机械手动作模拟图
搬运机械手电气控制系统设计
目录第1章概述 (1)1.1 PLC简介 (1)1.2机械手概述 (1)1.3 机械手控制系统设计步骤 (2)第2章控制方案论证 (3)2.1 搬运机械手的设计原理 (3)2.2 PLC的选取 (4)第3章控制系统硬件电路设计 (7)3.1传送带A,B主电路图及传送带B的控制电路图 (7)3.2PLC控制面板及接口电路图 (8)第4章控制系统软件设计 (10)4.1控制系统的软件设计原理 (10)4.2梯形图 (12)第5章控制系统调试 (14)5.1 控制系统的调试过程 (14)总结 (15)参考文献 (16)附录 (17)第1章概述1.1PLC简介自二十世纪六十年代美国推出可编程逻辑控制器(Programmable Logic Controller,PLC)取代传统继电器控制装置以来,PLC得到了快速发展,在世界各地得到了广泛应用。
同时,PLC的功能也不断完善。
随着计算机技术、信号处理技术、控制技术网络技术的不断发展和用户需求的不断提高,PLC在开关量处理的基础上增加了模拟量处理和运动控制等功能。
今天的PLC 不再局限于逻辑控制,在运动控制、过程控制等领域也发挥着十分重要的作用。
通用PLC应用于专用设备时可以认为它就是一个嵌入式控制器,但PLC相对一般嵌入式控制器而方具有更高的可靠性和更好的稳定性。
实际工作中碰到的一些用户原来采用嵌入式控制器,现在正逐步用通用PLC或定制PLC取代嵌入式控制器。
1.2机械手概述工业机械手是近几十年发展起来的一种高科技自动化生产设备。
工业机械手是工业机器人的一个重要分支。
它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。
机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。
机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。
毕业设计送料机械手设计及Solidworks运动仿真(全套图纸)
目录摘要 (1)第一章机械手设计任务书 (2)1.1毕业设计目的 (2)1.2本课题的内容和要求 (2)第二章抓取机构设计 (4)2.1手部设计计算 (4)2.2腕部设计计算 (7)2.3臂伸缩机构设计 (9)第三章液压系统原理设计及草图 (11)3.1手部抓取缸 (11)3.2腕部摆动液压回路 (13)3.3小臂伸缩缸液压回路 (14)3.4总体系统图 (15)第四章机身机座的结构设计 (16)4.1电机的选择 (17)4.2减速器的选择 (18)4.3螺柱的设计与校核 (18)第五章机械手的定位与平稳性 (20)5.1常用的定位方式 (20)5.2影响平稳性和定位精度的因素 (20)5.3机械手运动的缓冲装置 (21)第六章机械手的控制 (22)第七章机械手的组成与分类 (24)7.1机械手组成 (24)7.2机械手分类 (25)第八章机械手Solidworks三维造型 (26)8.1上手爪造型 (27)毕业设计感想 (37)参考资料 (38)送料机械手设计及Solidworks运动仿真摘要本课题是为普通车床配套而设计的上料机械手。
工业机械手是工业生产的必然产物,它是一种模仿人体上肢的部分功能,按照预定要求输送工件或握持工具进行操作的自动化技术设备,对实现工业生产自动化,推动工业生产的进一步发展起着重要作用。
因而具有强大的生命力受到人们的广泛重视和欢迎。
实践证明,工业机械手可以代替人手的繁重劳动,显著减轻工人的劳动强度,改善劳动条件,提高劳动生产率和自动化水平。
工业生产中经常出现的笨重工件的搬运和长期频繁、单调的操作,采用机械手是有效的。
此外,它能在高温、低温、深水、宇宙、放射性和其他有毒、污染环境条件下进行操作,更显示其优越性,有着广阔的发展前途。
本课题通过应用AutoCAD 技术对机械手进行结构设计和液压传动原理设计,运用Solidworks技术对上料机械手进行三维实体造型,并进行了运动仿真,使其能将基本的运动更具体的展现在人们面前。
机械手PPT讲解
第7章 可编程控制器的应用
(7)设计操作台、电气柜及非标准电气元件。 (8)编写设计说明书和使用操作说明书。 3.设计的主要步骤 用图7-1所示的流程图表示。 (1)分析被控对象的控制要求,确 定控制任务 (2)选用和确定用户I/O设备根据系 统控制要求,选用合适的用户输入、 输出设备。由此初步估算所需的输入、 输出点数。 (3)选择PLC的型号 根据已确定的用户输入、输出设备, 统计所需的输入、输出点数,选择合 适的PLC类型。包括机型的选择、容量 的选择、I/O模块的选择、电源模块的 选择等。
增删部分功能或运用其中部分程序。 (2)解析法 利用组合逻辑或时序逻辑的理论并采用相应的解析方法进行逻辑求解,
根据其解编制程序。可使程序优化或算法优化。
第7章 可编程控制器的应用
(3)图解法 通过画图设计。常用有梯形图法、波形图法、状态转移图法。梯形图法
是基本方法,无论经验法还是解析法,一般都用梯形图法来实现。波形 图法主要适用于时间控制电路,先画出信号波形,再依时间用逻辑关系 组合。 (4)计算机辅助设计 利用应用软件在微机上设计出梯形图,然后传送到PLC中。
2.二台电动机顺序起动控制系统设计
控制线路如图7-6示。
