方波三角波正弦波函数发生器报告

合集下载

方波三角波正弦波

方波三角波正弦波

电子线路CAD课程设计报告函数发生器的设计专业:电子信息科学与技术班级:电科二班姓名:郭晓超学号:2指导老师:宋戈电子通信与物理学院日期:2015 年12 月31 日指导教师评语目录1 绪论错误!未定义书签。

2 设计内容2.1 设计总方案22.2 设计目的22.3 设计要求任务32.4设计要求 (3)3 原理图设计3.1 总体电路原理框图43.2 各功能模块的设计53.3 总体电路原理图114 PCB板图设计4.1布局与布线1324.2本设计PCB板图145 总结146 参考文献151.绪论在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。

用三角波,方波发生电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。

因此,本设计意在用LM324放大器设计一个产生方波—正弦波的函数转换器。

为了使这三种波形实现转换,需要设计一个电路将直流电转换成方波和三角波,继而将三角波转换成正弦波。

首先直流电源通过一个同相滞回比电路转换为方波,方波通过一个积分电路转换为三角波,最后经滤波电路(Rc振荡电路产生)转换为正弦波。

从而实现转换器的设计。

(关键字:放大、波形转换、积分)2.设计内容2.1 设计总方案函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。

为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。

产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。

波形发生器实验报告(1)

波形发生器实验报告(1)

波形发生器实验报告(1)波形发生器实验报告一、实验目的本实验的目的是通过使用示波器和电子电路来调制和产生不同的波形。

二、实验仪器与器材示波器、经过校准的函数发生器、万用表。

三、实验原理函数发生器是一种电子电路,可以产生不同类型的波形,例如正弦波、方波、三角波等。

为了实现这些波形,函数发生器中需要使用不同的电路元件。

例如,产生正弦波需要使用振荡电路,而产生方波需要使用比较器电路。

函数发生器的输出信号通过示波器来显示和测量。

四、实验步骤1.连接电路:将电源线连接到函数发生器和示波器上。

2.打开电源:按照设备说明书的步骤打开函数发生器和示波器的电源。

3.调节函数发生器:使用函数发生器的控制按钮来选择所需的波形类型,并调节频率和振幅。

使用示波器来观察和测量所产生的波形。

4.调节示波器:使用示波器的控制按钮来调整波形的亮度、对比度、扫描速度等参数,以达到最佳观测效果。

5.记录实验结果:记录所产生的不同波形类型、频率和振幅,并观察和记录示波器的显示结果。

五、实验结果通过本实验,我们成功地产生了正弦波、方波和三角波等不同的波形,并观察了这些波形的频率和振幅。

示波器的显示结果非常清晰,可以直观地观察到波形的特征和参数。

我们还对示波器的参数进行了调整,以获得最佳的观测效果。

六、实验结论本实验通过使用示波器和函数发生器,成功地产生了不同类型的波形,并观察了波形的特征和参数。

这些波形可以应用于各种电子电路实验中,并且需要根据具体应用要求进行调整和优化。

示波器是一种非常重要的测试仪器,可以直接观察和测量电路中的波形和信号特性,因此应用广泛。

正弦波—方波—三角波函数发生器设计报告之欧阳德创编

正弦波—方波—三角波函数发生器设计报告之欧阳德创编

模拟电子技术——课程设计报告题目:函数波形发生器专业:应用电子技术班级:应用电子技术(五)班学号: 0906020129姓名:刘洪小组成员:刘洪阙章明日期:2010-6-24目录(信号发生器)1 函数发生器的总方案及原理框图 (1)1.1电路设计原理框图 (1)1.2 电路设计方案设计 (1)2设计的目的及任务 (2)2.1 课程设计的目的 (2)2.2 课程设计的任务 (2)2.3课程设计的要求及技术指标 (2)3 各部分电路设计 (3)3.1总电路图 (3)3.2正弦波产生电路的工作原理、仿真及结果 (3)3.3 正弦波-方波发生电路的工作原理、仿真及结果 (4)3.4方波-三角波转换电路的工作原理、仿真及结果 (5)3.5电路的参数选择及计算 (5)4 电路的安装与调试 (7)4.1 正弦波发生电路的安装与调试 (7)4.2方波-三角波的安装与调试 (7)4.3总电路的安装与调试 (7)5 电路的实测结果 (8)5.1 正弦波发生电路的实测结果 (8)5.2正弦波-方波转换电路的实测结果 (8)5.3 方波-三角波转换电路的实测结果 (8)5.4 实测电路波形、误差分析及改进方法 (8)5.5 电路安装与调试中遇到的问题及分析解决方法 (8)6 实验总结 (9)7 仪器元件明细清单 (9)8 参考文献 (9)1函数发生器的总方案及原理框图1.1电路设计原理框图正弦波振荡器过零电压比较器积分器图1.1 函数发生器原理框图1.2电路设计方案设计函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片机函数发生器模块8038、集成运放管ua741)。

