2019年苏州市初中毕业暨升学考试数学试卷附评分标准.
温州乐清市2019年初中毕业升学考试第一次适应性测试(一模)数学试题及参考答案和评分标准
BF=BC,DH=AD,连接
EF,FG,GH,HE,AF,CH.矩形
ABCD
的面积为
S
FB
,
2
,
AB 3
若四边形 EFGH 为菱形,则菱形 EFGH 的面积是(
)
A. 2S
B. 5 S 2
C. 3S
D. 7 S 2
10.如图,半径为 3 的扇形 AOB,∠AOB=120°,以 AB 为边作矩形 ABCD 交 AB 于点 E、
8.如图,在平面直角坐标系中,其中∠CAB=90°,BC=5,
点 A、B 的坐标分别为(1,0),(4,0).点 C 关于 y 轴 的对称点恰好落在直线 y 2x b 上时,则 b 的值是( )
A.4
B.5
C.5.5
D.6
第1页共8页
(第 8 题图)
9.如图,将矩形 ABCD 的四边 BA,CB,DC,AD 分别延长至 E,F,G,H.使得 AE=CG,
(第 10 题图)
11.分解因式: m2 3m _______________.
12.已知一个扇形的圆心角为 135°,弧长为 3 cm,则它的半径为___________.
13.若分式
2x 1 3x 5
的值为
0,则
x
的值为___________.
14.某校组织 1080 名学生去外地参观,现有 A、B 两种不同型号的客车可供选择,在每辆
23.(本题满分 12 分)
(1)当
y
0
,得
1 2
x2
3 2
x
2
0
,解得
x1
1 ,
x2
苏州市中考数学试卷及答案(3)
2020年苏州市初中毕业暨升学考试试卷数学注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考号、姓名是否与本人相符合;3.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题须用0.5毫米黑色墨水签字笔填写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
请将选择题的答案用2B铅笔涂在答题卡相对应的.......位置上。
....1.12()2⨯-的结果是A.-4 B.-1 C.14- D.322.△ABC的内角和为A.180° B.360° C.540° D.720°3.已知地球上海洋面积约为316 000 000km2,316 000 000这个数用科学记数法可表示为A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×109 4.若m·23=26,则m等于A.2 B.4 C.6 D.85.有一组数据:3,4,5,6,6,则下列四个结论中正确的是A.这组数据的平均数、众数、中位数分别是4.8,6,6 B.这组数据的平均数、众数、中位数分别是5,5,5 C.这组数据的平均数、众数、中位数分别是4.8,6,5 D.这组数据的平均数、众数、中位数分别是5,6,66.不等式组30,32xx-≥⎧⎪⎨<⎪⎩的所有整数解之和是A.9 B.12 C.13 D.157.已知1112a b-=,则aba b-的值是A.12B.-12C.2 D.-28.下列四个结论中,正确的是A.方程12xx+=-有两个不相等的实数根B.方程11xx+=有两个不相等的实数根C.方程12xx+=有两个不相等的实数根D.方程1x ax+=(其中a为常数,且2a>)有两个不相等的实数根9.如图,在四边形ABCD中,E、F分别是AB、AD的中点。
2019年江苏省盐城市中考数学试卷(含答案)
盐城市二O 一九年初中毕业与升学考试数学试卷本次考试时间为120分,卷面总分150分.一、选择题(本大题共有8小題,每小题3分,共24分,在每小题所给出的四个选项,只有一项符合题目要求的.1.如图,数轴上点A 表示的数是( )A.-1B.0C.1D.2 【答案】C【解析】考查对数轴的理解,A 点在1的位置,故选C2.下列图形中,既是轴对称图形又是中心对称图形的是( )【答案】B【解析】考查对轴对称和中心对称的理解,故选B. 3.若2 x 有意义,则x 的取值范围是( )A .x ≥2B .x ≥-2C .x >2D .x >-2 【答案】A【解析】二次根式里面不能为负数,所以x-2d ≥0,解得x ≥2,故选A. 4.如图,点D 、E 分别是△ABC 边BA 、BC 的中点,AC =3,则DE 的长为( ) A .2 B .34 C .3 D .23【答案】D【解析】中位线的性质,DE=21AC ,故选D.5.如图是由6个小正方体搭成的物体,该所示物体的主视图是( )【答案】C【解析】考查对三视图的理解.所以主视图是,故选C.6.下列运算正确的是( )【答案】B【解析】725a a a =⋅,故A 错;a a a 32=+,故C 错;632)(a a =,故D 错。
故选B7.正在建设中的北京大兴国际机场划建设面积约1 400 000平方米的航站极,数据1 400 000用科学记数法应表示为【答案】C【解析】1400000=1.4×106,故选C.8.关于x 的一元二次方程022=--kx x (k 为实数)根的情况是 A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .不能确定 【答案】A.【解析】方程022=--kx x 根的判别式08)2(14)(22>+=-⨯⨯--=∆k k ,所以有两个不相等的实数根。
二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程,请将答案直 接写在答题卡的相应位置上)9.如图,直线a ∥b ,∠1=50°,那么∠2=________. 【答案】 50°【解析】根据“两直线平行,同位角相等”得∠1=∠2=50°10.分解因式:=-12x ________. 【答案】 (x+1)(x-1)【解析】由平方差公式可得:)1)(1(11222-+=-=-x x x x .11.如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落 在阴影部分的概率为________. 【答案】21。
2019年江苏省扬州市中考数学试题(,含答案)
2019江苏省徐州市中考数学满分:140分时间:120分钟一.选择题(本题共8个小题,每小题3分,共24分)1.-2的倒数是()A.21 B.21 C.2 D.-22.下列计算正确的是()A.422aaaB.222)(bab a C.933)(aa D.623aaa3.下列长度的三条线段,能组成三角形的是()A.2,2,4B.5,6,12C.5,7,2D.6,8,104.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500B.800C.1000D.12005.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40.该组数据的众数、中位数分别为()A.40,37B.40,39C.39,40D.40,386.下图均由正六边形与两条对角线组成,其中不是轴对称图形的是()7.若),(11y x A 、),(22y x B 都在函数xy2019的图象上,且21x x ,则()A.21y yB.21y yC.21y yD.21y y 8.如图,数轴上有O 、A 、B 三点,O 为原点,OA 、OB 分别表示仙女座星系,M87黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是()A.5×106B.107C.5×107D.108二.填空题(本大题共有10小题,每小题3分,共30分)9.8的立方根是.10.要使1x 有意义的x 的取值范围是.11.方程042x的解为.12.若2b a ,则代数式222b ab a的值为.13.如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若MN=4,则AC 的长为.14.如图,A 、B 、C 、D 为一个外角为40°的正多边形的顶点.若O 为正多边形的中心,则∠OAD=°15.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆半径r=2cm ,扇形的圆心角θ=120°,则该圆锥的母线长l 为cm.16.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45°,测得该建筑底部C 处的俯角为17°,若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)17.已知二次函数的图像经过点P (2,2),顶点为O (0,0),将该图像向右平移,当它再次经过点P 时,所得抛物线的函数表达式为18.函数y=x+1的图象与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上。
苏州市初中毕业及升学考试试卷(含评分标准)
2006年苏州市初中毕业暨升学考试试卷化学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷l至2页,第Ⅱ卷3至8页;共5大题、30小题,满分100分;考试用时100分钟。
第Ⅰ卷(选择题,共30分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考点名称用钢笔或圆珠笔写在答题卡的相应位置上;将考场号、座位号、准考证号、考试科目用铅笔涂在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试卷上。
3.考试结束,请将本试卷和答题卡一并交回。
可能用到的相对原子质量:H—l C—12 O一16 S一32 Ca一40个.选项符合题意。
)一、选择题(本题包括15小题,每小题2分,共30分。
每小题只有一...1.《苏州市国民经济和社会发展第十一个五年规划纲要》提出了关于资源环境发展的目标,其中有利于控制我市空气污染的是A.二氧化硫年排放总量在2005年的基础上减少5%以上B.城市生活污水集中。
处理率达85%以上C.氨氮等主要水污染物年排放总量在2005年的基础上减少8%以上D.通过资源空间配置,提高土地集约利用效率2.考古发现,早在一万多年前我国已开始制造和使用陶器。
现代人们已能生产新型陶瓷材料,如用氧化铝等为原料生产的陶瓷已制造发动机零件。
