实数化简运算习题解析

合集下载

2020年中考数学试题分类:实数的运算解答题解析

2020年中考数学试题分类:实数的运算解答题解析

2020年中考数学试题分类汇编:实数的运算解答题解析1.(2020北京)计算:11()|2|6sin 453-+--︒ 【解析】解:原式=5232233=-++2.(2020成都)(12分)(1)计算:212sin 60()|22-︒++;【解答】解:(1)原式2423=+- 423=++-- 3=;3.(2020河北)已知两个有理数:-9和5. (1)计算:(9)52-+; (2)若再添一个负整数m ,且-9,5与m 这三个数的平均数仍小于m ,求m 的值. 【答案】(1)-2;(2)1m =-. 【详解】(1)(9)52-+=422-=-; (2)依题意得(9)53m-++<m解得m >-2∴负整数m=-1.4.(2020江西)(1)计算:21(1|2|2-⎛⎫--+ ⎪⎝⎭【解析】 原式=2)21(121+- =341=+- 19.(202020(2)(3)π+---. 【详解】解:原式341=+-6=.5.(2020乐山)计算:022cos 60(2020)π--︒+-.解:原式=12212-⨯+=2. 6.(2020四川绵阳)(1)计算:125-3+2cos 608()22︒-⨯--【解析】本题考查数式综合运算。

熟练掌握绝对值的化简、二次根式、0指数、三角函数是解题的关键。

解:原式=113-5+25-22-122⨯⨯=3-5+5-2-1=0.7.(2020贵州黔西南)(12分)(1)计算(﹣2)2﹣||﹣2cos45°+(2020﹣π)0;【解答】解:(1)原式=421=41=5﹣2;8.计算:(2020无锡)(1)()22516-+-- 【详解】解:(1)原式=4+5-4=5; 9.(2020长沙)计算:()1131012cos 454-︒⎛⎫---++ ⎪⎝⎭解:()1131012cos 454-︒⎛⎫---++ ⎪⎝⎭=3114-++=710.(2020齐齐哈尔)((10分)(1)计算:sin30°(3)0+||【解答】解:(1)sin30°(3)0+||4﹣1=4;11.(2020重庆A 卷)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=,14342÷=,所以14是“差一数”;19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”. 解:(1)∵49594÷=;493161÷=,∴49不是“差一数”, ∵745144÷=;743242÷=,∴74是“差一数”;(2)∵“差一数”这个数除以5余数为4, ∴“差一数”这个数的个位数字为4或9,∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399, ∵“差一数”这个数除以3余数为2,∴“差一数”这个数的各位数字之和被3除余2,∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.12.(2020上海)(10分)计算:(21)﹣2+|3|.【解答】解:原式=(33)2﹣4+3=32﹣4+3=0.13.(2020重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n ,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n 为“好数”. 例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除; 643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由. 解:(1)∵3,1,2都不为0,且3+1=4,4能被2整除,∴312是“好数”, ∵6,7,5都不为0,且6+7=12,12不能被5整除,∴675不是“好数”;(2)设十位数字为x ,个位数字为y ,则百位数字为(x+5).其中x ,y 都是正整数,且1≤x ≤4,1≤y ≤9.十位数字与个位数字的和为:2x+5. 当x=1时,2x+5=7,此时y=1或7,“好数”有:611,617 当x=2时,2x+5=9,此时y=1或3或9,“好数”有:721,723,729 当x=3时,2x+5=11,此时y=1,“好数”有:831 当x=4时,2x+5=13,此时y=1,“好数”有:941所以百位数字比十位数字大5的所有“好数”的个数是7.理由如上. 14.(2020新疆生产建设兵团)(6分)计算:(﹣1)2+||+(π﹣3)0.解:(﹣1)2+||+(π﹣3)011﹣2.15.(2020内蒙古呼和浩特)(10分)(1)计算:|1﹣3|﹣2×6+3-21﹣(32)﹣2;【解答】解:(1)原式=3-1-23+2+3-49=45; 16.(2020江苏连云港)(6分)计算2020131(1)()645--+-.【解答】解:原式1542=+-=.17.(2020江苏泰州)(3分)如图,点P 在反比例函数3y x=的图象上,且横坐标为1,过点P 作两条坐标轴的平行线,与反比例函数(0)ky k x=<的图象相交于点A 、B ,则直线AB 与x 轴所夹锐角的正切值为 3 .【解答】解:点P 在反比例函数3y x=的图象上,且横坐标为1,则点(1,3)P , 则点A 、B 的坐标分别为(1,)k ,1(3k ,3),设直线AB 的表达式为:y mx t =+,将点A 、B 的坐标代入上式得133k m t km t =+⎧⎪⎨=-+⎪⎩,解得3m =-,故直线AB 与x 轴所夹锐角的正切值为3,故答案为3.18.(2020四川遂宁)(7分)计算:2sin30°﹣|1|+(21)﹣2﹣(π﹣2020)0. 【解答】解:原式=22(1)+4﹣1=211+4﹣13.19.(2020湖南岳阳)(6分)(2020•岳阳)计算:(21)﹣1+2cos60°﹣(4﹣π)0+|﹣3 |. 【解答】解:原式=2+2×21- 1 +3 =2+1﹣1 +3 =2+3 .20.(2020广西南宁)(6分)计算:﹣(﹣1)+32÷(1﹣4)×2. 解:原式=1+9÷(﹣3)×2=1﹣3×2=1﹣6=﹣5. 21.(6分)(2020•玉林)计算:•(π﹣3.14)0﹣|1|+()2. 【解答】解:原式1﹣(1)+91+9=10.22.(5分)(2020•常德)计算:20+(31)﹣1•4tan45°.【解答】解:原式=1+3×2﹣4×1=1+6﹣4=3. 23.(10分)(2020•徐州)计算:(1)(﹣1)2020+|2|﹣()﹣1; 【解答】解:(1)原式=1+22=1;24.(2020贵州遵义)(1)sin30°﹣(π﹣3.14)0+()﹣2;解:(1)原式1+4=3;25.(2020山西)(10分)(1)计算:(﹣4)2×(﹣21)3﹣(﹣4+1). 解:(1)(﹣4)2×(﹣21)3﹣(﹣4+1)=16×(﹣81)+3=﹣2+3=1;26.(2020东莞)计算:03822cos 60(3.14)π---+--︒.解:原式122212=--+⨯-4=- 27.(2020四川自贡)(8分)计算:|﹣2|﹣(π)0+()﹣1.解:原式=2﹣1+(﹣6)=1+(﹣6)=﹣5.28.(2020四川自贡)(10分)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x ﹣2|的几何意义是数轴上x 所对应的点与2所对应的点之间的距离:因为|x +1|=|x ﹣(﹣1)|,所以|x +1|的几何意义就是数轴上x 所对应的点与﹣1所对应的点之间的距离. (1)发现问题:代数式|x +1|+|x ﹣2|的最小值是多少?(2)探究问题:如图,点A 、B 、P 分别表示数﹣1、2、x ,AB =3.∵|x +1|+|x ﹣2|的几何意义是线段P A 与PB 的长度之和,∴当点P 在线段AB 上时,P A +PB =3,当点P 在点A 的左侧或点B 的右侧时,P A +PB >3.∴|x +1|+|x ﹣2|的最小值是3. (3)解决问题:①|x ﹣4|+|x +2|的最小值是 6 ;②利用上述思想方法解不等式:|x +3|+|x ﹣1|>4;③当a 为何值时,代数式|x +a |+|x ﹣3|的最小值是2.【解答】解:(1)发现问题:代数式|x +1|+|x ﹣2|的最小值是多少? (2)探究问题:如图,点A 、B 、P 分别表示数﹣1、2、x ,AB =3.∵|x +1|+|x ﹣2|的几何意义是线段P A 与PB 的长度之和,∴当点P 在线段AB 上时,P A +PB =3,当点P 在点A 的左侧或点B 的右侧时,P A +PB >3.∴|x +1|+|x ﹣2|的最小值是3. (3)解决问题:①|x ﹣4|+|x +2|的最小值是6; 故答案为:6;②如图所示,满足|x +3|+|x ﹣1|>4的x 范围为x <﹣3或x >1;③当a 为﹣1或﹣5时,代数式|x +a |+|x ﹣3|的最小值是2. 29.(2020青海)(5分)计算:(31)﹣1+|1﹣3tan45°|+(π﹣3.14)0﹣327. 解:原式=3+|1﹣3|+1﹣3=3+3-1+1-3=3. 30.(2020四川眉山)(8分)计算:(2﹣2)0+(﹣21)﹣2+2sin45°﹣8. 解:原式=1+4+2×22﹣22=5+2﹣22=5﹣2. 31.(2020•怀化)计算:2﹣2﹣2cos45°+|2|.解:原式.32.(2020浙江温州)(10分)(1)计算:|﹣2|+()0﹣(﹣1).【解答】解:(1)原式=2﹣2+1+1 =2;33.(2020海南)(12分)计算:(1)|﹣8|×2﹣1﹣16+(﹣1)2020;(2)(a +2)(a ﹣2)﹣a (a +1).解:(1)|﹣8|×2﹣1﹣16+(﹣1)2020,=8×21﹣4+1, =4﹣4+1,=1;(2)(a +2)(a ﹣2)﹣a (a +1), =a 2﹣4﹣a 2﹣a , =﹣4﹣a .34.(2020•株洲)计算:(41)﹣1+|﹣1|tan60°.【解答】解:原式=4+1=4+1﹣3 =2.35.(2020甘肃定西)计算:0(23)(23)tan 60(23)π+--︒解:原式4331=-=3.。

初一数学实数的运算试题答案及解析

初一数学实数的运算试题答案及解析

初一数学实数的运算试题答案及解析1.计算:= .【答案】﹣14【解析】先把二次根式、三次根式化简,再作乘法运算.解:原式=10×(﹣2)×0.7=﹣14.故答案为:﹣14.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、三次根式的运算.2.不用计算器,计算:= .【答案】5【解析】根据立方运算法则,分别相乘,直接得出答案.解:()3=××=5.故答案为:5.点评:此题主要考查了实数的运算,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式乘法运算.3.有一个数值转换器,原理如下:当输入x为4时,输出的y的值是.【答案】y=【解析】本题有x=4很容易解出它的算术平方根,在判断它的算术平方根是什么数,最后即可求出y的值.解:∵x=4时,它的算术平方根是2又∵2是有理数∴取2的算术平方根是∴y=点评:本题主要考查了算术平方根的计算和有理数、无理数的概念,解题时要掌握数的转换方法.4.= ;= .【答案】5,2【解析】根据幂的乘方法则进行计算即可.解:()2==5;()2==2.故答案为:5,2.点评:本题考查的是实数的运算,熟知幂的乘方法则是解法此题的关键.5.在下面算式的两个方框内,分别填入两个绝对值不相等的无理数,使得它们的积恰好为有理数,并写出它们的积.【答案】()()=2【解析】只要满足两个绝对值不相等的无理数,使得它们的积恰好为有理数即可,可以任意列举出两个不相等的无理数,如:和,()(+1)=3﹣1=2满足题意.解:和+1是两个绝对值不相等无理数,那么,()()=3﹣1=2,即:这两个数满足是两个绝对值不相等的无理数,且它们的积恰好为有理数,所以空白处应填:()()=2,答案不唯一.点评:本题主要考查写出两个绝对值不相等的无理数,使得它们的积恰好为有理数的能力,可以任意取两个绝对值不相等的无理数,使它们相乘,如满足乘积是有理数则可取,如不满足舍去即可,本题属于开放性类型.6.长方形的长为厘米,面积为平方厘米,则长方形的宽约为厘米.(,结果保留三个有效数字)【答案】5.66【解析】根据长方形面积公式,代入即可得出答案.解:长方形的面积=长×宽,∴长方形的宽为=4≈5.66.故答案为5.66.点评:本题主要考查了长方形面积公式,比较简单.7.是20a+2b的平方根,是﹣2a﹣b的立方根,则+= .【答案】6【解析】根据平方根与立方根的定义得到,解得,则原式=+,然后进行开方运算,再进行减法运算.解:根据题意得,解得,则原式=+=8﹣2=6.故答案为6.点评:本题考查了实数的运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.也考查了平方根与立方根.8.计算:(1)(2).【答案】(1)﹣2(2)0【解析】(1)先算乘方、开方和除法化为乘法得到原式=﹣16﹣6+4×(﹣)×(﹣2),再进行乘法运算,然后进行加减运算;(2)利用乘法的分配律进行计算.解:(1)原式=﹣16﹣6+4×(﹣)×(﹣2)=﹣16﹣6+20=﹣22+20=﹣2;(2)原式=﹣×(﹣18)+×(﹣18)﹣×(﹣18)=14﹣15+1=0.点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.9.计算:.【答案】2【解析】本题涉及立方根、乘方、二次根式及绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解:=1﹣4+3+2=2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、立方根、二次根式、绝对值等考点的运算.10.在算式□的□中填上运算符号,使结果最大,这个运算符号是()A.加号B.减号C.乘号D.除号【答案】D【解析】将加减乘除符号放入计算,比较即可得到结果.解:+=,﹣=0,×=,÷=1,则这个运算符号是除号.故选D.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.已知:≈5.196,计算:,保留3个有效数字,运算的结果是()A.1.73B.1.732C.1.74D.1.733【答案】A【解析】首先化简得3,再计算的值,可得,又由≈1.732,即可求得结果.解:=×3=≈1.732≈1.73.故选A.点评:此题考查了实数的计算.注意首先将二次根式化为最简二次根式,再进行计算.12.计算:的结果为()A.7B.﹣3C.±7D.3【答案】A【解析】先根据算术平方根的意义求出的值,再根据立方根的定义求出的值,然后再相减.解:原式=5﹣(﹣2)=5+2=7.故选A.点评:本题考查了实数的运算,熟悉算术平方根的意义和立方根的意义是解题的关键,解答此题时要注意要注意,负数的立方根是负数.13.若|a|=5,=3,且a和b均为正数,则a+b的值为()A.8B.﹣2C.2D.﹣8【答案】A【解析】利用绝对值以及二次根式的化简公式求出a与b的值,即可求出a+b的值.解:根据题意得:a=±5,b=±3,∵a和b都为正数,∴a=5,b=3,则a+b=5+3=8.故选A.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.的平方根与的差等于()A.6B.6或﹣12C.﹣6或12D.0或﹣6【答案】D【解析】首先利用二次根式的性质化简,然后利用实数的运算法则计算即可求解.解:∵=9,∴的平方根为±3,而=3,∴的平方根与的差等于0或﹣6.故选D.点评:此题主要考查了实数的运算,同时也利用了二次根式的性质及平方根的定义,是比较容易出错的计算题.15.若实数x,y,使得这四个数中的三个数相等,则|y|﹣|x|的值等于()A.B.0C.D.【答案】C【解析】此题可以先根据分母不为0确定x+y与x﹣y不相等,再分类讨论即可.解:因为有意义,所以y不为0,故x+y和x﹣y不等(1)x+y=xy=解得y=﹣1,x=,(2)x﹣y=xy=解得y=﹣1,x=﹣,所以|y|﹣|x|=1﹣=.故选C.点评:解答本题的关键是确定x+y与x﹣y不相等,再进行分类讨论.16. m,n为实数,且,则mn=()A.B.C.D.不能确定【答案】B【解析】先根据非负数的性质求出m、n的值,再计算出mn的值即可.解:由题意得,m+3=0,n﹣=0,解得m=﹣3,n=,故mn=﹣3.故选B.点评:本题考查的是非负数的性质,根据题意列出关于m、n的方程,求出m、n的值是解答此题的关键.17.对于正实数x和y,定义,那么()A.“*”符合交换律,但不符合结合律B.“*”符合结合律,但不符合交换律C.“*”既不符合交换律,也不符合结合律D.“*”符合交换律和结合律【答案】D【解析】根据实数混合运算的法则进行计算验证即可.解:∵x*y=,y*x==∴x*y=y*x,故*符合交换律;∵x*y*z=*z==,x*(y*z)=x*()==∴x*y*z=x*(y*z),*故满足结合律.∴“*”既符合交换律,也符合结合律.故选D.点评:本题考查的是实数的运算,熟知交换律与结合律是解答此题的关键.18.如果,则(xy)3等于()A.3B.﹣3C.1D.﹣1【答案】D【解析】首先根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解:由题意得:,解得,∴(xy)3=(﹣×)3=(﹣1)3=﹣1.故选D.点评:本题考查了实数的运算和非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.下列运算中,错误的是()A.B.C.D.=3.14﹣π【答案】D【解析】A、根据二次根式的乘法法则即可判定;B、根据二次根式的除法法则即可判定;C、根据二次根式的加减法则计算即可判定;D、根据二次根式的性质即可判定.解:A、×==,故选项正确;B、==,故选项正确;C、2+3=5,故选项正确;D、=π﹣3.14,故选项错误.故选D.点评:此题主要考查了实数的运算,解题时根据二次根式的加减乘除的运算法则计算,要注意,二次根式的结果为非负数.20.下列各数与相乘,结果为有理数的是()A.B.C.D.【答案】A【解析】分别计算(+2)(2﹣)、(2﹣)(2﹣)、(﹣2+)(2﹣)、(2﹣),然后由计算的结果进行判断.解:A、(+2)(2﹣)=4﹣3=1,结果为有理,所以A选项正确;B、(2﹣)(2﹣)=7﹣4,结果为无理数的,所以B选项不正确;C、(﹣2+)(2﹣)=﹣7+4,结果为无理数的,所以,C选项不正确;D、(2﹣)=2﹣3,结果为无理数的,所以,D选项不正确.故选A.点评:本题考查了实数的运算:先算乘方或开方,再进行乘除运算,最后进行实数的加减运算;有括号或绝对值的,先计算括号或去绝对值.。