为进一步掌握电路的基本理论及实验调试技术,本课题采用集成运算放大器与比较器、积分器共同租成的正弦波——方波——三角波函数发生器的设计方法。

多种波形发生器实验分析报告

多种波形发生器实验分析报告

多种波形发生器实验分析报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验设备与材料 (3)3. 实验原理 (4)二、实验内容与步骤 (5)1. 波形发生器设计与搭建 (6)1.1 设计要求与方案选择 (7)1.2 波形发生器硬件搭建 (9)1.3 波形发生器软件编程 (10)2. 多种波形合成与输出 (12)2.1 合成波形的设计与实现 (12)2.2 波形输出设置与调整 (13)2.3 实时监控与数据分析 (15)3. 实验测试与结果分析 (16)3.1 测试环境搭建与准备 (17)3.2 实验数据采集与处理 (18)3.3 结果分析与讨论 (19)三、实验结果与讨论 (20)1. 实验结果展示 (21)2. 结果分析 (22)2.1 各波形参数对比分析 (23)2.2 性能评估与优化建议 (24)3. 问题与改进措施 (25)四、实验总结与展望 (26)1. 实验成果总结 (27)2. 存在问题与不足 (28)3. 后续研究方向与展望 (29)一、实验概述本次实验旨在研究和分析多种波形发生器的性能特点,包括产生信号的频率、幅度、波形稳定性等方面。

实验中采用了多种类型的波形发生器,如正弦波、方波、三角波、梯形波等,并对其输出波形进行了详细的测量和分析。

实验过程中,我们首先对各种波形发生器的基本功能进行了测试,确保其能够正常工作。

我们对不同波形发生器产生的波形进行了对比分析,重点关注了波形的频率、幅度和波形稳定性等关键指标。

我们还对波形发生器的输出信号进行了频谱分析和噪声测试,以评估其性能表现。

通过本次实验,我们获得了丰富的实验数据和经验,为进一步优化波形发生器的设计提供了有力支持。

实验结果也为我们了解各种波形发生器在实际应用中的性能表现提供了重要参考。

1. 实验目的本次实验的主要目的是深入研究和理解多种波形发生器的原理及其在实际应用中的表现。

通过搭建实验平台,我们能够模拟和观察不同波形(如正弦波、方波、三角波等)的产生与特性,进而探究其各自的优缺点以及在不同场景下的适用性。

函数发生器课程设计实验报告

函数发生器课程设计实验报告

函数发生器课程设计实验报告实验名称:函数发生器课程设计实验目的:1.掌握函数发生器的基本原理和特性;2.熟悉常见函数发生器的操作方法;3.学会使用函数发生器进行实际测量与实验。