下列有关氧化铝陶瓷的说法错误..的是A.该陶瓷属于无机非金属材料B.该陶瓷中的原料氧化铝属于非金属氧化物C.该陶瓷耐高温、强度高D.该陶瓷耐酸、碱等化学物质的腐蚀3.下列化学符号与名称相符合的是A.氧元素O2 B.氯离子C1-C.碳酸钠NaCO3D.金AU4.下列物质属于纯净物的是A.食用醋B.天然气C.含碘盐D.蒸馏水5.氧气是空气的主要成分之一,有关氧气说法错误..的是A.用带火星的木条可以检验氧气B.用加热高锰酸钾的方法可以制取氧气C.鱼类能在水中生活,证明氧气易溶于水D.铁丝能在氧气中燃烧,火星四溅,产生黑色固体6.有道是:水火无情。
江苏省苏州市2019年中考数学试卷及参考答案
2019年苏州市初中毕业暨升学考试试卷数 学注意事项:1.本试卷共21题,满分130分,考试用时150分钟;2.答题前,考生务必将由己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,井认真核对条形码上的准考号、姓名是否与本人的相符合;3.答选择题须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题,必须答在答题卡上,答在试卷和草稿纸上无效。
一、选择题:本大题目共10小题.每小题3分.共30分.在每小题给出的四个选项中,只有一顶是 符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1.23的倒数是 A. 32 B. 32- C. 23 D. 23-2.肥皂泡的泡壁厚度大约是0.0007㎜,将0.0007用科学记数法科表示为() A. 30.710-⨯ B. 3710-⨯ C. 4710-⨯ D. 5710-⨯3.下列运算结果正确的是A. 23a b ab +=B. 22321a a -=C. 248a a a ⋅=D. 2332()()a b a b b -÷=-4.一次数学测试后,某班40名学生的成绩被分为5组,第14组的频数分别为12、10、6、8,则第5组的频数是A.0.1B.0.2C.0.3D.0.45.如图,直线//a b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 做直线l 的垂线交直线b 于点C ,若∠1=58°,则 ∠2的度数为A.58°B.42°C.32°D.28°6.已知点1(2,)A y 、2(4,)B y 都是反比例函数(0)ky k x=<的图像上,则1y 、2y 的大小关系为A. 12y y >B. 12y y <C. 12y y = D .无法比较7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从20191月1日起对居民生活用水按照新的“阶梯水价”标准收费,某中学研究性学习小组的同学们在社会实践活动中调查了50户家用水量(吨)15 20 25 30 35 户数3 6 7 9 5 A.25 ,27.5 B.25,25 C.30 ,27.5 D. 30 ,258.如图,长4 m 的楼梯AB 的倾斜角∠ABD 为60度,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°免责调整后的楼梯AC 的长为A. 23mB. 26mC. (232)m -D. (262)m -9.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),点D 是OA 的中的,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为 A. (3,1) B. 4(3,)3 C. 5(3,)3D. (3,2)10.如图,在四边形ABCD 中,∠ABC=90°,AB=BC=22,E 、F 分别是AD 、CD 的中点,连接BE 、BF 、EF.若四边形ABCD 的面积为6,则△BEF 的面积为 A.2 B.94 C. 52D.3 二、填空题:本文题共8小题.每小题3分,共24分,把答案直接填在答题卡相应位置上.......... 12.分解因式:21x -=_________ 13.当x =________时,分式225x x -+的值为0. 13.要从甲、乙两名运动员中选出一鸣参加“2019里约奥运会”100m 比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(2s ),乙的方差为0.008(2s ),则这10次测试成绩比较稳定的是_________运动员。
【最新精编】2018-2019年小升初数学毕业升学考试试卷(共10套试卷)
2018-2019年小升初六年级期末毕业数学试题(共十套试卷)一、看清题目,巧思妙算。
(共30分) 1、直接写得数(每小题1分,共10分)85+0.25= 1787-998= 1÷20%= 6÷0.05=12.5×32×2.5= 5-=+9792 9.7-0.03= 54×25==+-+31213121=⨯÷737112、求未知数X (每小题2分,共8分) 1.8χ-0.7=2.9 7385=-χχ80%χ-18×32=4χ4.6=0.12:1.53、计算下列各题,能简算的要简算(每小题3分,共12分)。
1853-(2.35+8.6) 3.5×10.181×[)×(9105321÷] (43+611-2413)×12二、认真思考,谨慎填空(每空1分,共23分)1、 2时40分=( )时 3.8公顷=( )公顷( )平方米2、在86%,76,0.88,98四个数中,最大的数是( ),最小的数是( )。
3、一幢大楼地面以上有19层,地面以下有2层,地面以上第6层记作+6层,地面以下第2层记作( )层。
4、浩浩每天放学回家要花1小时完成语文、数学、英语三科作业。
如果每科作业花的时间都一样,完成每科作业需( )分钟,每科作业占总时间的( )。
5、将圆规两脚之间的距离定为( )厘米时,可以画出直径为6厘米的圆,这个圆的面积是( )平方厘米。
6、把右边的长方形以它的长为轴旋转一周,会得到一个( ),体积是( )立方厘米 。
7、按糖和水的比为1:19配制一种糖水,这种糖水的含糖率是( ) 现有糖50克,可配制这种糖水( )克。
8、有一种手表零件长5毫米。
在设计图纸上的长度是10厘米,这幅图纸的比例尺是( )。
9、右图是某粮食仓库储藏情况统计图。
已知仓库中大豆有4吨,那么其中玉米( )吨。
10、有40张5元和1元的人民币,面值共152元,5元的有( )张,1元的有( )张。
2019江苏省无锡中考数学试题(含答案)
A.﹣5B.5C.-1A.x≠12019年江苏省无锡市初中毕业升学考试数学试题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内)1.5的相反数是1D.552.函数y=2x-1中的自变量x的取值范围是11B.x≥1C.x>D.x≥2223.分解因式4x2-y2的结果是A.(4x+y)(4x-y)B.4(x+y)(x-y)C.(2x+y)(2x-y)D.2(x+y)(x-y)4.已知一组数据:66,66,62,67,63这组数据的众数和中位数分别是A.66,62B.66,66C.67,62D.67,665.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是A.长方体B.四棱锥C.三棱锥D.圆锥6.下列图案中,是中心对称图形但不是轴对称图形的是7.下列结论中,矩形具有而菱形不一定具有的性质是y 把答案直接填写在相应的横线上) A9 12.2019 年 6 月 29 日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约A .内角和为 360°B .对角线互相平分C .对角线相等D .对角线互相垂直8.如图,PA 是⊙O 的切线,切点为 A ,PO 的延长线交⊙O 于点 B ,若∠P=40°,则∠B 的度数为 A .20° B .25° C .40° D .50°9.如图,已知 A 为反比例函数 y = k( x <0)的图像上一点,过点 A 作 AB ⊥ y 轴,垂足为xB .若△OAB 的面积为 2,则 k 的值为 A .2 B .﹣2C .4D .﹣410.某工厂为了要在规定期限内完成 2160 个零件的任务,于是安排 15 名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3 人外出培训,若剩下的工人每人每天多加 工 2 个零件,则不能按期完成这次任务,由此可知 a 的值至少为 A .10 B .9 C .8 D .7yyAPABA B-6 O xOBOx O第 8 题 第 9 题 第 16 题二、填空题(本大题共 8 小题,每小题 2 分,本大题共 16 分.不需要写出解答过程,只需 y4 F E 11. 的平方根为.O-6 -6 O x O xB C20000000 人次,这个年接待客量可以用科学记数法表示为人次.13.计算: (a +3)2=.14.某个函数具有性质:当 x >0 时, y 随 x 的增大而增大,这个函数的表达式可以是(只要写出一个符合题意的答案即可).15.已知圆锥的母线成为 5cm ,侧面积为 15πcm 2,则这个圆锥的底面圆半径为 cm .16 .已知一次函数 y = kx +b 的图像如图所示,则关于x 的不等式 3kx - b > 0 的解集为.EF A A IOC B HGC BOOFAD EOD C B第17题第18题17.如图,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC内自由移动,若⊙O的半径为1,且圆心O在△ABC内所能到达的区域的面积为103,则△ABC的周长为.△18.如图,在ABC中,AB=AC=5,BC=45,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接△BE,则BDE面积的最大值为.三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)计算:1(1)-3+()-1-(2019)0;(2)2a3⋅a3-(a2)3.220.(本题满分8分)解方程:(1)x2-2x-5=0;(2)14=.x-2x+121.(本题满分8分)如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(△1)求证:DBC≌△ECB;(2)求证:OB=OC.,AD EOB C22.(本题满分6分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回)求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.