部编数学七年级下册专题04《实数》解答题重点题型分类(解析版)含答案

部编数学七年级下册专题04《实数》解答题重点题型分类(解析版)含答案

专题04《实数》解答题重点题型分类专题简介:本份资料专攻《实数》中“化简求值题型”、“利用平方根与立方根的性质解方程题型”、“计算解答题型”、“数轴比较大小题型”、“整数部分与小数部分题型”、“创新题型”重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。

考点1:化简求值题型方法点拨:1.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应(数形结合)。

2.数的相反数是-;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.3.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.4.绝对值、平方、算术平方根的双重非负性的应用。

1.若0,0a ab <<,化简a b a --【答案】【分析】由0,0a ab <<判断b >0,再判断绝对值里的数的正负,由绝对值的定义去掉绝对值,再计算即可.【详解】解:∵0,0a ab <<,∴b >0,∴0,0a b b a --<->∴a b a --((a b b a =-----a b b a =-+++=【点睛】本题考查二次根式的化简,正确的对含绝对值号的代数式的化简是解题的关键.分类的标准应按正实数,负实数,零分类考虑.掌握好分类标准,不断加强分类讨论的意识.2.先化简后求值:()()()()222232x y y x y x y x y -----+-,其中x ,y满足30x y +=.【答案】xy -,1-【分析】直接利用整式的混合运算法则以及绝对值、算术平方根的性质得出x ,y 的值,进a a而计算得出答案.【详解】解:原式2222244432x xy y x y xy y =-+-++-xy =-,30x y +=Q ,\3402350x y x y +-=ìí--=î,解得:313x y =ìïí=ïî,\原式1313=-´=-.【点睛】本题主要考查了整式的混合运算,绝对值的非负性,算术平方根,解题的关键是正确掌握相关运算法则.3.先化简,再求值:[(3x +y )(3x ﹣y )﹣2x (y +2x )+(y ﹣2x )2]÷(﹣3x ),其中x 、y满足1y =.【答案】﹣3x +2y ,﹣26【分析】原式中括号利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:原式=(9x 2﹣y 2﹣2xy ﹣4x 2+y 2﹣4xy +4x 2)÷(﹣3x )=(9x 2﹣6xy )÷(﹣3x )=﹣3x +2y ,∵1y =,∴x ﹣8≥0且8﹣x ≥0,解得:x =8,∴11y ==-,∴原式=﹣3×8+2×(﹣1)=﹣24﹣2=﹣26.【点睛】此题考查了整式的混合运算﹣化简求值,以及非负数的性质,熟练掌握相关运算法则是解本题的关键.4.已知多项式A =x 2+2xy ﹣3y 2,B =2x 2﹣3xy +y 2,先化简3A +2B ;再求当x ,y 为有理数且满足x 2y +2y =﹣+17时,3A +2B 的值.【答案】2277,63x y -【分析】根据多项式的加减运算进行化简,进而根据x ,y 为有理数求得,x y 的值,代入求解即可.【详解】Q A =x 2+2xy ﹣3y 2,B =2x 2﹣3xy +y 2,\()()222232323223A B x xy y x xy y +=+-++-2222369462x xy y x xy y =+-+-+2277x y =-()227x y =-Q x 2+2y =﹣,x ,y 为有理数,22x y \+==-,4,5y x \=-=±2225169x y \-=-=\原式7963=´=【点睛】本题考查了整式的加减化简求值,实数的性质,求得,x y 的值是解题的关键.5.(1)化简:a 2+(5a 2﹣2a )﹣2(a 2﹣3a );(2)先化简,再求值:14(﹣4x 2+2x ﹣8y )﹣(﹣x ﹣2y ),其中x =23,y =2018.【答案】(1)244a a +;(2)232x x -+,59【分析】(1)去括号后合并同类项即可;(2)利用乘法分配律化简,进而合并同类项,再把已知数据代入得出答案.【详解】解:(1)a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),2225226a a a a a =+--+ ,244a a =+ ;(2)14(﹣4x 2+2x ﹣8y )﹣(﹣x ﹣2y ),()()21114282444x x y x y =´-+´+´-++ ,21222x x y x y =-+-++ ,232x x =-+ ,当x =23,y =2018时,原式2232323æö=-+´ç÷èø ,419=-+ ,59= .【点睛】此题主要考查了整式的化简求值和实数运算,正确掌握整式的混合运算法则是解题关键.6.已知数a a【答案】2【分析】直接利用数轴得出a 的取值范围,进而化简得出答案.【详解】解:由数轴得:0.50a -<<,a =121a a a-+++=2.【点睛】本题主要考查了实数的运算与数轴,算术平方根的非负性,化简绝对值等知识点,正确化简各式是解本题的关键.7.实数a 、b 、c 在数轴上的对应点位置如图所示,化简:【答案】3b【详解】解:原式=|-c |+|a -b |+a +b -|b -c |,=c +(-a +b )+a +b -(-b +c ),=c -a +b +a +b +b -c ,=3b .【点睛】此题主要考查了实数的运算,关键是掌握绝对值的性质和二次根式的性质.8.若一个正数的两个平方根分别为1a -,27a +,请先化简再求值:()()222123a a a a -+--+.【答案】25a +,9【分析】根据正数的两个平方根互为相反数可求得a 的值,再对原式去括号合并同类项化简后,代入a 的值求解即可.【详解】解:∵一个正数的两个平方根分别为1a -,27a +,∴(a -1)+(2a +7)=0,解得a =-2.()()222123a a a a -+--+2222223a a a a =-+-++25a =+,当a =-2时,原式()2259=-+=.【点睛】本题主要考查了平方根的性质,整式的加减求值.利用正数的两个平方根互为相反数列等式求值是解题的关键.9.我们可以把根号外的数移到根号内,从而达到化简的目的.例如:(1)请仿照上例化简.①②;(2)请化简【答案】(1);②2)【分析】(1)①根据题意仿照求解即可;②根据题意仿照求解即可;(2)先根据被开方数的非负性判断a 的正负,然后根据题意求解即可.【详解】解:(1)①;②===(2)∵∴10a -³,∴0a <∴==【点睛】本题主要考查了实数的运算,解题的关键在于能够熟练掌握相关知识进行求解.10.数形结合是一种重要的数学方法,如在化简a 时,当a 在数轴上位于原点的右侧时,a a =;当a 在数轴上位于原点时,0a =;当a 在数轴上位于原点的左侧时,a a =-.当a ,b ,c 三个数在数轴上的位置如图所示,试用这种方法解决下列问题,(1)当1a =时,求aa =______,当2b =-时,求bb =______.(2)请根据a ,b ,c 三个数在数轴上的位置,求abca b c ++的值.(3)请根据a ,b ,c 三个数在数轴上的位置,化简:a c c a b b c ++++--.【答案】(1)1;1- ;(2)1-;(3)c -.【分析】(1)当1a =时,点a 在原点右边,由题意可知,此时a a =,代入a a 即可求值;当2b =- 时,点b 在原点左边,由题意可知,此时b b =-,代入bb 即可求值;(2)由图中获取a b c 、、三点的位置信息后,结合题意即可求原式的值;(3)由图获取a b c 、、的正、负信息和三个数绝对值的大小后,就可确定原式中绝对值符号里面式子的值的符号,就可化简原式.【详解】解:(1)当1a =时,111a a ==;当2b =-时,212b b ==--,故答案是:1,-1;(2)由数轴可得:0b < ,0c < ,0a > ,∴abca b c ++=1111a b c a b c--++=--=-;(3)由数轴可知:0b c a <<<且c a b <<,∴000a c a b b c +>+<-<,,,∴a c c a b b c++++--()[()][()]a c c a b b c =++-+-+---a c c ab b c=+---+-c =-.【点睛】本题考查了数轴,解决本题的关键是熟记正数的绝对值是它本身,负数的绝对值是它的相反数.在解第3小问这类题时,需注意以下两点:(1)根据在数轴上表示的数中,左边的总小于右边的,确定好所涉及数的大小关系及每个数的正、负信息(涉及异号两数相加的还要获取它们绝对值的大小关系);(2)根据有理数加、减法法则确定好需化简式子中绝对值符号里的式子的正、负,然后再根据绝对值的代数意义将绝对值符号去掉.考点2:利用平方根与立方根的性质解方程题型方法点拨:解方程时应把平方部分看成一个整体,先根据等式基本性质把方程化为平方部分等什么。

专题03 新定义下的实数运算(中档题、压轴题50题)(解析版)

专题03 新定义下的实数运算(中档题、压轴题50题)(解析版)

专题03�新定义下的实数运算(中档题、压轴题50题)(解析版)学校:___________姓名:___________班级:___________考号:___________一、新定义下的实数运算,中档题30题,难度三星1.规定一种新运算ab ad bc cd =-.(1)2345=;(2)若22233235x x x x M -++-+-=--,则M 的化简结果为.【答案】2-2221x x --【分析】本题考查了新定义的计算,解题关键是能熟练运用新定义中的计算规律结合实数的运算法则求解.(1)根据新定义运算法则即可求解;(2)根据新定义运算法则化简即可求解.【详解】解:(1)原式254310122=⨯-⨯=-=-.(2)由题意得:22523332M x x x x =--++-+-(+)()2210515936x x x x =---+-2221x x =--.2.若一个各个数位的数字均不为零的四位数M 满足其千位数字与十位数字的和等于其百位数字与个位数字的和,则称这个数为“间位等和数”;将-个间位等和数的十位数字和个位数字去掉后剩下的两位数记作A ,千位数字和百位数字去掉后剩下的两位数记作B ,令()33A B F M +=,若四位数M 的千位数为a ,百位数字为b ,十位数字为c ,个位数字为d ,则()1573F =,如果()F M 为完全平方数(完全平方数就是这个数可以写成某个整数的平方,如,242=,所以4是完全平方数),那么M 的最小值为.【答案】83;1122.【分析】根据题意得出A 、B 的值,代入()33A B F M +=计算即可解答;由题意可知10A a b =+,10B c d =+,a c b d +=+,代入()33A B F M +=计算得到()3a c F M +=,根据()F M 为完全平方数且取M 的最小值,可得()1F M =,进而求出abcd ,,,的值,即可解答.本题考查了新定义运算,解题关键是读懂题意根据间位等和数的定义正确表示出A 、B ,再结合完全平方③[)1x x -≤,即最大值为1,该选项错误;④[)0.2x x -=不一成立,该选项错误;故答案为:①.4.定义:对于一个两位数x ,如果x 满足个位数字与十位数字互不相同....,且都不为零....,那么称这个两位数为“相异数”.将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,再除以11所得的商记为()S x .例如,13a =,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为133144+=,和44除以11的商为44114÷=,所以(13)4S =.(1)下列两位数:40,51,77中,“相异数”为________;(2)计算:(65)S 的值;(3)若一个“相异数”y 的十位数字是k ,个位数字是21k -,且()8S y =,求相异数y .【答案】(1)51(2)11(3)相异数y 是35【分析】本题考查了新定义整数的整除问题,根据定义计算是解题的关键.(1)先确定各数位上的数字,不同的才是“相异数”.(2)根据()S x 的定义计算即可.(3)用幂乘的方式表示相异数,再根据()S x 的定义计算即可.【详解】(1)∵40中有数字0,不符合定义,不是“相异数”,51中十位数字是5,个位数字是1,不同,是“相异数”,77中,十位数字和个位数字都是7,相同,不符合题意,故不是“相异数”.故答案为:51.(2)根据题意,得655621+=1,1211111÷=,故(65)11S =.(3)由“相异数”y 的十位数字是k ,个位数字是21k -,且()8S y =得,()10211021811k k k k +-+-+=⨯,解得3k =,∴212315k -=⨯-=,∴相异数y 是35.5.定义一种新的运算“※”,称为(加乘)运算:A.1B.4C.6D【分析】(1)根据题目中所给的定义求解即可;(2)紧扣题目给出的定义,逐一判断即可;(3)根据[][]11x x +=+,[]{}x x x -=,即[]{}2139x x x ++=-,可变为:{}(){}2139x x x x -++=-,整理:{}11x x -=,则有[]{}{}112x x x x =-=-,根据{}01x ≤<,可得[]11x 9<≤,即有[]10x =,或者[]11x =,问题随之得解.【详解】(1)根据题意:[]3.63=,即:{}[]3.6 3.6 3.60.6=-=,故答案为:3,0.6;(2)∵{}m 表示[]m m -的值,称为m 的小数部分,∴{}01x ≤<,即①正确;根据定义可得:[][]11x x +=+,即②正确;∵{}[]111x x x +=+-+,∴{}[][][]{}11111x x x x x x x x +=+-+=+--=-=,∴即③错误,∵[]x a =,[]{}x x x =-,∴{}a x x =-,∴{}x a x =+,∵{}01x ≤<,∴{}1a a x a ≤+<+,∴即④正确;故正确的有:①②④;(3)∵[][]11x x +=+,[]{}x x x -=,∴[]{}11x x x +=-+,∴[]{}2139x x x ++=-,可变为:{}(){}2139x x x x -++=-,整理:{}11x x -=,即:[]{}{}112x x x x =-=-,。

