数字电路 时序逻辑电路——计数器实验实验报告

合集下载

数电实验报告:实验4-计数器及应用161

数电实验报告:实验4-计数器及应用161

广东海洋大学学生实验报告书(学生用表)实验名称课程名称 课程号 学院(系)专业 班级 学生姓名 学号 实验地点 实验日期实验4 计数器及其应用一、实验目的1、熟悉中规模集成计数器的逻辑功能及使用方法2、掌握用74LS161构成计数器的方法3、熟悉中规模集成计数器应用二、实验原理计数器是典型的时序逻辑电路,它是用来累计和记忆输入脉冲的个数.计数是数字系统中很重要的基本操作,集成计数器是最广泛应用的逻辑部件之一。

计数器种类较多,按构成计数器中的多触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;根据计数制的不同,可分为二进制计数器、十进制计数器和任意进制计数器;根据计数的增减趋势,又分为加法、减法和可逆计数器。

还有可预置数和可编程序功能计数器等。

本实验主要研究中规模十进制计数器74LS161的功能及应用。

1、中规模集成计数器74LS161 是四位二进制可预置同步计数器,由于它采用4 个主从JK 触发器作为记忆单元,故又称为四位二进制同步计数器,其集成芯片管脚如图1所示:管脚符号说明:电源正端Vcc ,接+5V ;异步置零(复位)端Rd ;时钟脉冲CP ;预置数控制端 A 、B 、C 、D ;数据输出端 QA 、QB 、QC 、QD ;进位输出端 RCO :使能端EP ,ET ;预置端 LD ;图1 74LS161 管脚图GDOU-B-11-112该计数器由于内部采用了快速进位电路,所以具有较高的计数速度。

各触发器翻转是靠时钟脉冲信号的正跳变上升沿来完成的。

时钟脉冲每正跳变一次,计数器内各触发器就同时翻转一次,74LS161的功能表如表1所示:表1 74LS161 逻辑功能表2、实现任意进制计数器由于74LS161的计数容量为16,即计16个脉冲,发生一次进位,所以可以用它构成16进制以内的各进制计数器,实现的方法有两种:置零法(复位法)和置数法(置位法)。

(1) 用复位法获得任意进制计数器假定已有N进制计数器,而需要得到一个M进制计数器时,只要M<N,用复位法使计数器计数到M时置“0”,即获得M进制计数器。

实验时序电路实验报告

实验时序电路实验报告

实验时序电路实验报告摘要:时序电路是数字电路中的一种重要电路,它负责控制系统中各个部件和信号的时序关系。

本实验旨在通过设计和实现一个简单的时序电路,加深对时序电路原理的理解,并掌握时序电路设计的基本方法和步骤。

在实验中,我们采用了JK触发器和计数器等器件,通过逻辑电平的高低和输入信号的输入顺序来实现不同的时序控制功能。

通过实验我们发现,在正确配置和连接时序电路的各个部件后,时序电路可以准确地按照预定的时序顺序进行工作,实现了预期的控制效果。

一、实验目的1. 了解时序电路的基本概念和工作原理;2. 掌握JK触发器和计数器的基本特性和设计方法;3. 设计和实现一个简单的时序电路。

二、实验器材和设备1. 实验台板2. 集成电路(IC):7404、74107、741613. 电源、导线等三、实验原理1. 时序电路简介时序电路又称为序贯电路,是数字电路中按照一定的时序和顺序进行工作的电路。

它根据输入信号和内部时钟信号的时序关系来控制系统的输出,能够实现各种复杂的逻辑控制功能。

时序电路对时钟信号的边沿触发具有较高的要求,通常使用触发器作为时序电路的基本单元。

2. JK触发器JK触发器是一种常用的时序电路元件,具有两个正反馈输入端(J和K)和两个输出端(Q和Q')。

JK触发器的工作原理是当时钟触发信号为上升沿时,J、K输入信号控制Q输出端的电平状态。

3. 计数器计数器是一种常用的时序电路模块,它可以根据时钟信号的输入进行计数,并输出对应的计数结果。

常见的计数器有二进制计数器、十进制计数器等。

四、实验内容和步骤1. 实验电路的设计根据实验要求和所学知识,设计一个简单的时序电路。

本实验中,我们设计一个由两个JK触发器和一个计数器构成的时序电路。

其中,JK触发器用于接收输入信号和时钟信号,并根据输入信号的顺序和时钟信号的边沿触发生成输出信号;计数器用于对输入信号的个数进行计数,并根据计数结果控制输出信号的状态。