(本题满分6分)《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生人数分布扇形统计图各等级学生平均分统计表优秀等级优秀良好及格不及格平均分92.185.069.241.3不及格及格18%52%良好26%(1)扇形统计图中“不及格”所占的百分比是;(2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级.24.(本题满分8分)O12.252.25(1)如图 1,A 为圆 O 上一点,请用直尺(不带刻度)和圆规作出得内接正方形;D一次函数 y = kx + b 的图像与 x 轴的负半轴相交于点 A ,与 y 轴的正半轴相交于点 B ,且 sin ∠ABO =3 2.△OAB 的外接圆的圆心 M 的横坐标为﹣3.(1)求一次函数的解析式; (2)求图中阴影部分的面积.yBMAOx25.(本题满分 8 分) “低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的 公路骑行前往乙地,她与乙地之间的距离 y (km)与出发时间之间的函数关系式如图 1 中线段 AB 所示,在小丽出发的同时,小明从乙地沿同一条公路汽骑车匀速前往甲地,两人之间的 距离 x (km)与出发时间 t (h)之间的函数关系式如图 2 中折线段 CD —DE —EF 所示.(1)小丽和小明骑车的速度各是多少? (2)求 E 点坐标,并解释点的实际意义.y36A36AEFBDBxO26.(本题满分 10 分) 按要求作图,不要求写作法,但要保留作图痕迹.A AEA(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图.①如图2□,在ABCD中,E为CD的中点,作BC 的中点F;②图△3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作ABC 的高AH.AA DECB CB27.(本题满分10分)已知二次函数y=ax2+bx-4(a>0)的图像与x轴交于A、B两点,(A在B左侧,且OA<OB),与y轴交于点C.D为顶点,直线AC交对称轴于点E,直线BE交y轴于点F,AC:CE=2:1.(1)求C点坐标,并判断b的正负性;(2)设这个二次函数的图像的对称轴与直线AC交于点D,已知DC:CA=1:2,直线BD与y轴交于点E,连接△BC.①若BCE的面积为△8,求二次函数的解析式;②若BCD 为锐角三角形,请直接写出OA的取值范围.y yxxO O28.(本题满分10分)如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△PAB关于直线PA的对称△PAB′,设点P的运动时间为t(s).(1)若AB=23.①如图2,当点B′落在AC上时,显然△PAB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠PAM=45°成立,试探究:对于t>3的任意时刻,结论∠PAM=45°是否总是成立?请说明理由.D C D C D CB'B'PPA B A B A B参考答案1.A2.D3.C4.B5.A6.C7.C8.B9.D10.B11.±2312.2´10713.a2+6a+914.y=x2(答案不唯一)15.316.x<217.2518.8 19.(1)【解答】解:原式=4(2)【解答】解:原式=a6 20.(1)【解答】解:x=1+6,x=1-6;12(2)【解答】解:x=3,经检验x=3是方程的解21.(1)证明:∵AB=AC,∴∠ECB=∠DBC在∆DBC与∆ECB中⎨∠DBC = ∠ECB ⎪BC = CB ï 红1ïí 黑1 ï ï ïî 黑2 ì 红1 ï ï 红2 ïí 黑1 ï ï ïï ïî 黑2 ï 黑2 ïí 红2 ï î⎧BD = CE ⎪⎩∴ ∆DBC ≅ ∆ECB(2)证明:由(1)知 ∆DBC ≅ ∆ECB∴∠DCB=∠EBC ∴OB=OC22.(1)12ì ì 红2 ï ï ï ï ï ï ïï ïî 黑2(2)开始 í共有等可能事件 12 种 其中符合题目要求获得 2 份奖品的事件有ï ì 红1 ï 黑1í 红2 ï ï ï ï ì 红1 ï ï ï ïïî 黑12 种所以概率 P=1623.(1) 4%(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1(3)设总人数为 n 个 , 80.0 ≤ 41.3×n×4%≤89.9 所以 48<n<54 又因为 4%n 为整数所以 n=50即优秀的学生有 52%×50÷10%=260 人 24. (1) 作 MN ⊥ BO ,由垂径定理得 N 为 OB 中点MN= 12OA∵MN=3∴OA=6,即 A (-6,0)(2 3)2 =4π- 3 3 236 ÷ 20= (h )16 ⨯ = (km )⇒ E , ⎪ 实际意义为小明到达甲地∵sin ∠ABO=32,OA=6∴OB= 2 3即 B (0, 2 3 )设 y = kx +b ,将 A 、B 带入得到 y =33x +2 3(2)∵第一问解得∠ABO=60°,∴∠AMO=120°所以阴影部分面积为 S = 1π(2 3) - 3yB 34 MNAOx25.(1)V =36 ÷ 2.25=16 (km / h ) 小丽V=36 ÷1-16=20 (km / h )小明(2)959 1445 5⎛ 9 144 ⎫ ⎝ 5 5 ⎭26.(1)连结 AE 并延长交圆 E 于点 C ,作 AC 的中垂线交圆于点 B ,D ,四边形 ABCD 即为所求DCEAB(2)①法一:连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB于点F,F即为所求A D AOEEGB F CB C法二:连结AC,BD交于点O连结EO并延长交AB于点G连结GC,BE交于点M结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB于点F,F即为所求连结OM并延长交CB于点F,F即为所求A D ADG OE EMBF C B C②ACHB27.(1)令x=0,则y=-4,∴C(0,-4)∵OA<OB,∴对称轴在y轴右侧,即-∵a>0,∴b<0(2)b2aφ0①过点D作DM⊥oy,则DC DM MC1 ===, CA OA CO2∴DM=1 AO 2设A(-2m,0)m>0,则AO=2m,DM=m ∵OC=4,∴CM=2∴D(m,-6),B(4m,0)A型相似可得DN BN=OE OB∴OE=8S 1△BEF =2⨯4⨯4m=8∴m=1∴A(-2,0),B(4,0)设y=a(x+2)(x-4)即y=ax2-2ax-8a 令x=0,则y=-8a∴C(0,-8a)∴-8a=-4,a=11∴y=x2-x-4 22②易知:B(4m,0)C(0,-4)D(m,-6),通过分析可得∠CBD一定为锐角计算可得CB2=16m2+16,CD2=m2+4,DB2=9m2+36故=,解得B'P=27-421°当∠CDB为锐角时,C D2+DB2>CB2m2+4+9m2+36>16m2+16,解得-2<m<22°当∠BCD为锐角时,C D2+CB2>DB2m2+4+16m2+16>9m2+36,解得m>2或m<-(舍)综上:2<m<2,22<2m<4∴22<OA<428.(1)①勾股求的AC=21易证△CB'△P∽CBA,23B'P321-23②1°如图,当∠PCB’=90°时,在PCB’中采用勾股得:错误!3)2+(3-t)2=t2,解得t=2D B'3C B'P3t3-tD C B'D323PtA23BA B A 2°如图,当∠PCB’=90°时,在△PCB’中采用勾股得:(33)2+(t-3)2=t2,解得t=62 33Ptt -3B'D32 3C3A2 3 B3°当∠CPB’=90 °时,易证四边形 ABP’为正方形,解得 t=2 3B' DC PB' D CA BAB(2)如图DMCB'P 4 32 1AB∵∠PAM=45°∴∠2+∠3=45°,∠1+∠4=45° 又∵翻折∴∠1=∠2,∠3=∠4又∵∠ADM=∠AB’M (AAS ) ∴AD=AB’=AB即四边形 ABCD 是正方形∴∠DAM=1如图,设∠APB=xMB'D PC D M CB'P432A B∴∠PAB=90°-x∴∠DAP=x易证△MDA≌△B’A M(HL)∴∠BAM=∠DAM∵翻折∴∠PAB=∠PAB’=90°-x∴∠DAB’=∠PAB’-∠DAP=90°-2x2∠DAB’=45°-x∴∠MAP=∠DAM+∠PAD=45°A1B。
2021年江苏省苏州市中考数学试题(含答案)
2021年江苏省苏州市中考数学试题(含答案)2021年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题庭外和解答题三大题共同组成.共29小题,满分130分后.考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.请问选择题必须用2b铅笔把答题卡上对应题目的答案标号涂黑,例如须要改动,恳请用橡皮擦整洁后,出马涂抹其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写下在答题卡选定的边线上,无此答题区域内的答案一律违宪,严禁用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2b铅笔涂在答题卡相应的位置上.1.?2等于a.2b.-2c.±2d.±122.计算-2x2+3x2的结果为a.-5x23.若式子a.x>1b.5x2c.-x2d.x2x?1在实数范围内有意义,则x的取值范围是2b.x<1c.x≥1d.x≤14.一组数据:0,1,2,3,3,5,5,10的中位数是a.2.5b.3c.3.5d.55.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为a.5b.6c.7d.86.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是a.x1=1,x2=-1c.x1=1,x2=0b.x1=1,x2=2d.x1=1,x2=37.例如图,ab就是半圆的直径,点d就是ac的中点,∠abc=50°,则∠dab等同于a.55°b.60°c.65°d.70°[来源学科网]8.如图,菱形oabc的顶点c的坐标为(3,4),顶点a在x轴的正半轴上.反比例函数y=过顶点b,则k的值为a.129.已知x-b.20c.24d.32k(x>0)的图象经x113=3,则4-x2+x的值为x223a.1b.2c.52d.7210.