初一数学下册知识点《实数的定义》经典例题及解析

初一数学下册知识点《实数的定义》经典例题及解析

实数的定义一、选择题(本大题共80小题,共240.0分)1.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A. -2a+bB. 2a-bC. -bD. b【答案】A【解析】解:由图可知:a<0,a-b<0,则|a|+=-a-(a-b)=-2a+b.故选:A.直接利用数轴上a,b的位置,进而得出a<0,a-b<0,再利用绝对值以及二次根式的性质化简得出答案.此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.2.实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A. aB. bC. cD. d【答案】D【解析】解:由数轴可得:a<b<c<d,故选:D.根据实数的大小比较解答即可.此题利用数轴比较大小,在数轴上右边的点表示的数总是大于左边的点表示的数.3.关于的叙述正确的是()A. 在数轴上不存在表示的点B. =+C. =±2D. 与最接近的整数是3【答案】D【解析】解:A、在数轴上存在表示的点,故选项错误;B、≠+,故选项错误;C、=2,故选项错误;D、与最接近的整数是3,故选项正确.故选:D.根据数轴上的点与实数是一一对应的关系,实数的加法法则,算术平方根的计算法则计算即可求解.考查了实数与数轴,实数的加法,算术平方根,关键是熟练掌握计算法则计算即可求解.4.下列各数中是有理数的是()A. πB. 0C.D.【答案】B【解析】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;故选:B.根据有理数是有限小数或无限循环小,可得答案.本题考查了有理数,有限小数或无限循环小数是有理数.5.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|<|b|C. ab>0D. -a>b【答案】D【解析】解:由数轴可得,-2<a<-1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,-a>b,故选项D正确,故选:D.根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.6.关于的叙述不正确的是()A. =2B. 面积是8的正方形的边长是C. 是有理数D. 在数轴上可以找到表示的点【答案】C【解析】解:A、=2,所以此选项叙述正确;B、面积是8的正方形的边长是,所以此选项叙述正确;C、=2,它是无理数,所以此选项叙述不正确;D、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确;本题选择叙述不正确的,故选:C.=2,是无理数,可以在数轴上表示,还可以表示面积是8的正方形的边长,由此作判断.本题考查了实数的定义、二次根式的化简、数轴,熟练掌握实数的有关定义是关键.7.下列实数中,属于有理数的是()A. B. C. π D.【答案】D【解析】解:A、-是无理数,故A错误;B、是无理数,故B错误;C、π是无理数,故C错误;D、是有理数,故D正确;故选:D.根据有理数是有限小数或无限循环小数,可得答案.本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.8.如图,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3-的点P应落在线段()A. AO上B. OB上C. BC上D. CD上【答案】B【解析】解:∵2<<3,∴0<3-<1,故表示数3-的点P应落在线段OB上.故选:B.根据估计无理数的方法得出0<3-<1,进而得出答案.此题主要考查了估算无理数的大小,得出的取值范围是解题关键.9.-的相反数是()A. B. - C. - D. -2【答案】A【解析】解:-的相反数是.故选:A.根据只有符号不同的两个数叫做互为相反数解答.本题考查了实数的性质,熟记相反数的定义是解题的关键.10.实数a,b在数轴上的位置如图所示,则化简-+b的结果是()A. 1B. b+1C. 2aD. 1-2a【答案】A【解析】解:由数轴可得:a-1<0,a-b<0,则原式=1-a+a-b+b=1.故选A.利用数轴得出a-1<0,a-b<0,进而利用二次根式的性质化简求出即可.此题主要考查了二次根式的性质与化简,得出各项的符号是解题关键.11.下列说法错误的是()A. 正整数和正分数统称正有理数B. 两个无理数相乘的结果可能等于零C. 正整数,0,负整数统称为整数D. 3.1415926是小数,也是分数【答案】B【解析】解:A、正整数和正分数统称为正有理数,正确;B、两个无理数相乘的结果不可能为零,错误;C、正整数,0负整数统称为整数,正确;D、3.1415926是小数,也是分数,正确,故选B利用有理数,整数,无理数,以及分数的定义判断即可.此题考查了实数,涉及的知识有:有理数,无理数,整数与分数,熟练掌握各自的定义是解本题的关键.12.有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④是分数,它是有理数.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305.其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】解:①任何无理数都是无限小数,故说法正确;②实数与数轴上的点一一对应,故说法错误;③在1和3之间的无理数有无数个,故说法错误;④不是分数,它不是有理数,故说法错误.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305,故说法正确.故选B.①根据无理数就是无限不循环小数即可判定;②根据有理数与数轴上的点的对应关系即可的;③根据无理数的定义及开平方运算的法则即可判定;④根据无理数、有理数的定义即可判定;⑤根据近似数的精确度即可判定.此题主要考查了实数的定义及其分类.注意分数能表示成的形式,其中A、B都是整数.因而像不是分数,而是无理数.13.下列说法中正确的是()A. 实数-a2是负数B.C. |-a|一定是正数D. 实数-a的绝对值是a【答案】B【解析】【分析】本题考查的是实数的分类及二次根式、绝对值的性质,解答此题时要注意0既不是正数,也不是负数.分别根据平方运算的特点,平方根的性质和绝对值的性质进行逐一分析即可.【解答】解:A、实数-a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|-a|不一定是正数,a=0时不成立,故选项错误;D、实数-a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.14.在,,0,,,227,,相邻两个6之间1的个数逐次加中,有理数的个数为( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】本题考查的是有理数问题,关键是根据实数的分类及无理数、有理数的定义分析.分别根据实数的分类及有理数、无理数的概念进行解答.【解答】在-3,,0,-3.5,﹣10%,227,π,0.61611611 6…(相邻两个6之间1的个数逐次加1)中,有理数为:-3,,0,-3.5,10%,227,共有6个.故选C.15.下列说法正确的是()A. 无限小数都是无理数B. 9的立方根是3C. 平方根等于本身的数是0D. 数轴上的每一个点都对应一个有理数【答案】C【解析】解:A、无限不循环小数都是无理数,故A错误;B、9的立方根是,故B错误;C、平方根等于本身的数是0,故C正确;D、数轴上的每一个点都对应一个实数,故D错误;故选:C.根据实数的分类、平方根和立方根的定义进行选择即可.本题考查了实数、单项式以及多项式,掌握实数的分类、平方根和立方根的定义是解题的关键.16.关于的叙述,错误的是()A. 是有理数B. 面积为12的正方形边长是C. =2D. 在数轴上可以找到表示的点【答案】A【解析】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.17.下列语句中正确的是()A. 正整数和负整数统称为整数B. 有理数和无理数统称为实数C. 开方开不尽的数和π统称为无理数D. 正数、0、负数统称为有理数【答案】B【解析】解:A、正整数和负整数,还有零统称为整数,故A错误;B、有理数和无理数统称为实数,故B正确;C、开方开不尽的数和π都是无理数,故C错误;D、整数、分数统称为有理数,故D错误;故选B.根据实数的分类进行选择即可.本题考查了实数,掌握实数的分类是解题的关键.18.下列说法:;数轴上的点与有理数成一一对应关系;是的平方根;任何实数不是有理数就是无理数;两个无理数的和还是无理数;无理数都是无限小数,正确的个数有A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如,等,也有π这样的数.①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平方根的定义即可判定;④根据实数的分类即可判定;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【解答】解:①,故说法错误;②数轴上的点与实数成一一对应关系,故说法错误;③-2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是③④⑥共3个.故选B.19.在实数范围内,下列判断正确的是()A. 若|m|=|n|,则m=nB. 若a2>b2,则a>bC. 若=()2,则a=bD. 若=,则a=b【答案】D【解析】解:A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=-3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.解答此题的关键是熟知以下概念:(1)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.(2)如果一个数的平方等于a,那么这个数叫作a的平方根.20.对于-3.7,下列说法不正确的是()A. 是负数B. 是分数C. 是有理数D. 是无理数【答案】D【解析】解:-3.7是无限循环小数,是负数,是分数,是有理数,不是无理数故选:D.根据有理数的定义可得.本题主要考查实数,熟练掌握有理数的定义是解题的关键.21.在数-2,π,0,2.6,+3,中,属于整数的个数为()A. 4B. 3C. 2D. 1【答案】B【解析】解:在数-2,π,0,2.6,+3,中,整数有-2,0,+3,属于整数的个数,3.故选:B.整数包括正整数、负整数和0,依此即可求解.本题考查了实数的分类.实数分为有理数和无理数;整数和分数统称有理数;整数包括正整数、负整数和0.22.下列数轴上的点A都表示实数a,其中,一定满足|a|>2的是()A. ①③B. ②③C. ①④D. ②④【答案】B【解析】【分析】本题考查了有理数比较大小,根据绝对值的大小解题是关键.根据绝对值是数轴上的点到原点的距离,图示表示的数,可得答案.【解答】解:一定满足|a|>2的,A在-2的左边,或A在2的右边,故选:B.23.下列说法正确的是()①0是绝对值最小的实数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④带根号的数是无理数A. ①②③④B. ①②③C. ①③D. ①②【答案】D【解析】解:①0是绝对值最小的实数,故①正确;②相反数大于本身的数是负数,故②正确;③数轴上原点两侧且到原点距离相等的数互为相反数,故③错误;④带根号的数不一定是无理数,故④错误.故选:D.依据绝对值、相反数、无理数的概念进行判断即可.本题主要考查的是实数的相关概念,熟练掌握相关知识是解题的关键.24.如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是()A. ﹣2πB. 3﹣2πC. ﹣3﹣2πD. ﹣3+2π【答案】B【解析】解:由题意得:AB=2πr=2π,点A到原点的距离为3,则点B到原点的距离为2π-3,∵点B在原点的左侧,∴点B所表示的数为-(2π-3)=3-2π,故选:B.线段AB=2πr=2π,点A到原点的距离为3,则点B到原点的距离为2π-3,点B在原点的左侧,因此点B所表示的数为-(2π-3)=3-2π,于是得出答案.考查实数的意义,数轴等知识,理解符号和绝对值是确定一个数在数轴上位置的两个必要条件.25.下列说法,正确的有()个①m是一个实数,m2的算术平方根是m;②m是一个实数,则-m没有平方根;③带根号的数是无理数;④无理数是无限小数.A. 0B. 1C. 2D. 3【答案】B【解析】解:①如果m是一个实数,m2的算术平方根是|m|,当m是非负数时,m2的算术平方根是m;所以此说法不正确;②如果m是一个正数,则-m没有平方根;所以此选项不正确;③带根号的数不一定是无理数,如=2,是有理数;所以此选项说法不正确;④无理数是无限不循环小数,所以无理数是无限小数,所以此选项说法正确;所以本题说法正确的有1个:④,故选B.①根据算术平方根的定义进行判断;②根据平方根的定义进行判断;③带根号的数不一定是无理数,开方开不尽的数是无理数;④根据无理数的定义进行判断.此题主要考查了实数的定义、平方根及算术平方根的定义、无理数的定义.属于基础知识,熟练掌握这些基本概念是解题的关键.26.已知实数a在数轴上的位置如图,则化简|1-a|+的结果为()A. 1B. -1C. 1-2aD. 2a-1【答案】C【解析】解:由数轴可得:-1<a<0,则|1-a|+=1-a-a=1-2a.故选:C.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.27.下列说法错误的是()A. 的平方根是±2B. 是无理数C. 是有理数D. 是分数【答案】D【解析】【分析】本题主要考查了实数的有关概念及其分类,其中开不尽方才是无理数,无限不循环小数为无理数.A.根据算术平方根、平方根的定义即可判定;B.根据无理数的定义即可判定;C.根据无理数和立方根的定义即可判定;D.根据开平方和有理数、无理数和分数的定义即可判定.【解答】解:,,故A正确;是无理数,故B正确;是有理数,故C正确;不是分数,它是无理数,故D选项错误.故选D.28.有以下说法:其中正确的说法有()(1)开方开不尽的数是无理数;(2)无理数是无限循环小数(3)无理数包括正无理数和负无理数;(4)无理数都可以用数轴上的点来表示;(5)循环小数都是有理数A. 1个B. 2个C. 3个D. 4个【答案】D【解析】解:(1)开方开不尽的数是无理数,该说法正确;(2)无理数是无限不循环小数,原说法错误;(3)无理数包括正无理数和负无理数,该说法正确;(4)无理数都可以用数轴上的点来表示,该说法正确;(5)循环小数都是有理数,该说法正确.正确的有4个.故选:D.根据无理数的三种形式求解.本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.29.如图,数轴上点P表示的数可能是()A. B. C. D.【答案】B【解析】解:由被开方数越大算术平方根越大,得<<<<<,即<2<<3<<,故选:B.根据被开方数越大算术平方根越大,可得答案.本题考查了实数与数轴,利用被开方数越大算术平方根越大得出<<<<<是解题关键.30.如图,数轴上,AB=AC,A,B两点对应的实数分别是和-1,则点C所对应的实数是()A. 1+B. 2+C. 2-1D. 2+1【答案】D【解析】解:AC=AB=+1,C点坐标A点坐标加AC的长,即C点坐标为++1=2+1,故选:D.根据线段中点的性质,可得答案.本题考查了实数与数轴,利用线段中点的性质得出AC的长是解题关键.31.下列各数中,属于有理数的是()A.B.C. πD. 3.1313313331……(两个“1”之间依次多一个3)【答案】A【解析】解:A、是有理数,故此选项正确;B、是无理数,故此选项错误;C、π是无理数,故此选项错误;D、3.1313313331……(两个“1”之间依次多一个3)是无理数,故此选项错误;故选:A.直接利用有理数以及无理数的定义分别分析得出答案.此题主要考查了实数,正确掌握相关定义是解题关键.32.下列各组数中互为相反数的是()A. -3与B. -(-2)与-|-2|C. 5与D. -2与【答案】B【解析】解:A、-3与不符合相反数的定义,故选项错误;B、-(-2)=2,-|-2|=-2只有符号相反,故是相反数,故选项正确.C、无意义,故选项错误;D、-2=-2,=-2相等,不符合相反数的定义,故选项错误.故选:B.首先根据绝对值的定义化简,然后根据相反数的定义即可解答.此题主要考查相反数的定义:只有符号相反的两个数互为相反数,0的相反数是其本身.33.下列说法正确的是()A. 1的平方根是它本身B. 是分数C. 负数没有立方根D. 如果实数x、y满足条件y=,那么x和y都是非负实数【答案】D【解析】解:A、1的平方根是±1,错误;B、是无理数,错误;C、负数有立方根,错误;D、如果实数x、y满足条件y=,那么x和y都是非负实数,正确;故选:D.根据平方根、分数、立方根和实数的概念解答即可.此题考查实数问题,关键是根据平方根、分数、立方根和实数的概念解答.34.下列说法中,正确的是()①;②一定是正数;③无理数一定是无限小数;④16.8万精确到十分位;⑤(-4)2的算术平方根是4.A. ①②③B. ④⑤C. ②④D. ③⑤【答案】D【解析】解:-<-,故①错误;当m=0时,是0,不是正数,故②错误;无理数一定是无限小数,故③正确;16.8万精确到千位,故④错误;(-4)2的算术平方根是4.故⑤正确;即正确的有③⑤,故选:D.根据实数的大小比较,算术平方根的定义,无理数的定义,精确度逐个判断即可.本题考查了实数的大小比较,算术平方根的定义,无理数的定义,精确度等知识点,能熟记知识点的内容是解此题的关键.35.下列说法正确的是()A. 立方根等于它本身的实数只有0和1B. 平方根等于它本身的实数是0C. 1的算术平方根是D. 绝对值等于它本身的实数是正数【答案】B【解析】【分析】此题考查了立方根,平方根,算术平方根,绝对值,掌握这些概念是关键,逐项分析即可得到答案.【解答】解:A.立方根等于它本身的数是0,-1,1,故A错误;B.平方根等于它本身的实数是0,故B正确;C.1的算术平方根是1,故C错误;D.绝对值等于它本身的实数是正数,0,故C错误;故选B.36.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是()A. -a<-bB. a+b<0C. |a|<|b|D. a-b>0【答案】C【解析】解:根据点a、b在数轴上的位置可知-1<a<0,1<b<2,则-a>-b,a+b>0,|a|<|b|,a-b<0.故选:C.根据点a、b在数轴上的位置可判断出a、b的取值范围,即可作出判断.本题主要考查的是数轴的认识、有理数的加法、减法、绝对值性质的应用,掌握法则是解题的关键.37.设面积为6的正方形的边长为a.下列关于a的四种说法:①a是有理数;②a是无理数;③a可以用数轴上的一个点来表示;④2<a<3.其中说法正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:∵面积为3的正方形的边长为a,∴a=,故①a是有理数,错误;②a是无理数,正确;③a可以用数轴上的一个点来表示,正确;④2<a<3,正确,则说法正确的是:②③④共3个.故选:C.直接利用得出正方形的边长,再利用实数的性质分析得出答案.此题主要考查了实数的性质以及无理数的估算,正确掌握实数有关性质是解题关键.38.实数a,b,c在数轴上的位置如图所示,则化简|b|+|c-a|-|a+b|的结果为()A. 2a+2b-cB. -cC. c-2aD. a-b-c【答案】B【解析】解:从数轴上a、b、c的位置关系可知:c<a<0,b>0且|b|>|a|,故a+b>0,c-a<0,即有|b|+|c-a|-|a+b|=b-(c-a)-(a+b)=b-c+a-a-b=-c.故选:B.首先从数轴上a、b、c的位置关系可知:c<a<0,b>0且|b|>|a|,接着可得a+b>0,c-a<0,然后即可化简|b|+|c-a|-|a+b|.此题主要考查了利用数轴比较两个的大小和化简绝对值.数轴的特点:从原点向右为正数,向左为负数,及实数与数轴上的点的对应关系.39.我们知道有一些整数的算术平方根是有理数,如,,,…已知n=1,2,3,…,99,100,易知中共有10个有理数,那么中的有理数的个数是()A. 20B. 14C. 13D. 7【答案】D【解析】解:∵是有理数,∴2n是完全平方数,∵n=1,2,3,…,99,100,∴2n=2,4,6,…,198,200,∴在2,4,6,…,198,200的这组数据中,完全平方数有2,8,18,36,64,100,144,196,∴中的有理数的个数是7,故选:D.在2,4,6,…,198,200的这组数据中,找出完全平方数即可.本题考查了实数,完全平方数,正确的找出完全平方数是解题的关键.40.将四个数-,,,表示在数轴上,被如图所示的墨迹覆盖的数是()A. -B.C.D.【答案】D【解析】解:,,,,因为盖住的数大于2小于3,故选:D.盖住的数大于2小于3,估计,,的值可确定答案.本题考查无理数值的大小估计.确定无理数在哪两个整数之间是解答的关键.41.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;按此规律继续翻转下去,则数轴上数2019所对应的点是()A. 点AB. 点BC. 点CD. 点D【答案】C【解析】解:当正方形在转动第一周的过程中,1所对应的点是A,2所对应的点是B,3所对应的点是C,4所对应的点是D,∴四次一循环,∵2019÷4=504…3,∴2019所对应的点是C.故选:C.由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一循环,由次可确定出2019所对应的点.本题主要考查实数与数轴以及正方形的性质,确定出点的变化规律是解题的关键.42.下列格式中,化简结果与的倒数相同是()A. B. C. D.【答案】A【解析】解:的倒数是.A、原式=,故本选项正确.B、原式=,故本选项错误.C、原式=-,故本选项错误.D、原式=,故本选项错误.故选:A.的倒数是,根据实数的性质、绝对值的计算方法解答.考查了实数的性质,倒数的定义以及绝对值,属于基础题,熟记计算法则即可解题.43.实数a.b在数轴上的位置如图所示,下列各式中不成立的是()A. -a>bB. a+6<0C. a-b<a+bD. |a|+|b|<|a+b|【答案】D【解析】解:选项A正确:找出表示数a的点关于原点的对称点-a,与b相比较可得出-a>b.选项B正确:a+b<0;选项C正确:a-b<a+b;选项D正确的是|a|+|b|>|a+b|,故这个选项不成立.故选:D.根据一对相反数在数轴上的位置特点,先找出与点a相对应的-a,然后与b相比较,即可排除选项求解.本题考查了实数与数轴的关系.用字母表示数,具有抽象性.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.因为是选择题,也可以采用特值法,如:取a=-2,b=1,代入四个选项,逐一检验,就可以得出正确答案.这样做具体且直观.44.关于下列说法中不正确的是()A. 是无理数B. 的平方是2C. 2的平方根是D. 面积为2的正方形的边长可表示为【答案】C【解析】解:A、是无理数,正确,故本选项不符合题意;B、的平方是2,正确,故本选项不符合题意;C、2的平方根是,错误,故本选项符合题意;D、面积为2的正方形的边长为,正确,故本选项不符合题意;故选:C.根据无理数、实数的乘方、平方根的定义、算术平方根的定义逐个判断即可.本题考查了实数及分类、无理数、实数的乘方、平方根的定义、算术平方根的定义,能熟记知识点的内容是解此题的关键,注意:实数包括无理数和有理数,无理数是指无限不循环小数.45.下列结论正确的是()A. 无限不循环小数叫做无理数B. 有理数包括正数和负数C. 0是最小的整数D. 两个有理数的和一定大于每一个加数【答案】A【解析】解:A、无限不循环小数叫做无理数,正确,故本选项符合题意;B、有理数包括正有理数、0和负有理数,不正确,故本选项不符合题意;C、0不是最小的整数,没有最小的整数,不正确,故本选项不符合题意;D、一个数同0相加仍得这个数,所以两个有理数的和不一定大于每一个加数,不正确,故本选项不符合题意.故选:A.根据有理数、无理数、整数及有理数的加法法则判断即可.本题考查了有理数、无理数、整数及有理数的加法法则,属于基础知识,需牢固掌握.46.①倒数等于本身的数为1;②若a、b互为相反数,那么a、b的商必定等于﹣1;③对于任意实数x,|x|+x一定是非负数;④一个数前面带有“﹣”号,则这个数是负数;⑤整数和小数统称为有理数;⑥数轴上的点都表示有理数;⑦绝对值等于自身的数为0和1;⑧平方等于自身的数为0和1;其中正确的个数是()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】【分析】本题考查了相反数,绝对值,非负数的性质:绝对值,倒数,掌握相反数,绝对值,非负数的性质:绝对值,倒数的定义是解决问题的关键.直接利用倒数以及绝对值和相反数的性质分别分析得出答案。