时序实验实验报告

时序实验实验报告

一、实验目的1. 掌握时序逻辑电路的基本原理和设计方法。

2. 熟悉常用时序逻辑电路器件的结构和功能。

3. 培养实际操作能力,提高电路设计水平。

二、实验原理时序逻辑电路是指输出不仅与当前输入有关,还与过去输入有关,即电路的输出状态具有记忆功能的电路。

本实验主要涉及同步计数器和寄存器的设计与测试。

三、实验设备1. 数字电子实验箱2. 示波器3. 信号发生器4. 74LS163、74LS00、74LS20等集成器件四、实验内容1. 设计一个4位同步计数器,实现二进制加法计数功能。

2. 设计一个8位同步寄存器,实现数据的暂存和传送功能。

五、实验步骤1. 4位同步计数器设计(1)根据计数器功能要求,列出状态转换表。

(2)根据状态转换表,画出状态转换图。

(3)根据状态转换图,画出电路图。

(4)将电路图连接到实验箱上,并进行调试。

(5)观察计数器输出,验证计数功能是否正确。

2. 8位同步寄存器设计(1)根据寄存器功能要求,列出数据输入、保持、清除和输出控制信号的真值表。

(2)根据真值表,画出电路图。

(3)将电路图连接到实验箱上,并进行调试。

(4)观察寄存器输出,验证寄存功能是否正确。

六、实验结果与分析1. 4位同步计数器实验结果经过调试,4位同步计数器能够实现二进制加法计数功能。

观察计数器输出,验证计数功能正确。

2. 8位同步寄存器实验结果经过调试,8位同步寄存器能够实现数据的暂存和传送功能。

观察寄存器输出,验证寄存功能正确。

七、实验总结本次实验,我们通过设计4位同步计数器和8位同步寄存器,掌握了时序逻辑电路的基本原理和设计方法。

在实际操作过程中,我们提高了电路设计水平,培养了实际操作能力。

八、实验心得1. 在设计时序逻辑电路时,要充分理解电路功能要求,合理选择器件,确保电路能够实现预期功能。

2. 在调试过程中,要仔细观察电路输出,发现问题及时解决。

3. 通过本次实验,我们对时序逻辑电路有了更深入的了解,为今后学习和实践打下了基础。

数电实验报告:实验4-计数器及应用161

数电实验报告:实验4-计数器及应用161

广东海洋大学学生实验报告书(学生用表)实验名称实验名称课程名称课程名称课程号课程号学院学院((系) 专业专业班级班级学生姓名学生姓名学号学号实验地点实验地点实验日期实验日期实验4 计数器及其应用一、实验目的1、熟悉中规模集成计数器的逻辑功能及使用方法、熟悉中规模集成计数器的逻辑功能及使用方法2、掌握用74LS161构成计数器的方法构成计数器的方法3、熟悉中规模集成计数器应用、熟悉中规模集成计数器应用二、实验原理计数器是典型的时序逻辑电路,它是用来累计和记忆输入脉冲的个数.计数是数字系统中很重要的基本操作,集成计数器是最广泛应用的逻辑部件之一。

计数器种类较多,按构成计数器中的多触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;步计数器和异步计数器;根据计数制的不同,根据计数制的不同,根据计数制的不同,可分为二进制计数器、可分为二进制计数器、可分为二进制计数器、十进制计数十进制计数器和任意进制计数器;根据计数的增减趋势,又分为加法、减法和可逆计数器。

还有可预置数和可编程序功能计数器等。

本实验主要研究中规模十进制计数器74LS161的功能及应用。

的功能及应用。

1、中规模集成计数器74LS161 是四位二进制可预置同步计数器,由于它采用4 个主从JK 触发器作为记忆单元,故又称为四位二进制同步计数器,其集成芯片管脚如图元,故又称为四位二进制同步计数器,其集成芯片管脚如图11所示:所示:管脚符号说明:电源正端Vcc ,接+5V ;异步置零(复位)端Rd ;时钟脉冲CP ;预置数控制端数控制端 A 、B 、C 、D ;数据输出端;数据输出端 QA 、QB 、QC 、QD ;进位输出端;进位输出端 RCO :使能端:使能端EP EP EP,,ET ET;预置端;预置端;预置端LD ;图1 74LS161 管脚图管脚图GDOU-B-11-112该计数器由于内部采用了快速进位电路,所以具有较高的计数速度。