(1)分析控制要求
这是一个二台电动机顺序启动、同时停止的控制线路。分析可知,在 M1起动之后,经过时间继电器KT的延时,M2自动启动。SB2为启 动按钮,SB1为停止按钮。按下SB1,M1、M2同时断电停止。为了 保证先M1、后M2的启动顺序,将KM2线圈接在KM1自锁触点后面, 且由时间继电器KT的延时触点控制。
(2)统计输入、输出点数并选择PLC型号
第7章 可编程控制器的应用
图7-6 二台电动机顺序起动控制线路
输入信号有按钮2个,热继电器FR1、FR2的保护触点如作输入信号,要 占2个输入点。从节省输入、输出点,降低成本出发,可将其放在输出电 路中,不占输入点。因此,只有2个输入信号。考虑留适当裕量,最多需 3个输入点。
机械手控制设计_梯形图设计(PLC设计课件)
启动:右位且夹紧到位;左位且放松到位 停止:到达上升位置
输入
I0.5
行程开关SQ4
机械手左限
I0.6
行程开关SQ5
机械手右限
I0.7
行程开关SQ6
机械手夹紧位置
I1.0
行程开关SQ7
机械手放松位置
I0.4
行程开关SQ3
机械手上限
I0.7 I0.6 I1.0 I0.5
Q0.1 I0.4 Q0.3 Q0.2
行程开关SQ5
机械手右限
I0.7
行程开关SQ6
机械手夹紧位置
I1.0
行程开关SQ7
机械手放松位置
I0.4
行程开关SQ3
机械手上限
I0.7 I0.6 I1.0 I0.5
Q0.1 I0.4 Q责,敢担当,勇图强。
三、梯形图设计
机械手自动控制 机械臂升降控制-上升
输入
I0.5
行程开关SQ4
机械手左限
I0.6
行程开关SQ5
机械手右限
I0.7
行程开关SQ6
机械手夹紧位置
I1.0
行程开关SQ7
机械手放松位置
I0.4
行程开关SQ3
机械手上限
I0.7 I0.6 I1.0 I0.5
Q0.1 I0.4 Q0.3 Q0.2
6.右转,离开左侧位
尽职责,敢担当,勇图强。
三、梯形图设计
机械手自动控制 机械臂升降控制-上升
机械臂下降,下降到位置,抓取工件(夹紧),上升,传送带1启动,机械手上升到位置,左转,左转到位,下降,放 置工件(放松),上升,右转,下降,继续抓取工件。
启动:右位且夹紧到位;左位且放松到位 停止:到达上升位置
实验2.15 机械手动作
实验2.15机械手动作模拟控制在机械手动作模拟控制实验区完成本实验,具体实验接线参见《RTPLC-4A实验台使用说明》中的主机接线图部分。
一、实验目的用数据移动指令来实现机械手动作的模拟二、机械原理和控制要求机械手将一工件由A处传送到B处,中间需经过上升/下降和左移/右移灯动作,这些动作通过双线圈二位电磁阀推动气缸完成。
当某个电磁阀线圈通电,就一直保持现有的机械动作,例如一旦下降的电磁阀线圈通电,机械手下降,即使线圈再断电,机械手仍保持现有的下降动作状态,直到相反方向的线圈通电为止。
另外,夹紧/放松由单线圈二位电磁阀推动气缸完成,线圈通电执行夹紧动作,线圈断电执行放松动作。
设备装有上、下限位和左右限位开关,它的工作过程共有八个动作,如图所示:85X004:左限开关开始时,机械手处于原位,X002和X004开关处于接通状态(即“1”),通过 M100线圈使M100接点接通(置“1”);这样,Y005线圈通电,原位指示灯点亮;按下启动按钮,使X000置“1”,产生移位信号,与M100一起接通移位寄存器的输入端,从而使M101置“1”,使Y000通电,执行下降动作;同时,上限开关X002断开,M100回复到“0”,原位指示灯熄灭;当下降到位时,下限开关X001接通,与M101一起产生移位脉冲信号,使M101置“0”,M102置“1”,从而使线圈Y000断电,停止下降动作;同时使M200置“1”,并使线圈T0通电,使夹紧电磁阀Y001动作,同时启动定时器T0,延时2秒;2秒后,T0常开接点接通,与M102一起产生移位脉冲,使M102置“0”,M103置“1”,从而使上升电磁阀Y002接通,执行上升动作。
由于M200是由SET命令接通的,具有自保持功能,因此Y001夹紧电磁阀在上升过程中一直保持夹紧动作。
上升到位后,上限电磁阀X002重新接通,与M103一起产生移位信号,使M103置“0”,M104置“1”,从而使Y002电磁阀断开,不在执行上升动作;同时Y003电磁阀通电,执行右移动作。
(完整版)基于plc的机械手控制系统设计
前言随着我国工业生产的飞跃发展,自动化程度的迅速提高,实现工件的装卸、转向、输送或操持焊枪、喷枪、扳手等工具进行加工、装配等作业的自动化,已愈来愈引起人们的重视。
机械手是在机械化、自动化生产过程中发展起来的一种新型装置。
近年来,随着电子技术特别是电子计算机的广泛应用,机器人的研制和生产已成为高技术领域内迅速发展起来的一门新兴技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。
机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。
在工业生产中应用的机械手被称为“工业机械手”。