例如图,在平面直角坐标系则中,rt△oab的顶点a在x轴的也已半轴上,顶点b的座标为(3,3),点c的座标为(a.1321,0),点p为斜边ob上的一动点,则pa+pc的最小值为23?1931b.c.d.2722二、填空题:本大题共8小题,每小题3分后,共24分后.把答案轻易填上在答题卡相对应当的边线上.11.排序:a4÷a2=▲.12.因式分解:a2+2a+1=▲.13.方程15的解为▲.?x?12x?114.任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为▲.15.按照右图右图的操作步骤,若输出x的值2,则输入的值▲.的弧长为▲.16.如图,ab切⊙o于点b,oa=2,∠oab=30°,弦bc∥oa,劣弧bc(结果保留π)17.例如图,在平面直角坐标系则中,四边形oabc就是边长为2的正方形,顶点a,c分别在x,y轴的也已半轴上.点q在对角线ob上,且oq=oc,相连接cq并缩短cq交边ab于点p,则点p的座标为(▲,▲).18.如图,在矩形abcd中,点e是边cd的中点,将△ade沿ae折叠后得到△afe,且点f在矩形abcd内部.将af延长交边bc于点g.若cg1ad?,则?▲(用含k的代数式则表示).gbkab三、答疑题:本大题共11小题,共76分后,把答疑过程写下在答题卡适当的边线上,答疑时应写下必要的排序过程、解题步骤或文字说明.作图时用2b铅笔或黑色墨水签字笔.19.(本题满分5分后)计算:??1??20.(本题满分5分后)解不等式组:?21.(本题满分5分后)先化简,再求值:22.(本题满分6分后)苏州某旅行社非政府甲、乙两个旅游团分别至西安、北京旅游.未知这两个旅游团共计55人,甲旅游团的人数比乙旅游团的人数的2倍太少5人.问甲、乙两个旅游团各存有多少人?23.(本题满分6分)某企业500名员工参加安全生产知识测试,成绩记为a,b,c,d,e共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:(1)谋这次抽样调查的样本容量,并移去图①;3?3?1?9.0x212x?1?x?3x?2?3???x?1??,其中x=3-2.x?1?x?1?(2)如果测试成绩(等级)为a,b,c级的定为优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数.(图②)[来源学科网]24.(本题满分7分后)例如图,在方格纸中,△abc的三个顶点及d,e,f,g,h五个点分别坐落于大正方形的顶点上.(1)现以d,e,f,g,h中的三个点为顶点画三角形,在所画的三角形中与△abc不全等但面积相等的...三角形是▲(只需要填一个三角形);(2)先从d,e两个Behren任一挑一个点,再从f,g,h三个Behren任一挑两个相同的点,以所出的这三个点为顶点画三角形,谋所画三角形与△abc面积成正比的概率(用画树状图或列表格解).25.(本题满分7分)如图,在一笔直的海岸线l上有a,b两个观测站,a在b的正东方向,ab=2(单位:km).有一艘小船在点p处,从a测得小船在北偏西60°的方向,从b测得小船在北偏东45°的方向.(1)谋点p至海岸线l的距离;(2)小船从点p处沿射线ap的方向航行一段时间后,到达点c处.此时,从b测得小船在北偏西15°的方向.求点c与点b之间的距离.(上述2小题的结果都保留根号)26.(本题满分8分后)例如图,点p就是菱形abcd对角线ac上的一点,相连接dp 并缩短dp交边ab于点e,相连接bp并缩短bp交边ad于点f,交cd的延长线于点g.(1)求证:△apb≌△apd;(2)未知df:fa=1:2,设立线段dp的短为x,线段pf的短为y.①谋y与x的函数关系式;②当x=6时,谋线段fg的长.27.(本题满分8分)如图,在rt△abc中,∠acb=90°,点d是边ab上一点,以bd为直径的⊙o与边ac相切于点e,连接de并延长de交bc的延长线于点f.(1)澄清:bd=bf;(2)若cf=1,cosb=3,求⊙o的半径.5。
江苏省苏州市姑苏区胥江实验中学2024年九年级中考二模数学试题(无答案)
2024年初中毕业暨升学考试模拟试卷15 数学 2024.5一.选择题(每题3分,共24分)1.-2的相反数是( )A. 2B. -2C. 0.5D.−122.1, 5, 2, 4, 3的中位数是( )A. 1B.2C.3D.43.若某三角形的三边长分别为3,4,m,则m的值可以是( )A. 1B. 5C. 7D. 94. 若直线y=kx(k是常数, k≠0)经过第一、第三象限, 则k的值可为( )A. -2B. -1C.−12D. 25.方程2x =1x+1的解为( )A. x=-2B. x=2C. x=-4D. x=46.关于x的一元二次方程x²+2ax+a²−1=0的根的情况是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.实数根的个数与实数a的取值有关7.如图,△ABC中, ∠BAC=90°, AB=6, BC=10, 点D为斜边 BC上一任意点, 连接AD, 将点B关于直线AD作轴对称变换得到点 E, 连接AE, BE, 则△ABE面积的最大值为( )A. 18B. 30C. 15D. 248.如图,已知点 A(0,6)在y轴上,点B为x轴正半轴上一动点,连接AB,将线段AB绕点A逆时针旋转90°得到线段AC, 连接BC, 取BC中点D, 连接OD, 移动点B, 若OD∥AC,则此时点B横坐标为( )A. 3B. 5C. 6D. 8初三数学第1页共8页二.填空(每题3分,共24分)9.苏州市景范中学校本部为北宋名相范仲淹祖宅所在地,公元1049年范仲淹捐祖宅开办“义庄”、设立“义学”,距今已有975年,975用科学计数法表示为 .10.不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有 个.11.如图, △ABC 内接于以AB 为直径的⊙O, AB 是⊙O 的直径, 点 D 是⊙O 上一点,∠CDB=55°, 则∠ABC= °.12.边长为3的正六边形面积为 .13.如图, 在菱形ABCD 中, AB=10, ∠A=120°, 则BD 的长为 .14. 如图,将平行四边形ABCD 绕点A 逆时针旋转得到平行四边形 AEFG ,使点E 落在边BC上, 且点 D 巧合是 FG 的中点, 若 AB AD =45,则 BE CE 的值为 .15.如图,将一等腰直角三角形ABC 放置在平面直角坐标系的第一象限,其一锐角顶点与原点O 重合,点A 、点B 正好经过一双曲线,则直角边OB 与x 轴所成锐角的正切值为 .16.对于平面直角坐标系内点M(m ,n),我们定义如下变换K :将点M 的横坐标m 乘以2再减去1,纵坐标n 加上3就可以得到新的一点N(2m-1, n+3),已知点A(0,0) , B(5,5),点 P 在线段AB 上运动(不包含点A ,B),将点P 进行K 变换后得到点Q ,连接PQ ,则线段PQ 长度的范围是 .初三数学 第2页 共8页三.解答题(共82分)17. (5分) 计算 sin30∘−(52−1)0+1−3218.(5分) 解不等式组 {2x−4≤1−x 1−3x 2>2−x 19. (6分) 化解并求值: (1a +3+1a 2−9)÷a−22a +6 (其中a=-1)20. (6分)文明是一座城市的名片,更是一座城市的底蕴.苏州市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.初三数学 第3页 共8页根据统计图信息,解答下列问题:(1)本次调查的师生共有人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数:(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.21. (6分)一只不透明的袋子中装有4个小球,分别标有编号1,2,3,4,这些小球除编号外都相同.(1)搅匀后从中任意摸出1个球,这个球的编号是3 的概率为 .(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号小1的概率是多少?(用画树状图或列表的方法说明)初三数学第4页共8页22. (8分) 为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD ,斜面坡度i=3:4是指坡面的铅直高度AF与水平宽度BF的比. 已知斜坡CD长度为20米, ∠C=18°,求斜坡AB的长. (结果精确到米)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)23. (8分)如图,在平面直角坐标系中,一次函数y=mx+n与反比例函数y=kx的图象在第一象限内交于A(a,4)和B(4,2)两点, 直线AB与x轴相交于点 C, 连接OA.(1)求一次函数与反比例函数的表达式;(2)过点B 作BD平行于x轴,交OA于点 D, 求梯形OCBD 的面积.初三数学第5页共8页24. (8分) 互不相等的有理数m, n, p在数轴上分别表示点M, N, P,若MN=2r且MP=NP,则称两数m,n关于数p对称,对称半径为r.例如有理数3和5关于4对称,对称半径为1.(1)若m=3,p=1,则r=;(2) 若|m|=2|n|,p=2,求对称半径r.25. (10分)如图,圆O半径OA,OB互相垂直,弦(CA=CB,,过点C 的直线.MN‖AB (1) 求证: MN 是圆O的切线(2) 求tan∠CAO的值初三数学第6页共8页26. (10分) 如图, 已知函数y=mx²−6mx+8m(m≠0)与x轴交于点 B、C, 与y轴交于点 D, 连接BD、CD(1)该抛物线的顶点坐标为;(用m的代数式表示);(2)如果点O关于直线BD 的对称点O′正好落在抛物线对称轴上,求此时m的值;(3)在(2)的条件下,在x轴上有一动点M,横坐标为t,过点M作x轴的垂线l,请问若在直线l上有且只有一个点P,使得.∠DPB=90°,此时t的值为多少.初三数学第7页共8页27. (10分)如图1, 从第一象限内一点C(4, 3)向坐标轴作垂线得到矩形OBCD, 在矩形OBCD 边OB上取一动点E, 连接DE, 以DE为边作等边△DEG,取 DE边中点 F ,已知点 E 以每秒1个单位的速度向从点原点向终点B移动,运动时间为t(1) 求当点G落在CD边上时t的值;(2) ①点F坐标为 ;(用t的代数式表示)②用t的代数式表示点G 的坐标;(3) 如图2, 当点E 向点 B移动的同时, 矩形OBCD边BC也以12个单位每秒的速度向右平行移动, 得到线段KH, 连接GK, GH, 求△GKH的面积.初三数学第8页共8页。
