15华工概率论与数理统计答案

合集下载

概率论与数理统计习题答案1-19章

概率论与数理统计习题答案1-19章

1 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。

设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品;(4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A2 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P 设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率.解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则(1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= 75.04341313131==-++=3 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==A PB P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=4 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+= 328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P 设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则 )9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+ 0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.5 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X即四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.0000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------=16308.0≈六、设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=6 随机变量的分布函数·连续随机变量的概率密度一、函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-).解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x 因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π. 解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度. (3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A ==即)( ,arctan 121)(+∞<<-∞+=x x πx F .(2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π. 五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Aex f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx ,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰21102121)()(x e x e dx e dx x f x F x xx xx.7 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,1)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上 的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xe x F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X XY -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f y yY π.8 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan(),(y C x B A y x F ++=. 求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度.解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xx x X x dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ 2arctan 121xπ+=yx y Y y dy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan 1)9(3),()(2ππ 3arctan 121yπ+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ )4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx x y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f 求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它0,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰0030006),()(3032y y e x x dx e e dx y x f y f y y x Y(4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x . 9 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥.解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx e dy e dx dxdy y x f X Y P x xy xy xy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e ex二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jj n Y in i i n X ====--证明它们的和Y X Z +=也服从二项分布.证明: 设j i k +=, 则ik n i k i k n ki i n i i n k i Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki kn n k i n in q p C C2121)( 由knm ki ik n k m C C C +=-=∑, 有kn n ki in i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z +==-++ 由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z z z z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i个并联组才停止工作,所以有)3,2,1(),max(21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ 设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ 故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ10 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为X1 2 3 …… n ……p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2Xpp p p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=-进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx x x dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)11 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY 72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf . 弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRRd R4sin 4cos 4202===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0, 0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元, 调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥e X P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---ee e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni i n i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0 于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-= 即停车次数的数学期望为748.8.12 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰22022220223]11)1ln([1)1(211rr dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f 求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-1210322),(dx x dy xdx dxdy y x xf EX x x0),(10===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==n p q D ξ 于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以 )3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ. 查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.13 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ (2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---= .0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯=故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z =2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++=212222212221μσμσσσ++=.14 二维正态分布·正态随机变量线性函数的分布·中心极限定理四、 设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,53),cov(),(===y x Y X Y X r σσ.从而2516)53(1122=-=-r ,5412=-r .进一步按公式])())((2)([)1(21222121),(yy y x y x x x y y x r x r y x ery x f σμσσμμσμσπσ-+-------=,可得),(Y X 的联合概率密度为)2550316((322522321),(y xy x ey x f +--=π.二、设随机变量X 与Y 独立,并且)1,0(~N X ,)2,1(~2N Y .求随机变量32+-=Y X Z 的概率密度. 解:由题设,有0)(=X E ,1)(=X D ,1)(=Y E ,4)(=Y D .又根据关于数学期望的定理和方差的定理以及独立正态随机变量线性组合的分布,我们有2)3()()(2)32()(=+-=+-=E Y E X E Y X E Z E . 8)3()()(4)32()(=++=+-=D Y D X D Y X D Z D .且)8,2())(,)((~N Z D Z E N Z =,故随机变量32+-=Y X Z 的概率密度为16)2(82)2(2241821)(--⨯--==z z Z eez f ππ )(+∞<<-∞z .三、 台机床分别加工生产轴与轴衬.设随机变量X (mm)表示轴的直径,随机变量Y (mm)表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴衬的内径与轴的直径之差在3~1(mm)之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率. 解:由题设,知随机变量X 与Y 是独立的,且)3.0,50(~2N X ,)4.0,52(~2N Y .设X Y Z -=根据独立正态随机变量线性组合的分布,我们有)5.0,2()3.0)1(4.0,50)1(52(~2222N N Z =⨯-+⨯-+.根据题目假设,我们知道当31≤-=≤X Y Z 时,轴与轴衬可以配套使用.于是所求概率为1)2(2)2()2()25.022()5.0235.025.021()31(-Φ=-Φ-Φ=≤-≤-=-≤-≤-=≤≤Z P Z P Z P9544.019772.02=-⨯=.四、100台车床彼此独立地工作着,每台车床的实际工作时间占全部工作时间的80%,求: (1) 任一时刻有70至86台车床在工作的概率;。

15华工概率论与数理统计第五、六章作业答案

15华工概率论与数理统计第五、六章作业答案
由题意知54利用柯尔莫哥洛夫强大数定律1即书上定理513
概率论第五章答案 5.1 解:因 E[ X + Y ] = E[ X ] + E[Y ] = 0
故 P ( X + Y ≥ 6) = P ( X + Y − E[ X + Y ] ≥ 6) ≤
Var[ X + Y ] 36
而 Var[ X + Y ] = Var[ X ] + Var[Y ] + 2 cov( X , Y )

9

* 8S 9
2
σ
2
~ χ 2 (8)
X 10 − X 10 σ 3( X 10 − X ) 3 所以 T = 服从 t (8) 分布 . = *2 *2 S9 10 8S 9
σ2
8
X 6.7 解:由题意知 2 = i ~ χ 2 (4) . σ i =6 σ Z3

σ
Z1
因 {X n } 是独立同分布的随机变量序列,且
2 2 Var[ X n ] = E[ X n ] − (E[ X n ]) ⇒ E[ X n ] = 10 2
故 {Yn }是独立同分布的随机变量序列,且
E[Yn ] = E[ X 32n−2 + X 3n−1 X 3n ] = E[ X 32n−2 ] + E[ X 3n−1 ]E[ X 3n ]
E[ X i ] = 0 ,Var[ X i ] = 0.0075 .
因 P (48 ≤ Y60 ≤ 52) = P 48 ≤ 50 +
60
∑X
i =1
i
≤ 52
= P (−2 ≤
∑X

新编概率论与数理统计(华东理工大学出版社)习题1答案

新编概率论与数理统计(华东理工大学出版社)习题1答案
解:设 分别表示甲、乙保险丝被熔断,则

3.设10件产品中有4件不及格,从中任取两件,已知两件中有一件是不合格品,则另一件也是不合格品的概率是多少?
解:设 =“有i件不合格品”,则
.
解:
(1)样本空间可以表示为 ;事件 。
(2)样本空间可以表示为 ;事件 , 。
(3)样本空间可以表示为 ;事件 。
2.如果事件 与事件 互为对立事件,证明:事件 与事件 也互为对立事件。
证:
由于A与B互为对立事件,故 ,因此就有 ,所以 与 也互为对立事件.
第二次作业
一.填空题:
1.把12本书任意地放在书架上,则其中指定的4本书放在一起的概率 。
2.设 、 、 表示三个随机事件,试将下列事件用 、 、 表示出来:
(1)事件ABC表示 、 、 都发生;
(2)事件 表示 、 、 都不发生;
(3)事件 表示 、 、 不都发生;
(4)事件 表示 、 、 中至少有一件事件发生;
(5)事件 或 表示 、 、 中最多有一事件发生。
二.选择题:
1.设 , , , ,则事件 (A)。
A. B. C. D.
2.箱子中装有5个白球和6个黑球,一次取出3只球,发现都是同一种颜色的,在此前提下得到的全是黑色概率为( A )
A. B. C. D.
三.计算题
1.设 , ,试就下列三种情况下分别求出 的值:
(1) 与 互不相容;
(2) ;
(3) 。
解:
(1) ;
(2) ;
(3) 。
2.某保险盒内装有甲、乙两根保险丝。根据以往的经验,当电流超过额定值10%时,甲、乙保险丝被熔断的概率分别是0.7,0.6,而两根保险丝同时被熔断的概率为0.5。试求至少有一根保险丝被熔断的概率。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

第一章 随机事件及概率第一节 样本空间与随机事件1.试写出下列的样本空间。

{}{}()()()()()()()()(){}(){}()(){}22(1)0100,(2)1,(3)(5,0)5,15,25,35,40,51,52,53,54,5(4),02,,5,212,,0,1,2,3,4,5,6s x x x R s x x x z s s x y xy x y Rs x y x y x y =≤≤∈=≥∈==≤+≤∈=≤+≤= 2.化简下列各式:()()1()2AΩ整个样本空间3.设A,B,C 为三个事件,用A,B,C 的运算关系表示下列事件:()()()()()()()()1234567ABC A B C ABC ABC ABC ABC ABCABCABCABCABCABC ABC ABC ABC第二节 随机事件的概率1.()()()()1121341ca b cb c a c---+--+2.P(A ∪B ∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(CA)+P(ABC) =1/4+1/4+/4-0-0-1/8+0 =5/8{}{}()()()()()()()()()()()293101831012=0531031011533111(+-)10101514115A B C P A C P B C P AB C p A p AB P A B P A B P A P A B P A B P AB =========-=-===-=设含含4.()()()()()1311011372102321013102715115C P A C C C P B C C P C C ======设这个球是黑球为事件A设刚好一个白球一个黑球为事件B ,两个球全是黑球为事件C.5.()221232152335C C P A C ==设这两件商品来自同一场地为事件A 。

6.()()()()500412411013641=0.7463652=10.42712p A A p A ⎛⎫=- ⎪⎝⎭-=设至少有一个人的生日是月日为事件A 。

华南理工大学概率论与数理统计考试试卷及答案

华南理工大学概率论与数理统计考试试卷及答案

二、(12分)在某种牌赛中,5张牌为一组,其大小与出现的概率有关。

一付52张的牌(四种花色:黑桃、红心、方块、梅花各13张,即2-10、J=11、Q=12、K=13、A=14),求(1)同花顺(5张同一花色连续数字构成)的概率;(2)3张带一对(3张数字相同、2张数字相同构成)的概率;(3)3张带2散牌(3张数字相同、2张数字不同构成)的概率。

三、(10分)某安检系统检查时,非危险人物过安检被误认为是危险人物的概率是0.02;而危险人物又被误认为非危险人物的概率是0.05。

假设过关人中有96%是非危险人物。

问:(1)在被检查后认为是非危险人物而确实是非危险人物的概率?(2)如果要求对危险人物的检出率超过0.999概率,至少需安设多少道这样的检查关卡?四、(8分)随机变量X 服从),(2σμN ,求)0( >=a a Y X 的密度函数五、(12分)设随机变量X、Y的联合分布律为:已知E(X+Y)=0,求:(1)a,b;(2)X的概率分布函数;(3)E(XY)。

六、(10分)某学校北区食堂为提高服务质量,要先对就餐率p进行调查。

决定在某天中午,随机地对用过午餐的同学进行抽样调查。

设调查了n个同学,其中在北区食堂用过餐的学生数为m,若要求以大于95%的概率保证调查所得的就餐频率与p之间的误差上下在10% 以内,问n应取多大?七、(10分)设二维随机变量(X,Y)在区域:{}b y a x <<<<0,0上服从均匀分布。

(1)求(X,Y)的联合概率密度及边缘概率密度;(2)已知36,12==DY DX ,求参数a 、b ;(3)判断随机变量X 与Y 是否相互独立?八、(8分)证明:对连续型随机变量ξ,如果c E =3||ξ存在,则0>∀t ,3)|(|t ct P ≤>ξ。

九、(12分)设(X ,Y )的密度函数为⎩⎨⎧<<<<=其他010,10,),(y x Axy y x f 求(1)常数A ;(2)P(X<0.4,Y<1.3);(3)sY tX Ee +;(4)EX ,DX ,Cov(X ,Y)。

概率论与数理统计答案(华南理工)

概率论与数理统计答案(华南理工)

开讨论
例 对容量为n的样本,求下列密度函数中参数 a 的
2 2 (a x), (0 x a) f ( x) a 其它 0, a 2 a 解 由于 E [ X ] x 2 ( a x )dx 0 a 3 a 所以由矩法估计,得 X 3 3 n 解得 a 3 X X i n i 1 3 n 所以,参数 a 的矩估计量为 a X i n i 1
方差
1 50 ˆ X Xi 50 i 1 50 1 2 2 2 ˆ 2 S50 Xi ( X ) 50 i 1
此时,ˆ ,
ˆ
2
为两个统计量
根据大数定理,样本的矩和总体的矩应当非常接近 假若样本有观测值x1,x2,……x50,代入统计量中,有
用样本的统计量来估计分布的数字特征,进而得到参
数估计的办法也叫数字特征法,是矩法的特例。
思考一下,是否有其他求解的办法? 考虑泊松分布的二阶中心矩 得到矩法估计量
Var[ X ]
1 n ( X i X )2 n i 1
可见:同一个参数的矩估计量可以不同。 使用哪个更好一些? 矩法估计总能用低阶矩就不用高阶矩 之后会系统地介绍估计量优劣的评价,届时再展
解:设装袋的重量为随机变量X,即总体为X~N(μ, σ2)。
E[ X ] 2 2 2 Var [ X ] E [ X ] ( E [ X ])
此时,要估计参数,就转化为估计随机变量的矩 观测50次,即取X1,X2,……X50个样本,样本容量50 计算样本 的期望和
若总体的密度函数中有多个参数1,2,…,n,则将 ln L 第(3)步改为 0, (i 1, 2, , n) i 解方程组即可。