机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动、不知疲劳、不怕危险、抓举重物的力量比人手大等特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用,生产中应用机械手可以提高生产的自动化水平和劳动生产率;可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。
本文将通过西门子PLC控制机械手,PLC是可编程控制器(Programmable Logic Controller)的简称,是在继电顺序控制基础上发展起来的以微处理器为核心的通用的工业自动化控制装置。
随着电子技术和计算机技术的迅猛发展,PLC的功能也越来越强大,更多地具有计算机的功能。
目前PLC已经在智能化、网络化方面取得了很好的发展。
该系统利用西门子PLC,在步进电机驱动下,完成对机械手在搬运过程中的下降、夹紧、上升、右旋、下降、放松、上升、左旋等全过程自动化控制,并对非正常情况实行自动报警和自动保护,实现企业的机电一体化,提高企业的生产效率。
1机械手概述1.1机械手简介机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。
它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。
基于PLC的机械手动作监控系统设计
基于PLC的机械手动作监控系统设计基于PLC的机械手动作监控系统设计摘要工业生产随着科学技术的发展而发展,工业生产上机电一体化的应用越来越多,机械设备中的自动控制成分越来越重要。
由于有些工人在工作的时候经常受到高温、低温或有害气体的危害,甚至危及生命。
这些工作不得不用机器代替,因此机械手就诞生了。
机械手是机器人的关键部件,在自动化车间中可以运送物料和工艺的操作。
机械手通过可编程控制器的编程,按照控制要求完成各种规定的动作,可以提高加工精度、提高生产效率、降低成本。
本文根据PLC的工业控制和计算机监控的相关理论,按照工业机械手动作的控制要求,完成了其运动控制的设计以及组态监控系统的设计,对控制系统的各个流程即总体结构、控制流程以及构成系统模块进行了研究。
本次设计采用的可编程控制器为:S7-200系列。
关键词:机械手,PLC,监控Design of manipulator motion control system based on PLCABSTRACTIndustrial production develops with the development of science and technology. As a result, the application of mechanotronics can be found more and more easily in industrial production. Besides, the automatic control components also become increasingly important. It is a fact that some workers are always suffered from the high temperatures, low temperatures and even some harmful gases. These factors may even do great harm to their lives. This kind of work must be done by machines so that the machine hand is produced. The machine hand is the key component of the robot. It can deliver the material and operate the machine during the industrial production. The machine hand is controlled by programmable controller and does the actions according the orders which it has accepted. It can improve the accuracy, increase the productivity and reduce the costs.Based on the theory of industrial control and computer monitoring of the PLC and the control requirements of industrial robot movement, the design and configuration of the monitoring system design of its motion control, process control systems for the individual are completed. The overall structure of the control process and constitute system modules were studied at the same time. The programmable controller which the design uses