苏州市2019年中考数学试卷含答案解析版
2019年苏州市初中毕业暨升学考试试卷数 学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1.2的相反数是 A .2B .12C .-2D .-12【难度】★【考点分析】本题考查相反数的概念,中考第一题的常考题型,难度很小。
【解析】给2 添上一个负号即可,故选C 。
2.有一组数据:3,5,5,6,7,这组数据的众数为 A .3B .5C .6D .7【难度】★【考点分析】考查众数的概念,是中考必考题型,难度很小。
【解析】众数是一组数据中出现次数最多的数值,5 出现了两次,其它数均只出现一次,故 选B 。
3.月球的半径约为1 738 000m ,1 738 000这个数用科学记数法可表示为 A .1.738×106B .1.738×107C .0.1738×107D .17.38×105【难度】★【考点分析】考查科学记数法,是中考必考题型,难度很小。
【解析】科学记数法的表示结果应满足:a ⨯10n (1≤ a <10)的要求,C,D 形式不满足, 排除,通过数值大小(移小数点位置)可得A 正确,故选A 。
最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷
苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。
【2019年中考真题系列】江苏省南通市2019年中考数学真题试卷含答案(解析版)
江苏省南通市2019年中考数学试题(解析版) 注 意 事 项考生在答题前请认真阅读本注意事项1. 本试卷共6页,满分150分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡指定的位置。
3. 答案必须按要求填涂、书写在答题卡上,在草稿纸、试卷上答题一律无效。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的的四个选项中,恰有一项是符合题目要求的)1.下列选项中,比—2℃低的温度是( )A .—3℃B .—1℃C .0℃D .1℃2.化简12的结果是( )A .34B .32C .23D .623.下列计算,正确的是( )A .632a a a =∙B .a a a =-22C .326a a a =÷D .632a a =)( 4.如图是一个几何体的三视图,该几何体是( ) A .球 B .圆锥 C .圆柱 D .棱柱5.已知a 、b 满足方程组⎩⎨⎧=+=+,632,423b a b a 则a+b 的值为( ) A .2 B .4 C .—2 D .—46.用配方法解方程0982=++x x ,变形后的结果正确的是( ) A .()942-=+x B .()742-=+x C .()2542=+x D .()742=+x7.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB=3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间8.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 读数为( )A .110°B .125°C .135°D .140°9.如图是王阿姨晚饭后步行的路程s (单位:m )与时间t (单位:min )的函数图像,其中曲线段AB 是以B 为顶点的抛物线一部分。
2019年江苏省苏州市中考数学名师模拟试卷附解析
2019年江苏省苏州市中考数学名师模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为,,a b c ,则,,a b c 正好是直角三角形三边长的概率是( )A .1216B .172C .136D .1122.已知△ABC ∽△A'B'C',且它们的相似比是 3,则下列命题正确的是( ) A .∠A 是∠A ′的3倍 B .∠A ′是∠A 的3倍 C .A'B'是 AB 的3倍 D .AB 是A'B'的 3倍3.如图,点O 是两个同心圆的圆心,大圆半径OA 、OB 交小圆于点C 、D ,下列结论中正确的个数有( )(1)⌒AB =⌒CD ;(2 )AB= CD ;(3)∠OCD=∠OAB A .0 个B .1个C .2 个D .3 个4.如图,四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CDB .AD=BCC .AB=BCD .AC=BD 5.若梯形的面积为28cm ,高为2cm ,则此梯形的中位线长是( ) A .2cm B .4cm C .6cm D .8cm 6.点P (a ,2)与Q (-1,b )关于坐标原点对称,则b a +的值为( ) A .1B .-1C .3D .-37.若x <2,化简x 32)x (2--+的正确结果是( ) A .-1B .1C .2x -5D .5-2x8.在国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年年人均收入(单位:元)的情况如下表.该乡去年人均收入的中位数是( )A.3700元 B .3800元 C .3850元年人均收入/ 元 3500 3700 3800 3900 4500 村庄个数11331D .3900元9.如图,CD 是等腰直角三角形斜边AB 上的中线,DE ⊥BC 于E ,则图中等腰直角三角形的个数是( ) A .3个B .4个C .5个D .6个10.下列长度的三条线段能组成三角形的是( ) A .5cm,3cm,1cm B .6cm,4cm,2cmC . 8cm, 5cm, 3cmD . 9cm,6cm,4cm11.把分式方程12121=−−−−xxx 的两边同时乘以(x-2),约去分母,得( ) A .1-(1-x )=1 B .1+(1-x )=l C .1-(1-x )=x-2D .l+(1-x )=x-212.下列图形中:角、线段、直角三角形、等边三角形、长方形,其中一定是轴对称图形的有( ) A .2个 B .3个C .4个D .5个13.方程组2321x y x y +=⎧⎨−=⎩的解是( )A .53x y =−⎧⎨=⎩ B .11x y =−⎧⎨=−⎩ C .11x y =⎧⎨=⎩ D .35x y =⎧⎨=−⎩二、填空题14.一段楼梯,高 BC=3m ,斜边 AB 为 6m ,在这个楼梯上铺地毯,至少需要地毯 m . 15.已知,AB 和DE 是直立在地面上的两根立柱.AB =5m ,某一时刻AB 在阳光下的投影为3m ,同时测量出DE 在阳光下的投影长为6m ,则DE = m . 16.圆O 可以看成是到定点 的距离等于半径的所有点组成的图形.17.如图所示,在□ABCD 中,BE ⊥CD ,BF ⊥AD ,垂足分别为E ,F ,∠FBE=60°,AF=3cm,CE=4.5cm ,则∠A= ,AB= ,BC= .18.等腰三角形ABC 中,BC=8,AB ,AC 的长是关于x 的方程2100x x m −+=的两根,则m 的值是 .19.放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?” 小丽思考了一会儿说:“我来考考你.图⑴、图⑵分别表示你和我的工作量与工作时间的关系,你能算出我加工了多少千克吗?” 小明思考后回答:“你难不倒我,你现在加工了 千克.”20.若点A 的坐标是(-7,-4),则它到x 轴的距离是 .21.如图是在平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是 .22.2x y −+24y +=0,则x 2-2y 的值为 .23.已知某个一元一次方程的解为 2,请写出这个一元一次方程 .24.请写出25ab 的两个同类项,且这两个同类项与25ab 合并后结果为0. 你给出的两个同类项是 ..25.绝对值小于4的所有负整数的和是 ,积是 .三、解答题26.已知三角形的面积一定,且当底边的长a=12 cm 时,底边上的高h=5㎝. (1)试说明a 是h 的反比例函数,并求出这个反比例函数的关系式; (2)当a=6cm 时,求高h 的值.27.如图,方格纸中小正方形的边长为1,△ABC 的三个顶点都在小正方形的格点上,求: (1)△ABC 的面积; (2)△ABC 的周长; (3)点C 到AB 边的距离.CBA28. 先化简,再求值:22[(37)(5)](424)a a a −−+÷−,其中150a =29. 一不透明纸箱中装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4.(1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.30.若(221)(221)35a b a b +−++=,试求代数a b +的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.B4.D5.B6.B7.D8.B9.C10.D11.D12.C13.C二、填空题 14.3+.1016.O17.60°,6 cm ,9 cm18.25 或 1619.2020.421.20:5122.523.答案不唯一,如2x 31−=24.答案不唯一,如22ab 和27ab −25.-6,-6三、解答题 26.(1)∵' 三角形的面积12s ah =,∴面积S 一定,∴a 是h 的反比例函数.∵ a= 12 ,h = 5 ,∴1125302S =⨯⨯=,∴所求的函数关系式为260s a h h== (2)当 a=6 时,6060106h a ===(cm). 27.(1)27,(2)13105++,(3)1313728.21a −,2425− 29.解:(1)从纸箱中随机地一次取出两个小球,所标数字的所有可能结果有:(12)(13)(14)(23)(24)(34),,,,,,,,,,,,共6种;而所标数字一个是奇数另一个是偶数的有4种,4263P ∴==. (2所有可能出现的结果共有16种,其中能被3整除的有5种.516P ∴=. 30.由已知,得2(22)1=35a b +−,24()36a b +=,2()9a b +=,3a b +=±.4。
2019-2020年初一数学期中考试卷评分标准(I)