概率论与数理统计课后习题答案1-8章-习题解答

概率论与数理统计课后习题答案1-8章-习题解答

第一章 思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A (5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC (7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB (9)“三人均未中靶”: ;C B A (10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A 3 .设,A B 是两随机事件,化简事件 (1)()()AB A B (2) ()()A B A B解:(1)()()AB A B AB AB B B ==,(2) ()()AB AB ()A BA B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.解:51050.302410P P ==.5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。

概率论与数理统计习题解答 华南理工大学出版社

概率论与数理统计习题解答  华南理工大学出版社
习题解答
第一章
1-7 已知10个电子管中有7个正品和3个次品,每次任意抽
取1个来测试,测试后不再放回去,直至把3个次品都找到为 止,求需要测试7次的概率。

p
C31P62 P74 P170

1 8
1-10 房间中有4个人,试问没有2个人的生日在同一个月
份的概率是多少?

p

P142 12 4
1-13 将3个球放置到4个盒子中去,求下列事件的概率:(1)
P( AC BC ) P( AC) P(BC ) P( ABC) P( A)P(C) P(B)P(C) P( A)P(B)P(C) P(C)[P( A) P(B) P( A)P(B)] P(C)P( A B) A B与C相互独立。
7、解:(1)
A={点数之和为偶数} B={点数之和等于8}
rA 18 B {(2,6) , (6,2) , (3,5) ,(5,3) ,(4,4)} P(B A) P( AB) P(B) 5 / 36 5
P( A) P( A) 18 / 36 18
8、解:设Ai={第i人破译出密码} i=1,2,3
100
100
0.9524
P(C) P(A1)P(A2)P(A3) 0.95243 0.8639
22、解: Ai={产品来自第i箱}
B={产品是合格品} C={产品经检验为合格品}
3
(1) P(B) P(B Ai )P( Ai ) i 1 20 1 12 1 17 1 20 5 3 12 4 3 17 5 3 0.775
P(C) P(C B)P(B) P(C B )P(B )

15华工概率论与数理统计第八章作业答案

15华工概率论与数理统计第八章作业答案

又因 u0.95 = 0.8289
所以U > u0.95
因此拒绝 H0 .
(2)由表 8.3 的 III 知选取统计量为T = X − Y ~ t(148)
Sw
1 +1 100 50
因 S1*2
=
4

S
*2 2
=
2.56 ⇒
Sw
= 1.9226
所以T = 1.2012
又因 t0.95 (148) = 1.6552 故T < t0.95 (148) 因此接受 H0 .
=
X − 225 S16
~
t(15)
15
因 X = 241.5000, S1*6 = 98.7259
故T
=
X − 225 S16
=
X − 225 S1*6
=
0.6685
15
4
又因t0.05 (15) = −1.7531
所以T > t0.05 (15)
因此拒绝 H0 即元件的平均寿命不大于 225 小时.
由表 8.3 的 III 知选取统计量为U =
X −Y
~ N (0,1)
σ
2 1
+
σ
2 2
100 50
因X
= 5.6 ,Y
=
5.2

σ
2 1
=
2.2
2
,σ
2 2
= 1.82
故U =
X −Y =
σ
2 1
+
σ
2 2
100 50
5.6 − 5.2 = 0.4 = 1.1887 2.22 + 1.82 0.3365 100 50

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案1. 引言概率论与数理统计是统计学的基础课程之一,通过学习这门课程,我们可以理解和运用概率和统计的概念和方法,从而分析和解决实际问题。

本文档将提供《概率论与数理统计》课后习题的详细答案。

2. 习题答案第一章:概率论的基本概念和基本原理1.1 选择题a.概率是以【答案】】D.形式结果给出的。

b.从一副有 52 张牌的扑克牌中,任意取一张牌,其点数是 7 的概率是【答案】】C.$\\frac{4}{52}$。

1.2 计算题a.设 A, B 是两个事件,已知 P(A) = 0.5,P(B) = 0.4,且P(A ∪ B) = 0.7,求P(A ∩ B)。

【解答】根据概率的加法定理可知,P(P∪P)=P(P)+P(P)−P(P∩P)代入已知数据,得到:0.7=0.5+0.4−P(P∩P)解上式得到P(A ∩ B) = 0.2。

所以,P(A ∩ B) = 【答案】0.2。

b.有两个相互独立的事件 A 和 B,且 P(A) = 0.3,P(A∪ B) = 0.5,求 P(B)。

【解答】由于事件 A 和 B 是相互独立的,所以根据概率的乘法定理可知,P(P∪P)=P(P)×P(P)代入已知数据,得到:0.5=0.3×P(P)解上式得到 P(B) = 0.5 ÷ 0.3 = 1.67。

所以,P(B) = 【答案】1.67。

第二章:随机变量及其分布2.1 选择题a.设 X 是一个随机变量,其概率密度函数为:$$ f(x) = \\begin{cases} \\frac{1}{2}x & 0 < x < 2 \\\\ 0 &其他 \\end{cases} $$则 P(X < 1) = 【答案】】C. 0.25。

b.对 X 的分布函数 F(x) = 1 - e^{-x}, 其中x ≥ 0,下列说法中错误的是【答案】】B. F(x) 是一个概率密度函数。

概率论与数理统计课后习题答案 (3)

概率论与数理统计课后习题答案 (3)

概率论与数理统计课后习题答案一、概率论1.1 基础概念题目1.什么是随机试验?试举例子。

2.什么是样本空间和事件?回答1.随机试验是指具备以下特征的实验:可以在相同条件下重复进行,每次试验的结果不确定,但可能结果(事件)集合已经确定。

例如,抛一枚硬币的结果是正面或反面,掷一个骰子的结果是1、2、3、4、5或6等等。

2.样本空间是指随机试验所有可能结果的集合,用S表示。

事件是指样本空间中的一个或多个结果组成的子集。

例如,抛一枚硬币的样本空间是{正面,反面},事件可以是{正面}或{反面},或者样本空间本身。

1.2 概率公理题目1.什么是频率概率和主观概率?2.概率公理中的三条公理是什么?回答1.频率概率是由大量重复试验的结果所呈现的相对频率给出的概率。

它基于频率的思想,认为某个事件发生的概率等于该事件在大量试验中出现的频率。

主观概率是由个人主观判断给出的概率。

它基于主观认知和经验,认为某个事件发生的概率取决于主观评估和信念。

2.概率公理是指概率理论的基本公理系统,包括以下三条公理:–非负性公理:对于任意事件A,其概率P(A)大于等于0。

–规范性公理:样本空间S的概率为1,即P(S) = 1。

–可列可加性公理:对于任意互不相容的事件A1,A2,…,An,即这些事件两两不相容(即任意i≠j,Ai∩Aj=∅),则它们的并事件A=A1∪A2∪…∪An的概率等于各事件概率之和,即P(A) = P(A1) + P(A2) + … + P(An)。

1.3 条件概率与独立性题目1.什么是条件概率?给出计算条件概率的公式。

2.什么是独立事件?给出判断两个事件独立的条件。

回答1.条件概率是指事件A在另一个事件B已经发生的条件下发生的概率。

条件概率的公式是P(A|B) = P(A∩B) /P(B),其中P(A∩B)表示A与B的交集的概率,P(B)表示事件B发生的概率。

2.事件A和事件B是独立事件,指的是事件A的发生与事件B的发生无关。

大学专业试卷华南理工大学 理工科专业 《概率论与数理统计》试卷及参考解答

大学专业试卷华南理工大学 理工科专业 《概率论与数理统计》试卷及参考解答

件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放入乙箱后,求: (1)乙箱中次品件数X 的数学期望; (2)从乙箱中任取一件产品是次品的概率.解 (1)X 的可能值为0,1,2,3,所以X 的概率分布为()()333360,1,2,3k kC C P X k k C -=== 即 X 0 1 2 3P120 920 920 120因此199130123202020202EX =⨯+⨯+⨯+⨯= (2)设A ={从乙箱中任取一件产品是次品},根据全概率公式有(){}{}30191921310202062062064k P A P X k P A X k =====⨯+⨯+⨯+⨯=∑三、(12)某保险公司对一种电视机进行保险,现有9000个用户,各购得此种电视机一台,在保险期内,这种电视机的损坏率为0.001,参加保险的客户每户交付保险费5元,电视机损坏时可向保险公司领取2000元,求保险公司在投保期内:(1)亏本的概率;(2)获利不少于10000元的概率。

解 101,2,,9000i i i i ξ⎧⎨⎩=第台电视机坏设=第台电视机正常9000900011{1}0.001{0}0.9990.0010.00099999i i i i iii i P P E D E D ξξξξξξ=========≈∑∑保险公司亏,则电视机坏的台数: >9000*5/2000=22.5900090009000122.51(4.5)0i i i i E P P ξξξ=⎧⎫⎛⎫⎪⎪- ⎪⎧⎫>=>=-Φ≈⎨⎬⎩⎭⎪⎭∑∑∑ 保险公司获利不少于10000元,则电视机坏的台数:<(9000*5-10000)/2000=17.5900090009000117.5(2.83)(3)(2)(2)(2.832)0.97720.021450.830.99532i i i i E P P ξξξ=⎧⎫⎛⎫⎪⎪- ⎪⎧⎫<=<=Φ⎨⎬⎩⎭⎪⎭Φ-Φ=Φ+-=+⨯=-∑∑∑四、(15分)设二维随机变量(),X Y 的概率分布为 YX -1 0 1-1 a 0 0.2 0 0.1 b 0.21 0 0.1 c其中a 、b 、c 为常数,且X 的数学期望0.2EX =- ,{}000.5P Y X ≤≤= ,记Z X Y =+.求: (1) a 、b 、c 的值; (2)Z 的概率分布律; (3){}P X Z =.解 (1)由概率分布的性质可知, 0.61a b c +++=,即0.4a b c ++=. 由0.2EX =-,可得0.1a c -+=-.再由{}{}{}0,00.1000.500.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,解得0.3a b +=.解以上关于a 、b 、c 的三个方程可得, 0.2,0.1,0.1a b c ===. (2)Z 的所有可能取值为-2,-1,0,1,2.则{}{}21,10.2P Z P X Y =-==-=-={}{}{}11,00,10.1P Z P X Y P X Y =-==-=+==-={}{}{}{}01,11,10,00.3P Z P X Y P X Y P X Y ===-=+==-+==={}{}{}11,00,10.3P Z P X Y P X Y ====+=== {}{}21,10.1P Z P X Y =====所以Z 的概率分布为Z -2 -1 0 1 2 P 0.2 0.1 0.3 0.3 0.1(3) {}{}000.10.10.10.2P X Z P Y b ====++=+=.五、(15分)设随机变量X 的概率密度为()110210 2 40 X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩当当其他令2Y X =,(),F x y 为二维随机变量(),X Y 的分布函数.求:(1)Y 的密度函数()Y f y ; (2) ()cov ,X Y ; (3) 1,42F ⎛⎫- ⎪⎝⎭.解 (1)Y 的分布函数为(){}{}2Y F y P Y y P X y =≤=≤当0y ≤时, ()()0,0Y Y F y f y ==. 当01y <<时,(){{}{00Y F y P X P X P X =≤≤=≤<+≤≤=()Y f y =当14y ≤<时,(){}{11002Y F y P X P X =-≤<+≤≤=()Y f y =当4y ≥时,()()1,0Y Y F y f y ==. 所以Y 的概率密度为()01140 Y y f y y <<⎪=≤<⎪⎩当当其他(2) ()0210111244X EX xf x dx xdx xdx +∞-∞-==+=⎰⎰⎰()022211546X EY EX x f x dx x dx +∞-∞-====⎰⎰()023********248X EXY EX x f x dx x dx x dx +∞-∞-===+=⎰⎰⎰故 ()2cov ,3X Y EXY EX EY =-⋅=(3) 2111,4,4,4222F P X Y P X X ⎛⎫⎧⎫⎧⎫=≤-≤=≤-≤⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭1111,22212224P X X P X P X ⎧⎫⎧⎫⎧⎫=≤-≤≤=-≤≤-=-≤≤-=⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭六、(2学分) (10分) 设随机变量X 与Y 独立,其中X 的概率分布为12~0.30.7X ⎛⎫ ⎪⎝⎭而Y 的概率密度为()f y ,求随机变量U X Y =+的概率密度()g u .解 设()F y 是Y 的分布函数,则由全概率公式可知,U X Y =+的分布函数为(){}G u P X Y u =+≤{}{}0.310.72P X Y u X P X Y u X =+≤=++≤={}{}0.3110.722P Y u X P Y u X =≤-=+≤-=由于X 与Y 独立,得(){}{}()()0.310.720.310.72G u P Y u P Y u F u F u =≤-+≤-=-+-因此,U 的概率密度为()()()()()()0.310.720.310.72g u G u F u F u f u f u '''===-+-=-+-七、(2学分)(10分)已知男子中有5%是色盲患者,女子中有0.25%是色盲患者,若从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?解 设A {{抽到一名男性};B {{抽到一名女性};C {{抽到一名色盲患者},由全概率公式得11()(|)()(|)()5%0.25% 2.625%22P C P C A P A P C B P B =+=⨯+⨯=1()()(|)5% 2.5%2P AC P A P C A ==⨯=由贝叶斯公式得()20(|)()21P AC P A C P C ==八、(2学分)(16分)(1)设()12,,, 2n X X X n ≥为独立同分布的随机变量,且均服从()0,1N ,记X =121n i i X n -=∑,() 1,2,,i i Y X X i n =-=. 求:{}10n P Y Y +≤.(2)袋中有a 只红球,b 只白球,c 只黑球。