中考数学专题训练:实数的运算、化简求值(含答案)

中考数学专题训练:实数的运算、化简求值(含答案)

中考数学专题训练:实数的运算、化简求值1. (2012黑龙江)计算:3202)1(2)330cos (-+--︒-π.【答案】解:原式=211111==0444--+-。

2. (2012内蒙古)20sin 30(2)-︒+--; 【答案】解:原式=1111=1424-+--。

3. (2012青海)计算:)2152cos60++2π-⎛⎫-- ⎪⎝⎭【答案】解:原式=2152+2+1=92-⨯。

4. (2012甘肃)计算:02112sin 30( 3.14)(2π---︒+-+ 【答案】解:原式=11214=52-⨯++。

5. (2012广西)计算:0201264sin 45(1)-++-. 【答案】解:原式64172=+⨯+=6. (2012广西)计算:|-3|+2-1+12(π-3)0-tan60°;【答案】解:原式=3+12+12×1-3=1。

7. (2012广西)计算:4cos45°+(π+3)0116-⎛⎫⎪⎝⎭。

【答案】解:原式=4×2+1-6 =-+1+6 =7。

8. (2012山东)计算:(1013tan 60+13-⎛⎫-- ⎪⎝⎭【答案】解:原式=32--- 9. (2012山东)计算:2012022(1)(3)(2)π--+-⨯---【答案】解:原式=11321144+⨯-=- 10. (2012贵州)计算:)()2201212sin 30+13π-⎛⎫---- ⎪⎝⎭【答案】解:原式=129+12+1=102-⨯---。

11. (2012贵州)计算:)20111+2sin 602-⎛⎫---⎪⎝⎭【答案】解:原式=4+11+2- 12. (2012贵州)计算:0222214sin 60+3π⎛⎫--- ⎪⎝⎭.【答案】解:原式=4143131=4---------。

13. (2012四川)计算:()()120121312π-⎛⎫-⨯- ⎪⎝⎭14. (2012四川)计算:161)1(130sin )2(2+-+-+--o o π. 【答案】解:原式=11111=2424+-++。

实数基本概念及化简精讲精练

实数基本概念及化简精讲精练

板块一 平方根、立方根、实数实数可按下图进行详细分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数 实数与数轴上的点一一对应.(以下概念均在实数域范围内讨论) 平方根的定义及表示方法:如果一个数的平方等于a ,那么这个数叫做a 的平方根. 也就是说,若2x a =,则x 就叫做a 的平方根. 一个非负数a 的平方根可用符号表示为“a ±”.算术平方根:一个正数a 有两个互为相反数的平方根,其中正的平方根叫做a 的算术平方根,可用符号表示为“a ”;0有一个平方根,就是0,0的算术平方根也是0,负数没有平方根,当然也没有算术平方根.(负数的平方根在实数域内不存在,具体内容高中将进学习研究)一个非负数的平方根不一定是非负数,但它的算术平方根一定是非负数,即若0a ≥,则0a ≥.平方根的计算:求一个非负数的平方根的运算,叫做开平方.开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数是不是另一个数的平方根或算术平方根.通过验算我们可以知道:⑴当被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥). ⑵平方根和算术平方根与被开方数之间的关系:①若0a ≥,则2()a a =;②不管a 为何值,总有2(0)||(0)a a a a a a ≥⎧==⎨-<⎩注意二者之间的区别及联系.⑶若一个非负数a 介于另外两个非负数1a 、2a 之间,即120a a a ≤<<时,它的算术平方根也介于1a 、2a 之实数基本概念及化简立方根的定义及表示方法:如果一个数的立方等于a ,那么这个数叫做a 的立方根,也就是说,若3,x a =则x 就叫做a 的立方根, 一个数a 的立方根可用符号表,其中“3”叫做根指数,不能省略. 前面学习的其实省略了根指数“2”“三次根号a ”“二次根号a ”“根号a ”.任何一个数都有立方根,且只有一个立方根,正数的立方根为正数,负数的立方根为负数,0的立方根为0.立方根的计算:求一个数的立方根的运算,叫做开立方,开立方与立方是互逆运算,可以通过立方运算来求一个数的立方根,以及检验一个数是不是另一个数的立方根.通过归纳我们可以知道:⑴当被开方数(大于0)扩大(或缩小)3n 倍,它的立方根相应地扩大(或缩小)n 倍.a,3a =⑶若一个数a 介于另外两个数1a 、2a 之间,即12a a a <<,利用这个结论我们可以来估算一个数的立方根的大致范围.一、实数的概念【例1】在实数010.1235中无理数的个数是( ) A .0 B .1 C .2 D .3【例2】22π 3.140.614140.10010001000017,,,,这7个实数中,无理数的个数是( )A .0B .1C .2D .3【例3】 有一个数值转换器原理如图所示,则当输入x 为64时,输出的y 是( )输出y输入xA .8 B. C. D.【例4】【例5】 说明边长为1。

专题6.5实数的运算专项训练(50道)(举一反三)(沪科版)

专题6.5实数的运算专项训练(50道)(举一反三)(沪科版)