is: S7-200.KEY WORDS: Manipulator, PLC, Monitor目录前言 (1)第1章绪论 (3)1.1 机械手的概述 (3)1.2 国内外机械手的发展 (3)1.2.1机械手发展 (3)1.2.2机械手的分类 (4)1.3 可编程控制器(PLC) (6)1.3.1可编程逻辑控制器介绍 (6)1.3.2可编程逻辑控制器的发展过程 (6)1.3.3 PLC硬件系统组成 (6)1.3.4 PLC工作原理 (7)1.4 课题研究的意义 (7)第2章系统的硬件设计 (9)2.1控制要求 (9)2.2主电路设计 (9)2.3硬件的选型 (10)2.3.1 PLC的选型 (10)2.3.2限位开关 (12)2.3.3开关按钮 (12)2.3.4电气元件明细表 (12)2.4 I/O分配表及其端子接线图 (13)2.4.1 I/O分配表 (13)2.4.2 PLC的外部接线图 (13)第3章系统软件设计 (14)3.1 工作流程图 (14)3.2 顺序功能图 (14)3.3 梯形图 (17)3.4 编程软件 (21)3.4.1 STEP7—Micro/WIN32简介 (21)3.4.2 STEP7—Micro/WIN32使用 (23)第4章组态 (25)4.1组态的介绍 (25)4.1.1 组态概述 (25)4.1.2 组态发展、功能和特点 (25)4.2组态画面设计 (26)4.2.1组态的画面 (26)4.2.2设备和变量的定义 (30)4.2.3动画连接 (32)4.3组态程序 (33)第5章硬软件调试 (34)5.1程序调试 (34)5.2组态演示 (35)结论 (39)谢辞 (40)参考文献 (41)外文资料翻译 (43)前言机械手动作监控系统是由美国最先开始研究的。
一 四轴联动简易机械手的结构及动作过程
基于PLC的机械手控制设计一四轴联动简易机械手的结构及动作过程机械手结构如下图1所示,有气控机械手(1)、XY轴丝杠组(2)、转盘机构(3)、旋转基座(4)等组成。
其运动控制方式为:(1)由伺服电机驱动可旋转角度为360°的气控机械手(有光电传感器确定起始0点);(2)由步进电机驱动丝杠组件使机械手沿X、Y轴移动(有x、y轴限位开关);(3)可回旋360°的转盘机构能带动机械手及丝杠组自由旋转(其电气拖动部分由直流电动机、光电编码器、接近开关等组成);(4)旋转基座主要支撑以上3部分;(5)气控机械手的张合由气压控制(充气时机械手抓紧,放气时机械手松开)。
其工作过程为:当货物到达时,机械手系统开始动作;步进电机控制开始向下运动,同时另一路步进电机控制横轴开始向前运动;伺服电机驱动机械手旋转到达正好抓取货物的方位处,然后充气,机械手夹住货物。
步进电机驱动纵轴上升,另一个步进电机驱动横轴开始向前走;转盘直流电机转动使机械手整体运动,转到货物接收处;步进电机再次驱动纵轴下降,到达指定位置后,气阀放气,机械手松开货物;系统回位准备下一次动作。
二控制器件选型为达到精确控制的目的,根据市场情况,对各种关键器件选型如下:1. 步进电机及其驱动器机械手纵轴(Y轴)和横轴(X轴)选用的某公司的42BYG250C型两相混合式步进电机,步距角为0.9°/1.8°,电流1.5A。
M1是横轴电机,带动机械手机构伸、缩;M2是纵轴电机,带动机械手机构上升、下降。
所选用的步进电机驱动器是SH-20403型,该驱动器采用10~40V直流供电,H桥双极恒相电流驱动,最大3A的8种输出电流可选,最大64细分的7种细分模式可选,输入信号光电隔离,标准单脉冲接口,有脱机保持功能,半密闭式机壳可适应更恶劣的工况环境,提供节能的自动半电流方式。
驱动器内部的开关电源设计,保证了驱动器可适应较宽的电压范围,用户可根据各自情况在10~40VDC 之间选择。
S7-200的搬运机械手的PLC控制
S7-200 的搬运机械手的PLC 控制机械手是在机械化、自动化生产过程中发展起来的一种新型装置,它能模仿人手臂的某些动作功能,可按固定顺序在空间抓、放、搬运物体等,动作灵活多样,广泛应用在工业生产和其他领域内。
应用机械手可减少工人的重复操作,并能代替人类在危险与有毒性环境中工作,极大地提高了生产效率与工作精度,而且对保障人身安全,改善劳动环境,减轻劳动强度有着十分重要的意义。
可编程序控制器( PLC) 是从20 世纪60 年代末发展起来的一种新型的电气控制装置,它以微处理器为核心,将计算机技术、自动控制技术和通信技术融为一体,以其结构简单、易于编程、性能优越、可靠性高等显著优点而在工业控制领域得到了迅猛的发展,被广泛地应用于各种生产机械和生产过程的自动控制中。
德国西门子公司的PLC 产品在国内应用比较广泛,其中S7-200 系列PLC 以结构紧凑、高性价比、多种多样的CPU 尺寸以及基于Windows 的编程工具等特点在中、小规模控制系统中有独特的优势。
笔者选用西门子S7-200 为控制器,所研究的机械手采用水平/垂直位移加平面转动式结构。
机械手的全部动作由气缸驱动,PLC 控制相应的电磁阀驱动气动执行元件完成各动作。
这种控制系统能十分方便地嵌入到各类工业生产线中,完成零部件产品在固定位置之间的搬运,实现生产自动化。
1 控制功能分析机械手搬运零部件动作示意图如图1 所示,该机械手可用来将工件从左工作台搬到右工作台,其动作过程分为10 工步,即从原位开始顺序经过10个动作后完成一个周期,并返回原位。