数电实验报告计数器

数电实验报告计数器

数电实验报告计数器计数器是数字电路中常见的一种电路元件,用于计数和显示数字。

在数电实验中,我们通常会设计和实现各种类型的计数器电路,以探究其工作原理和性能特点。

本文将介绍数电实验中的计数器的设计和实验结果,并探讨其应用和改进。

一、设计和实现在数电实验中,我们通常使用逻辑门和触发器来实现计数器电路。

逻辑门用于控制计数器的输入和输出,而触发器则用于存储和更新计数器的状态。

以4位二进制计数器为例,我们可以使用四个触发器和适当的逻辑门来实现。

触发器的输入端连接到逻辑门的输出端,而逻辑门的输入端连接到触发器的输出端。

通过适当的控制信号,我们可以实现计数器的正向计数、逆向计数、清零和加载等功能。

在实验中,我们需要根据设计要求选择适当的逻辑门和触发器,并将其连接起来。

然后,通过给逻辑门和触发器提供适当的输入信号,我们可以观察计数器的输出结果,并验证其正确性和稳定性。

二、实验结果在实验中,我们设计了一个4位二进制计数器,并通过适当的输入信号进行了测试。

实验结果表明,计数器能够正确地进行正向计数和逆向计数,并能够在达到最大计数值或最小计数值时自动清零。

此外,我们还观察到计数器的输出信号在计数过程中保持稳定,并且能够及时响应输入信号的变化。

这说明计数器具有较高的稳定性和响应速度,适用于各种计数应用场景。

三、应用和改进计数器在数字电路中有广泛的应用,例如频率分频、时序控制、计时器等。

通过适当的设计和连接,我们可以实现各种复杂的计数功能,满足不同的应用需求。

在实验中,我们还可以对计数器进行改进和优化,以提高其性能和功能。

例如,我们可以增加计数器的位数,以扩大计数范围;我们还可以添加输入输出接口,以实现与其他电路元件的连接和通信。

此外,我们还可以使用更高级的计数器电路,如同步计数器、环形计数器等,以实现更复杂的计数功能。

这些改进和扩展将进一步提高计数器的灵活性和实用性。

总结:通过数电实验,我们了解了计数器的设计和实现原理,并验证了其在实际应用中的性能和功能。

电子线路基础数字电路实验7 时序逻辑电路设计

电子线路基础数字电路实验7  时序逻辑电路设计

实验七时序逻辑电路设计一、实验目的1. 学习用集成触发器构成计数器的方法。

2. 熟悉中规模集成十进制计数器的逻辑功能及使用方法。

3. 学习计数器的功能扩展。

4. 了解集成译码器及显示器的应用。

二、实验原理计数器是一种重要的时序逻辑电路,它不仅可以计数,而且用作定时控制及进行数字运算等。

按计数功能计数器可分加法、减法和可逆计数器,根据计数体制可分为二进制和任意进制计数器,而任意进制计数器中常用的是十进制计数器。

根据计数脉冲引入的方式又有同步和异步计数器之分。

1. 用D触发器构成异步二进制加法计数器和减法计数器:图10—1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D触发器接成T'触发器形式,再由低位触发器的Q端和高一位的CP端相连接,即构成异步计数方式。

若把图10—1稍加改动,即将低位触发器的Q端和高一位的CP端相连接,即构成了减法计数器。

图10—1本实验采用的D触发器型号为74LS74A,引脚排列见前述实验。

2. 中规模十进制计数器中规模集成计数器品种多,功能完善,通常具有予置、保持、计数等多种功能。

74LS182同步十进制可逆计数器具有双时钟输入,可以执行十进制加法和减法计数,并具有清除、置数等功能。

引脚排列如图10—2所示。

其中LD−−置数端;CP u−−加计数端;CP D−−减计数端;DO−−非同步进位输出端;CO−−非同步借位输出端;Q A、Q B、Q C、Q D−−计数器输出端;D A、D B、D C、D D−−数据输入端;CR−−清除端。

表10—1为74LS192功能表,说明如下:当清除端为高电平“1”时,计数器直接清零(称为异步清零),执行其它功能时,CR置低电平。

当CR为低电平,置数端LD为低电平时,数据直接从置数端D A、D B、D C、D D置入计数器。

当CR为低电平,LD为高电平时,执行计数功能。

执行加计数时,减计数端CP D接高电平,计数脉冲由加计数端Cp u输入,在计数脉冲上升沿进行842编码的十进制加法计数。

数电实验报告计数器

数电实验报告计数器

数电实验报告计数器《数电实验报告:计数器》实验目的:本实验旨在通过搭建和测试计数器电路,加深对数电原理的理解,掌握计数器的工作原理和应用。

实验器材:1. 74LS76触发器芯片2. 74LS00与非门芯片3. 74LS08与门芯片4. 电源5. 示波器6. 万用表7. 逻辑开关8. 连接线实验原理:计数器是一种能够对输入的脉冲信号进行计数并输出相应计数结果的电路。