专题6.5 实数的运算专项训练(50道)参考答案与试题解析一.解答题(共50小题,满分100分)3+(﹣1)2021.1.(1分)(2021春•陆河县校级期末)计算:√9+|√5−3|+√−64【分析】先求算术平方根、绝对值、立方根运算,再进行计算即可.3+(﹣1)2021【解答】解:√9+|√5−3|+√−64=3+3−√5−4﹣1=1−√5.3+|√3−2|.2.(1分)(2021春•珠海期中)计算:(﹣2)2+√(−3)2−√27【分析】运用负数的平方、二次根式、三次根式,绝对值的定义及性质进行计算.3+2−√3【解答】解:原式=4+√32−√33=4+3﹣3+2−√3=6−√3.3.(1分)(2021•天心区开学)计算:|7−√2|−|√2−π|−√(−7)2.【分析】由去绝对值及算术平方根运算法则计算即可.【解答】解:原式=7−√2−(π−√2)﹣7=7−√2−π+√2−7=﹣π.3+|2−√5|+|3−√5|.4.(1分)(2021春•浏阳市期末)计算:√81+√−27【分析】本题涉及绝对值、二次根式化简、三次根式化简3个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.3+|2−√5|+|3−√5|【解答】解:√81+√−27=9﹣3+√5−2+3−√5=7.3+(﹣3)2−√25+|√3−2|+(√3)2.5.(1分)(2021春•淮北期末)√(−5)3【分析】先计算开方、乘方、绝对值的运算,再合并即可得到答案.【解答】解:原式=−5+9−5+2−√3+3=4−√3.6.(1分)(2021春•昆明期末)计算:(﹣1)3+|−√2|+√273−√4. 【分析】直接利用立方根的性质以及绝对值的性质、有理数的乘方运算法则分别化简得出答案.【解答】解:原式=﹣1+√2+3﹣2=√2.7.(1分)(2021春•宁乡市期末)计算:√−13+√49+|3−π|−(−√3)2.【分析】直接利用立方根的性质以及绝对值的性质和二次根式的性质分别化简,再利用实数加减运算法则计算得出答案.【解答】解:原式=﹣1+7+π﹣3﹣3=π.8.(1分)(2021春•临沧期末)计算:√83−(−1)2021+√(−3)2−|1−√3|.【分析】首先计算乘方、开方、开立方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:√83−(−1)2021+√(−3)2−|1−√3|=2﹣(﹣1)+3﹣(√3−1)=6−√3+1=7−√3.9.(1分)(2021春•曲靖期末)计算:﹣22×√14−√83+√9×(﹣1)2021. 【分析】先化简有理数的乘方,算术平方根,立方根,然后先算乘法,再算加减.【解答】解:原式=﹣4×12−2+3×(﹣1)=﹣2﹣2﹣3=﹣7.10.(1分)(2021春•海拉尔区期末)计算:√−83÷√0.04+√14×(−2)2−(−1)2020.【分析】先化简立方根,算术平方根,有理数的乘方,然后先算乘除,再算加减.【解答】解:原式=﹣2÷0.2+12×4﹣1=﹣10+2﹣1=﹣9.11.(1分)(2021春•红塔区期末)计算:(﹣1)2020﹣(﹣2)2+√4+√−273. 【分析】直接利用有理数的乘方运算法则以及立方根的性质、算术平方根分解化简得出答案.【解答】解:原式=1﹣4+2﹣3=﹣4.12.(1分)(2021春•盘龙区期末)计算:(﹣1)2021+|3﹣π|+√16+√−83−π. 【分析】根据﹣1的奇、偶次方,绝对值、算术平方根、立方根的运算法则进行计算即可得出答案.【解答】解:原式=﹣1﹣(3﹣π)+4﹣2﹣π=﹣1﹣3+π+2﹣π=﹣2.13.(1分)(2021春•开福区校级期末)√(−1)2+√273+(−1)2021+|√3−3|.【分析】先计算平方根、乘方和绝对值运算,再合并同类项即可.【解答】解:原式=|﹣1|+3+(﹣1)+3−√3=1+3﹣1+3−√3=6−√3.14.(1分)(2021春•利川市期末)计算|√2−√3|﹣2(14+√22)−√−183. 【分析】根据绝对值的性质、立方根的定义以及实数的加减运算以及乘除运算法则即可求出答案.【解答】解:原式=√3−√2−12−√2+12=√3−2√2.15.(1分)(2021春•永城市期末)计算:√16+√−643−√1−(35)2−|π﹣3.2|. 【分析】直接利用立方根的性质以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=4﹣4−45−(3.2﹣π)=4﹣4−45−3.2+π=﹣4+π.16.(1分)(2021春•鹿邑县期末)计算:√(−1)33−√3116+√(1−78)23. 【分析】首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:√(−1)33−√3116+√(1−78)23 =﹣1−74+14=−52.17.(1分)(2021春•恩平市期末)计算:√25+√−83−√49+√8273+(−1)2021.【分析】利用实数的运算法则对所求式子进行求解即可.【解答】解:√25+√−83−√49+√8273+(−1)2021 =5﹣2−23+23−1=2.18.(1分)(2021春•潮阳区期末)计算:−12021+√(−2)2−√−1253+|√2−3|.【分析】直接利用绝对值的性质和立方根的性质和二次根式的性质分别化简得出答案.【解答】解:原式=﹣1+2+5+3−√2=9−√2.19.(1分)(2021春•白云区期末)计算:√−273−√256−√116+√1−63643. 【分析】实数的混合运算,先分别化简立方根,算术平方根,然后再计算.【解答】解:原式=﹣3﹣16−14+√1643=﹣3﹣16−14+14=﹣19.20.(1分)(2021春•杨浦区期中)计算:√−0.0013−(√23−√10003)−√162.【分析】直接利用立方根以及二次根式的性质分别化简得出答案.【解答】解:原式=﹣0.1−√23+10−42=﹣0.1−√23+10﹣2=7.9−√23.21.(2分)(2021春•青川县期末)计算:(1)(﹣3)2+2×(√2−1)﹣|﹣2√2|;(2)√−83−√1−1625+|2−√5|+√(−4)2.【分析】(1)先算乘方,化简绝对值,去括号,然后再算加减;(2)先化简立方根,算术平方根,绝对值,然后再计算.【解答】解:(1)原式=9+2√2−2﹣2√2=7;(2)原式=﹣2−√925+√5−2+4 =﹣2−35+√5−2+4=√5−35.22.(2分)(2021春•西城区校级期中)计算:(1)(−√7)2−√62+√−83;(2)√49−√273+|1−√2|+√(1−54)2. 【分析】(1)先化简,再计算加减法;(2)先算二次根式、三次根式,再计算加减法.【解答】解:(1)原式=7﹣6+(﹣2)=7﹣6﹣2=﹣1;(2)原式=7﹣3+√2−1+54−1=2+54+√2=134+√2.23.(2分)(2021春•抚顺期末)计算:(1)√−83+√36−√49;(2)√254+√−273−|2−√3|+√(−2)2. 【分析】(1)根据立方根,算术平方根的运算法则进行运算,即可得出答案;(2)根据算术平方根,立方根,绝对值的法则进行运算,即可得出答案.【解答】解:(1)解:原式=﹣2+6﹣7=﹣3;(2)原式=52−3﹣2+√3+2=−12+√3.24.(2分)(2021春•乾安县期末)计算:(1)|√3−2|−(√3−1)+√−643;(2)√9+|﹣2|+√273+(﹣1)2021.【分析】(1)直接利用绝对值的性质以及立方根的性质分别化简得出答案;(2)直接利用绝对值的性质以及立方根的性质、有理数的乘方运算法则分别化简得出答案.【解答】解:(1)原式=2−√3−√3+1﹣4=﹣2√3−1;(2)原式=3+2+3﹣1=7.25.(2分)(2021春•曾都区期末)计算下列各式:(1)√(−1)2+√14×(﹣2)2−√−643;(2)|√3−√2|+|√3−2|﹣|√2−1|.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简得出答案;(2)直接利用绝对值的性质化简,再合并二次根式得出答案.【解答】解:(1)原式=1+12×4+4=1+2+4=7;(2)原式=√3−√2+2−√3−(√2−1)=√3−√2+2−√3−√2+1=3﹣2√2.26.(2分)(2021春•林州市期末)计算:(1)|3−√13|+√−273−√13+√25;(2)−12−(−2)3×18+√−273×|−13|+|1−√3|.【分析】(1)直接利用绝对值的性质、立方根的性质、二次根式的性质分别化简得出答案;(2)直接利用绝对值的性质、立方根的性质、二次根式的性质分别化简得出答案.【解答】解:(1)原式=√13−3﹣3−√13+5=﹣1;(2)原式=﹣1+8×18−3×13+√3−1=﹣1+1﹣1+√3−1=√3−2.27.(2分)(2021春•黄冈期末)计算:(1)(−√2)2+|1−√2|+√−83; (2)﹣22+√(−4)2+√32+42−(﹣1)2021.【分析】(1)首先计算乘方、开立方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方和开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)(−√2)2+|1−√2|+√−83=2+√2−1+(﹣2)=√2−1.(2)﹣22+√(−4)2+√32+42−(﹣1)2021=﹣4+4+5﹣(﹣1)=6.28.(2分)(2021春•越秀区期末)(1)计算:√183+√(−2)2+√14;(2)计算:2(√3−1)﹣|√3−2|−√−643.【分析】(1)根据立方根以及算术平方根的定义解决此题.(2)由|√3−2|=2−√3,√−643=−4,得2(√3−1)−|√3−2|−√−643=3√3.【解答】解:(1)√183+√(−2)2+√14=12+2+12=3.(2)2(√3−1)−|√3−2|−√−643=2√3−2−(2−√3)−(−4)=2√3−2−2+√3+4=3√3.29.(2分)(2021春•西城区校级期末)计算题(1)√83+√0−√14+√−183+|3−√2|;(2)√−273−√0−√14+√0.1253+√1−63643. 【分析】(1)根据立方根,算术平方根,绝对值的性质计算即可;(2)先化简,再求这个数的立方根,化简即可.【解答】解:(1)原式=2+0−12−12+3−√2=4−√2;(2)原式=﹣3﹣0−12+√183+√1643 =﹣3−12+12+14=−114. 30.(2分)(2020春•合川区期末)计算:(1)|﹣2|+(﹣1)2020+√214−√−183; (2)(﹣24)﹣(12−23)÷(−16)×[﹣2−√(−3)2]﹣|14−0.52|. 【分析】(1)直接利用有理数的乘方运算法则以及立方根的性质、算术平方根、绝对值的性质分别化简得出答案;(2)直接利用有理数的混合运算以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:(1)原式=2+1+√94+12=2+1+32+12=5;(2)原式=﹣16﹣(36−46)×(﹣6)×(﹣2﹣3)﹣|14−(12)2| =﹣16+16×(﹣6)×(﹣5)﹣0=﹣16+5﹣0=﹣11.31.(2分)(2020春•甘南县期中)计算下列各式:(1)√16−√273+√−183+√94 (2)|1−√2|+√−8273×√14−√2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义,平方根、立方根定义计算即可求出值.【解答】解:(1)原式=4﹣3−12+32=2;(2)原式=√2−1−23×12−√2=−43.32.(2分)(2020春•岳麓区校级月考)计算:(1)√83−√4−√(−3)2+|1−√2|(2)√6×(√6−√6)−√214−|2﹣π| 【分析】(1)首先计算立方根,化简二次根式,计算绝对值,然后再计算加减即可;(2)首先计算乘法、化简二次根式,计算绝对值,然后再计算加减即可.【解答】解:(1)原式=2﹣2﹣3+√2−1=√2−4;(2)原式=1﹣6−32−(π﹣2),=1﹣6−32−π+2,=﹣412−π. 33.(2分)(2020春•蕲春县期中)计算: (1)√−273+√(−3)2+√−13; (2)√16+√−27643×√(−43)2−|2−√5|. 【分析】(1)首先根据二次根式和立方根的性质进行化简,再计算加减即可;(2)首先根据二次根式和立方根和绝对值的性质进行化简,再计算乘法,后算加减即可.【解答】解:(1)原式=﹣3+3﹣1=﹣1;(2)原式=4−34×43−(√5−2)=4﹣1−√5+2 =5−√5.34.(2分)(2020春•西市区期末)计算:(1)√−13−√83÷√(−6)2;(2)(2−√3)2020×(2+√3)2021﹣2√34.【分析】(1)首先计算乘方、开方,然后计算除法,最后计算减法,求出算式的值是多少即可.(2)首先根据积的乘方计算,然后计算乘法、减法,求出算式的值是多少即可.【解答】解:(1)√−13−√83÷√(−6)2=﹣1﹣2÷6=﹣1−13=−43.(2)(2−√3)2020×(2+√3)2021﹣2√34 =[(2−√3)×(2+√3)]2020×(2+√3)﹣2×√32=2+√3−√3=2.35.(2分)(2020春•渝北区校级月考)计算下列各题.(1)|3−2√3|−√643+(√6)2;(2)√1.44+√1033−√0.04−√83−√−13.【分析】(1)直接利用立方根的性质以及二次根式的性质、绝对值的性质等知识分别化简得出答案;(2)直接利用立方根的性质以及二次根式的性质等知识分别化简得出答案.【解答】解:(1)原式=2√3−3﹣4+6=2√3−1;(2)原式=1.2+10﹣0.2﹣2+1=10.36.(2分)(2020春•牡丹江期中)计算题:(1)√81+√−273+√(−2)2+|√3−2|;(2)√22−√214+√78−13−√−13.【分析】各式利用算术平方根、立方根性质计算即可求出值.【解答】解:(1)原式=9﹣3+2+2−√3=10−√3;(2)原式=2−32−12−(﹣1)=2﹣2+1=1.37.(2分)(2020春•凉州区校级期中)计算:(1)√2549+|﹣5|+√−643−(﹣1)2020; (2)√16+√−273−√3−|√3−2|+√(−5)2.【分析】利用二次根式的性质、绝对值得先年改制、立方根的性质、乘方的意义进行计算,再算加减即可.【解答】解:(1)原式=57+5﹣4﹣1=57;(2)原式=4﹣3−√3−2+√3+5=4.38.(2分)(2020秋•东港市期中)(1)(√6−√7)2019×(√6+√7)2020.(2)√32−√−273−√(−23)2+|1−√2|.【分析】(1)直接利用积的乘方运算法则,将原式变形得出答案;(2)直接利用立方根以及算术平方根的性质、绝对值的性质分别化简得出答案.【解答】解:(1)原式=[(√6−√7)(√6+√7)]2019×(√6+√7)=﹣1×(√6+√7)=−√6−√7;(2)原式=4√2+3−23+√2−1=5√2+43.39.(2分)(2020春•越秀区校级月考)计算:(1)√36−√273+√(−2)2−√214;(2)|√3−2|−√4−(3−√3).【分析】(1)直接利用立方根的定义和算术平方根的定义分别化简得出答案;(2)直接利用绝对值的性质以及算术平方根的定义分别化简得出答案.【解答】解:(1)原式=6﹣3+2−32=3.5;(2)原式=2−√3−2﹣3+√3=﹣3.40.(2分)(2020春•和平区校级月考)计算(1)√273+|3−√5|﹣(√9−√83)2+√5; (2)√16−√83−√13+√1+916+|1−√2|﹣|√3−√2|.【分析】(1)直接利用立方根的性质以及绝对值的性质分别化简得出答案;(2)直接利用立方根的性质以及绝对值的性质分别化简得出答案.【解答】解:(1)原式=3+3−√5−(3﹣2)2+√5=3+3−√5−1+√5=5;(2)原式=4﹣2﹣1+54+√2−1﹣(√3−√2)=4﹣2﹣1+54+√2−1−√3+√2=2√2−√3+54.41.(4分)(2020春•硚口区期中)(1)计算:①√−8273×√14−√(−2)2; ②√3−√25+|√3−3|+√1−63643.(2)求下列式子中的x 的值:①4(x ﹣2)2=49;②(x ﹣1)3=64.【分析】(1)①直接利用立方根以及二次根式的性质分别化简得出答案;②直接利用立方根以及二次根式的性质分别化简得出答案;(2)①直接利用平方根的定义化简得出答案;②直接利用立方根的定义化简得出答案.【解答】解:(1)①原式=−23×12−2=﹣213;②原式=√3−5+3−√3+14=−74;(2)①∵4(x ﹣2)2=49,∴(x −2)2=494, ∴x −2=±72,∴x =2±72,∴x =112或x =−32.②∵(x ﹣1)3=64,∴x ﹣1=4,∴x =5.42.(4分)(2020秋•射洪市月考)(1)计算:√16+√−643−√(−3)2+|√3−1|;(2)解方程:18﹣2x 2=0;(3)解方程:(x +1)3+27=0;(4)(2−√3)2020×(2+√3)2021﹣2√1−(35)2. 【分析】(1)利用平方根与立方根的定义及绝对值的意义,先化简,再利用实数混合运算进行运算即可;(2)对方程进行转化,利用平方根的定义即可解答;(3)对方程进行转化,利用立方根的定义即可解答;(4)先利用幂运算法则和平方差公式进行简便运算,利用算术平方根的定义进行化简,再利用实数混合运算进行运算即可;【解答】解:(1)原式=4﹣4﹣3+√3−1=﹣4+√3;(2)∵18﹣2x 2=0,∴2x 2=18,即x 2=9,∴x =±3;(3)∵(x +1)3+27=0,∴(x +1)3=﹣27,∴x +1=﹣3,∴x =﹣4;(4)(2−√3)2020×(2+√3)2021﹣2√1−(35)2 =[(2−√3)×(2+√3)]2020×(2+√3)﹣2×45=2+√3−85=25+√3.43.(4分)(2021春•南开区期中)(1)化简|1−√2|+|√2−√3|+|√3−2|.(2)计算:√−643+√16×√94÷(−√2)2.(3)解方程(x ﹣1)3=27.(4)解方程2x 2﹣50=0.【分析】(1)去掉绝对值符号,合并同类二次根式即可;(2)利用实数的混合运算法则进行运算即可;(3)利用立方根的意义解答;(4)利用平方根的意义解答.【解答】解:(1)原式=√2−1+√3−√2+2−√3=1;(2)原式=﹣4+4×32÷2=﹣4+3=﹣1;(3)两边开立方得:x ﹣1=3.∴x =4.∴原方程的解为:x =4.(4)原方程变为:2x 2=50.∴x 2=25.两边开平方得:x =±5.∴原方程的解为:x 1=5,x 2=﹣5.44.(4分)(2021春•红桥区期中)计算:(1)3√2+√2−6√2;(2)√5(√5+1√5); (3)√−273+√(−2)2−|1−√3|;(4)√9−√−83+√(−3)2−(√2)2. 【分析】(1)直接利用二次根式的加减运算法则计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案;(3)直接利用立方根以及二次根式、绝对值的性质分别化简得出答案;(4)直接利用立方根以及二次根式、绝对值的性质分别化简得出答案.【解答】解:(1)原式=﹣2√2;(2)原式=5+1=6;(3)原式=﹣3+2﹣(√3−1)=﹣3+2−√3+1 =−√3;(4)原式=3+2+3﹣2=6.45.(4分)(2021春•硚口区期中)(1)计算:①√16−√273+√214;②√3(√31√3)+|2−√5|.(2)求下列式子中的x 的值:①(x ﹣2)2=9;②3(x +1)3+81=0.【分析】(1)①首先计算开方,然后从左向右依次计算即可.②首先计算绝对值和乘法,然后从左向右依次计算即可.(2)①根据平方根的含义和求法,求出x 的值是多少即可.②根据立方根的含义和求法,求出x 的值是多少即可.【解答】解(1)①√16−√273+√214=4﹣3+32=52.②√3(√3√3)+|2−√5| =3﹣1+√5−2=√5.(2)①∵(x ﹣2)2=9,∴x ﹣2=±3,解得:x =5或﹣1.②∵3(x +1)3+81=0,∴3(x +1)3=﹣81,∴(x +1)3=﹣27,∴x +1=﹣3,解得:x =﹣4.46.(4分)(2021春•岷县月考)计算:(1)√−8×(−0.5). (2)√4+√225−√400. (3)√−13+√(−1)33+√(−1)23.(4)√183−52×√−11253+√−3433−√−273. 【分析】根据算术平方根和立方根的定义,分别计算即可.【解答】解:(1)原式=√4=2;(2)原式=2+15﹣20=﹣3;(3)原式=﹣1+√−13+√13=﹣1+(﹣1)+1=﹣1;(4)原式=12−52×(−15)+(﹣7)﹣(﹣3)=12−(−12)+(﹣7)+3=12+12+(﹣7)+3 =1﹣7+3=﹣3.47.(4分)(2020秋•海曙区期中)计算.(1)−34×(−8+23−13).(2)17﹣8÷(﹣4)+4×(﹣5).(3)√25+(√−1273+13)−6. (4)−32×[−32×(−23)2−2].【分析】(1)利用乘法分配律使得计算简便;(2)先算乘除,然后再算加减;(3)先化简算术平方根,立方根,然后算小括号里面的,再算括号外面的;(4)先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【解答】解:(1)原式=34×8−34×23+34×13=6−12+14=512+14=524+14 =534;(2)原式=17+2﹣20=19﹣20=﹣1;(3)原式=5+(−13+13)﹣6=5+0﹣6=5﹣6=﹣1;(4)原式=−32×(﹣9×49−2)=−32×(﹣4﹣2)=−32×(﹣6)=9.48.(4分)(2020秋•嵊州市期中)计算:(1)(+1013)+(﹣11.5)+(﹣1013)﹣4.5; (2)(﹣6)2×(13−12)﹣23; (3)(﹣270)×14+0.25×21.5+(﹣812)×(﹣0.25); (4)−√36+6÷(−23)×√−83.【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用乘法分配律以及有理数的混合运算法则计算得出答案;(3)直接提取公因式14,进而计算得出答案; (4)直接利用算术平方根的性质以及立方根的性质分别化简得出答案.【解答】解:(1)原式=﹣11.5﹣4.5+(1013−1013) =﹣16+0=﹣16;(2)(﹣6)2×(13−12)﹣23 =36×13−36×12−8=12﹣18﹣8=﹣14;(3)(﹣270)×14+0.25×21.5+(﹣812)×(﹣0.25) =14×(﹣270+21.5+812) =14×(﹣240)=﹣60;(4)−√36+6÷(−23)×√−83=﹣6﹣9×(﹣2)=﹣6+18=12.49.(4分)(2020秋•北仑区期中)计算:(1)(﹣3)2﹣(112)3×29−6÷|−23|; (2)﹣12020+|﹣3|+√−1273−√(−4)2; (3)3×(√3−√5)+2×(−32×√3+32);(4)|√6−√2|+|√2−1|﹣|3−√6|.【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用立方根以及绝对值的性质、算术平方根的性质分别化简得出答案;(3)直接利用二次根式的混合运算法则计算得出答案;(4)直接利用绝对值的性质化简,进而得出答案.【解答】解:(1)(﹣3)2﹣(112)3×29−6÷|−23|=9−278×29−6×32=9−34−9=−34;(2)﹣12020+|﹣3|+√−1273−√(−4)2=﹣1+3−13−4=﹣213;(3)3×(√3−√5)+2×(−32×√3+32)=3√3−3√5−3√3+3=﹣3√5+3;(4)|√6−√2|+|√2−1|﹣|3−√6|=√6−√2+√2−1﹣(3−√6)=√6−√2+√2−1﹣3+√6=2√6−4.50.(4分)(2020秋•下城区校级期中)计算.(1)(+15)﹣(+11)﹣(﹣18)+(﹣15);(2)(﹣72)×(49−38+512−13); (3)﹣12﹣(1﹣0.5)÷15×[2﹣(﹣2)2];(4)|1−√2|+|√2−√3|+|√3−√4|+……+|√2019−√2020|.(结果保留根号形式)【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用乘法分配律进而计算得出答案;(3)直接利用有理数的混合运算法则计算得出答案;(4)直接去绝对值进而计算得出答案.【解答】解:(1)(+15)﹣(+11)﹣(﹣18)+(﹣15)=15﹣11+18﹣15=7;(2)(﹣72)×(49−38+512−13) =(﹣72)×49+(﹣72)×(−38)+(﹣72)×512+(﹣72)×(−13) =﹣32+27﹣30+24=﹣11;(3)﹣12﹣(1﹣0.5)÷15×[2﹣(﹣2)2]=﹣1−12×5×(2﹣4)=﹣1−52×(﹣2)=﹣1+5=4; (4)|1−√2|+|√2−√3|+|√3−√4|+……+|√2019−√2020| =√2−1+√3−√2+√4−√3+⋯+√2020−√2019 =√2020−1.。