实验原理:函数发生器是一种可以产生不同频率和波形的电子仪器,常用于科学研究、电子工程实验和生产测试等。

函数发生器可以通过调节工作模式、频率、幅度和偏移量等参数来产生不同的电信号。

常见的波形包括正弦波、方波、锯齿波和三角波等。

实验器材与仪器:1.函数发生器2.示波器3.电源实验步骤:1.连接函数发生器、示波器和电源,确保电路连接正确并稳定。

2.打开函数发生器,并将频率设置为100Hz,幅度设置为5V。

3.在示波器上观察输出波形,并记录实际测量值。

4.将函数发生器的频率和幅度分别调节为500Hz和10V,重复步骤3。

5.将函数发生器的工作模式切换为方波,重复步骤3。

6.将函数发生器的工作模式切换为锯齿波,重复步骤3。

7.将函数发生器的工作模式切换为三角波,重复步骤3。

实验结果与数据分析:经过实验测量得到的数据如下:1.正弦波频率为100Hz,峰峰值为4.88V。

2.正弦波频率为500Hz,峰峰值为9.79V。

3.方波频率为100Hz,峰峰值为4.88V。

4.锯齿波频率为100Hz,峰峰值为4.88V。

5.三角波频率为100Hz,峰峰值为4.88V。

由实验数据可知,函数发生器能够按照设定参数的要求产生不同频率和波形的电信号。

通过调节频率和幅度等参数,可以控制输出信号的特性,满足实际需求。

同时,通过示波器对输出信号进行测量和观察,可以验证函数发生器的工作状态和输出波形的准确性。

实验总结:本次实验通过对函数发生器的使用,熟悉了其基本原理和操作方法,并能够进行实际测量与实验。

函数发生器作为一种常用的仪器设备,广泛应用于各个领域的科学研究和工程实践中。

掌握函数发生器的使用方法对于今后的学习和工作具有重要的意义。

在实验过程中,需要注意正确连接电路和设备,并确保信号的稳定性和准确性。

简易函数信号发生器设计报告

简易函数信号发生器设计报告

简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。

它可以产生不同的信号波形,用于测试和调试电子设备。

本设计报告将介绍一个简易的函数信号发生器的设计方案。

二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。

同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。

三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。

在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。

2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。

通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。

3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。

通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。

四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。

2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。

3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。

五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。

在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。

七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。

信号发生器实验实训报告

信号发生器实验实训报告

一、实验目的1. 熟悉信号发生器的基本原理和组成。

2. 掌握信号发生器的操作方法和使用技巧。

3. 学习通过信号发生器进行信号测试和调试的方法。

4. 培养实验操作能力和分析问题、解决问题的能力。

二、实验原理信号发生器是一种能够产生各种波形信号的电子设备,广泛应用于科研、生产和教学等领域。

本实验所使用的信号发生器为函数信号发生器,可以产生正弦波、方波、三角波等基本波形信号。

三、实验设备1. 信号发生器一台2. 示波器一台3. 测试电缆若干4. 负载电阻若干四、实验内容1. 信号发生器的基本操作(1)打开信号发生器,调整频率、幅度和波形等参数。

(2)观察信号发生器输出波形,确认波形是否正常。

(3)调整输出幅度,使其符合实验要求。

2. 正弦波信号的测试(1)将信号发生器设置为正弦波,调整频率和幅度。

(2)使用示波器观察输出波形,确认波形为正弦波。

(3)测试输出波形的频率、幅度和相位,记录数据。

3. 方波信号的测试(1)将信号发生器设置为方波,调整频率和幅度。

(2)使用示波器观察输出波形,确认波形为方波。

(3)测试输出波形的频率、幅度和占空比,记录数据。

4. 三角波信号的测试(1)将信号发生器设置为三角波,调整频率和幅度。

(2)使用示波器观察输出波形,确认波形为三角波。

(3)测试输出波形的频率、幅度和上升时间、下降时间,记录数据。

5. 信号发生器的应用(1)利用信号发生器产生各种波形信号,进行电路测试和调试。

(2)使用信号发生器进行信号调制和解调实验。

(3)利用信号发生器进行信号分析实验。

五、实验结果与分析1. 正弦波信号测试结果频率:1kHz幅度:2Vpp相位:0°2. 方波信号测试结果频率:1kHz幅度:2Vpp占空比:50%3. 三角波信号测试结果频率:1kHz幅度:2Vpp上升时间:50μs下降时间:50μs实验结果表明,信号发生器能够产生各种波形信号,且波形质量符合实验要求。

六、实验总结1. 通过本次实验,我们熟悉了信号发生器的基本原理和组成,掌握了信号发生器的操作方法和使用技巧。

北邮模电实验报告函数发生器

北邮模电实验报告函数发生器

北京邮电大学课程头验报告课杲程名称:电子测量与电子电路设计题目:函数信号发生器院系: 电子工程学院电子科学与技术专业班级2013211209学生姓名:刘博闻学号2013211049指导教师:咼惠平摘要函数信号发生器广泛地应用于各大院校和科研场所。

随着科技的进步,社会的发展,单一的函数信号发生器已经不能满足人们的需求,本实验设计的正是多种波形发生器。

本实验由两个电路组成,方波—三角波发生电路和三角波—正弦波变换电路。

方波一三角波发生电路由自激的单线比较器产生方波,通过RC积分电路产生三角波,在经过差分电路可实现三角波—正弦波的变换。

本电路振荡频率和幅度用电位器调节,输出方波幅度的大小由稳压管的稳压值决定;而正弦波幅度和电路的对称性也分别由两个电位器调节,以实现良好的正弦波输出图形。

它的制作成本不高,电路简单,使用方便,有效的节省了人力,物力资源,具有实际的应用价值。

关键词:三角波方波正弦波幅度调节频率调节设计要求 (1)1 •前言 (1)2. 方波、三角波、正弦波发生器方案 (1)2.1原理框图 (1)2.2系统组成框图 (2)3. 各组成部分的工作原理 (2)3.1方波-三角波产生电路的工作原理 (2)3.2三角波-正弦波转换电路的工作原理 (4)3.3总电路图 (6)4. 用Mutisim电路仿真 (7)4.1方波一三角波电路的仿真 (7)4.2方波一正弦波电路的仿真 (8)5电路的实验结果及分析 (9)5.1方波波形产生电路的实验结果 (9)5.2方波---三角波转换电路的实验结果 (10)5.3正弦波发生电路的实验结果 (11)5.4实验结果分析 (12)6. 实验总结 (12)7. 仪器仪表清单 (13)7.1所用仪器及元器件: (13)7.2仪器清单表 (13)8. 参考文献 (16)9. 致谢 (166)方波一三角波一正弦波函数信号发生器设计要求1. 设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。

