吗?如果相关,如何相关?(3)通过指定传输函数的名称、描述偏置值和权值来概括该网络。

请画出该网络的图形。

用MA TLAB验证网络的性能。

3.一个单输入神经元的输人是2.0,其权值是2.3,偏置值是-3。

(1)传输函数的净输入是多少?(2)神经元的输出是多少?4.如果上题中的神经元分别具有如下传输函数,请问其输出值分别是多少?(1)硬极限函数(2)线性函数(3)对数-S形(logsig)函数5.给定一个具有如下参数的两输入神经元:b=1.2,W=[3 2],p=[-5 6]T,试依据下列传输函数计算神经元输出:(1)对称硬极限传输函数。

(2)饱和线性传输函数。

(3)双曲正切S形(tansig)传输函数。

6.现有一个单层神经网络,具有6个输入和2个输出。

输出被限制为0到1之间的连续值。

叙述该网络的结构,请说明:(1)需要多少个神经元?(2)权值矩阵的维数是多少?(3)能够采用什么传输函数?(4)需要采用偏置值吗?7.给定一个具有如下权值矩阵和输入向量的两输入神经元: W = [3 2],且p=[-5 7]T。

希望其输出值为0.5。

请问是否存在偏置值和传输函数的某种组合可以满足这一要求?(1)若偏置值为0,表2-1中有能够实现上述功能的传输函数吗?(2)如果使用线性传输函数,存在能够实现上述功能的偏置值吗?如果有,请说明偏置值是什么?(3)如果使用对数-S形传输函数,存在能够实现上述功能的偏置值吗?如果有,请说明偏置值是什么?(4)如果使用对称硬极限传输函数,存在能够实现上述功能的偏置值吗?如果有,请说明偏置值是什么?8.一个两层神经网络有4个输入和6个输出。

神经网络算法例题(题目和解答以及Matlab代码)

神经网络算法例题(题目和解答以及Matlab代码)

神经⽹络算法例题(题⽬和解答以及Matlab代码)题⽬:采⽤贝叶斯正则化算法提⾼BP⽹络的推⼴能⼒,⽤来训练BP⽹络,使其能够拟合某⼀附加⽩噪声的正弦样本数据。

解答:采⽤贝叶斯正则化算法‘trainbr’训练BP⽹络,⽬标误差goal=1×10^-3,学习率lr=0.05,最⼤迭代次数epochs=500,拟合附加有⽩噪声的正弦样本数据,拟合数据均⽅根误差为0.0054,拟合后的图形⽤以下代码可以得出。

Matalb代码:clear all;%清除所有变量close all;%清图clc;%清屏%定义训练样本⽮量 P为输⼊⽮量P=[-1:0.05:1];%T为⽬标⽮量T=sin(2*pi*P)+0.1*randn(size(P));%绘制样本数据点figureplot(P,T,'+');hold on;plot(P,sin(2*pi*P),':');%绘制不含噪声的正弦曲线net=newff(minmax(P),[20,1],{'tansig','purelin'});%采⽤贝叶斯正则化算法TRAINBRnet.trainFcn='trainbr';%设置训练参数net.trainParam.show=50;%显⽰中间结果的周期net.trainParam.lr=0.05;%学习率net.trainParam.epochs=500;%最⼤迭代次数net.trainParam.goal=1e-3;%⽬标误差%⽤相应算法训练BP⽹络[net,tr]=train(net,P,T);%对BP⽹络进⾏仿真A=sim(net,P);%计算仿真误差E=T-A;MSE=mse(E);%绘制匹配结果曲线plot(P,A,P,T,'+',P,sin(2*pi*P),':');legend('样本点','标准正弦曲线','拟合正弦曲线');。