专题02 实数的运算(三大题型,50题)(解析版)

专题02 实数的运算(三大题型,50题)(解析版)

专题02实数的运算(三大题型,50题)(解析版)学校:___________姓名:___________班级:___________考号:___________一、用数轴上的点表示实数,中档题20题,难度三星1.如图,若5x =,则表示2211(1)x x x x -+÷-的值的点落在()A .段①B .段②C .段③D .段④【答案】C 【分析】首先对原式进行化简,然后代入x 的值,最后根据5 2.236≈即可判断.【详解】原式=2211()x x x x x-+-÷=()211x xx x -- =1x -当5x =时,原式=51-∵5 2.236≈∴51 1.236-≈故选C .【点睛】本题考查了分式的乘除法化简,无理数的估算,无理数的估算是难点,关键是要熟记一些常用的完全平方数,和一些常用无理数的近似值.2.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是()A .pB .qC .mD .n【答案】C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解.A.a b>B.π+A.πB.1【答案】B【分析】根据数轴与实数的一一对应关系解答即可.A .a b-+B .a b +C .a 【答案】21π--【分析】求出圆的周长,再根据实数与数轴上的点的对应关系解答即可.【答案】﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【答案】32-或32+【分析】分顺时针旋转和逆时针旋转,两种情况讨论求解即可.【详解】解:∵点A 表示的数为3,点B 表示的数为4,∴1AB =,此时C '表示的数为:32-;当正方形ABCD 绕点A 逆时针旋转,使得点C 落在数轴上的点C '处时,如图:此时C '表示的数为:32+;【答案】2π2+【分析】先求出圆的周长为2π,再利用数轴的性质求解即可得.【详解】解:由题意可知,将圆沿数轴向右转动一周,转动的距离为∴点A 向右移动了2π个单位长度,【答案】280905--+/809052【分析】本题考查的是数轴的一个知识,解题的关键是找到规律:第移动25个单位,从第2次落在数轴上开始,比上一次又向右多移动了(1)图1中的阴影部分为正方形,它的面积是_________;(2)请利用(1)的解答,在图1的数轴上画出表示10的点;并简洁地说明理由.(3)如图2,请你利用正方形网格,设计一个面积方案,在数轴上画出表示理由.【答案】(1)10(3)解:如图,阴影部分为正方形,面积为所以,其边长为5,在数轴上截取5==,CDOC OK则点K表示的数为5,点D表示的数【点睛】本题主要考查正方形的性质以及网格,熟练掌握正方形的性质是解题的关键.20.阅读下面的文字,解答问题.大家知道,2是无理数,而无理数是无限不循环小数,因此【点睛】此题考查的是估算无理数及求代数式的值,能够得到一个无理数的整数部分与小数部分是解决此题的关键.二、实数的大小比较,中档题15题,难度三星π-<-<根据数轴上点的特点可得: 1.5333.在数轴上表示数0,π-303π-<-<<.2【点睛】本题考查了实数与数轴,实数的大小比较,能利用数轴比较实数的大小是解此题的关键,注意:。

中考数学必考点提分专练01实数混合运算与代数式的化简求值含解析

中考数学必考点提分专练01实数混合运算与代数式的化简求值含解析

|类型1| 实数的运算1.[2019·南充]计算:(1-π)0+|√2−√3|-√12+1√2-1. 解:原式=1+√3−√2-2√3+√2=1-√3.2.[2019·广安]计算:(-1)4-|1-√3|+6tan30°-(3-√27)0.解:原式=1-(√3-1)+6×√33-1=1-√3+1+2√3-1=1+√3.3.[2019·遂宁]计算:(-1)2019+(-2)-2+(3.14-π)0-4cos30°+|2-√12|.解:(-1)2019+(-2)-2+(3.14-π)0-4cos30°+|2-√12|=-1+14+1-4×√32+2√3-2=-74.4.[2018·陕西] 计算:(-√3)×(-√6)+|√2-1|+(5-2π)0.解:(-√3)×(-√6)+|√2-1|+(5-2π)0=√18+√2-1+1=3√2+√2=4√2.|类型2| 整式的化简求值5.[2019·常州]如果a -b -2=0,那么代数式1+2a -2b 的值是 5 .6.[2019·常德]若x 2+x=1,则3x 4+3x 3+3x+1的值为 4 .解:3x 4+3x 3+3x +1=3x 2(x 2+x )+3x +1=3x 2+3x +1=3(x 2+x )+1=4.7.[2019·淮安]计算:ab (3a -2b )+2ab 2.解:ab (3a -2b )+2ab 2=3a 2b -2ab 2+2ab 2=3a 2b .8.[2019·吉林] 先化简,再求值:(a -1)2+a (a+2),其中a=√2.解:原式=a 2-2a +1+a 2+2a=2a 2+1,当a=√2时,原式=2×(√2)2+1=2×2+1=5.实数混合运算与代数式的化简求值 提分专练019.若x+y=3,且(x+3)(y+3)=20.(1)求xy 的值;(2)求x 2+3xy+y 2的值.解:(1)∵(x +3)(y +3)=20,∴xy +3x +3y +9=20,即xy +3(x +y )=11.将x +y=3代入得xy +9=11,∴xy=2.(2)当xy=2,x +y=3时,原式=(x +y )2+xy=32+2=9+2=11.|类型3| 分式的化简求值10.[2019·淮安]先化简,再求值:a 2-4a ÷(1-2a ),其中a=5. 解:a 2-4a ÷(1-2a )=a 2-4a ÷a -2a =a 2-4a ·a a -2=(a+2)(a -2)a ·aa -2=a +2. 当a=5时,原式=5+2=7.11.[2019·黄石]先化简,再求值:(3x+2+x -2)÷x 2-2x+1x+2,其中|x|=2. 解:原式=x 2-1x+2÷(x -1)2x+2=(x+1)(x -1)x+2·x+2(x -1)2=x+1x -1. ∵|x|=2,∴x=±2,由分式有意义的条件可知:x=2,∴原式=3.12.[2019·菏泽]先化简,再求值:1x -y ·(2y x+y -1)÷1y 2-x 2,其中x=y+2019.解:1x -y ·(2y x+y -1)÷1y 2-x 2=1x -y ·2y -(x+y )x+y ·(y +x )(y -x )=-(2y -x -y )=x -y .∵x=y +2019,∴原式=y +2019-y=2019.13.[2019·天水]先化简,再求值:(x x 2+x -1)÷x 2-1x 2+2x+1,其中x 的值从不等式组{-x ≤1,2x -1<5的整数解中选取.解:原式=x -x 2-x x (x+1)·x+1x -1=-x x+1·x+1x -1=x1-x .解不等式组{-x ≤1,2x -1<5得-1≤x<3,则不等式组的整数解为-1,0,1,2. ∵x ≠±1,x ≠0,∴x=2,原式=21-2=-2.14.[2019·荆门]先化简,再求值:(a+b a -b )2·2a -2b 3a+3b −4a 2a 2-b 2÷3a b ,其中a=√3,b=√2.解:原式=2(a+b )3(a -b )−4ab 3(a+b )(a -b )=2(a+b )2-4ab 3(a+b )(a -b )=2(a 2+b 2)3(a+b )(a -b ).当a=√3,b=√2时,原式=3(3+2)(3-2)=103. 15.[2019·长沙]先化简,再求值:⎝ ⎛⎭⎪⎫a +3a -1-1a -1÷a 2+4a +4a 2-a ,其中a =3.解:原式=a +2a -1·a (a -1)(a +2)2=a a +2,当a =3时,原式=33+2=35.16.[2019·成都]先化简,再求值:⎝ ⎛⎭⎪⎫1-4x +3÷x 2-2x +12x +6,其中x =2+1.解:原式=⎝ ⎛⎭⎪⎫x +3x +3-4x +3×2(x +3)(x -1)2=x -1x +3×2(x +3)(x -1)2=2x -1.将x =2+1代入,原式=22+1-1=2. 17.[2019·遂宁]先化简,再求值:a 2-2ab+b 2a 2-b 2÷a 2-aba −2a+b ,其中a ,b 满足(a -2)2+√b +1=0.解:原式=(a -b )2(a+b )(a -b )÷a (a -b )a −2a+b =a -b a+b ·1a -b −2a+b =-1a+b .∵(a -2)2+√b +1=0,∴a=2,b=-1,∴原式=-1.。

专题4.2 实数及实数运算(解析版)

专题4.2 实数及实数运算(解析版)

【教学目标】1【教学重难点】12【知识亮解】知识点一:实数(、、、、、.2【解析】、、....﹣=,则=,表示的数为:﹣=,即拼成的正方形的边长为,故答案为:;)由勾股定理得:=,∴点表示的数为﹣,故答案为:﹣2×2×2×+2×2×=为.现象二:为求…的值,设计了如图()请你利用这个几何图形求…的值为)再设计一个能求…的值的几何图形.小图形的面积是,所以…表示的面积等于﹣.在划分图形时每次划分都是4××1×4,阴影部分正方形的边长=;如图所示:)…=﹣,如图所示.:﹣.轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

(2)绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

正数的绝对值等于它本身;负数的绝对值等于它的相反数;零的绝对值既可以看成是它本身,也可看成它的相反数。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

(3)倒数如果ab=1,则a 与b 互为倒数,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

2、数轴和实数大小比较规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

比较大小时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=- ba b a <⇔<-0(3)求商比较法:设a 、b 是两正实数;1;1;1b a bab a b a b a b a <⇔<=⇔=>⇔>(4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。

中考数学总复习 专题二 实数混合运算与分式化简求值试题 新人教版1

中考数学总复习 专题二 实数混合运算与分式化简求值试题 新人教版1

专题二 实数混合运算与分式化简求值实数混合运算【例1】 (2016·沈阳)计算:(π-4)0+|3-tan 60°|-(12)-2+27. 分析:直接利用零指数幂的性质、绝对值的性质和特殊角的三角函数值、负整数指数幂的性质、二次根式的性质分别化简求出答案.解:原式=1+3-3-4+33=2 3分式化简求值【例2】 (2016·呼和浩特)先化简,再求值:1x +1-3-x x 2-6x +9÷x 2+x x -3,其中x =-32. 分析:先进行分式的运算,再把x 的值代入求值即可.解:原式=1x ,当x =-32时,原式=-231.计算:(1)(2016·内江)计算:|-3|+3·tan 30°-38-(2016-π)0+(12)-1; 解:原式=3+3×33-2-1+2=3 (2)(2016·深圳)|-2|-2cos 60°+(16)-1-(π-3)0; 解:原式=2-2×12+6-1=6(3)(2016·雅安)-22+(-13)-1+2sin 60°-|1-3|. 解:原式=-4-3+2×32-(3-1)=-62.先化简,再求值:(1)(2016·乐山)(x -3x x +1)÷x -2x 2+2x +1,其中x 满足x 2+x -2=0; 解:原式=x 2+x ,∵x 2+x -2=0,∴x 2+x =2,则原式=2(2)(2016·东营)(a +1-4a -5a -1)÷(1a -1a 2-a ),其中a =2+ 3. 解: 原式=a(a -2).当a =2+3时,原式=(2+3)(2+3-2)=3+2 31.计算:(1)(2016·随州)-|-1|+12·cos 30°-(-12)-2+(π-3.14)0; 解:原式=-1+23×32-4+1=-1(2)(2016·东营)(12 016)-1+(π-3)0-2sin 60°-12+|1-33|. 解:原式=2 016+1-3-23+33-1=2 0162.先化简,再求值:(1)(2016·广东)a +3a ·6a 2+6a +9+2a -6a 2-9,其中a =3-1; 解:原式=2a ,当a =3-1时,原式=23-1=3+1(2)(2016·哈尔滨)(2a +1-2a -3a 2-1)÷1a +1,其中a =2sin 60°+tan 45°; 解:原式=1a -1, 当a =2sin 60°+tan 45°=2×32+1=3+1时,原式=13+1-1=33(3)(2016·枣庄)a 2+a a 2-2a +1÷(2a -1-1a),其中a 是方程2x 2+x -3=0的解; 解:原式=a 2a -1.由2x 2+x -3=0得x 1=1,x 2=-32 ,又a -1≠0,即a≠1,所以a =-32,所以原式=(-32)2-32-1=-910(4)(2016·凉山州)(1x -y +2x 2-xy )÷x +22x,其中实数x ,y 满足y =x -2-4-2x +1.解:原式=2x -y,∵y =x -2-2(2-x ) +1,∴x -2≥0,2-x≥0,即x -2=0,解得x =2,y =1,则原式=23.(1)(2016·河南)先化简,再求值:(x x 2+x -1)÷x 2-1x 2+2x +1,其中x 的值从不等式组⎩⎪⎨⎪⎧-x≤1,2x -1<4的整数解中选取; 解:原式=x 1-x .解不等式组⎩⎪⎨⎪⎧-x≤1,2x -1<4,得-1≤x<52,当x =2时,原式=21-2=-2(注意取x =-1,0,1时原式无意义)(2)(2016·黔东南州)先化简:x 2-1x 2-2x +1÷x +1x ·(x-1x),然后x 在-1,0,1,2四个数中选一个你认为合适的数代入求值.解:原式=x +1.∵在-1,0,1,2四个数中,使原式有意义的值只有2,∴当x =2时,原式=2+1=3。

(完整word版)2019年中考专题复习第二讲实数的运算(含详细参考答案)

(完整word版)2019年中考专题复习第二讲实数的运算(含详细参考答案)

2019年中考专题复习 第二讲 实数的运算【基础知识回顾】一、实数的运算.1、基本运算:初中阶段我们学习的基本运算有 、 、 、 、 、 和 共六种,运算顺序是先算 ,再算 ,最后算 ,有括号时要先算 ,同一级运算,按照 的顺序依次进行. 2、运算法则:加法:同号两数相加,取 的符号,并把 相加,异号两数相加,取 的符号,并用较大的 减去较小的 ,任何数同零相加仍得 。

减法,减去一个数等于 。

乘法:两数相乘,同号得 ,异号得 ,并把 相乘。

除法:除以一个数等于乘以这个数的 。

乘方:(-a )2n +1= (—a ) 2n=3、运算定律:加法交换律:a+b= 加法结合律:(a+b )+c= 乘法交换律:ab= 乘法结合律:(ab )c= 分配律: (a+b )c= 二、零指数、负整数指数幂。

0a = (a≠0) a -p= (a≠0)【名师提醒:1、实数的混合运算在中考考查时经常与0指数、负指数、绝对值、锐角三角函数等放在一起,计算时要注意运算顺序和运算性质。

2、注意底数为分数的负指数运算的结果,如:(31)-1= 】三、实数的大小比较:1、比较两个有理数的大小,除可以用数轴按照的原则进行比较以外,,还有比较法、比较法等,两个负数大的反而小。

2、如果几个非负数的和为零,则这几个非负数都为。

【名师提醒:比较实数大小的方法有很多,根据题目所给的实数的类型或形可以式灵活选用。

22的大小,可以先确定10和65的取值范围,然后得结论:10+2 65—2。

】【重点考点例析】考点一:实数的大小比较。

例1 (2018•福建)在实数|-3|,—2,0,π中,最小的数是()A.|-3| B.-2 C.0 D.π【思路分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.解:在实数|—3|,-2,0,π中,|—3|=3,则-2<0<|-3|<π,故最小的数是:—2.故选:B.【点评】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.考点二:估算无理数的大小例2 (2018•南京)下列无理数中,与4最接近的是()A B C D【点评】此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键. 考点三:实数与数轴例3(2018•北京)实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( ) A .|a |>4 B .c —b >0 C .ac >0 D .a+c >0【思路分析】本题由图可知,a 、b 、c 绝对值之间的大小关系,从而判断四个选项的对错. 解:∵—4<a <-3,∴|a |<4,∴A 不正确; 又∵a <0,c >0,∴ac <0,∴C 不正确; 又∵a <—3,c <3,∴a+c <0,∴D 不正确; 又∵c >0,b <0,∴c-b >0,∴B 正确; 故选:B .【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负. 考点四:实数的混合运算例4 (2018•怀化)计算:0112sin 3022|31|π-︒--+-+()()【思路分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=1213122⨯-+-+ =1+3.【点评】此题主要考查了实数运算,正确化简各数是解题关键. 考点五:实数中的规律探索。