概率论与数理统计答案完整版

概率论与数理统计答案完整版

概率论与数理统计答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】习题答案第1章三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的 (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = ,P (B ) = ,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少 (2) 在什么条件下P (AB )取到最小值,最小值是多少 解:因为)()()()(B A P B P A P AB P -+≤,又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==.(2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=+=. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以 .1)(1)(p A P B P -=-=4.已知P (A ) = ,P (A – B ) = ,试求)(AB P .解:因为P (A – B ) = ,所以P (A )– P(AB ) = , P(AB ) = P (A )– , 又因为P (A ) = ,所以P(AB ) =– =,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少 解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k :法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k-=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k=-25C法五:考虑对立事件:410C k=-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P 9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0 x ,y 1} 事件A =“两数之和小于6/5”= {(x ,y ) : x + y 6/5} 因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间 ={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6. 习题7习题9 习题10习题12 习题13 习题14习题15 习题16习题18习题20 习题21习题23 习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,?,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3}, 定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22?1C53=110, P{X=4}=C32?1C53=310, P{X=5}=C42?1C53=35,所以X的分布律为X 3 4 5pk 1/10 3/10 3/5习题5某加油站替出租车公司代营出租汽车业务,每出租一辆汽车,可从出租公司得到3元.因代营业务,每天加油站要多付给职工服务费60元,设每天出租汽车数X是一个随机变量,它的概率分布如下:X 10 20 30 40pi 0.15 0.25 0.45 0.15求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,?;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于 5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为X 0 1P 0.4 0.6习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.解答:设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为X 0123P 3512036120211201120习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,?,k,?.设第k次才取到正品(前k-1次都取到次品), 则随机变量X的分布律为P{X=k}=310×310×?×310×710=(310)k-1×710,k=1,2,?.习题10设随机变量X~b(2,p),Y~b(3,p), 若P{X≥1}=59,求P{Y≥1}.解答:因为X~b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y~b(3,p), 所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005, 在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数, n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{?0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2}, 即λ11!e-λ=λ22!e-λ?λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,?x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:X 135Pk 0.30.50.2所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5.F(x)的图形见图.习题4设离散型随机变量X的分布函数为F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布;(2)P{X<2∣X≠1}.解答:(1)X -113pk 0.40.40.2(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0?A=12,B=1π,于是F(x)=12+1πarctanx, -∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π?π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=ˉ~N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ~N(0,1), 所以Y=3+X2~N(0,1).习题2已知X~f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X~N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X~N(3,22), 所以X-32=Z~N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X~N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率. 解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y~b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ, 所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X~N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997, 因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X~N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X~N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X~N(170,36), 则X-1706~N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X~N(40,102),Y~N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725, P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布习题1已知X的概率分布为X -2 -1 0 1 2 3pi 2a 1/10 3a a a 2a试求:(1)a; (2)Y=X2-1的概率分布.解答:(1)\because2a+1/10+3a+a+a+2a=1,∴a=1/10.(2)Y -1 0 3 8pi 3/10 1/5 3/10 1/5习题2设X的分布律为P{X=k}=12k,k=1,2,?, 求Y=sinπ2X的分布律.解答:因为sinxnπ2={1,当n=4k-10,当n=2k-1,当n=4k-3,所以Y=sin(π2X)只有三个可能值-1,0,1. 容易求得P{Y=-1}=215,P{=0}=13,P{Y=1}=815故Y的分布律列表表示为Y -101P 21513815习题3设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数.解答:fY(y)={fX(y-dc)?1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它. 习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X~N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12?y-12?122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2?f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{?}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(°F)是一个随机变量, 且有T~N(98.6,2), 已知θ=5(T-32)/9, 试求θ(°F)的概率密度.解答:已知T~N(98.6,2). θ=59(T-32), 反函数为T=59θ+32, 是单调函数,所以fθ(y)=fT(95y+32)?95=12π?2e-(95y+32-98.6)24?95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1~20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,?,20.因为P(?K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪?∪A20} =1210(2+4+?+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X~b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X~b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A, 则P(A)=0.03, 显然X~b(300,0.03), 即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,?,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265,(查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计), 求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2, P{X=0}=e-3/2≈0.223;(2)t=5,λ=5/2, P{X≥1}=1-P{X=0}=1-e-5/2≈0.918.习题6设X为一离散型随机变量,其分布律为X -101pi 1/21-2qq2试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:X -101pi 1/22-13/2-2(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=ˉ,P{∣X∣<π/6}=ˉ.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)?A=1.因F(x)在x=π6处连续,故P{X=π6=12, 于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx), 其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(?)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx), 而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx), 即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx, 积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0, 故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X~f(x)={cλe-λx,x>a0,其它(λ>0), 求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λvlinea+∞=ce-λa,所以ce-λa=1, 从而c=eλa. 于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X~f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度?(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-a?(x)dx=∫a+∞?(-t)dt=∫a+∞?(x)dx=1-∫-∞a?(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K~U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4?4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X~N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X~N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.习题19设随机变量X的分布律为X -2-1013pi 1/51/61/51/1511/30试求Y=X2的分布律.解答:pi 1/51/61/51/1511/30X -2-1013X2 41019所以X2 0149pi 1/57/301/511/30注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y 1231 1/61/91/182 1/3a1/9求a.解答:由分布律性质∑i?jPij=1, 可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:X\Y 01/31-1 01/121/30 1/6002 5/1200(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712,同样可求得P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732. (4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为X\Y 0101 7/157/307/301/15(1)求Y的边缘分布律;(2)求P{Y=0∣X=0},P{Y=1∣X=0};(3)判定X与Y是否独立?解答:(1)由(x,y)的分布律知,y只取0及1两个值.P{y=0}=P{x=0,y=0}+P{x=1,y=0}=715+730=0.7 P{y=1}=∑i=01P{x=i,y=1}=130+115=0.3.(2)P{y=0∣x=0}=P{x=0,y=0}P{x=0}=23, P{y=1∣x=0}=13.(3)已知P{x=0,y=0}=715, 由(1)知P{y=0}=0.7, 类似可得P{x=0}=0.7.因为P{x=0,y=0}≠P{x=0}?P{y=0}, 所以x与y不独立.习题2将某一医药公司9月份和8份的青霉素针剂的订货单分别记为X与Y. 据以往积累的资料知X和Y 的联合分布律为X\Y 51525354555152535 4550.060.050.050.010.010.070.050.010.010.010.050.100.100.050.050.050.020.010.010.03 0.050.060.050.010.03(1)求边缘分布律;(2)求8月份的订单数为51时,9月份订单数的条件分布律.解答:(1)边缘分布律为X 5152535455pk 0.180.150.350.120.20对应X的值,将每行的概率相加,可得P{X=i}.对应Y的值(最上边的一行), 将每列的概率相加,可得P{Y=j}.Y 5152535455pk 0.280.280.220.090.13(2)当Y=51时,X的条件分布律为P{X=k∣Y=51}=P{X=k,y=51}P{Y=51}=pk,510.28, k=51,52,53,54,55.列表如下:k 5152535455P{X=k∣Y=51}6/287/285/285/285/28习题3已知(X,Y)的分布律如下表所示,试求:(1)在Y=1的条件下,X的条件分布律;(2)在X=2的条件下,Y的条件分布律.X\Y 012012 1/41/8001/301/601/8解答:由联合分布律得关于X,Y的两个边缘分布律为X 012pk 3/81/37/24Y 012pk 5/1211/241/8故(1)在Y=1条件下,X的条件分布律为X∣(Y=1)012pk 3/118/110(2)在X=2的条件下,Y的条件分布律为Y∣(X=2)012pk 4/703/7习题4已知(X,Y)的概率密度函数为f(x,y)={3x,0<x<1,0<y<x0,其它, 求:(1)边缘概率密度函数;(2)条件概率密度函数.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={3x2,0<x<10,其它,fY(y)=∫-∞+∞f(x,y)dx={32(1-y2),0<y<10,其它.(2)对?y∈(0,1), fX∣Y(x∣y)=f(x,y)fY(y)={2x1-y2,y<x<1,0,其它,对?x∈(0,1), fY∣X(y∣x)=f(x,y)fX(x)={1x,0<y<x0,其它.习题5X与Y相互独立,其概率分布如表(a)及表(b)所示,求(X,Y)的联合概率分布,P{X+Y=1}, P{X+Y≠0}.X -2-101/2pi 1/41/31/121/3表(a)Y -1/213pi 1/21/41/4表(b)解答:由X与Y相互独立知P{X=xi,Y=yi}=P{X=xi}P{Y=yj),从而(X,Y)的联合概率分布为X\Y -1/2 1 3-2-1 01/2 P{X=-2}P{Y=-1/2}P{X=-1}P{Y=-1/2}P{X=0}P{Y=-1/2}P{X=1/2}P{Y=-1/2}P{X=-2}P{Y=1}P{X=-1}P{Y=1}P{X=0}P{Y=1}P{X=1/2}P{Y=1}P{X=-2}P{Y=3}P{X=-1}P{Y=3}P{X=0}P{Y=3}P{X=1/2}P{Y=3}亦即表X\Y -1/213-2-101/2 1/81/161/161/61/121/121/241/481/481/61/121/12 P{X+y=1}=P{X=-2,y=3}+P{X=0,Y=1}=116+148=112,P{X+Y≠0}=1-P{X+Y=0}=1-P{X=-1,Y=1}-P{X=12,Y=-12=1-112-16=34.习题6某旅客到达火车站的时间X均匀分布在早上7:55~8:00, 而火车这段时间开出的时间Y的密度fY(y)={2(5-y)25,0≤y≤50,其它,求此人能及时上火车站的概率.解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它, 因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则?a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}?P{∣X∣≤a},而事件{∣X∣≤a}?{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}?P{∣X∣≤a}, P{∣X∣≤a}(1-P{X≤a})=0P{∣X≤a∣}=0或1=P{X≤a}?(?a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)?fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413, Φ(0)=0.5, 于是Φ(1)-Φ(0)=0.3413, 所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为概率\U 1 2 31 1/9 2/9 2/92 0 1/9 2/9 30 0 1/9习题2设(X,Y)的分布律为X\Y -112-121/101/53/101/51/101/10 试求:(1)Z=X+Y; (2)Z=XY;(3)Z=X/Y;(4)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类型,本质上是利用事件及其概率的运算法则.注意,Z 的相同值的概率要合并. 概率1/101/53/101/51/101/10(X,Y)X+YXYX/Ymax{x,Y}(-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)-2011341-1-2-2241-1-1/2-221112222于是(1)(2)X+Y -20134 pi1/101/51/21/101/10(3)(4)X/Y -2-1-1/212 pi1/51/53/101/51/10习题3设二维随机向量(X,Y)服从矩形区域D={(x,y ∣0≤x ≤2,0≤y ≤1}的均匀分布,且U={0,X ≤Y1,X>Y,V={0,X ≤2Y1,X>2Y,求U 与V 的联合概率分布.解答:依题(U,V)的概率分布为P{U=0,V=0}=P{X ≤Y,X ≤2Y}=P{X ≤Y}=∫01dx ∫x112dy=14,P{U=0,V=1}=P{X ≤Y,X>2Y}=0,P{U=1,V=0}=P{X>Y,X ≤2Y}=P{Y<X ≤2Y}=∫01dy ∫y2y12dx=14,P{U=1,V=1}=1-P{U=0,V=0}-P{U=0,V=1}-P{U=1,V=0}=1/2, 即U\V 01 011/401/41/2习题4设(X,Y)的联合分布密度为f(x,y)=12πe-x2+y22,Z=X2+Y2,求Z 的分布密度.解:FZ(z)=P{Z ≤z}=P{X2+Y2≤z}.当z<0时,FZ(z)=P(?)=0;当z ≥0时,FZ(z)=P{X2+Y2≤z2}=∫∫x2+y2≤z2f(x,y)dxdy=12π∫∫x2+y2≤z2e -x2+y22dxdy=12π∫02πd θ∫0ze -ρ22ρd ρ=∫0ze -ρ22ρd ρ=1-e-z22.故Z 的分布函数为FZ(z)={1-e-z22,z ≥00,z<0.XY -20134 pi1/21/51/101/101/10max{X,Y} -112 pi1/101/57/10Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即{x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y 的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0?e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.。