(完整word版)人工智能神经网络例题

(完整word版)人工智能神经网络例题

神经网络学习假设w1(0)=0.2, w2(0)=0.4, θ(0)=0.3, η=0.4,请用单层感知器完成逻辑或运算的学习过程。

解:根据“或”运算的逻辑关系,可将问题转换为:输入向量:X1=[0, 0, 1, 1]X2=[0, 1, 0, 1]输出向量:Y=[0, 1, 1, 1]由题意可知,初始连接权值、阈值,以及增益因子的取值分别为:w1(0)=0.2, w2(0)=0.4, θ(0)=0.3,η=0.4即其输入向量X(0)和连接权值向量W(0)可分别表示为:X(0)=(-1, x1 (0), x2 (0))W(0)=(θ(0), w1(0), w2 (0))根据单层感知起学习算法,其学习过程如下:设感知器的两个输入为x1(0)=0和x2(0)=0,其期望输出为d(0)=0,实际输出为:y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-θ(0))=f(0.2*0+0.4*0-0.3)=f(-0.3)=0实际输出与期望输出相同,不需要调节权值。

再取下一组输入:x1(0)=0和x2(0)=1,其期望输出为d(0)=1,实际输出为:y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-θ(0))=f(0.2*0+0.4*1-0.3)=f(0.1)=1实际输出与期望输出相同,不需要调节权值。

再取下一组输入:x1(0)=1和x2(0)=0,其期望输出为d(0)=1,实际输出为:y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-θ(0))=f(0.2*1+0.4*0-0.3)=f(-0.1)=0实际输出与期望输出不同,需要调节权值,其调整如下:θ(1)=θ(0)+η(d(0)- y(0))*(-1)=0.3+0.4*(1-0)*(-1)= -0.1w1(1)=w1(0)+η(d(0)- y(0))x1(0)=0.2+0.4*(1-0)*1=0.6w2(1)=w2(0)+η(d(0)- y(0))x2(0)=0.4+0.4*(1-0)*0=0.4再取下一组输入:x1(1)=1和x2(1)=1,其期望输出为d(1)=1,实际输出为:y(1)=f(w1(1) x1(1)+ w2(1) x2(1)-θ(1))=f(0.6*1+0.4*1+0.1)=f(1.1)=1实际输出与期望输出相同,不需要调节权值。

人工神经网络练习题

人工神经网络练习题

人工神经网络练习题
1. 什么是人工神经网络?
人工神经网络是一种模仿人类神经系统结构和功能的计算模型。

它由许多人工神经元组成,通过模拟神经元之间的相互连接和信息
传递来研究和处理数据。

2. 人工神经网络的优点是什么?
人工神经网络具有以下优点:
- 能够进行非线性建模,适用于处理复杂的非线性问题。

- 具有自适应研究能力,能够通过反馈机制不断优化性能。

- 对于模式识别、分类和预测等任务表现良好。

- 具有容错性,即使部分神经元损坏,网络仍然可以正常工作。

3. 人工神经网络的主要组成部分有哪些?
人工神经网络主要由以下组成部分构成:
- 输入层:接收外部输入数据。

- 隐藏层:进行数据处理和特征提取。

- 输出层:给出最终的结果。

- 权重:神经元之间的连接强度。

- 激活函数:用于处理神经元的输入和输出。

4. 请解释反向传播算法的工作原理。

反向传播算法是一种用于训练人工神经网络的方法。

它通过将
输入数据传递给网络,并比较输出结果与期望结果之间的差异,然
后根据差异调整网络中的权重和偏置值。

该过程从输出层开始,逐
渐向前传播误差,然后通过梯度下降法更新权重和偏置值,最终使
网络逼近期望输出。

5. 请列举几种常见的用途人工神经网络的应用。

人工神经网络可以应用于许多领域,包括但不限于:
- 机器研究和模式识别
- 金融市场预测
- 医学诊断和预测
- 自动驾驶汽车
- 语音和图像识别
以上是关于人工神经网络的练习题,希望对您的学习有所帮助。

程序设计员实操考核深度学习题

程序设计员实操考核深度学习题

程序设计员实操考核深度学习题题目背景深度学习作为人工智能领域的重要分支,已经在各个领域取得了显著的成果。

作为程序设计员,掌握深度学习的原理和实操能力对于不断提升自己的竞争力非常重要。

本文将给出几道实操考核深度学习的题目,帮助程序设计员提升自己的能力。

题目一:卷积神经网络的实现卷积神经网络(Convolutional Neural Network,CNN)是深度学习中应用最广泛的模型之一。

请编写一个Python程序,实现一个简单的卷积神经网络。

# 代码样例import tensorflow as tffrom tensorflow.keras import layersmodel = tf.keras.Sequential()model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))model.add(layers.MaxPooling2D((2, 2)))model.add(layers.Conv2D(64, (3, 3), activation='relu'))model.add(layers.MaxPooling2D((2, 2)))model.add(layers.Conv2D(64, (3, 3), activation='relu'))model.summary()以上代码是一个简单的卷积神经网络的实现,包括两个卷积层和一个池化层。