2019-2020年初一数学期中考试卷评分标准(I)一、 细心选一选(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项二、耐心填一填(本题有6个小题,每小题3分, 满分18分) 三、用心答一答(本大题有9小题, 共102分,解答要求写出文字说明, 证明过程或计算步骤) 17.(本题满分10分)解:(1)如图所示. ------------------ 3分 (2)画出数轴 ------------------ 6分B ( 1,2 );'B ( 3 , 5 ).------------------ 10分 说明:(1)画对一条线段1分;(2)不写x 、y 扣1分,不画正方向扣1分,不写单位长度扣1分。
18.(本题满分10分)解:由题可知 (n-2)180=360×5 ------------------ 5分 180n-360=1800 或 n-2=10 ------------------ 7分 180n=2160 ------------------ 8分 N=12 ------------------ 9分 答:边数n=12. ------------------ 10分19.(本题满分10分)解:在△ABC 中,∠ACB=180°–∠A –∠B ------------------ 3分=180°–70°–50° ------------------ 4分 =60° ------------------ 5分 ∵CD 平分∠ACB ------------------ 7分∴∠ACD=21∠ACB=6021 =30°. ------------------ 9分 答:∠ACD=30°. ------------------ 10分20.(本题满分10分)如图,AB ∥CD ,∠A =34°,∠DFB=105º,求∠C 的度数. 解:∵AB ∥CD, ------------------ 2分∴∠CDA=∠A=34°. ------------------ 5分 ∴∠C=∠DFB –∠CDA ----------------- 7分=105°–34°=71°. ------------- 9分答:∠C=71°. ------------------ 10分说明:用内角和先计算内角再计算外角也是给4分,内外角各两分。
2019年中考数学试卷(word版,含答案) (18)
2019年初中毕业升学考试数 学 试 题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.5的相反数是A .﹣5B .5C .15-D .152.函数y 中的自变量x 的取值范围是 A .x ≠12 B .x ≥1 C .x >12 D .x ≥123.分解因式224x y -的结果是A .(4)(4)x y x y +-B .4()()x y x y +-C .(2)(2)x y x y +-D .2()()x y x y +- 4.已知一组数据:66,66,62,67,63这组数据的众数和中位数分别是 A .66,62 B .66,66 C .67,62 D .67,66 5.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是 A .长方体 B .四棱锥 C .三棱锥 D .圆锥 6.下列图案中,是中心对称图形但不是轴对称图形的是7.下列结论中,矩形具有而菱形不一定具有的性质是A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直 8.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为 A .20° B .25° C .40° D .50° 9.如图,已知A 为反比例函数ky x=(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为A .2B .﹣2C .4D .﹣4 10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为 A .10 B .9 C .8 D .7第8题 第9题 第16题二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.49的平方根为 .12.2019年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20000000人次,这个年接待客量可以用科学记数法表示为 人次. 13.计算:2(3)a += .14.某个函数具有性质:当x >0时,y 随x 的增大而增大,这个函数的表达式可以是 (只要写出一个符合题意的答案即可).15.已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm . 16.已知一次函数y kx b =+的图像如图所示,则关于x 的不等式30kx b ->的解集为 .第17题 第18题17.如图,在△ABC 中,AC :BC :AB =5:12:13,⊙O 在△ABC 内自由移动,若⊙Oxy O-6OOB CABE Fxy-6OABBCHGB的半径为1,且圆心O 在△ABC 内所能到达的区域的面积为103,则△ABC 的周长为 .18.如图,在△ABC 中,AB =AC =5,BC=D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为 .三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)1013()2--+-; (2)3233)(2a a a -⋅. 20.(本题满分8分)解方程:(1)0522=--x x ; (2)1421+=-x x . 21.(本题满分8分)如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .(1)求证:△DBC ≌△ECB ; (2)求证:OB =OC .22.(本题满分6分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为 ; (2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程) 23.(本题满分6分)B《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生人数分布扇形统计图各等级学生平均分统计表(1)扇形统计图中“不及格”所占的百分比是 ; (2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级. 24.(本题满分8分)一次函数b kx y +=的图像与x 轴的负半轴相交于点A ,与y 轴的正半轴相交于点B ,且sin ∠ABOOAB 的外接圆的圆心M 的横坐标为﹣3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.25.(本题满分8分)不及格“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y (km)与出发时间之间的函数关系式如图1中线段AB 所示,在小丽出发的同时,小明从乙地沿同一条公路汽骑车匀速前往甲地,两人之间的距离x (km)与出发时间t (h)之间的函数关系式如图2中折线段CD —DE —EF 所示.(1)小丽和小明骑车的速度各是多少? (2)求E 点坐标,并解释点的实际意义.26.(本题满分10分)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A 为圆O 上一点,请用直尺(不带刻度)和圆规作出得内接正方形;(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图.①如图2,在□ABCD 中,E 为CD 的中点,作BC 的中点F ;②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC 的高AH .27.(本题满分10分)CBBAA D已知二次函数42-+=bx ax y (a >0)的图像与x 轴交于A 、B 两点,(A 在B 左侧,且OA <OB ),与y 轴交于点C .D 为顶点,直线AC 交对称轴于点E ,直线BE 交y 轴于点F ,AC :CE =2:1.(1)求C 点坐标,并判断b 的正负性;(2)设这个二次函数的图像的对称轴与直线AC 交于点D ,已知DC :CA =1:2,直线BD 与y 轴交于点E ,连接BC .①若△BCE 的面积为8,求二次函数的解析式;②若△BCD 为锐角三角形,请直接写出OA 的取值范围.28.(本题满分10分)如图1,在矩形ABCD 中,BC =3,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作△PAB 关于直线PA 的对称△PAB′,设点P 的运动时间为t (s).(1)若AB=2,当点B′落在AC 上时,显然△PAB′是直角三角形,求此时t 的值;②是否存在异于图2的时刻,使得△PC B′是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由.(2)当P 点不与C 点重合时,若直线PB′与直线CD 相交于点M ,且当t <3时存在某一时刻有结论∠PAM =45°成立,试探究:对于t >3的任意时刻,结论∠PAM =45°是否总是成立?请说明理由.参考答案1.A 2.D 3.C 4.B 5.A 6.C 7.C 8.B 9.D 10.B 11.23±12.7210´ 13.269a a ++ 14.2y x =(答案不唯一) 15.3 16.x <2 17.25 18.8 19.(1)【解答】解:原式=4 (2)【解答】解:原式=6a 20.(1)【解答】解:61,6121-=+=x x ; (2)【解答】解:3=x ,经检验3=x 是方程的解 21.(1) 证明:∵AB=AC , ∴∠ECB=∠DBC 在中与ECB DBC ∆∆ECB CB BC DBC CE BD ∠⎪⎩⎪⎨⎧==∠=∴ ECB DBC ∆≅∆(2)证明:由(1)知ECB DBC ∆≅∆ ∴∠DCB=∠EBC ∴OB=OC 22. (1)12(2)开始2112121211221221ììïïïïíïïïïîïïìïïïïíïïïïîïíìïïïïïíïïïïîïïìïïïïíïïïïîî红红黑黑红红黑黑红黑红黑红黑红黑 共有等可能事件12种 其中符合题目要求获得2份奖品的事件有2种所以概率P=1623.(1) 4%(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1(3)设总人数为n 个 , 80.0 ≤ 41.3×n×4%≤89.9 所以 48<n<54 又因为 4%n 为整数 所以n=50即优秀的学生有52%×50÷10%=260 人 24.