概率论与数理统计习题参考答案

概率论与数理统计习题参考答案

概率论与数理统计参考答案(附习题)第一章 随机事件及其概率1. 写出下列随机试验的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标;(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度.解: 所求的样本空间如下(1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x 2+y 2<1}(3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0}2. 设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列事件: (1)A 发生,B 和C 不发生;(2)A 与B 都发生,而C 不发生; (3)A 、B 、C 都发生; (4)A 、B 、C 都不发生; (5)A 、B 、C 不都发生;(6)A 、B 、C 至少有一个发生; (7)A 、B 、C 不多于一个发生; (8)A 、B 、C 至少有两个发生. 解: 所求的事件表示如下(1)(2)(3)(4)(5)(6)(7)(8)A B CA B C A B C A B CA B C AB CA B B C A CA BB CC A3.在某小学的学生中任选一名,若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该学生是运动员,则 (1)事件AB 表示什么?(2)在什么条件下ABC =C 成立? (3)在什么条件下关系式C B ⊂是正确的? (4)在什么条件下A B =成立?解: 所求的事件表示如下(1)事件AB 表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC =C 成立.(3)当全校运动员都是三年级学生时,关系式C B ⊂是正确的. (4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=0.7,P (A -B )=0.3,试求()P AB解 由于 A -B = A – AB , P (A )=0.7 所以P (A -B ) = P (A -AB ) = P (A ) -P (AB ) = 0.3, 所以 P (AB )=0.4, 故 ()P AB = 1-0.4 = 0.6.5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=14,P(AB) = P(CB) = 0, P(AC)=18求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,⊂=ABC AB P AB 故P(ABC) = 0则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 1111500044488=++---+=6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率:A ={两球颜色相同},B ={两球颜色不同}.解 由题意,基本事件总数为2a b A +,有利于A 的事件数为22a b A A +,有利于B的事件数为1111112ab b a a b A A A A A A +=, 则 2211222()()a b a ba b a bA A A A P A PB A A +++==7. 若10件产品中有件正品,3件次品,(1)不放回地每次从中任取一件,共取三次,求取到三件次品的概率; (2)每次从中任取一件,有放回地取三次,求取到三次次品的概率. 解 (1)设A={取得三件次品} 则333333101016()()120720或者====C A P A P A C A . (2)设B={取到三个次品}, 则33327()101000==P A .8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求:(1)此人会讲英语和日语,但不会讲法语的概率; (2)此人只会讲法语的概率.解 设 A={此人会讲英语}, B={此人会讲日语}, C={此人会讲法语}根据题意, 可得(1) 32923()()()100100100=-=-=P ABC P AB P ABC(2) ()()()P ABC P AB P ABC =-()01()P A B P A B =+-=-+ 1()()()P A P B P AB =--+433532541100100100100=--+=9. 罐中有12颗围棋子,其中8颗白子4颗黑子,若从中任取3颗,求: (1) 取到的都是白子的概率;(2) 取到两颗白子,一颗黑子的概率;(3) 取到三颗棋子中至少有一颗黑子的概率; (4) 取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 则3831214()0.25555===C P A C .(2) 设B={取到两颗白子, 一颗黑子}2184312()0.509==C C P B C . (3) 设C={取三颗子中至少的一颗黑子} ()1()0.74=-=P C P A . (4) 设D={取到三颗子颜色相同}3384312()0.273+==C C P D C .10. (1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?(2)6个人中,恰好有个人的生日在同一个月的概率是多少? 解(1) 设A = {至少有一个人生日在7月1日}, 则500500364()1()10.746365=-=-=P A P A (2)设所求的概率为P(B)412612611()0.007312⨯⨯==C C P B11. 将C ,C ,E ,E ,I ,N ,S 7个字母随意排成一行,试求恰好排成SCIENCE的概率p.解 由于两个C ,两个E 共有2222A A 种排法,而基本事件总数为77A ,因此有2222770.000794A A p A ==12. 从5副不同的手套中任取款4只,求这4只都不配对的概率.解 要4只都不配对,我们先取出4双,再从每一双中任取一只,共有⋅4452C 中取法. 设A={4只手套都不配对},则有⋅==445410280()210C P A C13. 一实习生用一台机器接连独立地制造三只同种零件,第i 只零件是不合格的概率为=+11i p i,i=1,2,3,若以x 表示零件中合格品的个数,则P(x =2)为多少?解 设A i = {第i 个零件不合格},i=1,2,3, 则1()1i i P A p i==+ 所以 ()11i i i P A p i=-=+ 123123123(2)()()()P x P A A A P A A A P A A A ==++由于零件制造相互独立,有:123123()()()()P A A A P A P A P A =,123123()()()()P A A A P A P A P A = 123123()()()()P A A A P A P A P A =11112111311,(2)23423423424P x ==⨯⨯+⨯⨯+⨯⨯=所以14. 假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解 设A={目标出现在射程内},B={射击击中目标},B i ={第i 次击中目标}, i=1,2.则 P(A)=0.7, P(B i|A)=0.6 另外 B=B 1+B 2,由全概率公式12()()()()()(|)()(()|)P B P AB P AB P AB P A P B A P A P B B A =+===+ 另外, 由于两次射击是独立的, 故P(B 1B 2|A)= P(B 1|A) P(B 2|A) = 0.36 由加法公式P((B 1+B 2)|A)= P(B 1|A)+ P(B 2|A)-P(B 1B 2|A)=0.6+0.6-0.36=0.84因此P(B)= P(A)P((B 1+B 2)|A)=0.7×0.84 = 0.58815. 设某种产品50件为一批,如果每批产品中没有次品的概率为0.35,有1,2,3,4件次品的概率分别为0.25, 0.2, 0.18, 0.02,今从某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.解 设A i ={一批产品中有i 件次品},i=0, 1, 2, 3, 4, B={任取10件检查出一件次品},C={产品中次品不超两件}, 由题意01914911050192482105019347310501944611050(|)01(|)516(|)4939(|)98988(|)2303=========P B A C C P B A C C C P B A CC C P B A C C C P B A C由于 A 0, A 1, A 2, A 3, A 4构成了一个完备的事件组, 由全概率公式 40()()(|)0.196===∑i i i P B P A P B A 由Bayes 公式000111222()(|)(|)0()()(|)(|)0.255()()(|)(|)0.333()======P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B 故20()(|)0.588===∑i i P C P A B16. 由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少(这里设物品件数很多,取出一件后不影响下一件的概率).解 设B={三件都是好的},A 1={损坏2%}, A 2={损坏10%}, A 1={损坏90%},则A 1, A 2, A 3是两两互斥, 且A 1+ A 2 +A 3=Ω, P(A 1)=0.8, P(A 2)=0.15, P(A 2)=0.05.因此有 P(B| A 1) = 0.983, P(B| A 2) = 0.903, P(B| A 3) = 0.13, 由全概率公式31333()()(|)0.80.980.150.900.050.100.8624===⨯+⨯+⨯=∑i i i P B P A P B A由Bayes 公式, 这批货物的损坏率为2%, 10%, 90%的概率分别为313233()(|)0.80.98(|)0.8731()0.8624()(|)0.150.90(|)0.1268()0.8624()(|)0.050.10(|)0.0001()0.8624⨯===⨯===⨯===i i i i i i P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B 由于P( A 1|B) 远大于P( A 3|B), P( A 2|B), 因此可以认为这批货物的损坏率为0.2.17. 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有两只残次品,且含0,1和2件残次品的箱各占80%,15%和5%,现在随意抽取一箱,随意检查其中4只;若未发现残次品,则通过验收,否则要逐一检验并更换残次品,试求: (1)一次通过验收的概率α;(2)通过验收的箱中确定无残次品的概率β. 解 设H i ={箱中实际有的次品数}, 0,1,2=i , A={通过验收}则 P(H 0)=0.8, P(H 1)=0.15, P(H 2)=0.05, 那么有:042314244222424(|)1,5(|),695(|)138P A H C P A H C C P A H C =====(1)由全概率公式20()()(|)0.96α====∑i i i P A P H P A H(2)由Bayes 公式 得00()(|)0.81(|)0.83()0.96β⨯====i P H P A H P H A P A18. 一建筑物内装有5台同类型的空调设备,调查表明,在任一时刻,每台设备被 使用的概率为0.1,问在同一时刻 (1)恰有两台设备被使用的概率是多少? (2)至少有三台设备被使用的概率是多少?解 设5台设备在同一时刻是否工作是相互独立的, 因此本题可以看作是5重伯努利试验. 由题意,有p=0.1, q=1-p=0.9, 故(1) 223155(2)(0.1)(0.9)0.0729===P P C (2) 2555(3)(4)(5)P P P P =++332441550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=19. 甲、乙两个乒乓球运动员进行乒乓球单打比赛,如果每一局甲胜的概率为0.6,乙胜的概率为0.4,比赛时可以采用三局二胜制或五局三胜制,问在哪一种比赛制度下甲获胜的可能性较大? 解 在三局两胜时, 甲队获胜的概率为332213333(2)(3)(0.6)(0.4)(0.6)(0.4)0.648=+=+=A P P P C C在五局三胜的情况下, 甲队获胜的概率为55533244155555(3)(4)(5)(0.6)(0.4)(0.6)(0.4)(0.6)(0.4)0.682=++=++=B P P P P C C C因此,采用五局三胜制的情况下,甲获胜的可能性较大.20. 4次重复独立试验中事件A 至少出现一次的概率为6581,求在一次试验中A出现的概率.解 设在一次独立试验中A 出现一次的概率为p, 则由题意00444465(0)(1)181==-=-P C p q p 解得p=1/3.21.(87,2分)三个箱子,第一个箱子中有4只黑球1只白球,第二个箱子中有3只黑球3只白球,第三个箱子有3只黑球5只白球. 现随机地取一个箱子,再从这个箱子中取出一个球,这个球为白球的概率等于 . 已知取出的球是白球,此球属于第二个箱子的概率为解 设=B “取出白球”,=i A “球取自第i 个箱子”,.3,2,1=i 321,,A A A 是一个完全事件组,.3,2,1,3/1)(==i A P i 5/1)|(1=A B P ,2/1)|(2=A B P ,8/5)|(3=A B P ,应用全概率公式与贝叶斯公式,12053)852151(31)|()()(31=++==∑=i i i A B P A P B P.5320)()|()()|(222==B P A B P A P B A P22.(89,2分)已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)|(=A B P ,则和事件B A ⋃的概率=⋃)(B A P 解 7.0)|()()()()()()()(=-+=-+=⋃A B P A P B P A P AB P B P A P B A P .23.(90,2分)设随机事件A ,B 及其和事件B A ⋃的概率分别是4.0,3.0和6.0. 若B 表示B 的对立事件,那么积事件B A 的概率=)(B A P解 B A 与B 互不相容,且.B B A B A ⋃=⋃ 于是.3.0)()()(=-⋃=B P B A P B A P24.(92,3分)已知41)()()(===C P B P A P ,0)(=AB P ,161)()(==BC P AC P ,则事件A ,B ,C 全不发生的概率为 解 从0)(=AB P 可知,0)(=ABC P .)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +--++=⋃⋃.8501611*********=+---++=25.(93,3分)一批产品共有10件正品和两件次品,任意抽取两次,每次抽一件,抽出后不再放回,则第二次抽出的是次品的概率为解 设事件=i B “第i 次抽出次品”,.2,1=i 则,12/2)(1=B P 12/10)(1=B P ,.11/2)|(,11/1)|(1212==B B P B B P 应用全概率公式)|()()|()()(1211212B B P B P B B P B P B P +=.611121210111122=⨯+⨯=26.(94,3分)已知A ,B 两个事件满足条件)()(B A P AB P =,且p A P =)(,则=)(B P解 ).()()(1)()(AB P B P A P B A P B A P +--=⋃=因)()(B A P AB P =,故有.1)(1)(,1)()(p A P B P B P A P -=-==+27.(06,4分)设A ,B 为随机事件,且0)(>B P ,1)|(=B A P ,则必有( ) A .)()(A P B A P >⋃ B .)()(B P B A P >⋃ C .)()(A P B A P =⋃ D .)()(B P B A P =⋃解 选(C )28.(05,4分)从数1,2,3,4中任取一个数,记为X ,再从1,2,…,X 中任取一个数,记为Y ,则==)2(Y P 解 填.481329.(96,3分)设工厂A 和工厂B 的产品的次品率分别为%1和%2,现从由A 和B 的产品分别占%60和%40的一批产品中随机抽取一件,发现是次品,则该产品属A 生产的概率是解 设事件=C “抽取的产品是次品”,事件=D “抽取的产品是A 生产的”,则D 表示“抽取的产品是工厂B 生产的”. 依题意有.02.0)|(,01.0)|(,40.0)(,60.0)(====D C P D C P D P D P应用贝叶斯可以求得条件概率.7302.04.001.06.001.06.0)|()()|()()|()()|(=⨯+⨯⨯=+=D C P D P D C P D P D C P D P C D P30.(97,3分)袋中有50只乒乓球,其中20只是黄球,30只是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 解 设事件=i A “第i 个人取得黄球”,2,1=i . 根据题设条件可知.4920)|(,4919)|(,5030)(,5020)(121211====A A P A A P A P A P 应用全概率公式.524920503049195020)|()()|()()(1211212=⋅+⋅=+=A A P A P A A P A P A P31.(87,2分)设在一次试验中,事件A 发生的概率为p 。