函数信号发生器实验报告

函数信号发生器实验报告

函数信号发生器实验报告函数信号发生器实验报告引言函数信号发生器是一种广泛应用于电子实验室中的仪器设备,用于产生各种形式的电信号。

本实验旨在通过对函数信号发生器的使用和实验验证,进一步了解信号发生器的原理和应用。

一、实验目的本实验的主要目的是:1. 熟悉函数信号发生器的基本操作;2. 掌握函数信号发生器产生不同形式信号的方法;3. 通过实验验证信号发生器的输出特性。

二、实验原理函数信号发生器是一种能够产生各种形式信号的仪器,其基本原理是通过内部电路将直流电压转换为不同形式的交流信号。

常见的信号形式包括正弦波、方波、三角波等。

三、实验步骤1. 打开函数信号发生器的电源,并将输出连接到示波器的输入端。

2. 调节函数信号发生器的频率、幅度和偏置等参数,观察示波器上的波形变化。

3. 逐步调节函数信号发生器的参数,产生不同形式的信号,并记录下相应的参数设置和观察结果。

4. 将函数信号发生器的输出连接到其他电路中,观察信号在不同电路中的响应情况。

四、实验结果与分析在实验过程中,我们通过调节函数信号发生器的频率、幅度和偏置等参数,成功产生了正弦波、方波和三角波等不同形式的信号。

通过示波器观察到的波形,我们可以看出不同形式的信号在频率和振幅上的差异。

在进一步的实验中,我们将函数信号发生器的输出连接到其他电路中,例如放大电路和滤波电路。

观察到信号在不同电路中的响应情况,我们可以了解到信号发生器在实际应用中的作用和效果。

五、实验总结通过本次实验,我们对函数信号发生器的基本操作和原理有了更深入的了解。

我们学会了如何通过调节函数信号发生器的参数来产生不同形式的信号,并通过连接到其他电路中观察信号的响应情况。

在实验过程中,我们也遇到了一些问题和困难,例如在调节参数时需要注意避免过大的幅度和频率,以免对电路和仪器造成损坏。

此外,我们还需要注意信号发生器的精度和稳定性,以保证实验结果的准确性。

通过本次实验,我们进一步认识到函数信号发生器在电子实验中的重要性和广泛应用。

多种波形发生器实验分析报告

多种波形发生器实验分析报告

一.设计目的1、了解并掌握电子电路的一般设计方法,具备初步的独立设计能力。

2、通过查阅手册和文献资料,进一步熟悉常用电子器件的类型和特性,并掌握合理选用的原则;进一步掌握电子仪器的正确使用方法。

3、学会使用EDA软件Multisim对电子电路进行仿真设计。

4、初步掌握普通电子电路的安装、布线、调试等基本技能。

5、提高综合运用所学的理论知识独立分析和解决问题的能力,学会撰写课程设计总结报告;培养严肃认真的工作作风和严谨的科学态度。

二.设计内容、要求及设计方案1、任务设计并制作能产生方波、三角波及正弦波等多种波形信号输出的波形发生器。

2、要求1)输出的各种波形工作频率范围0.02 Hz~20 kHz连续可调;2)正弦波幅值±l0V,失真度小于1.5%;3)方波幅值±l0V;4)三角波峰一峰值20V;各种输出波形幅值均连续可调;5)设计电路所需的直流电源。

3、总体方案设计1)设计思路波形产生电路通常可采用多种不同电路形式和元器件获得所要求的波形信号输出。

波形产生电路的关键部分是振荡器,而设计振荡器电路的关键是选择有源器件,确定振荡器电路的形式以及确定元件参数值等。

具体设计可参考以下思路。

①用正弦波振荡器产生正弦波输出,正弦波信号通过变换电路得方波输出(例如用施密特触发器),用积分电路将方波变换成三角波或锯齿波输出;②利用多谐振荡器产生方波信号输出,用积分电路将方波变换成三角波输出,用折线近似法将三角波变换成正弦波输出;③用多谐振荡器产生方波输出,方波经滤波电路可得正弦波输出,方波经积分电路可得三角波输出;④利用单片函数发生器568038,集成振荡器E1648及集成定时器555/556等可灵活地组成各种波形产生电路。

三、设计方案1)设计方案此次,多种波形发生器的实验,从设计思路可以看出,主要用到了正弦波振荡器,施密特触发器,积分电路等。

基于本学期我们已经掌握的模拟电路课程的知识。

经过我们小组讨论,我们觉得我们对于正弦波振荡器,文式电桥结构,施密特触发器的概念以及积分电路都已比较清楚的了解。

函数信号发生器实训报告

函数信号发生器实训报告

一、实训目的本实训旨在通过设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器,掌握函数信号发生器的设计原理、电路组成、工作过程以及调试方法。