(1) 作MN BO ,由垂径定理得N 为OB 中点 MN=12OA ∵MN=3∴OA=6,即A (-6,0) ∵sin ∠ABO=2,OA=6 ∴OB= 即B (0,设y kx b =+,将A 、B带入得到3y x =+(2)∵第一问解得∠ABO=60°,∴∠AMO=120°所以阴影部分面积为221=434S =--π((π25.(1)()()=36 2.25=16/=361-16=20/V km h V km h ÷÷小丽小明(2)93620=5914416=)559144,55km E ÷⨯⎛⎫⇒ ⎪⎝⎭(h )(实际意义为小明到达甲地26.(1)连结AE 并延长交圆E 于点C ,作AC 的中垂线交圆于点B ,D ,四边形ABCD 即为所求(2)①法一:连结AC,BD 交于点O,连结EB 交AC 于点G,连结DG 并延长交CB 于点F , F 即为所求法二:连结AC,BD 交于点OEACB连结EO 并延长交AB 于点G 连结GC,BE 交于点M连结OM 并延长交CB 于点F ,F 即为所求②27.(1) 令x=0,则4-=y ,∴C (0,-4) ∵ OA <OB ,∴对称轴在y 轴右侧,即02 ab- ∵a >0,∴b <0 (2)①过点D 作DM ⊥oy ,则21===CO MC OA DM CA DC , ∴AO DM 21=设A (-2m ,0)m >0,则AO=2m,DM=m ∵OC=4,∴CM=2∴D (m ,-6),B (4m ,0) A 型相似可得OBBNOE DN = EDACBCAB∴OE=884421BEF △=⨯⨯=m S∴1=m∴A (-2,0),B (4,0) 设)4)(2(-+=x x a y 即a ax ax y 822--= 令x=0,则y=-8a ∴C (0,-8a ) ∴-8a=-4,a=21 ∴4212--=x x y ②易知:B (4m ,0)C (0,-4)D (m ,-6),通过分析可得∠CBD 一定为锐角 计算可得2222221616,4,936CB m CD m DB m =+=+=+ 1°当∠CDB 为锐角时,222CD DB CB +>22249361616m m m ++++>,解得2m 2-<<2°当∠BCD 为锐角时,222CD CB DB +>22241616936m m m ++++>,解得m m <m 2<,m 42<∴4OA < 28.(1)①勾股求的 易证'CBA CB P △∽△,''4B P =解得②1°如图,当∠PCB ’=90 °时,在△PCB ’中采用勾股得:222(3)t t +-=,解得t=22°如图,当∠PCB ’=90 °时,在△PCB’中采用勾股得:222(3)t t +-=,解得t=63ABP ’为正方形,解得(2)如图3-t tB'B'CBAADPD3B'CA BD∵∠PAM=45°∴∠2+∠3=45°,∠1+∠4=45° 又∵翻折∴∠1=∠2,∠3=∠4又∵∠ADM=∠AB ’M (AAS ) ∴AD=AB ’=AB即四边形ABCD 是正方形 如图,设∠APB=x∴∠PAB=90°-x ∴∠DAP=x易证△MDA ≌△B ’AM (HL ) ∴∠BAM=∠DAM ∵翻折∴∠PAB=∠PAB ’=90°-x∴∠DAB ’=∠PAB ’-∠DAP=90°-2x ∴∠DAM=21∠DAB ’=45°-x ∴∠MAP=∠DAM+∠PAD=45°MA DP4321MB'BCB'A D PP。
2019年试验初中创新班招生考试数学试卷及答案
2019年试验初中创新班招生考试试卷(数学)一、填空题。
(每空1分共30分)1、2÷2.5=()÷10==( )%=4:( )2、4.08吨=()千克,1=小时=()分3、30米比()米长,()千克比20千克重20%。
4、的分子、分母加上同一个数,化成最简分数为,这个数是()。
5、从下午3点到4点40分时,时针转了()度,分钟转了()度。
6、用10的约数组成一个比值最小的比例式是()。
7、a和b是两个相邻的非零自然数,a和b的最大公约数是(),最小公倍数是()。
8、一个最简真分数,分子分母的积是24,这个真分数是(),还可能是( )。
9、学校开展植树活动,成活了100棵,25棵没活,则成活率是()。
10、某工厂第一车间有工人75人,第二车间有工人45人,从第一车间工人中调出到第二车间去,两车间人数才相等。
11、一幅地图上的比例尺是1:200000,在这幅地图上量得A、B两地的距离是15厘米,A、B两地,实际距离是()千米。
12、一批货物运走a吨,运走的比剩下的多b吨,这批货物原有()吨。
13、用〔x〕表示x的整数部分,例如〔13.52〕=13,若x=1.3,则〔x〕+〔2x〕+〔3x〕+〔4x〕=()。
14、把一根圆柱形木材对半锯开(如右图,单位:厘米),则这半根木材的体积是()立方厘米;它的表面积是()方平厘米。
15、一个圆锥形小麦堆,底面周长12.56米,高1.5米。
每立方米小麦约重500千克,这堆小麦约重()千克。
16、某品牌奶茶广告说他们的产品一年可以卖出七亿多杯,如果杯口直径9厘米,高8厘米,地球赤道半径大约6400千米,把这些奶茶排起来大约可以绕地球()圈。
(得数保留整数)17、如图,两个正方形面积之差为400平方厘米,那么两圆面积之差为()平方厘米。
18、六年级一班的一次数学测验,全班同学都合格,具体统计如右图,那么在这次测验中,男生的优秀率是(),全班6的优秀率是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共2小题,满分130分,考试时间120分钟,注意事项:1.答题前,考生务必将自己的姓名、考点名、考场号、座位号、用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题要求的。
请将选择题的答案用2B 铅笔涂在答题卡相应位置上。
1.5的相反数是( )A .15B .15-C .5D .5-2.有一组数据:2,2,4,5,7这组数据的中位数为( ) A .2B .4C .5D .73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26 000 000万元,数据26 000 000用科学记数法可表示为( ) A .80.2610⨯B .82.610⨯C .62610⨯D .72.610⨯4.如图,已知直线//a b ,直线c 与直线a b ,分别交于点A B ,.若154∠=o ,则2∠=( ) A .126oB .134oC .136oD .144o5.如图,AB 为O ⊙的切线,切点为A ,连接AO BO 、,BO 与O ⊙交于点C ,延长BOa与O ⊙交于点D ,连接AD ,若36ABO ∠=o ,则ADC ∠的度数为( )A .54oB .36oC .32oD .27o6.小明5元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( ) A .15243x x =+ B .15243x x =- C .15243x x=+ D .15243x x=- 7.若一次函数y kx b =+(k b 、为常数,且0k ≠)的图像经过点()01A -,,()11B ,,则不等式1kx b +>的解为( ) A .0x <B .0x >C .1x <D .1x >8.如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30o ,则教学楼的高度是( ) A .55.5mB .54mC .19.5mD .18m9.如图,菱形ABCD 的对角线AC ,BD 交于点O ,416AC BD ==,,将ABO V 沿点A 到点C 的方向平移,得到A B C '''V ,当点A '与点C 重合时,点A 与点B '之间的距离为( ) A .6B .8C .10D .12102AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC V 的面积为( )DBCBA.B .4 C. D .8二、 填空:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应位置上。
11.计算:23a a =_________________ 12.因式分解:2x xy -=__________________13.x 的取值范围为_________________、 14.若28,3418a b a b +=+=,则a b +的值为__________________15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图①是由边长10cm 的正方形薄板分成7块制作成的“七巧板”图②是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为_______cm (结果保留根号)16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方形,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为_________17.如图,扇形OAB 中,90AOB ∠=︒。