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章作业题解:掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足 式.解:由表格知并且,361)12()2(====X P X P ;362)11()3(====X P X P ;363)10()4(====X P X P ;364)9()5(====X P X P ;365)8()6(====X P X P ;366)7(==X P 。

即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a . 解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。

故 1-=e a甲、乙两人投篮时, 命中率分别为 和 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ======== 两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。

所以: (1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k ,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P41}2{}1{1}3{)2(==-=-=≥X P X P X P设事件A 在每次试验中发生的概率均为 , 当A 发生3 次或3 次以上时, 指示灯发出信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C(2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为 的泊松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾;(2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于解:设应配备m 名设备维修人员。

华中科大《概率论与数理统计》复习思考题答案(2015)

华中科大《概率论与数理统计》复习思考题答案(2015)

《概率论与数理统计》复习思考题答案一、选择题1.A2.C3.C4.B二、填空题3. (正,正) (反,反) (反,正) (正,反)5. 17. n 11)(|)n n P A A A -9.(1)0.3;(2)0.510. 0.211.甲种产品滞销或乙种产品畅销12. ()n n s s --1113. 414. 若A 发生,则B,C 都发生16. B17. {=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)}{=C (正,正),(正,反),(反,正)}三、解答题1.解:271333111)()()(=⨯⨯⨯⨯===C P B P A P ;278333222)()(=⨯⨯⨯⨯==E P D P ;91271271271)(=++=F P ;92333!3)(=⨯⨯=G P ;98911)(1)(=-=-=F P H P .2.解:随机实验是从17桶中任取9桶,故样本空间的样本点数为C 217,而其中符合定货要求的样本点数为C 410 C 34 C 23,因此所求概率为P= C 410 C 34 C 23/ C 917=24312523.(2)()()()201<33156P X F F ≤=-=4.解 (1)41.01211166=-= P ; (2)00061.012116246=⨯= C P ;(3)0073.012116246112== C C P5.解:(1)3,2,1,0,)3()2()(33===-k C k X P kk k 列表:(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=3,132,12511721,1258110,125270,0)(x x xx x x F6. 解:设X 为抽到白球的个数,X=0,1, 2,3。

E(X)=12/35+18×2/35+4×3/35=60/35=12/7E(X 2)=12/35+18×4/35+4×9/35=120/35=24/7 D(X)=24/7-(12/7)2=24/495. 解(1)0:1600;1600H μμ=≠(2)检验统计量:6041600x Z -= 计算统计量的值:60416271600 1.8Z -== (3 )结论:0.025 1.96Z z <=,未落入拒绝域因此可以认为这批产品该项指标为1600。