通过本次实训,提高学生对电子电路设计和调试能力的培养,为今后从事相关领域工作打下坚实基础。

二、实训内容1. 设计要求(1)通过集成运算放大器和晶体管查分放大电路设计一个函数信号发生器。

(2)输出波形:方波、三角波、正弦波。

(3)输出频率:1—10KHz范围内连续可调,无明显失真。

(4)方波输出电压Uopp:12V,上升、下降沿小于10us(误差<20%)。

(5)三角波Uopp:8V(误差<20%)。

(6)正弦波Uopp:1V。

2. 设计思路(1)原理框图:函数信号发生器主要由振荡器、频率调节电路、波形变换电路和输出电路组成。

(2)系统的组成框图:① 振荡器:产生稳定的振荡信号。

② 频率调节电路:实现输出频率的连续可调。

③ 波形变换电路:将振荡信号转换为所需的波形。

④ 输出电路:放大输出信号。

(3)分块电路和总体电路的设计:① 振荡器:采用正弦波振荡电路,利用晶体管构成正反馈回路,产生正弦波信号。

② 频率调节电路:采用可变电阻器或电位器,调节振荡频率。

③ 波形变换电路:采用比较器和积分器,将正弦波信号转换为方波信号;利用积分器将方波信号转换为三角波信号。

④ 输出电路:采用差分放大器,提高输出信号的幅度和抗干扰能力。

三、实训过程1. 电路搭建根据设计要求,搭建函数信号发生器的电路。

主要包括振荡器、频率调节电路、波形变换电路和输出电路。

2. 电路调试(1)检查电路连接是否正确,确保无短路、断路等故障。

(2)调整频率调节电路,使输出频率达到设计要求。

(3)观察波形变换电路输出波形,确保输出波形符合设计要求。

(4)调整输出电路,使输出信号幅度达到设计要求。

3. 测试与验证(1)使用示波器观察输出波形,确保输出波形符合设计要求。

(2)使用频率计测量输出频率,确保输出频率达到设计要求。

设计制作一个产生正弦波方波三角波函数转换器

设计制作一个产生正弦波方波三角波函数转换器

模拟电路课程设计报告设计课题:设计制作一个产生正弦波\方波\三角波函数转换器专业班级:电信本学生姓名:学号:47指导教师:设计时间: 1月7日设计制作一个产生正弦波-方波-三角波函数转换器一、设计任务与要求1.输出波形频率范围为~20kHz且连续可调;2.正弦波幅值为±2V,;3.方波幅值为2V;4.三角波峰-峰值为2V,占空比可调;5.分别用三个发光二极管显示三种波形输出;??6.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。

二、方案设计与论证设计要求为实现正弦波-方波-锯齿波之间的转换。

正弦波可以通过RC振荡电路产生。

正弦波通过滞回比较器可以转换成方波,方波通过一个积分电路可以转换成三角波,三角波的占空比只要求可调即可。

各个芯片的电源可用±12V直流电源提供,并备用了两套方案设计。

方案一:方案一电路方框图如图1所示。

图1方案一方框图LC 正弦波振荡电路与RC 桥式正弦波振荡电路的组成原则在本质上是相似的,只是选频网络采用LC电路。

在LC 振荡电路中,当f=f 0时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大 电路的输入电压,以维持输出电压,从而形成正弦波振荡。

方案二:方案二电路方框图如图2所示。

方案二仿真电路如图3所示。

图3 方案二仿真电路图方案论证:LC 正弦波振荡电路特别是方案一所采取的电感反馈式振荡电路中N1与N2之间耦合紧密,振幅大;当C 采用可变电容时,可以获得调节范围较宽的振荡频率,最高频率可达几十兆赫兹。