该机械手能够抓取的工件质量m 为0. 1 kg,搬运物料过程中垂直方向加速度和水平方向加速度均为0. 3 g( g 为重力加速度) ,平面转动的回转半径r 为0. 5 m,转动角速度ω为3. 5 rad /s,角加速度β为2. 1 rad /s2,转动角度 为180°。
机械科学与技术第30 卷图1 机械手动作示意图其中为了使上升/下降、左移/右移和顺转/逆转动作能够执行,分别由3 个双线圈二位电磁阀控制气缸的动作。
第四单元-任务五
任务五冲床机械手的运动一、任务提出在机械加工中经常使用冲床,某冲床机械手运动的示意图如图4-34所示。
初始状态时机械手在最左边,X4为ON;冲头在最上面,X3为ON;机械手松开,Y0为OFF。
按下启动按钮X0,Y0变为ON,工件被夹紧并保持,2s后Yl被置位,机械手右行,直到碰到X1,以后将顺序完成以下动作:冲头下行,冲头上行,机械手左行,机械手松开,延时1s后,系统返回初始状态。
图4-34 某冲床机械手运动的示意图二、原理分析为了用PLC控制器来实现任务,PLC需要5个输入点,5个输出点,输入输出点分配见表4-5。
表4-5 输入输出点分配表由输入输出点的分配表画出PLC的外部接线图,如图4-35所示。
图4-35 冲床机械手PLC的外部接线图由提出的任务画出时序图,如图4-36所示。
从时序图上可见,工件在整个工作周期都处于夹紧状态,一直到完成冲压后才松开工件,这种命令动作为存储型命令。
图4-36 冲床机械手时序图冲床机械手的运动周期划分为7步,依次分别为初始步、工件夹紧、机械手右行、冲头下行、冲头上行、机械手左行和工件松开,用M0~M6表示。
各限位开关、按钮和定时器提供的信号是各步之间的转换条件。
由此画出顺序功能图如图4-37所示。
图4-37 冲床机械手顺序功能图用启-保-停电路设计出梯形图如图4-38所示。
图4-38 冲床机械手梯形图三、知识链接1.存储型命令和非存储型命令在顺序功能图中说明命令的语句时应清楚地表明该命令是存储型的还是非存储型的。
例如某步的存储型命令“打开1号阀并保持”,是指该步为活动步时1号阀打开,该步为不活动步时1号阀继续打开;非存储型命令“打开1号阀”,是指该步为活动步时打开,为不活动步时关闭。
图4-37中步M1的命令Y0就是存储型命令,当M1步为活动步时Y0置位,该步为不活动步时Y0继续置位,除非在其它步中用复位指令将Y0复位(步M6)。
同理,M6步中的命令Y0也是存储型命令,当M6步为活动步时Y0复位,该步为不活动步时Y0继续复位,除非在其它步中用置位指令将Y0置位(步M1)。
PLC机械手动作的模拟
目录一、绪论1二、课题介绍 2三、设计内容及要求 31、设计要求32、控制要求3四、控制原理介绍及图示41、机械手动作的模拟实验面板图42、输入/输出接线列表43、控制过程4五、设计思想及程序框图5六、控制方案6方案一:1、工作过程分析62、梯形图73、梯形图指令8方案二:1、工作过程分析92、梯形图103、梯形图指令11七、硬件设计121、元器件选择122、元器件清单123、硬件控制原理图13八、运行调试14九、小结15十、参考文献16附录17一、绪论可编程序控制器(programmable controller),现在一般简称为PLC (programmable logic controller),它是以微处理器为基础,综合了计算机技术、半导体集成技术、自动控制技术、数字技术、通信网络技发展起来的一种通用的工业自动控制装置。
以其显著的优点在冶金、化工、交通、电力等领域获得了广泛的应用,成为了现代工业控制三大支柱之一。
在可编程序控制器问世以前,工业控制领域中是继电器控制占主导地位。
传统的继电器控制具有结构简单、易于掌握、价格便宜等优点,在工业生产中应用甚广。
但是控制装置体积大、动作速度较慢、耗电较多、功能少,特别是由于它靠硬件连线构成系统,接线繁杂,当生产工艺或控制对象改变时,原有的接线刻控制盘就必须随之改变或更换,通用性和灵活性较差。
PLC的应用领域非常广,并在迅速扩大,对于而今的PLC几乎可以说凡是需要控制系统存在的地方就需要PLC,尤其近几年来PLC的性价比不断提高已被广泛应用在冶金、机械、石油、化工、轻功、电力等各行业。
PLC 能在恶劣的环境如电磁干扰、电源电压波动、机械振动、温度变化等中可靠地工作,PLC的平均无故障间隔时间高,日本三菱公司的F1系列PLC平均无故障时间间隔长达30万h,这是一般微机所不能比拟的。
机械手通常应用于动作复杂的场合来代替人的反复的操作,从而节省人的劳动,普通继电器由于其体积和接口等各方面限制,经常被应用于动作简单的电气及流水线控制,而PLC以其可靠性高、抗干扰能力强;控制系统构成简单。
三菱PLC步进指令
第4章 步进指令各大公司生产的PLC 都开发有步进指令,主要是用来完成顺序控制,三菱FX 系列的PLC 有两条步进指令,STL (步进开始)和RET (步进结束)。
4.1 状态转移(SFC )图在顺序控制中,我们把每一个工序叫做一个状态,当一道工序完成做下一道工序,可以表达成从一个状态转移到另一个状态。
如有四个广告灯,每个灯亮1秒,循环进行。
则状态转移图如图4-1所示。
每个灯亮表示一个状态,用一个状态器S ,相应的负载和定时器连在状态器上,相邻两个状态器之间有一条短线,表示转移条件。