实数练习题难题

实数练习题难题

实数练习题难题实数是数学中一个重要的概念,它包括有理数和无理数两部分。

而实数的运算涉及到加减乘除等多种操作,其中也会涉及到一些难题。

本文将介绍一些实数练习题中的难题,并给出解法,以帮助读者更好地理解实数的运算。

1. 题目一:求解方程:√(2x + 5) - √(x + 1) = 2解法:首先,我们可以将这个方程转化为两个根式相等的形式:√(2x + 5) = √(x + 1) + 2然后,对方程两边进行平方,得到:2x + 5 = (x + 1) + 4√(x + 1) + 4化简得:2x + 4 = 4√(x + 1)再次平方得:4x^2 + 16x + 16 = 16(x + 1)化简得:4x^2 + 16x + 16 = 16x + 16移项得:4x^2 = 0解得:x = 0所以,方程的解为x = 0。

2. 题目二:已知方程3^x + 4^x = 5^x,求解x的值。

解法:首先,我们可以将这个方程转化为一个三角函数的形式:(3/5)^x + (4/5)^x = 1然后,我们可以利用数学知识中的不等式进行求解。

由于(3/5)^x和(4/5)^x都是小于1的数,所以它们的和也一定小于1。

而1作为一个常数,所以当x为任意实数时,方程恒成立。

所以,这个方程的解为x 为实数。

3. 题目三:已知方程x^2 - √3x + 3 = 0,求解x的值。

解法:首先,我们可以利用求根公式来解这个方程。

根据求根公式,我们有:x = (√3 ± √(3^2 - 4*1*3))/(2*1)化简得:x = (√3 ± √(9 - 12))/(2)再次化简得:x = (√3 ± √(-3))/(2)由于方程的判别式为负数,所以这个方程在实数范围内没有解。

通过以上三个实数练习题的难题解析,相信读者对实数的运算和解方程会有更深入的理解。

实数是数学中非常重要的概念,在数学学习中起到了重要的作用。

七年级数学下册 专题 实数的运算计算题(共45小题)(解析版)

七年级数学下册 专题 实数的运算计算题(共45小题)(解析版)

七年级下册数学《第六章实数》专题实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算:(1)(5)2+(−3)2+3−8;(2)(﹣2)3×18−327×(−【分析】(1)原式利用平方根及立方根定义计算即可求出值;(2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值.【解答】解:(1)原式=5+3+(﹣2)=8﹣2=6;(2)原式=(﹣8)×18−3×(−13)=(﹣1)﹣(﹣1)=﹣1+1=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(2022•庐江县二模)计算:0.04+3−8−【分析】先计算被开方数,再开方,最后加减.【解答】解:原式=0.2﹣2−=0.2﹣2−45=0.2﹣2﹣0.8=﹣2.6.【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键.3.(2022春•上思县校级月考)计算:(1)−12+16+|2−1|+3−8;(2)23+|3−2|−364+9.【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案.【解答】解:(1)−12+16+|2−1|+3−8;=﹣1+4+2−1﹣2=2;(2)原式=23+2−3−4+3=3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算:(1)16+(−3)2+327;(2)3−3+|1−33|﹣(−3)2.【分析】(1)先计算平方根和立方根,再计算加减;(2)先计算平方根、立方根和绝对值,再计算加减;【解答】解:(1)16+(−3)2+327=4+3+3=10;(2)3−3+|1−33|﹣(−3)2=−33+33−1﹣3=﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算:(1)3−8+4−(−1)2023;(2)(−9)2−364+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)3−8+4−(−1)2023=﹣2+2﹣(﹣1)=0+1=1;(2)(−9)2−364+|−5|−(−2)2=9﹣4+5﹣4=6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算:(1)−12−0.64+3−27−125(2)3+(−5)2−3−64−|3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算;(2)先计算平方根、立方根和绝对值,再进行加减运算.【解答】解(1)−12−0.64+3−27−=﹣1﹣0.8﹣3﹣0.2=﹣5;(2)3+(−5)2−3−64−|3−5|=3+5+4+3−5=23+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:16−(−1)2022−327+|1−2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案.【解答】解:原式=4﹣1﹣3+2−1=2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−364+|3−2|.【分析】这里,先算﹣12022=﹣1,364=4,|3−2|=2−3,再进行综合运算.【解答】解:﹣12022−364+|3−2|=﹣1﹣4+2−3=﹣3−3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)3125+(−3)2−【分析】先化简各式,然后再进行计算即可解答.【解答】解:3125+(−3)2−=5+3−27=5+3﹣(−23)=5+3+23=823.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:3−27|−2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:3−27|−2|+1=﹣3+12×4+2+1=﹣3+2+2+1=2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+3−8+(−3)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:﹣12+|﹣2|+3−8+(−3)2=﹣1+2+(﹣2)+3=﹣1+2﹣2+3=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|2−2|+49+3(−3)3.【分析】按照实数的运算顺序进行运算即可.【解答】解:原式=1+2−2+7−3=7−2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|3−2|+3−8×12+(−3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减.【解答】解:原式=2−3+(﹣2)×12+3=2−3−1+3=4−3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+(−4)2+38+【分析】先算乘方、开方,再算乘法,最后算加减.【解答】解:原式=﹣1+4+2+10×35=﹣1+4+2+6=11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键.15.(2021秋•峨边县期末)计算:|5−3|+(−2)2−3−8+5.【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案.【解答】解:原式=3−5+2+2+5=7.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:(−3)2−2×+52×3−0.027.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案.【解答】解:原式=3﹣2×32+52×(﹣0.3)=3﹣3−52×310=0−34=−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可.【解答】解:原式=1+3﹣(﹣1)×2=4+2=6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算:(1)364−81+3125+3;(2)|−3|−16+38+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案;(2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=4﹣9+5+3=3;(2)原式=3﹣4+2+4=5.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算:(1)﹣23+3−27−(﹣2)2+1681(2)(﹣3)2×(﹣2)+364+9.【分析】(1)先计算乘方、立方根和平方根,再计算加减;(2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减.【解答】解:(1)﹣23+3−27−(﹣2)2=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+364+9=﹣9×2+4+3=﹣18+4+3=﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算:(1)(3)2−163−8;(2)(﹣2)3×)2013−327;(3)(−4)2+32+42.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答.【解答】解:(1)(3)2−16+3−8=3﹣4+(﹣2)=﹣3;(2)(﹣2)3×+(﹣1)2013−327=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)(−4)2+32+42=4+32+32−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−16+3−8+(−2)2;(2)3−27+|2−3|−(−16)+23.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−16+3−8+(−2)2=3﹣4+(﹣2)+4=1.(2)3−27+|2−3|−(−16)+23=﹣3+(2−3)﹣(﹣4)+23=﹣3+2−3+4+23=3+3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:(−3)2×−(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减.【解答】解:原式=3×(−12)−14+1=−32−14+1=−12−14=−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:3−8+9−(−1)2022+|1−2|.【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可.【解答】解:3−8+9−(−1)2022+|1−2|.=﹣2+3−54+1+2−1=−14+2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题:(11+−1);(2)35−|−35|+23+33.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1+=27+=23+34=1712;(2)35−|−35|+23+33=35−35+23+33=53.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(3−1)−|3−2|−364.【分析】先去括号,化简绝对值,开立方,再计算加减即可.【解答】解:原式=23−2﹣(2−3)﹣4=23−2﹣2+3−4=33−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−3−64−|﹣3|.【分析】先算乘方,再算乘法,后算加减,即可解答.【解答】解:﹣22×(﹣112)2−3−64−×|﹣3|=﹣4×94−(﹣4)−43×3=﹣9+4﹣4=﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算:(1)|7−2|﹣|2−π|−(−7)2;(2)﹣22×(−4)2+3(−8)3×(−12)−327.【分析】(1)先化简绝对值和平方根,再计算加减;(2)先算乘方和根式,再计算乘法,最后加减.【解答】解:(1)|7−2|﹣|2−π|−(−7)2=7−2−(π−2)﹣7=7−2−π+2−7=﹣π;(2)﹣22×(−4)2+3(−8)3×(−12)−327=﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:0.01×121+0.81.【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−15−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(7−2)+3−8+|3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣27+4﹣2+2−3=9﹣27−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:(−3)2+(﹣1)2020+3−8+|1−2|【分析】先化简各式,然后再进行计算即可解答.【解答】解:(−3)2+(﹣1)2020+3−8+|1−2|=3+1+(﹣2)+2−1=3+1﹣2+2−1=1+2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:16+3−27−3−|3−2|+(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−3−2+3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022(−4)2×(−12)3−|1−3|.【分析】先化简各式,然后再进行计算即可解答.−(−4)2×(−12)3−|1−3|=−23+4×(−18)﹣(3−1)=−23+(−12)−3+1=−76−3+1=−16−3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:81+3−27−2(3−3)−|3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣23+6﹣(2−3)=6﹣23+6﹣2+3=10−3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:3(−1)3+3−27+(−2)2−|1−3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(3−1)=﹣1﹣3+2−3+1=﹣1−3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+(−2)2−364+|3−2|.【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−3=﹣1−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)1+3−27−30.125+(2)|7−2|﹣|2−|−(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178;(2)原式=7−2−π+2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:30.008×172−82÷【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:30.008×−172−82÷=0.2×54−15÷(−15)=14+75=7514【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:33−2(1+3)+(−2)2+|3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=33−2﹣23+2+2−3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.39.计算:(1)(−2)2×3(−8)(2)9+|1−2|−×(−3)2+|40.25−2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)16+32+3−8=4+3﹣2=5(2)(−2)2×23×=2×32−8×14=3﹣2=1(3)9+|1−2|−27×(−3)2+|40.25−2|=3+2−1−53×3+2−2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×|3−8|+2×(﹣1)2022【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;【解答】解:原式=2+2+2=4+2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+16+38+1014×934.【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−327+(﹣2)2+4÷(−23).【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)12+(3)2+−913(2)(−3)2+(−1)2022+38+|1−2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=23+3+14×43−9=23+3+3−33=3;(2)原式=3+1+2+2−1=5+2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:49−327+|1−2|+【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+2−1+13=103+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|2−3|−(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−2−3,=−34−2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。

2021年七年级数学下册第六单元《实数》经典习题(答案解析)(3)

2021年七年级数学下册第六单元《实数》经典习题(答案解析)(3)

一、选择题1.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;4±,其中正确的个数有( )A .0个B .1个C .2个D .3个C 解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2±,故④说法错误;故其中正确的个数有:2个.故选:C .【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.2.,则x+y 的值为( )A .-3B .3C .-1D .1D解析:D【分析】先根据绝对值和算术平方根的非负性,求得x 、y 的值,最后求和即可.【详解】解:∵ ∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D .【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x 、y 的值是解答本题的关键.3.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.A 、22-=,则2-与2不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 、3382,82-=--=-,则38-与38-不是相反数,此项不符题意;故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.4.64的算术平方根是( )A .8B .±8C .22D .22± C解析:C【分析】先化简64,再求算术平方根即可.【详解】64=8, 8的算术平方根是22,即64的算术平方根是22.故选择:C .【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.5.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ B解析:B【分析】根据是数的运算,A 点表示的数加两个圆周,可得B 点,根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:A 点表示的数加两个圆周,可得B 点,所以,21π-,【点睛】本题考查了实数与数轴,直径为1个单位长度的圆从A点沿数轴向右滚动,A点表示的数加两个圆周.6.在下列各数中是无理数的有()-43π,3.1415926,2.010101(相邻两个0之间有1个1),0.11176.0102030405060732A.3个B.4个C.5个D.6个B解析:B【分析】根据无理数是无限不循小数,可得答案.【详解】3π,76.0102030405060732故选:B.【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.7.和数轴上的点一一对应的数是()A.自然数B.有理数C.无理数D.实数D解析:D【分析】根据实数与数轴上的点是一一对应关系,即可得出.【详解】解:根据实数与数轴上的点是一一对应关系.故选:D.【点睛】本题考查了实数与数轴的对应关系,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.-的整数部分相8.已知无理数m5π同,则m为()A B C1D.π-解析:C【分析】m的整数部分与小数部分,进而可得答案.【详解】π≈,解:因为23, 3.14-的整数部分为1,2,5π所以无理数m的整数部分是12,所以121m=+=.故选:C.【点睛】m的整数部分与小数部分是解题的关键.9.若1a>,则a,a-,1a的大小关系正确的是()A.1a aa>->B.1a aa>->C.1a aa>>-D.1a aa->> C解析:C 【分析】可以用取特殊值的方法,因为a>1,所以可设a=2,然后分别计算|a|,-a,1a,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a=,∵2>12>-2,∴|a|>1a>-a;故选:C.【点睛】此类问题运用取特殊值的方法做比较简单.10.已知|x|=2,y2=9,且xy<0,则x+y的值为()A.1或﹣1 B.-5或5 C.11或7 D.-11或﹣7A解析:A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x与y的值即可.【详解】解:∵|x|=2,y2=9,且xy<0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.二、填空题11.计算:(12(2)22(2)8x -=(1)1;(2)【分析】(1)实数的混合运算利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解【详解】解:(1)===1(2)∴【点睛】本题考查实数的混合运算及利用平方根解方 解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.12.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯【分析】利用裂项法计算即可【详解】原式【点睛】本题考查了利用裂项法进行分数的加法计算熟练掌握裂项法是解题的关键 解析:10102021【分析】 利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 13.解答下列各题.(1)已知2x +3与x -18是某数的平方根,求x 的值及这个数.(2)已知20c d -=,求d +c 的平方根.(1)x=5169或;(2)±3【分析】(1)根据题意这两个式子互为相反数列方程求出x 的值然后算出这个数;(2)根据绝对值和算术平方根的非负性求出c 和d 的值再算出结果【详解】(1)解:①这个数是②这解析:(1)x =5,169或21x =-,1521;(2)±3【分析】(1)根据题意,这两个式子互为相反数,列方程求出x 的值,然后算出这个数; (2)根据绝对值和算术平方根的非负性求出c 和d 的值,再算出结果.【详解】(1)解:①23180x x ++-=,315x =,5x =,这个数是()2253169⨯+=,②2318x x +=-,21x =-,这个数是()221181521--=;(2)解:由题意得:2c -d =0,2360d -=,解得:d =±6,c =±3.∵当d =-6,c =-3时,d +c =-9(舍),∴d +c 的平方根为.【点睛】本题考查平方根和算术平方根,解题的关键是掌握平方根和算术平方根的性质. 14.把下列各数填入相应的集合里:﹣3,|﹣5|,+(13-),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|45-|,3π 正数集合:{_____________…};整数集合:{_____________…};负分数集合:{_____________…};无理数集合:{_____________…}.|﹣5|﹣(﹣25)3π﹣3|﹣5|0+()﹣314﹣||﹣12121121112…3π【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号再根据正数整数负分数无理数的定义求解即可【解析:|﹣5|,﹣(﹣2.5),34,3π ﹣3,|﹣5|,0 +(13-),﹣3.14,﹣|45-| ﹣1.2121121112 (3)【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号,再根据正数、整数、负分数、无理数的定义求解即可.【详解】解:|﹣5|=5,+(13-)13=-,﹣(﹣2.5)=2.5,﹣|45-|45=-, 15.计算:(1)﹣12﹣(﹣2)(21)+2|(1)﹣9;(2)5【分析】(1)先计算立方根和算术平方根再进行加减运算即可;(2)先计算乘法和绝对值再相加即可【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=3 解析:(1)﹣9;(2)5.【分析】(1)先计算立方根和算术平方根,再进行加减运算即可;(2)先计算乘法和绝对值,再相加即可.【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=32=5.【点睛】本题考查了实数的运算,掌握立方根和算术平方根的性质是解题关键.16.求下列各式中的x 的值(1)21(1)82x +=;(2)3(21)270x -+=(1)或;(2)【分析】(1)适当变形后利用平方根的定义即可解方程;(2)适当变形后利用立方根的定义即可解方程【详解】解:(1)两边乘以2得开平方得即或∴或;(2)移项得开立方得解得【点睛】本题考查解析:(1)3x =或5x =-;(2)1x =-.【分析】(1)适当变形后,利用平方根的定义即可解方程;(2)适当变形后,利用立方根的定义即可解方程.【详解】解:(1)21(1)82x += 两边乘以2得,2(1)16x +=,开平方得,14x +=±,即14x +=或14x +=-,∴3x =或5x =-;(2)3(21)270x -+=移项得,3(21)27x -=-,开立方得,213x -=-,解得,1x =-.【点睛】本题考查的是利用平方根,立方根的含义解方程,掌握平方根与立方根的定义和等式的性质是解题的关键.17.比较大小:12-___________12<【分析】利用作差法比较两个数的大小【详解】解:∵1<3<4∴1<<2∴1-1<-1<2-1∴0<-1<1∴<故答案为:<【点睛】本题考查了实数的大小比较此题的难点是利用夹逼法推知的取值范围 解析:<【分析】利用作差法比较两个数的大小.【详解】解:∵1<3<4∴1<2∴1-1<2-1∴0<1∴<12. 故答案为:<.【点睛】本题考查了实数的大小比较,此题的难点是利用“夹逼法” 18.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.19.比较大小:3-(用“>”,“<”或“=”填空).>【分析】正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小据此判断即可【详解】解:因为<<所以2<<3所以-3<-<-2故答案为:>【点睛】此题主要考查了实数大小比较的方法解析:>【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】所以2<3所以,-3<-2故答案为:>【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.20.若()22110a c --=,则a b c ++=__________.【分析】先根据绝对值算术平方根偶次方的非负性求出abc 的值再代入即可得【详解】由题意得:解得则故答案为:【点睛】本题考查了绝对值算术平方根偶次方的非负性的应用等知识点熟练掌握绝对值算术平方根偶次方的 解析:12- 【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:2102010a b c -=⎧⎪+=⎨⎪-=⎩,解得1221a b c ⎧=⎪⎪=-⎨⎪=⎪⎩, 则()112122a b c ++=+-+=-, 故答案为:12-. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键. 三、解答题21.计算:2(3)2--解析:1【分析】先计算乘方、算术平方根,然后计算乘法和减法,即可得到答案.【详解】解:2(3)2--924=-⨯98=-1=.【点睛】本题考查了算术平方根、乘方、有理数的加减乘除混合运算,解题的关键是掌握运算法则进行计算.22.计算(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭(2)1110623⎛⎫÷-⨯⎪⎝⎭ (3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭(4+解析:(1)-2;(2)360;(3)4;(4)143. 【分析】(1)先去括号和绝对值,再进行混合运算即可.(2)先将括号内通分运算,再将除法改为乘法,最后计算即可.(3)先去括号,再将除法改为乘法,最后计算即可.(4)分别计算出根式的值,在进行加法运算即可.【详解】(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ 121242424234=-⨯+⨯-⨯ 12166=-+-2=-(2)1110623⎛⎫÷-⨯ ⎪⎝⎭ 61061=÷⨯ 1066=⨯⨯360=(3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭11(3)=-⨯-13=+4=(4+=153=-143= 【点睛】本题考查实数的混合运算.掌握其运算法则是解答本题的关键.23.计算:(1)36 1.754⎛⎫--+ ⎪⎝⎭; (2)()()232524-⨯--÷;(3)()225--.解析:(1)182;(2)22;(3-1 【分析】(1)先去括号,同时将小数化为分数,再计算加减法;(2)先计算乘方,再计算乘除法,最后计算加减法;(3)先计算乘方和绝对值,再计算加减法.【详解】 (1)36 1.754⎛⎫--+ ⎪⎝⎭=336144++ =182; (2)()()232524-⨯--÷=()4584⨯--÷=20+2=22;(3)()225--=4-()=【点睛】此题考查运算能力,掌握有理数的加减法计算法则,乘方的计算法则,实数的绝对值化简,有理数的混合运算法则是解题的关键.24.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.解析:(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值; (2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加; 特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值. 故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键. 25.求满足条件的x 值:(1)()23112x -=(2)235x -=解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x =∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.26)10152-⎛⎫-+︒ ⎪⎝⎭解析:32【分析】 根据平方根定义、负指数幂、零指数幂、特殊角的三角函数值计算即可;【详解】解:原式33421421222=-+-=-+-=. 【点睛】本题主要考查了实数的运算,结合负整数指数幂、零指数幂、特殊角的三角函数值计算是解题的关键. 27.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 解析:10102021【分析】 利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭ 11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 28.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可; (3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.。