由于反馈电压取自电感,对高频信号具有较大的电抗,输出电压波形中常含有高次谐波。

因此,电感反馈式振荡电路常用在对波形要求不高的设备之中,如高频加热器、接受机的本机振荡电路等。

另外由于LC 正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路,必要时还应采用共基电路。

因此对于器材的选择及焊接的要求提高,并且器材总价格也增加了。

555定时器构成的方波、三角波、正弦波发生器 设计报告

555定时器构成的方波、三角波、正弦波发生器 设计报告

电子技术课程设计说明书题目:555定时器构成的方波、三角波、正弦波发生器系部:歌尔科技学院专业:班级:2013级1班学生姓名: 学号:指导教师:年月日目录1 设计任务与要求 (1)2 设计方案 (1)2.1 设计思路 (1)2.1.1 方案一原理框图 (1)2.1.2 方案二原理框图 (2)2.2 函数发生器的选择方案 (2)2.3 实验器材 (3)3 硬件电路设计 (4)3.1 555定时器的介绍 (4)3.2 电路组成 (4)3.3 引脚的作用 (5)3.4 基本功能 (5)4 主要参数计算与分析 (7)4.1 由555定时器产生方波 (7)4.2 由方波输出为三角波 (9)4.3 由三角波输出正弦波 (10)5 软件设计 (12)5.1 系统组成框图 (12)5.2 元件清单 (13)6 调试过程 (14)6.1 方波---三角波发生电路的安装与调试 (14)6.1.1 按装方波——三角波产生电路 (14)6.1.2 调试方波——三角波产生电路 (14)6.2 三角波---正弦波转换电路的安装与调试 (14)6.2.1 按装三角波——正弦波变换电路 (14)6.2.2 调试三角波——正弦波变换电路 (14)6.2.3 总电路的安装与调试 (15)6.2.4 调试中遇到的问题及解决的方法 (15)7 结论 (16)8 附录 (17)8.1 用mulstisim 12设计的方波仿真电路图如图8-1 (17)8.2 用mulstisim 12设计的三角波仿真电路图如图8-3 (18)8.3 用mulstisim 12设计的正弦波仿真电路图如图8-5 (19)8.4 电源参考电路图 (20)参考文献 (21)1 设计任务与要求(1) 555定时器构成的方波发生器电路输出频率范围:10-1KH可调;占空比0-100%连续可调;输出方波Vp_p<=12v;输出三角波Vp-p>0.2v;输出正弦波Vp-p<1v;(2)写出详细的电路工作原理、参数计算;(3)画出仿真电路图;(4)仿真测试并记录结果:A.输出方波的仿真结果;B.输出三角波的仿真结果;C.输出正弦波的仿真结果;(5)设计以上电路工作电源:A.画出电源电路图;B.写出电源电路工作原理、参数计算;(6)制作实物;2 设计方案2.1 设计思路2.1.1 方案一原理框图图2-1 方波、三角波、正弦波信号发生器的原理框图首先由555定时器组成的多谐振荡器产生方波,然后由积分电路将方波转化为三角波,最后用低通滤波器将方波转化为正弦波,但这样的输出将造成负载的输出正弦波波形变形,因为负载的变动将拉动波形的崎变。

北邮模电实验报告 函数信号发生器的设计

北邮模电实验报告 函数信号发生器的设计

北京邮电大学电子电路综合设计实验报告课题名称:函数信号发生器的设计学院:班级:姓名:学号:班内序号:课题名称:函数信号发生器的设计摘要:采用运算放大器组成的积分电路产生比较理想的方波-三角波,根据所需振荡频率和对方波前后沿陡度、方波和三角波幅度的要求,选择运放、稳压管、限流电阻和电容。

三角波-正弦波转换电路利用差分放大器传输特性曲线的非线性实现,选取合适的滑动变阻器来调节三角波的幅度和电路的对称性,同时利用隔直电容、滤波电容来改善输出正弦波的波形。

关键词:方波三角波正弦波一、设计任务要求1.基本要求:设计制作一个函数信号发生器电路,该电路能够输出频率可调的正弦波、三角波和方波信号。

(1) 输出频率能在1-10KHz范围内连续可调,无明显失真。

(2) 方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us。

(3) 三角波Uopp=8V(误差小于20%)。

(4) 正弦波Uopp1V,无明显失真。

2.提高要求:(1) 输出方波占空比可调范围30%-70%。

(2) 三种输出波形的峰峰值Uopp均可在1V-10V内连续可调。

二、设计思路和总体结构框图总体结构框图:设计思路:由运放构成的比较器和反相积分器组成方波-三角波发生电路,三角波输入差分放大电路,利用其传输特性曲线的非线性实现三角波-正弦波的转换,从而电路可在三个输出端分别输出方波、三角波和正弦波,达到信号发生器实验的基本要求。

将输出端与地之间接入大阻值电位器,电位器的抽头处作为新的输出端,实现输出信号幅度的连续调节。

利用二极管的单向导通性,将方波-三角波中间的电阻改为两个反向二极管一端相连,另一端接入电位器,抽头处输出的结构,实现占空比连续可调,达到信号发生器实验的提高要求。

三、分块电路和总体电路的设计过程1.方波-三角波产生电路电路图:设计过程:①根据所需振荡频率的高低和对方波前后沿陡度的要求,选择电压转换速率S R合适的运算放大器。

函数信号发生器设计实验报告

函数信号发生器设计实验报告

函数信号发生器的设计实验报告院系:电子工程学院班级:2012211209**:***班内序号:学号:实验目的:设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。

1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us(误差<20%);3,三角波Uopp = 8V(误差<20%);4,正弦波Uopp≥1V。

设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。

电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。

根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。

本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。

单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。

差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。

传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。

Ⅰ、方波—三角波产生电路设计方波输出幅度由稳压管的稳压值决定,即限制在(Uz+UD)之间。

方波经积分得到三角波,幅度为Uo2m=±(Uz+UD)方波和三角波的震荡频率相同,为f=1/T=āRf/4R1R2C,式中ā为电位器RW 的滑动比(即滑动头对地电阻与电位器总电阻之比)。