华南理工大学概率论和数理统计课后答案

华南理工大学概率论和数理统计课后答案

第一章1-1(1)Ω={1,2,3,4,5,6};(2)Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4)(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)};(3)Ω={3,4,5,6,7,8,9,10};(4)用数字1代表正品,数字0代表次品,则Ω={(0,0),(1,0,0),(0,1,0),(1,1,0,0),(0,1,1,0),(1,0,1,0),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,1,1,1)}.1-2 (1)A为随机事件;B为不可能事件;C为随机事件;D为必然事件;(2)、(3)、(4)、(5)均为随机事件.1-3 (1)A;(2)ABC;(3)A B C;(4)ABC;(5) .ABC ABC ABC1-4 (1)ABC;(2)ABC ABC ABC;(3)ABC;(4)或;(5)ABC ABC ABC ABC ABC ABC ABCABC A B CABC;(6)A B C ABC ABC ABC ABC ABC ABC ABC或或ABC.1-5 (1)买的是1985年以后出版的英文版物理书;(2)在“书店所有物理书都是1985年以后出版的且是英文版”这一条件下,ABC A=.1-6 (1)、(4)、(5)、(6)、(7)正确,其余均不正确.1-7 若需要测试7次,即前6次恰好取出2个次品,还有一个次品在第7次取出,故有246C C A次.而在10个中取出7个共有710A种取法.376设 A ={测试7次},故2463767101()8C C A P A A == 1-8 设 A ={能开门},从6把钥匙中任取2把共有 26C 种取法,故2611()15P A C == . 1-9 设 A ={拨号不超过3次就能接通电话},则191981()0.3101091098P A =+⨯+⨯⨯= 设 B ={若记得最后一位是奇数时,拨号不超过3次就能接通电话},则141431()0.6554543P B =+⨯+⨯⨯= 1-10 设 A ={恰有2人的生日在同一个月份},则21114121110455()12144C C C C P A == .1-11 将五个数字有放回地抽取,出现的结果有 35125= 种. 三个数字不同的取法有335360C A = 种,故 60()0.48125P A == ; 三个数字不含1或5,即每次只能在2、3、4中进行抽取,共有3327=种取法,故 27()0.216125P A == ; 三个数字5出现两次,即有 213412C C = 种取法,故12()0.096125P C == .1-12 设 A ={指定的3本书恰好放在一起},10本书的排列方法共有10!种,而指定的3本书的排列方法有3!种,剩下的7本书与指定的3本书这一整体的排列有8!种,故3!8!1()10!15P A == 1-13 (1)21134339()416C C C P A ==;(2)341()416P B == . 1-14 从10个人中任选3个人共有310C 种方法.(1)设 A ={最小号码是5},当最小号码是5时,在 610 之间还有地两个号码,即有 25C 种方法,故253101()12C P A C ==(2)设 B ={最大号码是5},当最大号码是5时,在14 之间还有两个号码,即有 24C 种方法,故243101()20C P B C ==1-15 (1)112211661()9C C P A C C == ;(2)1111244211664()9C C C C P B C C +== . 1-16 (1) 22261()15C P A C == ;(2)1124268()15C C P A C == .1-17 (1)设 A ={样品中有一套优质品、一套次品},则11844210056()825C C P A C ==; (2)设 B ={样品中有一套等级品、一套次品},则1112421008()825C C P B C == ;(3)设 C ={退货},则2112496412210076()825C C C C P C C ++==; (4)设D ={该批货被接受},则2118484122100749()825C C C PD C +==; (5)设E ={样品中有一套优质品},则1184162100224()825C C P E C ==. 1-18 (1)设 A ={恰有5张黑体,4张红心,3张方块,1张梅花},则5431131313131352()C C C C P A C = (2)设 B ={恰有大牌A,K,Q,J 各一张而其余为小牌},则111194444361352()C C C C C P B C = 1-19 设A ={至少有两张牌的花色相同},则 3112113441134354()0.562C C C C C P A C +==第二章2-1 (1)()()()()0.50.40.10.8;P A B P A P B P AB =+-=+-=(2)()0.1(|)0.25;()0.4P AB P A B P B === (3)()0.1(|)0.2;()0.5P AB P B A P A === (4)()()()0.50.12(|)0.66671()10.43()P AB P A P AB P A B P B P B --====≈--2-2 因为A B 、是独立事件,所以有()()(),()()(),()()()P AB P A P B P AB P A P B P AB P A P B ===(1)()()()(|)0.3;()()P AB P A P B P A B P B P B === (2)()1()1()()10.70.40.72;P A B P A B P A P B =-=-=-⨯=(3)()()()(|)0.4;()()P AB P A P B P B A P A P A === (4)()()()(|)0.7()()P AB P A P B P A B P B P B === 2-3 因为AB A A B ⊆⊆ ,所以()()()P AB P A P A B ≤≤又因为()()()()P A B P A P B P AB =+- ,所以()()()()()P AB P A P A B P A P B ≤≤≤+当A B ⊂时,第一个不等式中的等号成立; 当B A ⊂时,第二个不等式中的等号成立; 当AB =∅时,第三个不等式中的等号成立. 2-4 证明 (())()()()(P A B C P A CB CP A CP B C PA CBC ==+- (()())()()P A P B P C P A B P C=+- (()()())(P A P B P A B P C =+- ()()P A B P C= ()()()()()()P ABC P A P B P C P AB P C ==(())()()()()P A B C P ABC P A P B P C -==()()()()P A B P C P A B P C ==- 所以,A B A B AB - 、、分别与C 独立2-5 设A ={射手击中目标},1A ={第一次击中目标},2A ={第二次击中目标},3A ={第三次击中目标}.有题意可知,0.6100k=,即60k =; 1112233()()()(|)()(|)()(|)P A P A P A P A A P A P A A P A P A A =+++6060600.60.40.410.832150150200⎛⎫=+⨯+⨯-⨯= ⎪⎝⎭ 2-6 设1A ={投掷两颗骰子的点数之和为偶数},设2A ={投掷两颗骰子的点数之和为奇数},1B ={点数和为8},2B ={点数和为6}(1)1166111111113333111665()5(|)()18C C P A B P B A C C C C P A C C ===+;(2)11662222111133332116662()12(|)()18C C P A B P B A C C C C P A C C ⨯===+;(3)116622222116662()12(|)21()21C C P A B P A B P B C C ⨯=== 2-7 设A ={此密码能被他们译出},则141421()0.6553534P A =+⨯+⨯⨯= 2-8 1110101101()1(|),1()10C C P AB P B A P A C === 1110101110101()1(|)6()6C C P AB P A B P B C C === 2-9 设A ={第一次取得的全是黄球},B ={第二次取出黄球、白球各一半},则5552010155103025()0.1,(|)C C C P A P B A C C ===所以 5551015201052530()()(|)C C C P A B P A P B A C C ==2-10 设1A ={第一次取得的是黄球},2A ={第二次取得的是黄球},3A ={第三次取得的是白球},则1111213121112(),(|),(|)b b ca ab a bc a b cC C C P A P A A P A A A C C C ++++++===所以 12312131()()(|)(|)P A A A P A P A A P A A A= 1111112b b c a a b a b c a bcC C CC C C ++++++=2b b c aa b a b c a b c+=+++++2-11 设A ={这批货获得通过},B ={样本中恰有一台次品},A ={这批空调设备退货};D ={第一次抽的是合格品},E ={第二次抽的是合格品}(1)67661474()()(|);70691610P A P D P E D ==⨯= (2)673367134()()(|)()(|);706970691610P B P D P E D P D P E D =+=⨯+⨯=(3)136()1()1610P A P A =-=2-12 设A ={选出的产品是次品},1B ={产品是由 厂生产},B ={选出的产品是正品}(1)118241300042();3000C P A C +== (2)11811182418(|);42C P B A C +==(3)117821117821761782(|)2958C P B B C +==2-13 设A ={检验为次品},B ={实际为正品}(1)()5%90%95%1%0.0545P A =⨯+⨯=; (2)()(|)95%1%(|)0.1743()0.0545P B P A B P B A P A ⨯===2-14 设A ={这位学生选修了会计},B ={这位学生是女生} (1)()()(|)0.66%0.036P AB P B P A B ==⨯=;(2)()()(|)0.490%0.36P AB P B P A B ==⨯=; (3)((())()()P A P A B B P AB P AB =+=+)()(|)()(|)P B P A B P B P AB =+ 0.66%0.410%0.=⨯+⨯= 2-15 设A ={此人被诊断为患肺癌},B ={此人确实患肺癌}(1)()98%3%(|)0.7519;()98%3%97%1%P AB P B A P A ⨯===⨯+⨯(2)()(|)3%2%(|)0.0001;2%3%97%99%()P B P A B P B A P A ⨯===⨯+⨯ (3)对于被检查者,若被查出患肺癌,可不必过于紧张,还有约25%的可能没有患肺癌,可积极准备再做一次检查.对地区医疗防病结构而言,若检查结果是未患肺癌,则被检查者基本上是没有患肺癌的. 2-16 设A ={收到信息为0},B ={发送信息为0},则有(0.7(10.02)0.30.010.689P A =⨯-+⨯=)(0.7(10.02)0.686P AB =⨯-=)所以 (0.686686(|()0.689689P AB P B A P A ==))=2-17 设1A ={这批计算机是畅销品},2A ={这批计算机销路一般},3A ={这批计算机是滞销品},B ={试销期内能卖出200台以上}.根据题意有123()0.5,()0.3,()0.2P A P A P A === 123(|)0.9,(|)0.5,(|)0.3P B A P B A P B A ===(1)1111112233()((|(|)()((|((|((|P A B P A P B A P A B P B P A P B A P A P B A P A P B A ==++)))))))) 0.50.90.726;0.50.90.30.50.20.1⨯==⨯+⨯+⨯ (2)22()0.15(|)0.242;()0.62P A B P A B P B === (3)33()0.02(|)0.032;()0.62P A B P A B P B === (4)33(|)1(|)10.0320.968P A B P A B =-=-=2-18 设A ={硬币抛掷出现正面},i B ={硬币是第i 个硬币} (i =1,2,3,4,5),B ={抛掷又出现字面}(1)125()()()()P A P AB P AB P AB =+++112255()(|)()(|)()(|)P B P A B P B P A B P B P A B =+++ 11111311101;545254552=⨯+⨯+⨯+⨯+⨯= (2)11()(|)0()P AB P B A P A ==, 2211()145(|)1()102P AB P B A P A ⨯===, 3311()125(|)1()52P AB P B A P A ⨯=== , 4431()345(|)1()102P AB P B A P A ⨯===,551()25(|)1()52P AB P B A P A === ;(3)1111332()0010.75104521045P B =⨯+⨯+⨯+⨯+⨯=2-19 设1A ={一人击中},2A ={两人击中},3A ={三人击中},B ={飞机被击落}.根据题意有1()0.40.5(10.7)0.60.50.30.60.50.70.36,P A =⨯⨯-+⨯⨯+⨯⨯= 2()0.40.5(10.7)0.40.50.370.60.50.70.41,P A =⨯⨯-+⨯⨯+⨯⨯= 3()0.40.50.70.14,P A =⨯⨯=123(|)0.2,(|)0.6,(|)1P B A P B A P B A ===所以 112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++ 0.360.20.410.60.141=⨯+⨯+⨯= 2-20 设A ={这批元件能出厂},则495()(4%0.0596%0.99)0.050.999999P A ⎛⎫=⨯+⨯+⨯+⨯+ ⎪⎝⎭4940.050.999898⎛⎫⨯+⨯ ⎪⎝⎭0.8639= 2-21 (1)设A ={这批产品经检验为合格品},则1205124175()0.960.060.960.060.960.063252516162222P A ⎛⎫=⨯⨯+⨯+⨯+⨯+⨯+⨯ ⎪⎝⎭0.757= (2)设B ={产品真是合格品},则12012170.960.960.96()3251622(|)0.982()0.757P AB P B A P A ⎛⎫⨯⨯+⨯+⨯ ⎪⎝⎭===第三章3-1 根据题意可知{}()1x a x aP X x F x a x b b ax b ≤⎧⎪-⎪<==<≤⎨-⎪>⎪⎩当当当3-2 根据题意可知00()1012x f x x ≤⎧⎪=⎨<≤⎪⎩当 当所以 001(){}1211x F x P X x x x x ≤⎧⎪⎪=<=<≤⎨⎪>⎪⎩当当0当3-3 根据题意可知011126(){}223313x x F x P X x x x ≤-⎧⎪⎪-<≤⎪=<=⎨⎪<≤⎪⎪>⎩当当当当3-4 设X ={取到的次品的个数}.(1)取出后放回:1144115516{0}25C C P X C C === ,1111144111558{1}25C C C C P X C C +=== 111111551{2}25C C P X C C === 因此,取得的次品数的分布列为X 0 1 2P 1625 825 125(2)取出后不放回:114311543{0}5C C P X C C ===, 1111144111542{1}5C C C C P X C C +===因此取得的次品数的分布列为 X 0 1P 35 253-5 当X k =时,说明前1k -次失败,第k 次成功,因而1{}(1)k P X k p p -==- (1,2,)k = 3-6 (1)放回袋中的情况:512161{0}243C P X C ⎛⎫=== ⎪⎝⎭, 111111422225111116666610{1}243C C C C C P X C C C C C C === ,111112442225111116666640{2}243C C C C C P X C C C C C C ===, 111113444225111116666680{3}243C C C C C P X C C C C C C === , 111114444425111116666680{4}243C C C C C P X C C C C C C ===, 111115444445111116666632{5}243C C C C C P X C C C C C C === . 因此红球个数的分布列为X 0 1 2 3 4 5P1243 10243 40243 80243 80243 32243(2)不放回袋中的情况:223524562{3}3C P P P X P ===, 114524561{4}3C P P P X P ===.因此红球个数的分布列为X 3 4P23 133-7 {1}0.9P X ==, {2}0.10.90.09P X ==⨯=,{3}0.10.10.90P X ==⨯⨯=,{4}0.10.10.10.90P X ==⨯⨯⨯=, {5}0.10.10.10.1P X ==⨯⨯⨯=因此,X 1 2 3 4 5P 0.9 0.09 0.009 0.0009 0.00013-8 由题意知,1~8000000,2000000X B ⎛⎫ ⎪⎝⎭,由于8000000n =较大,12000000p =很小,故二项分布可用4np λ==的泊松分布近似代替,则有44{}!k P X k e k -==3-9 设X ={废品的件数},1000,0.0063n p ==可用泊松近似公式( 6.3)np λ==得所求概率为6 6.36.3{6}0.166!P X e -==≈3-10 设X ={单位时间内纱线被扯断的次数},由题意可知,~(800,0.005)X B ,则(1)448004800{4}(0.005)(0.995)0.195367P X C -===;(2)108008000{10}(0.005)(0.995)0.997160i i i i P X C -=≤==∑.3-11 设X ={该单位患有这种疾病的人数},5000,0.001n p ==,可用泊松近似公式(5)np λ==得所求概率为5505{5}1{5}1!k k P X P X e k -=>=-≤=-∑10.00670.03370.08420.140=----- 0.38404=3-12 设X ={在同一时刻向总机要外线的分机数},则~(300,0.30)X B ,在同一时刻至少有13台分机向总机要外线的时候不能满足.可用泊松近似公式得所求概率为13909{13}0.92615!k k P X e k -=≤==∑3-13 这分布不是离散的,因为X 的分布函数不是阶梯型的,也不是连续的(在x =1处是跳跃的).3-14 由连续型随机变量概率密度分布的性质可知:2()111A x dx dx A x ϕπ+∞+∞-∞-∞==⇒=+⎰⎰因此 1A π=121111{11}[arctan1arctan(1)]0.51P X dx x ππ--<<==--=+⎰3-150002010211()()022411224x xx x xxe dxx F x x dx e dx dx x e dx dx x ϕ-∞-∞-∞-∞⎧≤⎪⎪⎪==+<≤⎨⎪⎪+>⎪⎩⎰⎰⎰⎰⎰⎰当当当化简得10211()022412xex F x x x x ⎧≤⎪⎪⎪=+<≤⎨⎪>⎪⎪⎩当当当3-16 (1)因为()F x 在(,)-∞+∞上的左连续性,所以(1)1F A == ,则200()0111x F x x x x ≤⎧⎪=<≤⎨⎪>⎩当当当(2)对分布函数求导得分布密度函数为201()()0x x x F x ϕ<<⎧'==⎨⎩当其他(3) 0.70.3{0.30.7}20.4P X xdx <<==⎰.3-17 (1)0.0151001.5{100}1{100}10.0150.223xP X P X edx e ---∞>=-≤=-==⎰(2)0.0150.015{}1{}10.0150.1xx x P X x P X x edx e ---∞>=-≤=-=<⎰因此ln 0.1153.50.015x >-=. 3-18 由题意可知1030()30x f x ⎧≤≤⎪=⎨⎪⎩当其他 10012{10}1{10}1303P X P X dx ≥=-<=-=⎰3-19 由题意可知212(1)01()0x x x x ϕ⎧-<<=⎨⎩当其他 120.8{0.8}12(1)0.0272P X x x dx >=-=⎰120.9{0.9}12(1)0.0037P X x x dx >=-=⎰3-20 (1){ 2.2}(2.2)0.9861P X φ<==; (2){ 1.76}1(1.76)0.0392P X φ>=-=;(3){0.78}1(0.78)0.2177P X φ<-=-=;(4){ 1.55}{1.55 1.55}2(1.55)10.8788P X P X φ<=-<<=-=; (5){ 2.5}{ 2.5}{ 2.5}22(2.5)0.0124P X P X P X φ>=<-+>=-=. 3-21 1,4μσ=-= .(1)()2.441{ 2.44}0.860.80514P Y φφ+⎛⎫<=== ⎪⎝⎭;(2)1{ 1.5}1{ 1.5}1(0.125)0.54988P Y P Y φφ⎛⎫>-=-≤-=--== ⎪⎝⎭;(3) 2.81{ 2.8}(0.45)1(0.45)0.32644P Y φφφ-+⎛⎫<-==-=-= ⎪⎝⎭;(4)4141{4}{44}44P Y P Y φφ+-+⎛⎫⎛⎫<=-<<=- ⎪ ⎪⎝⎭⎝⎭()()1.25(10.75)0.6678φφ=--=; (5)2151{52}44P Y φφ+-+⎛⎫⎛⎫-<<=- ⎪ ⎪⎝⎭⎝⎭()()0.75[11]0.6147φφ=--=;(6)2101{11}{2}{0}144P Y P Y P Y φφ++⎛⎫⎛⎫->=>+<=-+ ⎪ ⎪⎝⎭⎝⎭0.8253=.3-22 设A ={一次测量中误差的绝对值不超过30}.(1)由题意可知,2~(20,40)X N ,20,40μσ==,则(){30}{3030}(0.25)( 1.25)P A P XP X φφ=≤=-≤≤=-- (0.25)(1.25)10.φφ=+-= (2)设Y 表示3次独立重复测量中事件A 发生的次数,则~(3,0.4931)Y B{1}1{1}1{0}P Y P Y P Y ≥=-<=-=331(10.4931)0.87C =--=3-23 首先求出电子管的损坏概率为150150201001001()03P x dx dx x ϕ==+=⎰⎰设Y ={电子管损坏的个数},则1~(3,)3Y B .(1)0303118{0}13327P Y C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭; (2)333111{3}13327P Y C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭. 3-24 设A ={生产的零件合格},2~(50,0.75)X N ,50,0.75μσ==,则(){50 1.550 1.5}P A P X =-≤≤+501.55050501.550{}0.750.750.75X P ---+-=≤≤(2)(2)2(2)10.φφφ=--=-= 3-25 强度2~(200,18)X N .(1)18020010{180}1{180}10.8665189P X P X φφ-⎛⎫⎛⎫>=-≤=-== ⎪ ⎪⎝⎭⎝⎭(2)强度不低于150MPa 的概率为()150200{150}1{150}1 2.770.997218P X P X φφ-⎛⎫≥=-<=-== ⎪⎝⎭3-26 由题意可知X -3 -2 0 1 21X -- 2 1 -1 -2 -32X 9 4 0 1 4P18 14 18 13 16所以1X --的分布列为1X -- 2 1 -1 -2 -3 P 18 14 18 13 162X 的分布列为2X 0 1 4 9P18 13 512 183-27 由23(0,1)()0(0,1)xx x x ϕ⎧∈=⎨∉⎩当当知300()0111x F x x x x ≤⎧⎪=<<⎨⎪≥⎩当当当.