当转移条件满足时,则会从上一个状态转移到下一个状态,而上一个状态自动复位,如要使输出负载能保持,则应用SET 来驱动负载。
每一个状态转移图应有一个初始状态器(S0~S9)在最前面。
初始状态器要通过外部条件或其他状态器来驱动,如图中是通过M8002驱动。
而对于一般的状态器一定要通过来自其他状态的STL 指令驱动,不能从状态以外驱动。
下面通过一个具体例子来说明状态转移图的画法。
例4-1 有一送料小车,初始位置在A 点,按下启动按钮,在A 点装料,装料时间5s,装完料后驶向B 点卸料,卸料时间是7s ,卸完后又返回A 点装料,装完后驶向C 点卸料,按如此规律分别给B 、C 两点送料,循环进行。
当按下停止按钮时,一定要送完一个周期后停在A 点。
写出状态转移图。
分析:从状态转移图中可以看出以下几点: (1) 同一个负载可以在不同的状态器中多次输出。
(2) 按下起动按钮X4,M0接通,状态可以向下转移,按下停止按钮,M0断开,当状态转移到S0时,由于M0是断开的,不能往下转移,所以小车停在原点位置。
(3) 要在步进控制程序前添加一段梯形图(见图4-3b )(b ) 梯形图(a ) 状态转移图图4-3 控制送料小车状态转移图M0 启动辅助继电器X1 原点条件M8002T3X1S23S22X3S23T2S21S24X1X2T1S22S21T0S20S0打开卸料阀小车左行Y4A点Y2T3C点K70小车左行Y4小车右行打开装料阀原点指示Y1Y3T2K50Y0A点打开卸料阀小车右行B点Y2T1K70Y3打开装料阀Y1T0 K504.2 步进指令4.2.1步进指令步进指令有两条:STL 和RET 。
基于PLC毕业设计
人生最大的幸福,是发现自己爱的人正好也爱着自己。
杭州万向职业技术学院毕业设计说明书题目:基于PLC的机械手的模拟系别:应用工程系专业:机电一体化技术班级:机电082班姓名:范赟指导教师:唐美玲2011年 5月 20 日毕业设计(论文)原创性声明本人所呈交的毕业设计(论文)是本人在导师的指导下进行的设计创作(撰写)工作所取得的成果据我所知除设计(论文)中已经注明引用的内容外本设计(论文)不包含其他个人已经发表过的成果对本设计(论文)的研究做出重要贡献的个人和集体均已在设计(论文)中作了明确说明并表示谢意作者签名:日期:目录1 引言 12 设计目的和任务要求 22.1 设计目的 22.2 设计任务 23 机械手PLC控制的设计 23.1 根据工艺过程分析控制要求 23.2 系统控制模板 33.3 输入/输出设备及I/O分配 43.4 PLC的选择 53.5 PLC程序设计54 设计体会与心得8参考文献8致谢91 引言随着工业自动化的普及和发展控制器的需求量逐年增大搬运机械手的应用也逐渐普及机械手:mechanical hand也被称为自动手auto hand能模仿人手和臂的某些动作功能用以按固定程序抓取、搬运物件或操作工具的自动操作装置它可代替人的繁重劳动以实现生产的机械化和自动化能在有害环境下操作以保护人身安全可以更好地节约能源和提高运输设备或产品的效率以降低其他搬运方式的限制和不足满足现代经济发展的要求因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门机械手主要由手部、运动机构和控制系统三大部分组成手部是用来抓持工件(或工具)的部件根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式如夹持型、托持型和吸附型等运动机构使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作改变被抓持物件的位置和姿势机械手的种类按驱动方式可分为液压式、气动式、电动式、机械式机械手;按适用范围可分为专用机械手和通用机械手两种;按运动轨迹控制方式可分为点位控制和连续轨迹控制机械手等机械手通常用作机床或其他机器的附加装置如在自动机床或自动生产线上装卸和传递工件在加工中心中更换刀具等一般没有独立的控制装置有些操作装置需要由人直接操纵如用于原子能部门操持危险物品的主从式操作手也常称为机械手机械手在锻造工业中的应用能进一步发展锻造设备的生产能力改善热、累等劳动条件就个人而言希望通过这次毕业设计对未来将从事的工作进行一次适应训练从中锻炼自己分析问题、解决问题的能力为今后的工作打下一个良好的基础由于能力所限设计尚有许多不足之处恳请各位老师给予指教2 设计目的和任务要求2.1 设计目的(1)通过实验掌握PLC控制系统的硬件电路、程序的设计方法及对编程软件的编辑和调试(2)了解机械手的工作原理(3)掌握顺序控制设计法的方法和技巧2.2 设计任务机械手的动作示意图如图2-1 所示它是一个水平/垂直位移的机械设备用来将工作由左工作台搬到右工作台图2-1 机械手的工作示意图3 机械手PLC控制的设计3.1 根据工艺过程分析控制要求本实验是将工件由A处传送到B处的机械手上升/下降和左移/右移的执行用双线圈二位电磁阀推动气缸完成当下降电磁阀通电时机械手下降;当下降电磁阀断电时机械手下降停止只有当上升电磁阀通电时机械手才上升;当上升电磁阀端电时机械手上升停止同样左移/右移分别由左移电磁阀和右移电磁阀控制机械的放松/加紧由一个单线圈两位置电磁阀(称为加紧电磁阀)控制当该线圈通电时机械手加紧该线圈断电时机械手放松当机械手处于原点时(即左限位开关SQ4和上限位开关SQ2合上)启动以后机械手移向A点加紧工件然后回到原位移向B点放下工件再回到原位完成一次动作机械手的动作过程如图3-1所示图3-1 