中考复习 实数的计算(含答案)

中考复习   实数的计算(含答案)

实数的计算一.解答题(共30小题)1.计算:+(2﹣π)0﹣|1﹣|2.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.3.计算:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2.4.计算:+()﹣3+20160.5.计算:﹣(﹣2016)0+|﹣3|﹣4cos45°.6.计算:cos60°﹣2﹣1+﹣(π﹣3)0.7.化简求值:(),其中a=2+.8.计算:(﹣1)2016+2sin60°﹣|﹣|+π0.9.计算:|﹣3|﹣+()0.10.计算:﹣|﹣5|+()﹣1.11.计算:(π﹣3.14)0﹣|sin60°﹣4|+()﹣1.12.计算:.13.计算:﹣|﹣1|+•cos30°﹣(﹣)﹣2+(π﹣3.14)0.14.计算:(﹣1)2016﹣+(cos60°)﹣1+(﹣)0+ 83×(﹣0.125)3.15.(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.16.计算:()﹣2﹣(2016﹣π)0﹣2sin45°+|﹣1|17.计算:()﹣1﹣6cos30°﹣()0+.18.计算:.19.计算:.20.计算:()0+(﹣1)2016﹣|﹣|+2sin60°.21.计算:20160+2|1﹣sin30°|﹣()﹣1+.22.计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.23.计算:()﹣1﹣+2tan60°﹣(2﹣)0.24.计算:﹣14+sin60°+()﹣2﹣()0.25.计算:.26.计算:20160+﹣sin45°﹣3﹣1.27.计算:||+()0+2sin45°﹣2cos30°+()﹣1.28.计算:+(3﹣π)0﹣2sin60°+(﹣1)2016+||.29.计算:.30.计算:(﹣)﹣1+3tan30°﹣+(﹣1)2016.实数的计算答案参考答案与试题解析一.解答题(共30小题)1.(2017•新城区校级模拟)计算:+(2﹣π)0﹣|1﹣|【分析】本题涉及零指数幂、绝对值、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:+(2﹣π)0﹣|1﹣|=+1+1﹣3=+2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、二次根式、绝对值等考点的运算.2.(2017•罗平县一模)|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=1+1+2﹣4=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.3.(2017•曲靖一模)计算:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2.【分析】先计算|﹣2|、(﹣1)2017、(π﹣3)0、()﹣2的值,再计算最后的结果.【解答】解:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2=2+(﹣1)×1﹣2+4=2﹣1﹣2+4=5﹣2.【点评】本题考查了0指数幂、负整数指数幂及实数的运算.实数的运算顺序是先乘方,再乘除最后加减.4.(2017秋•海宁市校级月考)计算:+()﹣3+20160.【分析】原式利用零指数幂、负整数指数幂法则,以及算术平方根定义计算即可得到结果.【解答】解:原式=3+8+1﹣=9+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.5.(2016•达州)计算:﹣(﹣2016)0+|﹣3|﹣4cos45°.【分析】原式利用二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣1+3﹣4×=2.【点评】此题考查了平方根,绝对值,零指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.6.(2016•安顺)计算:cos60°﹣2﹣1+﹣(π﹣3)0.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用负整数指数幂法则计算,第三项利用二次根式性质化简,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣+2﹣1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.7.(2016•宁夏)化简求值:(),其中a=2+.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8.(2016•黄石)计算:(﹣1)2016+2sin60°﹣|﹣|+π0.【分析】根据实数的运算顺序,首先计算乘方和乘法,然后从左向右依次计算,求出算式(﹣1)2016+2sin60°﹣|﹣|+π0的值是多少即可.【解答】解:(﹣1)2016+2sin60°﹣|﹣|+π0=1+2×﹣+1=1+﹣+1=2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.9.(2016•莆田)计算:|﹣3|﹣+()0.【分析】根据绝对值、算术平方根和零指数幂的意义计算.【解答】解:原式=3﹣﹣4+1=﹣.【点评】本题考查了绝对值的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.注意零指数幂的意义.10.(2016•天门)计算:﹣|﹣5|+()﹣1.【分析】原式利用算术平方根定义,零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=9﹣1﹣5+2=5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.(2016•绵阳)计算:(π﹣3.14)0﹣|sin60°﹣4|+()﹣1.【分析】本题涉及零指数幂、二次根式化简、绝对值、特殊角的三角函数值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解::(π﹣3.14)0﹣|sin60°﹣4|+()﹣1=1﹣|2×﹣4|+2=1﹣|﹣1|+2=2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式化简、绝对值等考点的运算.12.(2016•毕节市)计算:.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.【解答】解:原式=1+﹣1﹣﹣2×+1=﹣﹣+1=1﹣.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.13.(2016•随州)计算:﹣|﹣1|+•cos30°﹣(﹣)﹣2+(π﹣3.14)0.【分析】本题涉及绝对值、二次根式化简、特殊角的三角函数值、负指数幂、零指数幂5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣1+2×﹣4+1=﹣1+3﹣4+1=﹣1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.14.(2016•铜仁市)计算:(﹣1)2016﹣+(cos60°)﹣1+(﹣)0+83×(﹣0.125)3.【分析】根据有理数的乘方法则、零次幂的性质、特殊角的三角函数值计算即可.【解答】解:原式=1﹣3+2+1﹣1=0.【点评】本题考查的是实数的运算,掌握有理数的乘方法则、零次幂的性质、特殊角的三角函数值是解题的关键.15.(2016•朝阳)(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.【分析】根据零指数幂和负整数指数幂的运算法则、特殊角的锐角三角函数值计算即可.【解答】解:运算=1+2×﹣4+1=1+1﹣4+1=﹣1.【点评】本题考查的是实数的运算,掌握零指数幂和负整数指数幂的运算法则、熟记特殊角的锐角三角函数值是解题的关键.16.(2016•通辽)计算:()﹣2﹣(2016﹣π)0﹣2sin45°+|﹣1|【分析】根据零指数幂的性质、负整数指数幂的性质和特殊角的三角函数值计算即可.【解答】解:原式=4﹣1﹣2×+﹣1=4﹣1﹣+﹣1=2.【点评】本题考查的是实数的运算,掌握零指数幂的性质、负整数指数幂的性质和特殊角的三角函数值是解题的关键.17.(2016•德阳)计算:()﹣1﹣6cos30°﹣()0+.【分析】根据锐角三角函数,负整数和零指数幂的法则,二次根式的性质即可求出答案.【解答】解:=2﹣6×﹣1+3=2﹣3﹣1+3=1,【点评】本题考查实数运算,涉及锐角三角函数,二次根式的性质,属于基础题型.18.(2016•眉山)计算:.【分析】分别利用零指数幂的性质、特殊角的三角函数值和负整数指数幂的性质分别化简求出答案.【解答】解:原式=1﹣3×+1﹣2=1﹣+1﹣2=﹣.【点评】此题主要考查了零指数幂的性质、特殊角的三角函数值和负整数指数幂的性质等知识,正确化简各数是解题关键.19.(2016•张家界)计算:.【分析】首先计算绝对值、零次幂、负整数指数幂、特殊角的三角函数值,然后再计算乘法,最后计算加减即可.【解答】解:原式=+1+2﹣2×,=+3﹣,=3.【点评】此题主要考查了实数的运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(2016•郴州)计算:()0+(﹣1)2016﹣|﹣|+2sin60°.【分析】根据实数的运算顺序,首先计算乘方,然后从左向右依次计算,求出算式()0+(﹣1)2016﹣|﹣|+2sin60°的值是多少即可.【解答】解:()0+(﹣1)2016﹣|﹣|+2sin60°=1+1﹣+2×=2﹣+=2.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.21.(2016•怀化)计算:20160+2|1﹣sin30°|﹣()﹣1+.【分析】根据实数的运算顺序,首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式20160+2|1﹣sin30°|﹣()﹣1+的值是多少即可.【解答】解:20160+2|1﹣sin30°|﹣()﹣1+=1+2×|1﹣|﹣3+4=1+2×+1=1+1+1=3.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p =(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.22.(2016•娄底)计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.【分析】直接利用特殊角的三角函数值以及绝对值、零指数幂的性质分析得出答案.【解答】解:(π﹣)0+|﹣1|+()﹣1﹣2sin45°=1+﹣1+2﹣=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2016•岳阳)计算:()﹣1﹣+2tan60°﹣(2﹣)0.【分析】原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3﹣2+2﹣1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.24.(2016•常德)计算:﹣14+sin60°+()﹣2﹣()0.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式﹣14+sin60°+()﹣2﹣()0的值是多少即可.【解答】解:﹣14+sin60°+()﹣2﹣()0=﹣1+2×+4﹣1=﹣1+3+3=5【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p =(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.25.(2016•凉山州)计算:.【分析】直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:=﹣1﹣3+2+1+1=1.【点评】此题主要考查了绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质,正确化简各数是解题关键.26.(2016•乐山)计算:20160+﹣sin45°﹣3﹣1.【分析】原式利用零指数幂、负整数指数幂法则,分母有理化,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+﹣﹣=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.27.(2016•鄂州)计算:||+()0+2sin45°﹣2cos30°+()﹣1.【分析】直接利用零指数幂的性质以及绝对值的性质、负整数指数幂的性质、特殊角的三角函数值分别化简求出答案.【解答】解:||+()0+2sin45°﹣2cos30°+()﹣1=﹣+1+2×﹣2×+2015=﹣+1+﹣+2015=2016.【点评】此题主要考查了实数运算,根据相关运算法则正确化简是解题关键.28.(2016•龙岩)计算:+(3﹣π)0﹣2sin60°+(﹣1)2016+||.【分析】本题涉及零指数幂、特殊角三角函数值、立方根、绝对值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2+1﹣2×+1+﹣1=﹣1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.29.(2016•荆州)计算:.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、零指数幂的性质化简,进而求出答案.【解答】解:原式=+3×2﹣2×﹣1=+6﹣﹣1=5.【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.30.(2016•赤峰)计算:(﹣)﹣1+3tan30°﹣+(﹣1)2016.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(﹣)﹣1+3tan30°﹣+(﹣1)2016的值是多少即可.【解答】解:(﹣)﹣1+3tan30°﹣+(﹣1)2016=﹣3+3×﹣3+1=﹣3+﹣3+1=﹣2﹣2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(3)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p =(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.第11页(共11页)。

中考数学实数、整式、分式的运算与化简求值总复习课件

中考数学实数、整式、分式的运算与化简求值总复习课件

(4)(2017·张家界)先化简(1-x-1 1)÷x2-x24-x+1 4,再从不等式 2x-1<6 的正 整数解中选一个适当的数代入求值;
解:原式=xx--21×(x+(1x)-(2)x-2 1)=xx+-12, ∵2x-1<6,∴2x<7.∴x<72.把 x=3 代入上式,得原式=33+-12=4.
(2)(2017·滨州)m2+m3m-nn+3 n2÷m2+m22-mnn+2 n2.
解:原式=(m-nm)2+(mmn2++mn2n+n2)·(m+(nm)+(n)m-2 n)= (m-n)·mm+-nn=m+n.
【例3】先化简,再求值: (1)(2017·常州)(x+2)(x-2)-x(x-1),其中x=-2. 解:原式=x2-4-x2+x=x-4,当x=-2时,x-4=(-2)-4=-6.
数学
专题二 实数、整式、分式的 运算与化简求值
此类题目多以解答题的形式呈现,主要涉及的知识点有:绝对值、负整数指 数幂、零次幂、-1的奇偶次幂、开方、平方、特殊角的三角函数值等,题 目难度不大,但在每年的中考中必考.预计2018年中考继续考查的可能性很 大.
【例 1】计算: (1)(2017·随州)(13)-2-(2017-π)0+ (-3)2-|-2|.
1.计算: (1)(2017·温州)2×(-3)+(-1)2+ 8; 解:原式=-6+1+2 2=-5+2 2.
(2)(2017·黄石)(-2)3+ 16+10+|-3+ 3|;
解:原式=-8+4+1+3- 3=- 3.
(3)(2017·陕西)(- 2)× 6+| 3-2|-(12)-1; 解:原式=- 12+2- 3-2=-2 3- 3=-3 3.
2.化简: (1)(2017·十堰)化简:(a+2 1+aa2+-21)÷a-a 1;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档