(1)令21Y X =-+,Y 的分布函数为(){}{21}Y F x P Y x P X x =<=-+<1211()2xx P X x d x ϕ--∞-⎧⎫=>=-⎨⎬⎩⎭⎰ 当1012x -≤<时312201()1312xY x F x x dx --⎛⎫=-=- ⎪⎝⎭⎰, 所以 221131()32222Y x x f x --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭当102x-<时,12()0xx dx ϕ--∞=⎰,此时,1x >,()1Y F x =;当112x-≤时12()1xx dx ϕ--∞=⎰此时,1x ≤-,()0Y F x = .因此 3011()111211Y x x F x x x ≤-⎧⎪-⎪⎛⎫=--<≤⎨ ⎪⎝⎭⎪⎪>⎩当当当23111()220Y x x f x ⎧-⎛⎫-<≤⎪ ⎪=⎨⎝⎭⎪⎩当其他 (2)设2Y X = ,Y 的分布函数为2(){}{}()Y F x P Y x P X x x t d t=<=<=<1> ,即1x >时,()1Y F x =;当01<≤,即01x <≤时,23/2()3Y F x t dt x==,所以1/23()2Y f x x =;0=,即0x =时,()0Y F x =.因此 3/200()0111Y x F x xx x ≤⎧⎪=<≤⎨⎪>⎩当当当 1/2301()2Y xx f x ⎧<≤⎪=⎨⎪⎩当其他 3-28 当0x >时,(){}{}{ln }X Y F x P Y x P e x P X x =<=<=<2222l n l n()/2()/2xx t a t a dt e dt σσ-----∞-∞==⎰22(ln )/2()0()00x a Y Y dF x x x dx x σϕ--⎧=>⎪=⎨⎪≤⎩当当3-29 1/331/3(){}{}{}()x Y F x P Y x P X x P X x t dt ϕ-∞=<=<=<=⎰2/31/3()1()()3Y Y dF x x x x dx ϕϕ-==令()1x ϕ=代入上式可得2/3101()3Y xx x ϕ-⎧<≤⎪=⎨⎪⎩当其他 3-30 /2/2(){}{2ln }{}x e x t Y F x P Y x P X x P X e e dt λλ-=<=<=<=⎰因此/2/2/2/211()22x x x e x e Y f x e e e λλλλ--==()x -∞<<+∞第四章4-1X 1 2 3Y1 0 16 1122 16 16 163 112 164-2 4352410{,}i j i jC C C P X i Y j C --=== 4-3 由于11(,)14RAf x y dxdy Axydxdy A xdx ydy +∞+∞-∞-∞====⎰⎰⎰⎰⎰⎰, 故4A =,代入密度函数,得401,01(,)0xy x y f x y <<<<⎧=⎨⎩当其他所以 112300111{,}42336P X Y xdx ydy <<==⎰⎰4-4 (1)当0X >且0Y >时,()0(,)(1)(1)xyu v x y F x y du e dv e e -+--==--⎰⎰;当00x y <<或时,(,)0F x y =.所以 (1)(1)0,0(,)0x ye e x y F x y --⎧--<<+∞<<+∞=⎨⎩当其他(2)由于{(,):0,0,1}D x y x y x y =≥≥+≤,有11()10(,)(,)12xx y DP X Y f x y dxdy dx e dy e --+-===-⎰⎰⎰⎰4-5 由题意可知:14(,)111(,)220x y B f x y ⎧=∈⎪⎪⨯⨯=⎨⎪⎪⎩当其他当12x ≤-或0y ≤时,(,)0F x y =; 当102x -<≤且021y x <≤+时,102(,)42(21)x y y F x y dudv y x y -==--⎰⎰;当102x -<≤且21y x >+时,212102(,)42(21)x x F x y dudv x +-==+⎰⎰; 当0x >且01y <≤时,102(,)42(1)xyy F x y dudv y y -==-+⎰⎰;当0x >且1y >时,(,)1F x y =.因此 2100212(21)00212(,)12(21)02122(1)001101x y y x y x y x F x y x x y x y y x y x y ⎧≤-≤⎪⎪⎪-+-<≤<≤+⎪⎪=⎨⎪+-<≤>+⎪⎪-><≤⎪>>⎪⎩当或当且当且当且当且4-61{0}6P X ==, 7{0}12P Y ==, 5{1}12P X =-=,1{1}3P Y ==, 5{2}12P X ==, 11{}312P Y ==. 4-7 由于()(,)X f x f x v dv +∞-∞=⎰,得1(,)(,)0x y Df x y ∈⎧=⎨⎩当其他当[0,1]x ∈时,220()122xX f x dv x -==-⎰;当[0,1]x ∉时,()0X f x =.因此 2201()0X x x f x -<<⎧=⎨⎩当其他当[0,2]y ∈时,2201()1(2)2yY f y du y -==-⎰;当[0,2]y ∉时,()0Y f y =.因此 1102()2Y y y f y ⎧-≤≤⎪=⎨⎪⎩当其他 4-8 由于()(,)X f x f x v dv +∞-∞=⎰, ()(,)Y f y f u y du +∞-∞=⎰ 当0x >时,0()x v x X f x e dv e +∞---==⎰;当0y >时,0()u y y Y f y e du e +∞---==⎰.因此 0()00x X e x f x x -⎧>=⎨≤⎩当当, 0()00y Y e y f y y -⎧>=⎨≤⎩当当4-9 由题意可知1X 0 12X0 0.1 0.81 0.1 0 4-10 由于1X -1 0 12X-1 0 140 14 0 141 0140 4-11 (1)由于(34)(34)(,)112x y x yRAf x y dxdy Ae dxdy A dx e dy +∞+∞+∞+∞-+-+-∞-∞====⎰⎰⎰⎰⎰⎰, 故12A =.(2)当0x <或0y <时,(,)0F x y =; 当00x y <<且时,(34)340(,)12(1)(1)x yu v x y F x y e dudv e e -+--==--⎰⎰.故 34(1)(1)0,0(,)0x y e e x y F x y --⎧-->>=⎨⎩当其他(3)34(34)9160{03,04}12(1)(1)x y P X Y dx e dy e e -+--<≤<≤==--⎰⎰4-12 由题意可知1(,)(,)20x y D f x y ⎧∈⎪=⎨⎪⎩当其他当10x -≤<时,111()12x X x f x dv x +--==+⎰; 当01x ≤≤时,111()12x X x f x dv x -+-==-+⎰. 故 110()1010X x x f x x x +-≤<⎧⎪=-≤≤⎨⎪⎩当当其他 4-13 (1)11111111118812121216161616a ⎛⎫⎛⎫⎛⎫+++++++++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故14a =. (2)1{}4P Xi ==(1,2,3,4i =, 25{1}48P Y ==,13{2}48P Y ==,27{3}48P Y ==,3{4}48P Y ==.(3)111125{}48121648P XY ==+++=. 4-14 由联合分布函数的性质可知 (1)(,)()()122F A B C ππ+∞+∞=++=,(,)()()022F A B C ππ-∞-∞=--=,(,)()(a r c t a n )023yF y A B C π-∞=-+=,(,)(a r c t a n )()022x F x A B C π-∞=+-=,故21A π=,2Bπ=,2C π=.(2)21(,)arctan arctan 2223x y F x y πππ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭, 2222(,)6(,)(4)(9)F x y f x y x y x y π∂==∂∂++. (3)222262()(4)(9)(4)X f x dy x y x ππ+∞-∞==+++⎰,222263()(4)(9)(9)Y f y dx x y y ππ+∞-∞==+++⎰4-15 (1)由于122002(,)()13f x y dxdy x Cxy dxdy C +∞+∞-∞-∞=+=+=⎰⎰⎰⎰,故13C=. (2)当00x y <<或时,(,)0F x y =; 当1,2x y >>时,(,)1F x y =;当01,02x y ≤≤≤≤时,232200111(,)()3312xyF x y du u uv dv x y x y =+=+⎰⎰;当01,2x y ≤≤>时,223200121(,)()333xF x y du u uv dv x x =+=+⎰⎰当1,02x y >≤≤时,12200111(,)()3312yF x y du u uv dv y y =+=+⎰⎰.故 3223220001101,0231221(,)01,233111,0231211,2x y x y x yx y F x y x x x y y y x y x y <<⎧⎪⎪+≤≤≤≤⎪⎪⎪=+≤≤>⎨⎪⎪+>≤≤⎪⎪>>⎪⎩当或当当当当(3)由于()(,)X f x f x v dv +∞-∞=⎰, ()(,)Y f y f u y du +∞-∞=⎰,当[0,1]x ∈时,222012()233X f x x xy dy x x ⎛⎫=+=+ ⎪⎝⎭⎰;当[0,1]x ∉时,()0X f x =.故 22201()3X x x x f x ⎧+≤≤⎪=⎨⎪⎩当其他当[0,2]y ∈时,120111()336Y f y x xy dx y ⎛⎫=+=+ ⎪⎝⎭⎰;当[0,2]y ∉时,()0Y f y =.故 1102()360Y y y f y ⎧+≤≤⎪=⎨⎪⎩当其他(4)由于|(,)(|)()X Y Y f x y f x y f y =, |(,)(|)()Y X X f x y f y x f x =,故 26201,02(|)20x xyx y f x y y ⎧+≤≤≤≤⎪=+⎨⎪⎩当其他故 301,02(|)62x yx y f y x x +⎧≤≤≤≤⎪=+⎨⎪⎩当其他 4-16 由于|(,)(|)()X Y Y f x y f x y f y =, |(,)(|)()Y X X f x y f y x f x =, (1)当0x >时,(2)20()22x y x X f x e dy e +∞-+-==⎰;当0y >时,(2)0()2x y y Y f y e dx e +∞-+-==⎰.故 2|20,0(|)0x X Y e x y f x y -⎧>>=⎨⎩当其他|0,0(|)0y Y X e x y f y x -⎧>>=⎨⎩当其他(2)21(2)0012{2,1}{2|1}{1}x y ydx e dyP X Y P XY P Y edy-+-≤≤≤≤==≤⎰⎰⎰14541111e e e e e -------+==--. 4-17 (1)由于()1X f x = (01)x <<|1(|)1Y X f y x x=- (01,1)x x y <<<<故 101,1(,)10x x y f x y x⎧<<<<⎪=-⎨⎪⎩当其他 (2)由于01()(,)l n (1)1yY f y f x y d x d x y x+∞-∞===---⎰⎰故l n (1)01()0Y y y f y --<<⎧=⎨⎩当其他 (3)11121{()1}l n 21yy P X Y d yd x x-+>==-⎰⎰ 4-18X Y 与相互独立的充要条件是ij i j p p p = (1,2;1,2,3)i j ==,因此有{1,3}{1}{3}P X Y P X P Y =====1111169181818B ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭{2,3}{2}{3}P X Y P X P Y =====11318A B B B ⎛⎫⎛⎫=+++= ⎪⎪⎝⎭⎝⎭解得21,99A B ==. 4-19 (1)由0.5()0.5()(,)0.251x xu v x X F x f u v dvdu e dvdu e +∞+∞-+--∞-∞-∞-∞===-⎰⎰⎰⎰故 0.510()00x X e x F x x -⎧->=⎨≤⎩当当同理可得0.510()00y Y e y F y y -⎧->=⎨≤⎩当当(2)0.5()20.250,0(,)(,)0x y e x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩当其他当0x >时,0.5()0.50()(,)0.250.5x v x X f x f x v dv e dv e +∞+∞-+--∞===⎰⎰;当0x ≤时,()0X f x =.故 0.50.50()00x X e x f x x -⎧>=⎨≤⎩当当同理可得0.50.50()00y Y e y f y y -⎧>=⎨≤⎩当当(3)由于(,)()()X Y f x y f x f y =,故X Y 、相互独立. (4)0.5()0.10.10.1{0.1,0.1}0.25x y P XY dy e dx e +∞+∞-+->>==⎰⎰.4-20 (1)由于1001(,)()12x f x y dxdy dx C x y dy C +∞+∞-∞-∞=+==⎰⎰⎰⎰,故2C=.(2)由于()(,)X f x f x v dv +∞-∞=⎰, ()(,)Y f y f u y du +∞-∞=⎰当[0,1]x ∈时,20()2()3x X f x x y dy x =+=⎰;当[0,1]x ∉时,()0X f x =.故 2301()0X x x f x ⎧≤≤=⎨⎩当其他当[0,1]y ∈时,12()2()123Y yf y x y dx y y =+=+-⎰;当[0,1]y ∉时,()0Y f y =.故 212301()0Y y y y f y ⎧+-≤≤=⎨⎩当其他(3)当01x y ≤≤≤时,有(,)2()f x y xy =+, 22()()3(123)X Y f x f y x y y =+-可见,(,)()()X Y f x y f x f y ≠,所以X Y 与并不相互独立. (4)11201{1}2()3y yP XY dy x y dx -+≤=+=⎰⎰.4-21 (1)由于X Y 与相互独立,故()0,0(,)()()0x y X Y e x y f x y f x f y -+⎧>>==⎨⎩当其他 (2)110{1|0}{1}1x P X Y P X e dx e --≤>=≤==-⎰.第五章5-1 (1)1111210(1)12666EX =⨯+⨯+⨯+-⨯=,222211117210(1)26663EX =⨯+⨯+⨯+-⨯=,11(21)(221)(211)(201)26E X -+=-⨯+⨯+-⨯+⨯+-⨯+⨯11(2(1)1)166+-⨯-+⨯=-; (2)224()3DX EX EX =-=,()X σ==.5-2 (1)00;kk k k qEX kpq pq q p∞∞=='⎛⎫=== ⎪⎝⎭∑∑(2)2222221000kk k k k k k k EXk pq pqk qpq q pq kq ∞∞∞∞--====''⎛⎫===+ ⎪⎝⎭∑∑∑∑200k k k k pq q pq q ∞∞=='''⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭∑∑222q qp p=+2222222q q q q q DX p p p p p=+-=+5-3 (1)1()02xEX xf x dx x e dx +∞+∞--∞-∞===⎰⎰;(2)22201()2(3)22x DX EX EX x e dx +∞-=-==Γ=⎰. 5-4 (1)0(1)1EXp p p =⨯-+⨯=, 0(1)1EY p p p =⨯-+⨯=;(2)由于20(1)1EX p p p =⨯-+⨯=,20(1)1EY p p p =⨯-+⨯=;22()(1)DX EX EX p p =-=-,22()(1)DY EY EY p p =-=-;(3)由于00(1)11EXY p p p =⨯⨯-+⨯⨯=,故2cov(,)(1)X Y EXY EX EY p p p p =-⋅=-=-.5-5222()()2g t E X t EX tEX t =-=-+, ()220dg t t EX dt=-=, 因此,tEX =,即t EX =时,()g t 达到最小值为DX .5-6 当2Y X =时,022x EYxe dx +∞-==⎰;当3XYe-=时,3014x x EYe e dx +∞--==⎰. 5-7 222()/2(ln 2)/2xx u a EY a dx a eμσσ+∞---∞==⎰ 22()DY EY EY =-222222()/2(l n 2)/222l n 2l n2()()(1)xx u a u a a a e d x a ea e e μσσσσ+∞---∞=-=-⎰ 5-8 由于12102()23EX x x dx x dx ϕ+∞-∞===⎰⎰, (5)20()y EY y y dy ye dy ϕ+∞+∞---∞==⎰⎰6=,且X Y 与相互独立,所以有2643EXY EX EY =⋅=⨯=, 220(+)+633E X Y EX EY ==+=5-9 证明)0E Y E E X E X==-=22221()()1DY EY EY E E X EXDX=-==-=5-10 证明)XYρ===()()0E X E X Y E Y⇒--=()0E X Y Y E X X E Y E X E Y⇒-⋅-⋅+⋅=E X Y E X E Y⇒-⋅=()2c o v(,)D X Y D X D Y X Y D X D Y⇒+=++=+5-15 (1)由于2200(,)sin()x y dxdy A x y dxdyππϕ+∞+∞-∞-∞=+⎰⎰⎰⎰2c o s c o s2A x x d xππ⎡⎤⎛⎫=-+-⎪⎢⎥⎝⎭⎣⎦⎰21A==,故12A=.(2)22200011sin()cos cos2224 EX x x y dxdy x x x x dxπππππ⎡⎤⎛⎫=+=++=⎪⎢⎥⎝⎭⎣⎦⎰⎰⎰,由于X Y与相互对称,故有4EY EXπ==;2 222222200011sin()[sin cos]22282 EX x x y dxdy x x x x dxπππππ=+=+=+-⎰⎰⎰22222()22824162DX EX EXπππππ⎛⎫=-=+--=+-⎪⎝⎭由于X Y与相互对称,故有22162DYππ=+-.(3)222000112sin()sin cos222EXY xy x y dxdy x x x dxππππ-⎛⎫=+=+⎪⎝⎭⎰⎰⎰22π-=2cov(,)1162X Y EXY EX EY ππ=-⋅=-+-2211622162XYππρππ-+-==+- 5-12 二维随机变量(,)X Y 的联合分布函数为1(,)(,)0x y Af x y ∈⎧=⎨⎩当其他12(1)12(1)000012,33x x EX xdydx EY ydydx --====⎰⎰⎰⎰12(1)0016x EXY xydydx -==⎰⎰. 5-13 设抽到次品所需要次数为X ,则X 服从下列分布:X 1 2 3 k P2n 221n n n -⋅- 23212n n n n n --⋅⋅-- 2(2)(3)()(1)(2)(1)n n n k n n n n k ------- 即2{}1n k P Xk n n -==⋅-,因此 11112{}1n n k k n k EX k P X k k n n --==-=⋅==⋅⋅-∑∑1121121(2)3n n k k n kn k n n --==+⎛⎫=-= ⎪-⎝⎭∑∑122121n k n k EX k n n -=-=⋅⋅-∑11231121(1)(2)6n n k k k n k n n n n --==⎛⎫=-=+ ⎪-⎝⎭∑∑221()(1)(2)18DX EX EX n n =-=+- 5-15 (1)11005(2)12EX x x y dydx =--=⎰⎰, 512EY EX ==.1122001(2)4EX x x y dydx =--=⎰⎰, 2214EY EX == 2211()144DX DY EX EX ==-=11001(2)6EXY xy x y dydx =--=⎰⎰2151cov(,)612144X Y EXY EX EY ⎛⎫=-⋅=-=- ⎪⎝⎭5()2cov(,)36D X Y DX DY X Y +=++=(2)103()(2)2X f x x y dy x =--=-⎰, 103()(2)2Y f y x y dx y =--=-⎰可见,()()(,)X Y f x f y f x y ≠,所以两者不独立.111441111144XYρ-===-故两者相关. 5-16(5)5()22y X f x xedy x +∞--==⎰, 1(5)(5)0()2y y Y f y xe dx e ----==⎰可见,()()(,)X Y f x f y f x y =,故两者独立.1(5)054y EXY xye dydx +∞--==⎰⎰5-17 两台仪器无故障时间的密度分布为1511150()0x e x f x -⎧>=⎨⎩当其他, 2522250()0x e x f x -⎧>=⎨⎩当其他联合密度函数为125()121212250,0(,)()()0x x e x x f x x f x f x -+⎧>>==⎨⎩当其他设无故障工作时间为12y x x =+,则联合分布函数为1125()5512210(,)()2551y y x x x y y F x x F y e dx dx ye e --+--===--+⎰⎰5()()25y df y F y e y dy-==所以密度函数为5250()0y e y y f y -⎧>=⎨⎩当其他 2502255yEY y edy +∞-==⎰, 235062525y EY y e dy +∞-==⎰ 262225525DY ⎛⎫=-= ⎪⎝⎭5-18 根据题意有()EX P A =, ()EY P B =, ()EXY P AB ={1}()P XY P AB ==, {0}1()P XY P AB ==-已知0XYρ=,所以cov(,)0X Y =,即cov(,)()()()0X Y EXY EX EY P AB P A P B =-⋅=-=故()()()P AB P A P B =.事件A B 与相互独立,由事件的独立性定理可得:A ,A ,B ,B 两两相互独立,即{11}{1}{1}P X Y P X P Y =====, {10}{1}{0}P X Y P X P Y =====, {01}{0}{1}P X Y P X P Y =====, {00}{0}{0}P X Y P X P Y =====,因此,X Y 和相互独立.5-19 已知11~0,,~0,22X N Y N ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,由正态分布的性质可知:()1D X Y DX DY -=+=, ()0E X Y -=故()()~0,1XY N -,令Z X Y=-,则()~0,1ZN .22()zE Z z e dz+∞--∞==⎰22222()()()()1D Z EZE Z DZ EZ E Zπ=-=+-=-⎡⎤⎡⎤⎣⎦⎣⎦第六章6-1 设11nn iiY Xn==∑,再对n Y利用契比雪夫不等式:{}1222222nii nnn nD XDY nP Y EYn nεεεε=→∞⎛⎫⎪⎝⎭-≥≤=≤−−−→∑故{}n X服从大数定理.6-2 设出现7的次数为X,则有()~10000,0.1,1000,900X B E X n p D X===由棣莫佛-拉普拉斯定理可得{}100096810001696810.14303015XP X P--⎧⎫⎛⎫<=<=-Φ=⎨⎬ ⎪⎩⎭⎝⎭6-311,212i iEX DX==由中心极限定理可知,10110iX-⨯∑,所以101011616110.136i ii iP X P X==⎧⎫⎧⎫>=-≤=-Φ=-Φ=⎨⎬⎨⎬⎩⎭⎩⎭∑∑6-4 设报各人数为X,则.100,100==DXEX.由棣莫佛-拉普拉斯定理可得()0228.021100100120}120{=Φ-=⎭⎬⎫⎩⎨⎧-≥-=≥DXEXXPXP。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ai ≤ x
④ 当 x ≥ 3 时, FX ( x) = ∑ pi = P ( X = 1) + P ( X = 2) + P ( X = 3)
ai ≤ x
=1
x < 1, 0, 0.2, 1 ≤ x < 2, 所以 X 的分布函数为 FX ( x) = . x 0 . 5 , 2 3 , ≤ < x ≥ 3. 1,
则 X 的分布列为:
X P
0
1 5 21
2 4 21 1 7
3
4 2 21
5
2 7
1 21
2.2 解: X 的可能取值为 1,2,3,4,5;