机械手的传送工件系统示意图从原点开始按下启动按钮时下降电磁阀通电机械手下降下降到底时碰到下限位开关下降电磁阀断电下降停止;同时接通夹紧电磁阀机械手夹紧夹紧后上升电磁阀通电机械手上升上升到顶时碰到上位开关上升电磁阀断电上升停止;同时接通右移电磁阀机械手右移右移到位时碰到右限位开关右移电磁阀断电右移停止若此时右工作台上无工作则光电开关接通下降电磁阀通电机械手下降下降到底时碰到下限位开关下降电磁阀断电下降停止;同时夹紧电磁阀断电机械手放松放松后上升电磁阀通电机械手上升上升到顶时碰到上限位开关上升电磁阀断电上升停止;同时接通左移电磁阀机械手左移左移到原点时碰到左限位开关左移电磁阀断电左移停止至此机械手经过八步动作完成一个周期即为:原位下降夹紧上升右移左移上升放松下降3.2 系统控制模板机械手模拟控制系统的模拟示意面板图如图3-2所示图3-2 机械手模拟控制系统的模拟示意面板图3.3 输入/输出设备及I/O分配1.输入设备--------用以生产输入控制信号本设计中应包括:启动开关其上限、下限、左限、右限的位置限位开关(实验中由手动的纽扣开关代替)2.输出设备-由PLC的输出信号驱动的执行元件本设计中应包括下降电磁阀、上升电磁阀、右移电磁阀、左移电磁阀、夹紧电磁阀(实验中由LED显示灯代替)、原点指示灯各输入/输出设备的配置如图3-1所示3.机械手模拟控制系统的输入/输出分配表如3-1所示表3-1 机械手模拟控制系统的I/O分配表输入信号输出信号名称输入点编号名称输入点编号启动按钮SB1X000机械手下降指示灯YV1Y000下限位按钮SQ1X001机械手夹紧/放松指示灯YV2Y001上限位按钮SQ2X002机械手上升指示灯YV3Y002右限位按钮SQ3X003机械手右移指示灯YV4Y003左限位按钮SQ4X004机械手左移指示灯YV5Y004机械手复位指示灯HLY005根据所确定的用户输入设备及输出设备可画出PLC的I/O连接图如图3-3所示由图可见PLC共需要5点输入6点输出主机模块的COM接主机模块输入端的COM0和输出端的COM1、COM2、COM3;主机模块的24+、COM分别接在实验单元的V+COM图3-3 机械手模拟控制系统的I/O接线图3.4 PLC的选择该机械手的控制为纯开关量控制且所要的I/O点数不多因此选择一般小型抵挡机即可该控制系统要实现的是步进控制可以用一般PLC所具有的移位寄存器和移位指令来编程但若选择具有步进指令功能或鼓型控制器功能的PLC则实现步进控制就更加方便了由于所要的I/O点数为5/6点考虑到机械手操作的工艺固定PLC的I/O点基本上可不留裕量根据资料的机型故选择三菱 FX1N-40MR机型(需要比较价格同时考虑使用维修方便等因素使之更加经济合理)3.5 PLC程序设计一、机械手动作的模拟程序梯形图如图3-4所示图3-4 机械手动作的模拟程序梯形图程序分析:(1)X002和X004接通时上限位和左限位闭合机械手在远点位置M100置"1"常开接点接通使得Y005接通原点指示灯亮(2)这时按下手动按钮SB1使得位左移SFTL指令【SFTL M100 M101 K9 K1】执行M100:源位元件起始地址只能是位元件(XYMS)M101:目标位元件起始地址只能是位元件(YMS)K9:目标位元件个数只能是数值K1:移动的个数只能是数值在这里的SFTL M100 M101 K9 K1 --K9为目标元件个数K1表示一次移动1位这里指M100的值传给M101使得M101置"1"M100置"0"依次传到M109形成一个循环直到同时复位(3) M101接通下降指示灯Y000亮当碰到下限为开关使X001接点接通把M101的值传给M102使得M102接通执行指令【SET M200】(把M200置"1")和时间继电器T0 经过1.7秒后时间继电器T0延时闭合常开接点接通把M102的值传给M103接通上升指示灯Y002碰到上限开关使X002接点接通把M103的值传给M104接通右移指示灯Y003碰到右限位开关使X003接点接通把M104的值传给M105接通下移指示灯Y000碰到下限位开关使X001接点接通把M105的值传给M106执行指令【RST M200】(把M200置"0")和时间继电器T1过1.5秒后时间继电器T1延时闭合常开接点接通把M106的值传给M107接通上升指示灯Y002碰到上限开关使X002接点接通把M107的值传给M108接通左移指示灯Y004碰到左限位开关使X004接点接通把M108的值传给M109使M109的置为"1"执行指令【ZRST M101 M109】使得复位M101开始到M109结束(4)手动按钮SB1断开执行指令【ZRST M101 M109】和【RST M200】结束程序二、设计机械手动作三位置动作模拟如图3-5所示图3-5 