请根据这个代码样例,编写一个完整的卷积神经网络,并通过传入不同的参数来修改网络结构。

题目二:循环神经网络的实现循环神经网络(Recurrent Neural Network,RNN)是一类特殊的神经网络结构,适用于序列数据的处理。

请编写一个Python程序,实现一个简单的循环神经网络。

# 代码样例import tensorflow as tffrom tensorflow.keras import layersmodel = tf.keras.Sequential()model.add(layers.SimpleRNN(4, input_shape=(None, 1)))model.add(layers.Dense(1))model.summary()以上代码是一个简单的循环神经网络的实现,包括一个循环层和一个全连接层。

人工智能神经网络例题

人工智能神经网络例题

神经网络例题神经网络例题一、简介1.1 概述本章节主要介绍神经网络的基本概念和相关背景知识。

1.2 神经网络的原理本章节详细介绍神经网络的原理,包括神经元的模型、权重和偏置的计算方式、激活函数的选择等内容。

二、神经网络的构建2.1 网络结构设计本章节讲解如何根据具体问题设计神经网络的结构,包括网络层数、每层神经元的数量等。

2.2 数据预处理该章节介绍如何对原始数据进行预处理,包括数据清洗、特征选择和标准化等。

2.3 网络参数初始化本章节详细介绍神经网络中参数初始化的方法,包括随机初始化和其他常用方法。

三、神经网络的训练和优化3.1 损失函数选择本章节讲解如何选择适合的损失函数来反映模型的训练效果。

3.2 反向传播算法该章节详细介绍反向传播算法的原理和具体实现步骤,以及常见的优化算法,如梯度下降、动量法等。

3.3 训练技巧和策略本章节介绍训练神经网络的一些常用技巧和策略,包括学习率的调整、批量归一化、正则化等。

四、神经网络的应用4.1 语音识别该章节以语音识别为例,介绍神经网络在自然语言处理领域的应用。

4.2 图像处理本章节以图像处理为例,介绍神经网络在计算机视觉领域的应用。

4.3 自动驾驶该章节以自动驾驶为例,介绍神经网络在智能交通领域的应用。

五、总结和展望本章节对全文进行总结,并展望神经网络在未来发展的前景。

附件:本文档涉及的附件包括示例代码、训练数据集和实验结果。

法律名词及注释:1.神经网络:一种模仿生物神经网络工作方式的计算模型。

2.反向传播算法:一种常用于训练神经网络的优化算法,通过计算损失函数的梯度来调整网络参数。

3.梯度下降:一种常用的优化算法,在梯度的相反方向更新参数以最小化损失函数。

4.学习率:在梯度下降算法中控制每次参数更新的步长的超参数,影响训练速度和准确性。

神经网络作业-问题及答案

神经网络作业-问题及答案

一 简述人工神经网络常用的网络结构和学习方法。

(10分)答:1、人工神经网络常用的网络结构有三种分别是:BP 神经网络、RBF 神经网络、Kohonen 神经网络、ART 神经网络以及Hopfield 神经网络。