P 为弧AB 上的一点,过点P 作PC OA ⊥,垂足为C ,PC 与AB 交于点D ,若2,1PD CD ==,则该扇形的半径长为___________DABC18.如图,一块含有45︒角的直角三角板,外框的一条直角边长为10cm ,三角板的外框线,则图中阴影部分的面积为_______cm (结果保留根号)三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要得计算过程,推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分5分)计算:()222π+---20.(本题满分5分) ()152437x x x +<⎧⎪⎨+>+⎪⎩解不等式组:21.(本题满分6分)先化简,再求值:2361693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中3x =.22.(本题满分6分)在一个不透明的盒子中装有4张卡片.4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是: ;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率(请用画树状图或列表等方法求解).23.(本题满分8分)某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小組.要求每人必须参加.并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据);(2)________, ________;==m n(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?24.(本题满分8分)如图,ABC△中,点E在BC边上,AE AB=,将线段AC绕点A旋转到∠=∠,连接EF,EF与AC交于点GAF的位置,使得CAF BAE(1)求证:EF BC=;(2)若65∠的度数.∠=︒,求FGCACBABC∠=︒,2825.(本题满分8分) 如图,A 为反比例函数ky x=()0x >其中图像上的一点,在x 轴正半轴上有一点B ,4OB =.连接OA ,AB,且OA AB ==(1)求k 的值;(2)过点B 作BC OB ⊥,交反比例函数ky x=()0x >其中的图像于点C ,连接OC 交AB 于点D ,求ADDB的值.26.(本题满分10分)如图,AE 为O 的直径,D 是弧BC 的中点BC 与AD ,OD 分别交于点E ,F . (1)求证:DO AC ∥;(2)求证:2DE DA DC ⋅=;(3)若1tan 2CAD ∠=,求sin CDA ∠的值.27.(本题满分10分)A已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP=.如图①,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm ²),S 与t 的函数关系如图②所示: (1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()/v cm s .已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm . ①求动点N 运动速度()/v cm s 的取值范围;②试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.28.(本题满分10分)如图①,抛物线2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知ABC ∆的面积为6. (1)求a 的值;(2)求ABC ∆外接圆圆心的坐标;(3)如图②,P 是抛物线上一点,点Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,QPB ∆的面积为2d ,且PAQ AQB ∠=∠,求点Q 的坐标.①(图)PBCDAS (cm²)t (s )图O2.57.5(图①) (图②)2019年苏州市初中毕业暨升学考试试卷数学(参考答案与解析)一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题要求的。
请将选择题的答案用2B 铅笔涂在答题卡相应位置上。
1.【分析】考察相反数的定义,简单题型 【解答】5的相反是为5- 故选D2.【分析】考察中位数的定义,简单题型【解答】该组数据共5个数,中位数为中间的数:4 故选B3.【分析】考察科学记数法表示较大的数,简单题型 【解答】726000000 2.610=⨯ 故选D4.【分析】考察平行线的性质,简单题型 【解答】根据对顶角相等得到1354∠=∠=o 根据两直线平行,同旁内角互补得到32180∠+∠=o 所以218054126∠=-=o o o 故选A5.【分析】主要考察圆的切线性质、三角形的内角和等,中等偏易题型【解答】切线性质得到90BAO ∠=oa903654AOB ∴∠=-=o o oOD OA =Q OAD ODA ∴∠=∠ AOB OAD ODA ∠=∠+∠Q27ADC ADO ∴∠=∠=o故选D6.【分析】考察分式方程的应用,简单题型 【解答】找到等量关系为两人买的笔记本数量 15243x x ∴=+ 故选A7.【分析】考察一次函数的图像与不等式的关系,中等偏易题型 【解答】如下图图像,易得1kx b +>时,1x > 故选D8.【分析】考察30o 角的三角函数值,中等偏易题目 【解答】过D 作DE AB ⊥交AB 于E ,在Rt ADE V 中,tan30AEDE=o18m AE ∴== 18 1.519.5m AB ∴=+=故选C9.【分析】考察菱形的性质,勾股定理,中xDE BC ==CA等偏易题型【解答】由菱形的性质得28AO OC CO BO OD B O '''======, 90AOB AO B ''∠=∠=oAO B ''∴V 为直角三角形10AB '∴===故选C10.【分析】考察相似三角形的判定和性质、等腰直角三角形的高,中等题型 【解答】AB AD DE AD ∴⊥⊥, 90BAD ADE ∴∠=∠=o//AB DE ∴易证CDE CBA V :V 12DC DE BC BA ∴== 即12DC BD DC =+由题得BD = ∴解得DC =ABC V11422ABC S BC ∴=⨯=⨯=V故选B二、填空:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应位置上 11.【解答】5a 12.【解答】()x x y - 13.【解答】6x ≥ 14.【解答】5 15.16.【解答】82717.【解答】5 18【解答】14+【解析】如右图:过顶点A 作AB ⊥大直角三角形底边D由题意:2CD AC =∴(2CD ==2∴(()22=2S -阴影=14=+三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要得计算过程,推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.【解答】解:321=+-原式4=20.【解答】解:由①得15x +<4x <由②得()2437x x +>+2837x x +>+ 1x ->- 1x < 1x <所以21.【解答】解:原式()233633x x x x -+-=÷++ ()23333x x x x --=÷++ ()23333x x x x -+=⋅-+ 13x =+代入3x =-原式=22.【解答】解:(1)12 (2)82123P == 答:从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是12,抽取的2张卡片标有数字之和大于4的概率为23. 23.【解答】解:(1) 参加问卷调查的学生人数为()()3020%150÷=人;(2)36,16m n ==(3)选择“围棋”课外兴趣小组的人数为()241200=192150⨯人 答:参加问卷调查的学生人数为150人,36,16m n ==,选择“围棋”课外兴趣小组的人数为192人.24.【解答】解:(1)CAF BAE ∠=∠ BAC EAF ∴∠=∠AE AB AC AF ==又,()BAC EAF SAS ∴△≌△EF BC ∴=(2)65AB AE ABC =∠=︒, 18065250BAE ∴∠=︒-︒⨯=︒ 50FAG ∴∠=︒ BAC EAF 又△≌△ 28F C ∴∠=∠=︒502878FGC ∴∠=︒+︒=︒25.【解答】解:(1)过点A 作AH OB ⊥交x 轴于点H ,交OC 于点M .4OA AB OB ===2OH ∴= 6AH ∴=()2,6A ∴12k ∴=(2)124x y x==将代入 ()4,3D 得3BC ∴=1322MH BC ==92AM ∴= AH x BC x ⊥⊥轴,轴 AH BC ∴∥ADM BDC ∴△∽△ 32AD AM BD BC ∴== 26.【解析】(1)证明:∵D 为弧BC 的中点,OD 为O 的半径 ∴OD BC ⊥又∵AB 为O 的直径 ∴90ACB ∠=︒ ∴AC OD ∥(2)证明:∵D 为弧BC 的中点 ∴CD BD = ∴DCB DAC ∠=∠ ∴DCE DAC ∆∆∽ ∴DC DEDA DC=即2DE DA DC ⋅=(3)解:∵DCE DAC ∆∆∽,1tan 2CAD ∠=∴12CD DE CE DA DC AC === 设CD =2a ,则DE =a ,4DA a = 又∵AC OD ∥ ∴AEC DEF ∆∽∴3CE AEEF DE== 所以83BC CE =又2AC CE = ∴103AB CE =即3sin sin 5CA CDA CBA AB ∠=∠== 27.【解析】(1)2/cm s ;10cm(2)①解:∵在边BC 上相遇,且不包含C 点 ∴57.515 2.5C vB v⎧⎪⎪⎨⎪≥⎪⎩<在点在点∴2/6/3cm s v cm s ≤<②如右图12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形 ()()5152525751022x x ⨯-⨯-=---=15过M 点做MH ⊥AC,则12MH CM =∴112152S MH AP x =⋅=-+∴22S x =()122152S S x x ⋅=-+⋅=2430x x -+ =215225444x ⎛⎫--+ ⎪⎝⎭因为152.57.54<<,所以当154x =时,12S S ⋅取最大值2254.28.【解析】(1)解:由题意得()()1y x x a =--- 由图知:0a <所以A (,0a ),()1,0B ,()0,C a -()()112ABC S a a ∆=-⋅-=615-2x2x-5(N )34()a a =-=或舍∴3a =-(2)由(1)得A (-3,0),()1,0B ,()0,3C ∴直线AC 得解析式为:3y x =+ AC 中点坐标为33,22⎛⎫- ⎪⎝⎭∴AC 的垂直平分线为:y x =-又∵AB 的垂直平分线为:1x =- ∴1y x x =-⎧⎨=-⎩ 得11x y =-⎧⎨=⎩ABC ∆外接圆圆心的坐标(-1,1).(3)解:过点P 做PD ⊥x 轴 由题意得:PD =d ,∴12ABP S PD AB ∆=⋅=2d∵QPB ∆的面积为2d∴ABP BPQ S S ∆∆=,即A 、D 两点到PB 得距离相等 ∴AQ PB ∥设PB 直线解析式为;y x b =+过点(1,0)B ∴1y x =-∴2123y x y x x =-⎧⎨=--+⎩易得45x y =-⎧⎨=⎩ 1()0x y =⎧⎨=⎩舍 所以P (-4,-5),由题意及PAQ AQB ∠=∠ 易得:ABQ QPA ∆∆≌ ∴BQ =AP设Q (m ,-1)(0m <) ∴()221126m -+=4m =-∴Q ()4,1-。