p ( X = 1) =
3 4
3 3 3 p ( X = 2) = (1 − ). = 4 4 16 3 3 3 p ( X = 4) = (1 − ) 3 . = 4 4 256 3 3 3 p ( X = 3) = (1 − ) 2 . = 4 4 64
故 Z 的分布列为
Z
5
6 0.3
14 0.4
P 0.3
1 , 0 ≤ x ≤ 2, 2.21 解: 因 f X ( x) = 2 其它. 0,
且 ① 当 y < 1时, P (Y ≤ y= ) P ( X 2 + 1 ≤ y= ) 0 ② 当1 ≤ y < 5 时, P (Y ≤= y ) P( X 2 + 1 ≤ y )
故 V4 ~ B (4,0.1)

0.2
0
1 dx = 0.1 2
2 2 从而 P (V4 = 2) = (0.1) (1 − 0.1) = 0.0486 .
4 2
2.16 解: (1) P( A) = P( X > 0.5) = ∫0.5 3x 2 dx =
1
7 8
(2) 因 P ( A B ) = P ( A) + P ( B ) − P ( AB)
第二章作业答案 2.1 解: X 的可能取值为 0,1,2,3,4,5;
且 P( X = 0) =
6 2 4 5 = , P ( X = 1) = , P ( X = 2) = 21 21 7 7 2
1 2 1 P ( X = 3) = , P = ( X = 4) = , P ( X = 5) = 7 21 21
3 3 3 1 p ( X = 5) = (1 − ) 4 + (1 − )5 = 4 4 4 256
则 X 的分布列为:
X P
1
2
3
4
5
3 4
3 16
3 64
3 256
1 256
(1)利用分布函数是右连续的这一性质有 2.5 解:
x →−1+ 0 x→2+ 0
−a + b = F (−1) = lim F ( x) =lim ax + b = 0
2.19 解: (1)因 Y = 3 X + 5 ,故 Y 的可能取值为 2,5,8,14.
且 P (Y = 2) = P ( X = −1) = 0.2
P (Y = 5) = P ( X = 0) = 0.3 P (Y = 8) = P ( X = 1) = 0.1 P (Y = 14) = P ( X = 3) = 0.4
2.13 解:(1)① 当 x < 0 时, FX ( x) = ∫−∞ f (t )dt = ∫−∞ e t dt = e x
② 当 x ≥ 0 时, FX ( x) = ∫−∞ f (t ) dt = ∫−∞ e t dt + ∫0 e −t dt
x 0
x
x
1 2
1 2
x
1 2
1 2
1 = 1 − e−x 2
33 − 3 9 − 3 所以 P (Y = 3) = e = e . 2 3!
2.8 解:
① 当 x < 1 时, FX ( x) = ∑ pi = 0
ai ≤ x
② 当1 ≤ x < 2 时, FX ( x) = ∑ pi = P ( X = 1) = 0.2
ai ≤ x
③ 当 2 ≤ x < 3 时, FX ( x) = ∑ pi = P ( X = 1) + P ( X = 2) = 0.5
= P ( A) + P ( B ) − P ( A) P ( B ) P ( B ) = P (Y > 0.5) = P( A) =
故 P( A B) =
7 8
7 7 63 × 2 − ( )2 = . 8 8 64
2.17 解: 设每月至少存储 α 百吨白糖,则
P ( X ≤ α ) = ∫0 2 xdx = α 2 = 0.96 ⇒ α = 0.9798 百吨
故 Y 的分布列为
Y
2
5 0.3
8 0.1
14 0.4
P 0.2
(2) 因 Z = X 2 + 5 ,故 Z 的可能取值为 5,6,14 且 P ( Z = 5) = P ( X = 0) = 0.3
P ( Z = 6) = P ( X = −1) + P ( X = 1) = 0.3
P ( Z = 14) = P ( X = 3) = 0.4
x →−1+ 0 x→2+ 0
lim F ( x)=
lim 1= 1= F (2)= 2a + b
解得 a = b = . (2) P(−0.5 < X ≤ 1.5) = F (1.5) − F (−0.5) =
1 3
5 1 2 − = . 6 6 3
2.6 解:利用分布函数的性质,注意到 a > 0 , 所以
= P(− y − 1 ≤ x ≤ y − 1) =

y −1
0
1 dx = 2
y −1 2
③ 当 y ≥ 5 时, P(Y ≤ y= ) P( X 2 + 1 ≤ y= ) 1
y < 1, 0, y −1 所以 Y 的分布函数为 FY ( y ) = , 1 ≤ y < 5, 2 1, y ≥ 5.
-6+6 3+ 6 ) - Φ( ) 3 3 = 0.99865 - 0.5 = 0.49865 = Φ(
(3) P ( X < 9) = P (−9 < X < 9) = P ( X < 9) − P ( X ≤ −9)
−9 + 6 9+6 ) − Φ( ) = Φ (5) − Φ (−1) = Φ (5) − (1 − Φ (1)) 3 3 = Φ (1) = 0.8413 = Φ(
1 , 1 < y < 5, . Y 的分布密度函数为 f Y ( y ) = FY′( y ) = 4 y − 1 其它. 0,
1 x x < 0, 2e , 故 X 的分布函数为 FX ( x) = . 1 −x 1 − e , x ≥ 0. 2
(2) P (−5 < X < 5) = ∫−5 e x dx + ∫0 e x dx = 1 − e −5 .
0
1 2
5
1 2
2.15 解: 观测值 X 不大于 0.2 的概率 P = P( X ≤ 0.2) =
P (−1 ≤ x ≤ 2(a + 1)) = F (2(a + 1)) − F (−1 − 0) = F (2(a + 1)) − 0
= 1 − e −8 .
2.7 解:因 X ~ Pois (λ )
故 P ( X = 3) =
λ3
4 e −λ = e − 2 ⇒ λ = 2 3! 3
而 Y ~ Pois (λ + 1)
即 α = 97.98 吨.
α
2.18 解:(1)因 X ~ N (−6,9)
故 P ( X > 0) = 1 − P Hale Waihona Puke X ≤ 0) = 1 − Φ (
0+6 ) 3
= 1 − 0.97725 = 0.02275
(2) P (−6 < X < 3) = P ( X < 3) − P ( X ≤ −6)
2.11 解: 由题意知 X + 1 ~ Geo(0.1)
故 P( X = k ) = P( X + 1 = k + 1) = 0.9k × 0.1 , k = 0,1,2, 所以 X 的分布列为:
X P
0
0.1
1
0.9 × 0.1
2 0.9 2 × 0.1
3
...
0.9 3 × 0.1 . . .
相关文档
最新文档