即调节RW可改变振荡频率。

根据两个运放的转换速率的比较,在产生方波的时候选用转换速率快的LM318,这样保证生成的方波上下长短一致,用LM741则会不均匀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目:方波-三角波-正弦波函数发生器初始条件:具备模拟电子电路的理论知识;具备模拟电路基本电路的设计能力;具备模拟电路的基本调试手段;自选相关电子器件;可以使用实验室仪器调试。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、频率范围三段:10~100Hz,100 Hz~1KHz,1 KHz~10 KHz;2、正弦波Uopp≈3V,三角波Uopp≈5V,方波Uopp≈14V;3、幅度连续可调,线性失真小;4、安装调试并完成符合学校要求的设计说明书时间安排:一周,其中3天硬件设计,2天硬件调试指导教师签名:年月日系主任(或责任教师)签名:年月日目录1.概论 (1)1.1 (1)2.方案设计与论证 (3)2.1 (3)3.单元电路设计 (9)3.1方波发生电路的工作原理 (9)3.2三角波正弦波电路的工作原理 (10)3.3电路参数选择及计算 (6)3.4.正负12V直流稳压电源的设计 (7)3.5总电路图 (8)4.电路仿真 (11)4.1方波三角波发生电路 (11)4.2三角波正弦波发生电路 (11)5.实物制作 (12)5.1焊接原理 (12)5.2焊接工具及材料 (12)5.3焊接方法及步骤 (13)5.4电路板实物图 (14)6.性能参数......................................................7.数据分析 (16)8.实验总结 (21)9.参考书 (22)10.附录 (23)附录1:原件清单 (22)附录2:原理图 (22)附录3:本科生课程设计成绩测定表 (24)1.概论在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。

信号源主要给被测电路提供所需要的已知信号各种波形,然后用其它仪表测量感兴趣的参数。

可见信号源在各种实验应测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试、信号,提供给被测电路,以满足测量或各种实际需要。

波形发生器就是信号源的一种,能够给被测电路提供所需要的波形。

传统的波形发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,不能根据实际需要灵活扩展。

随着微电子技术的发展,运用单片机技术,通过巧妙的软件设计和简易的硬件电路,产生数字式的正弦波、方波、三角波、锯齿等幅值可调的信号。

与现有各类型波形发生器比较而言,产生的数字信号干扰小,输出稳定,可靠性高,特别在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。

信号源主要给被测电路提供所需的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。

可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。

波形发生器就是信号源的一种,能够给被测电路提供所需要的波形。

传统的波形发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,不能根据实际需要灵活扩展。

随着微电子技术的发展,运用单片机技术2.方案设计与论证2.1信号产生电路方案一正弦波 方波 三角波图1-2 正弦波、方波、三角波信号发生器的原理框图RC 正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法,电路框图如图1-2。

先通过RC 正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。

此电路具有良好的正弦波和方波信号。

但经过积分器电路产生的同步三角波信号,存在难度。

原因是积分器电路的积分时间常数是不变的,而随着方波信号频率的改变,积分电路输出的三角波幅度同时改变。

若要保持三角波幅度不变,需同时改变积分时间常数的大小。

方案二本方案采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。

先产生方波—三角波,再将三角波变换成正弦波的电路设计方法,由比较器和积分器组成方波—三角波产生电路,比较器输出的方波积分电路RC 正弦波振荡电路电压比较器经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

此方法已用,但差分很难调实际和仿真有较大差别;因此舍去。

方案三此电路结构、思路简单,运行时性能稳定且能较好的符合设计要求,且成本低廉、调整方便,关于输出正弦波波形的变形,可以通过可变电阻的调节来调整。

但RC滤波性能不太好3.单元电路设计由于考虑成本,方案实现简单,电路性能等问题用方案三。

3.1方波发生电路的工作原理图3.1.1工作原理如下:若a 点断开,运算放大器A1与R 1、R 2及R 3、R P 1组成电压比较器,C 1为加速电容,可加速比较器的翻转。

由图3.1.2分析可知比较器有两个门限电压CC th V RP R R U 1321+-= CC th V RP R R U 1322+=运放A2与R 4、R P 2、C 2及R 5组成反相积分器,其输入信号为方波U o1时,则输出积分器的电压为t U C RP R U o o d )(112142⎰+-= 当U o1=+V CC 时t C RP R U o 214CC 2)(V +-= 当U o1=-V EE 时 t C RP R U o 214EE 2)(V +=可见积分器输入方波时,输出是一个上升速率与下降速率相等的三角波,其波形如图3.1.2所示。

图3.1.2a 点闭合,即比较器与积分器首尾相连,形成闭环电路,则自动产生方波-三角波。

三角波的幅度为CC 1322V RP R R U m o += 方波-三角波的频率为214213)(4C RP R R RP R f ++= 由上分析可知:② 位器R P 2在调整方波-三角波的输出频率时,不会影响输出波形的幅度。

②方波的输出幅度应等于电源电压。

三角波的输出幅度应不超过电源电压。

电位器RP 1可实现幅度上午微调,但会影响波形的频率。

由于CC 1322V RP R R U m o +=因此 31124V cco2m 132===+U RP R R 取R 3=10k Ω,则R 3+RP 1=30 k Ω,取R 3=20k Ω, RP 1为47 k Ω的电位器。