三位置机械手的传送示意图从原点开始按下启动按钮下降电池阀通电机械手下降下降到底时碰到下限位开关下降电池阀断电下降停止;同时接通夹紧电磁阀机械手夹紧夹紧后上升电磁阀通电机械手上升上升到顶点时碰到上限位开关上升电磁阀断电停止上升;同时接通右移电磁阀机械手右移右移到位时碰到中限位开关右移电磁阀断电右移停止下降电磁阀通电机械手下降下降到底时碰到下限位开关下降电磁阀断电下降停止;同时夹紧电磁阀断电机械手放松放松后上升电磁阀通电机械手上升上升到顶点时碰到上限位开关上升电磁阀断电上升停止;同时接通右移电磁阀机械手右移右移到位时碰到右限位开关右移电磁阀断电右移停止;同时延时开关延时闭合机械手停止运动延时开关闭合;同时接通左移电磁阀机械手左移左移到位时碰到中限位开关左移电磁阀断电左移停止下降电磁阀通电机械手下降下降到底时碰到下限位开关下降电磁阀断电下降停止;同时夹紧电磁阀通电机械手加紧加紧后上升电磁阀通电机械手上升上升到顶点时碰到上限位开关上升电磁阀断电上升停止;同时接通右移电磁阀机械手右移右移到位时碰到右限位开关右移电磁阀断电右移停止下降电磁阀通电机械手下降下降到底时碰到下限位开关下降电磁阀断电下降停止;同时夹紧电磁阀断电机械手放松放松后上升电磁阀通电机械手上升上升到顶点时碰到上限位开关上升电磁阀断电上升停止;同时接通左移电磁阀机械手左移左移到位时碰到左限位开关左移电磁阀断电左移停止至此机械手18步动作完成了一个周期的动作程序如图3-6所示图3-6 三位置机械手动作的模拟程序梯形图4 设计体会与心得毕业设计是学生完成本专业教学计划的最后一个极为重要的实践性教学环节是使学生综合运用所学过的基本理论、基本知识与基本技能去解决专业范围内的工程技术问题而进行的一次基本训练这对学生即将从事的相关技术工作和未来事业的开拓都具有一定意义其主要目的:一、培养学生综合分析和解决本专业的一般工程技术问题的独立工作能力拓宽和深化学生的知识二、培养学生树立正确的设计思想设计构思和创新思维掌握工程设计的一般程序规范和方法三、培养学生树立正确的设计思想和使用技术资料、国家标准等手册、图册工具书进行设计计算数据处理编写技术文件等方面的工作能力四、培养学生进行调查研究面向实际面向生产向工人和技术人员学习的基本工作态度工作作风和工作方法参考文献[1] 陈立定吴玉香苏开才编.电气控制与可编程控制器.华南理工大学出版社.2001.[2] 魏斌孙健编.可编程控制器实验与实训教程.中国水利水电出版社.2009.[3] 高勤田培成编.可编程控制器原理及应用(三菱机型).电子工业出版社.2009.[4] 赵俊生等编.电气控制与PLC技术项目化理论与实训.电子工业出版社.2009.[5] 刘艳梅陈震李一波等编著.三菱PLC基础与系统设计.机械工业出版社.2009.[6] 巫莉黄江峰编.电气控制与PLC应用.中国电力出版社.2008.致谢感谢我的导师唐美玲老师以及班主任丑幸荣老师对我学习中的细心照顾他们严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;他们循循善诱的教导和不拘一格的思路给予我无尽的启迪感谢唐美玲等老师对我的教育培养他们细心指导我的学习与研究在此我要向老师们深深的鞠上一躬感谢我的同学们不是他们的陪伴我不会在这三年里过的那么愉快我不会忘记班级里的同学朋友非常感谢!感谢我的爸爸妈妈焉得谖草言树之背养育之恩无以为报你们永远健康快乐是我最大的心愿在设计即将完成之际我的心情无法平静从开始进入课题到设计的顺利完成有多少可敬的师长、同学、朋友给予了我无言的帮助在这里请接受我诚挚的谢意!????????基于PLC的机械手的模拟9第 1 页共 13 页。
工业SCARA机械手臂简介说明
博美德SCARA智能机械手机械手能够在严苛环境下作业,对极端温度的忍受力远高于人类。
空调负荷降低可节约成本。
机器人自动化系统一般占地较小,生产更紧凑;对于工厂而言,投入相同的资源,机器人系统的产出更大,无需扩建厂房却能达到扩大产量目标。
在降低次品率和返工率、提高成品率方面,机器人的变现更是有目共睹,能元成本也随之进一步降低,BONMET机械手拥有高柔性自动化生产能力。
SCARA (图)SCARA 产品简介博美德数控高速智能SCARA 机械手是实现高精度、快速拾放料作业的机器人解决方案,具有体积小巧,速度快、安装空间小等特点。
广泛用于电子零部件组装、搬运、上下料、涂胶、点焊等行业。
通过CANopen 或EtherCAT 总线实现数据通讯,集成EUROMAP ,完成多轴联动插补。
博美德SCARA 机械手拥有无可媲美的灵活性、通用性、性价比以及速度、精度的高度稳定性;可实现多种复杂运动;可配置多台机械手同时相互协调工作。
行业应用电子 食品 生物制药 医疗器械 计算机 航空航天 日用品 LCD/LED 汽车半导体典型应用物料搬运部件组装 涂胶 上下料 视觉检验 点焊 计量分配 传送带跟踪 切断装置 医疗试验参数图示动作范围图纸:安装部详细图纸:参数图示动作范围:安装部详细:※所需行程超出以上范围时,请于本公司联系。
※循环时间及Z轴的工作范围规格不同,请于本公司联系。
博美德SCARA机械手产品设计从多方面考虑并满足了追加用途环境设计博美德SCARA机器人有3个旋转关节,其轴线相互平行,在平面内进行定位和定向。
另一个关节是移动关节,用于完成末端件在垂直于平面的运动。
手腕参考点的位置是由两旋转关节的角位移φ1和φ2,及移动关节的位移z决定的,即p=f(φ1,φ2,z),如图所示。
这类机器人的结构轻便、响应快,例如Adept1型SCARA机器人运动速度可达10m/s,比一般关节式机器人快数倍。
它最适用于平面定位,垂直方向进行装配的作业。