人工神经网络模型可以按照网络连接的拓扑结构分类,还可以按照内部信息流向分类。

按照拓扑结构分类:层次型结构和互连型结构。

层次型结构又可分类:单纯型层次网络结构、输入层与输出层之间有连接的层次网络结构和层内有互联的层次网络结构。

互连型结构又可分类:全互联型、局部互联型和稀疏连接性。

按照网络信息流向分类:前馈型网络和反馈型网络。

2、学习方法分类:⑴.Hebb 学习规则:纯前馈网络、无导师学习。

权值初始化为0。

⑵.Perceptron 学习规则:感知器学习规则,它的学习信号等于神经元期望输出与实际输出的差。

单层计算单元的神经网络结构,只适用于二进制神经元。

有导师学习。

⑶.δ学习规则:连续感知学习规则,只适用于有师学习中定义的连续转移函数。

δ规则是由输出值与期望值的最小平方误差条件推导出的。

⑷.LMS 学习规则:最小均放规则。

它是δ学习规则的一个特殊情况。

学习规则与神经元采用的转移函数无关的有师学习。

学习速度较快精度较高。

⑸.Correlation 学习规则:相关学习规则,他是Hebb 学习规则的一种特殊情况,但是相关学习规则是有师学习。

权值初始化为0。

⑹.Winner-Take-All 学习规则:竞争学习规则用于有师学习中定义的连续转移函数。

权值初始化为任意值并进行归一处理。

⑺.Outstar 学习规则:只适用于有师学习中定义的连续转移函数。

权值初始化为0。

2.试推导三层前馈网络BP 算法权值修改公式,并用BP 算法学习如下函数:21212221213532)(x x x x x x x x f -+-+=,其中:551≤≤-x ,552≤≤-x 。

基本步骤如下:(1)在输入空间]5,5[1-∈x 、]5,5[2-∈x 上按照均匀分布选取N 个点(自行定义),计算)(21x x f ,的实际值,并由此组成网络的样本集;(2)构造多层前向网络结构,用BP 算法和样本集训练网络,使网络误差小于某个很小的正数ε;(3)在输入空间上随机选取M 个点(N M >,最好为非样本点),用学习后的网络计算这些点的实际输出值,并与这些点的理想输出值比较,绘制误差曲面;(4)说明不同的N 、ε值对网络学习效果的影响。

神经网络作业程序

神经网络作业程序

解:i.程序如下:clc;p=[1 5;1 5];t=1;net=newp(p,t);P=[1 1 2 2 3 3 4 4;4 5 4 5 1 2 1 2]; T=[0 0 0 0 1 1 1 1];net=train(net,P,T);y=sim(net,P);iw=net.iw; b=net.b;b=[b{1}]w=[iw{1}] plotpv(P,T); plotpc(w,b); grid on;解得,权值w=[2 -3], 偏置值 b=0 决策边界如下:ii.验证所求权值和偏置值:程序如下:clc;clearw=[2 -3];b=0;P=[1 1 2 2 3 3 4 4;4 5 4 5 1 2 1 2];a=hardlim(w*P+b)所得结果,a=[0 0 0 0 1 1 1 1]结果与样本结果相符。

iii.增加训练集的输入向量,来确保任何解的决策边界都不会与任何最初的输入向量重合。

增加输入向量的方法为:找出同一实际输出结果的输入变量两两连线的交点,该点即为增加的输入向量,然后重新训练该网络。

在本题中,可以增加{[1.5 4.5],0}或者{[3.5 1.5],1}程序如下:clc;clear all;w_0=rand(1);w_1=rand(1);b_0=rand(1);maxepoch=7;X=[1 4 1;1 5 1;2 4 1;2 5 1;1.5 4.5 1;3 1 1;3 2 1;4 1 1;4 2 1] num=9;for k=1:maxepochfor n=1:numif n<=5d=0;elsed=1;endW=[w_0, w_1,b_0];v=X(n,:)*W';if v>=0y=1;elsey=0;endm=8*(k-1)+n;w0(m)=w_0+(d-y)*X(n,1);w1(m)=w_1+(d-y)*X(n,2);b0(m)=b_0+y-d;W=[w0(m),w1(m),b0(m)] ;w_0=w0(m);w_1=w1(m);b_0=b0(m);endendfigure(1)P=[4 4 2 2 3 3 1 1 1.5;2 1 5 4 2 1 5 4 4.5];T=[1 1 0 0 1 1 0 0 0];plotpv(P,T);plotpc([w_0,w_1],b_0);figure(2)plot(1:m,w0(:),'r');xlabel('t/s');ylabel('w0');subplot(312);plot(1:m,w1(:),'g');xlabel('t/s');ylabel('w1');subplot(313);plot(1:m,b0(:),'b');xlabel('t/s');ylabel('b0'); 所得图像如下:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档