取平衡电阻R 1=R 2//(R 3+RP1)≈10 k Ω。

因为214213)(4C RP R R RP R f ++= 当10Hz ≤f ≤100Hz 时,取C 2=1μF ,则R 4+R P 2=(75~7.5)k Ω,取5.1 k Ω,RP 2为100 k Ω电位器。

当 19Hz ≤f ≤100Hz ,取C 2=1μF 以实现频率波段的转换,R 4、R P 2的值不变。

取平衡电阻R 5=10 k Ω。

三角波→正弦波变换电路的参数选择原则是:隔直电容C 3、C 4、C 5要取得大,因为输出频率较低,取C 3=C 4=C 5=470μF ,滤波电容C 6一般为几十皮法至0.1μF 。

R E2=100Ω与R P 4=100Ω,相并联,以减少差分放大器的线性区。

差分 放大器的静态工作点可通过观测传输特性曲线,调整RP 4及电阻R *确定。

3.2三角波→正弦波的变换三角波-正弦波的变换电路主要由RC 二阶低通有源滤波器来完成。

根据三角波 图3.2的傅里叶变换展开式得知,三角波是由基波,三次谐波以及所有奇数次谐波等叠加 而成的,其中三次谐波的幅值大概只有基波幅值的九分之一甚至更小,并且选频网络所选出的基波本来就会衰减到原来三角波幅值的圆周率/4倍。

于是,二阶无源RC 低通选频网络,(大约信号频率没增大3倍,失真就会出现)。

此外,为了得到10Hz 甚至更低的频率的信号,以及10KHZ 甚至更高频率的信号,需补增3-10HZ 及10KHZ-30KHZ 的滤波网络。

最后,电位器便能实现幅度连续可调节,但由于时间限制只做了二阶低通滤波器实验证明可滤100hz 到几khz 的波形较好。

但因选的RC 是滤100hz 的波形,因此到几k 的时候幅值很小所以可以用几个RC 滤波器使电路性能更好。

经讨论,为使输出波形更接近正弦波,由图可见要求。

3.3.正负12V直流稳压电源的设计图3.3实际考虑到运放轨到轨用正负十二伏,但实测出来九伏电压更能满足实验要求。

4.电路仿真4.1 方波三角波发生电路4.2三角波正弦波发生电路图4.1.1图4.1.24.2 三角波正弦波发生电路图4.2.1图4.2.25实际波形图5.1图5.2图5.3图5.4图5.5图5.6图5.76 数据分析6.1方波测试结果:输出电压13.6v;频率12.3hz-10k可调;6.2三角波测试结果:输出电压5v,可调2.5-7v,频率可调;和方波一样。

6.2正弦波测试结果:输出电压500mv-3.3v,频率和方波一样。

6.2电源测试结果:输出+12.04v,-11.89v。

(实际用9v左右)。

7.实验总结这个电路的特点是频率可调,。

不足之处在于导线过长,分立元件太多。

这次遇到的问题主要是在设计过程没有考虑到的方面较多,在调试时才发现很多问题。

比如原理问题。

焊接时还发现了实物制作的基本功不是很牢。

焊出来的引脚不是特别美观。

我发现一事实上要在电路设计中,应该仔细认证,从中我们可以学到很多东西,可以提高自己发现问题解决问题的能力,使自己的动手能力有一定的提高。

出现故障时要积极面对,在检查线路时一定要有耐心,不要因为麻烦就放弃。

遇见错误要一步一步的按照原理图来,先一步一步的测试,然后整体测试。

不要没顺序没条理,这里测一下那里测一下,最后又什么都没查出来,那样既浪费了时间又浪费了精力。

在设计时方案的选择很重要,要注意分析可能会遇到的问题。

这次的制作其实走了一些弯路。

中间过程中更改了一次方案,也花了不少时间。

其实我们需要的是冷静的头脑。

这个设计其实还可以有很多改进的地方,比如布线时将导线布粗布短一些。

可以将元件的布局改为更合理一些。

并且尽量少在输入输出线上串联器件。

这些都可以提高性能。

8.参考书[1]谢自美.电子线路设计·实验·测试. 湖北:华中科技大学出版社, 2006[2]康华光.模拟电子技术基础. 北京:高等教育出版社,2006[4]铃木雅臣. 晶体电路设计路设计.北京:科学出版社,2004[4]刘岚. 电路分析基础. 北京:科学出版社,2012[5]吴友宇.模拟电子技术基础.北京:清华大学出版社,2009本科生课程设计成绩评定表姓名性别专业、班级课程设计题目:方波-三角波-正弦波函数发生器课程设计答辩或质疑记录:成绩评定依据:最终评定成绩(以优、良、中、及格、不及格评定)指导教师签字:年月日。

相关文档
最新文档