在本实验中,我们将使用74LS76触发器芯片搭建一个4位二进制同步计数器。

该计数器能够对输入的脉冲信号进行计数,并通过LED灯显示计数结果。

实验步骤:1. 根据74LS76触发器芯片的引脚图和真值表,搭建4位二进制同步计数器电路。

2. 将74LS00与非门芯片连接到计数器电路中,用于产生时钟信号。

3. 将74LS08与门芯片连接到计数器电路中,用于控制LED灯的显示。

4. 接通电源,使用逻辑开关产生输入脉冲信号。

5. 使用示波器和万用表对计数器电路的各个部分进行测试和调试。

实验结果:经过调试和测试,我们成功搭建了一个4位二进制同步计数器电路。

当输入脉冲信号时,LED灯能够正确显示计数结果,符合预期。

实验分析:通过本次实验,我们深入理解了计数器的工作原理和应用。

计数器是数字电路中常用的基本模块,广泛应用于各种计数和计时场合。

掌握计数器的原理和搭建方法,对于进一步学习和应用数字电路具有重要意义。

结论:本次实验通过搭建和测试计数器电路,加深了我们对数电原理的理解,掌握了计数器的工作原理和应用。

同时,我们也学会了使用示波器和万用表对数字电路进行测试和调试,为今后的实验和工作打下了坚实的基础。

数字电路实验3 计数器

数字电路实验3 计数器

实验八计数器一、实验目的1.熟悉由集成触发器构成的计数器电路及其工作原理。

2.熟悉掌握常用中规模集成电路计数器及其应用方法。

二、实验原理和电路所谓计数,就是统计脉冲的个数,计数器就是实现“计数”操作的时序逻辑电路。

计数器的应用十分广泛,不仅用来计数,也可用作分频、定时等。

计数器种类繁多。

根据计数体制的不同,计数器可分成二进制(即2”进制)计数器和非二进制计数器两大类。

在非二进制计数器中,最常用的是十进制计数器,其它的一般称为任意进制计数器。

根据计数器的增减趋势不同,计数器可分为加法计数器—随着计数脉冲的输入而递增计数的;减法计数器—随着计数脉冲的输入而递减的;可逆计数器—既可递增,也可递减的。

根据计数脉冲引入方式不同,计数器又可分为同步计数器—计数脉冲直接加到所有触发器的时钟脉冲(CP)输入端;异步计数器—计数脉冲不是直接加到所有触发器的时钟脉冲(CP)输入端。

1.异步二进制加法计数器异步二进制加法计数器是比较简单的。

图 1.8.1(a)是由4个JK(选用双JK74LS112)触发器构成的4位二进制(十六进制)异步加法计数器,图1.8.1(b)和(c)分别为其状态图和波形图。

对于所得状态图和波形图可以这样理解:触发器FF O(最低位)在每个计数沿(CP)的下降沿(1 → 0)翻转,触发器FF1的CP端接FF0的Q0端,因而当FF O(Q O)由1→ 0时,FF1翻转。

类似地,当FF1(Q1)由1→0时,FF2翻转,FF2(Q2)由1→0时,FF3翻转。

4位二进制异步加法计数器从起始态0000到1111共十六个状态,因此,它是十六进制加法计数器,也称模16加法计数器(模M=16)。

从波形图可看到,Q0 的周期是CP周期的二倍;Q1 是Q0的二倍,CP的四倍;Q2是Q1 的二倍,Q0的四倍,CP的八倍;Q3是Q2的二倍,Q1的四倍,Q0的八倍,CP的十六倍。

所以Q0 、Q1、Q2、Q3分别实现了二、四、八、十六分频,这就是计数器的分频作用。

计数器的设计实验报告

计数器的设计实验报告

计数器的设计实验报告一、实验目的本次实验的目的是设计并实现一个简单的计数器,通过对计数器的设计和调试,深入理解数字电路的基本原理和逻辑设计方法,掌握计数器的工作原理、功能和应用,提高自己的电路设计和调试能力。

二、实验原理计数器是一种能够对输入脉冲进行计数,并在达到设定计数值时产生输出信号的数字电路。

计数器按照计数方式可以分为加法计数器、减法计数器和可逆计数器;按照计数进制可以分为二进制计数器、十进制计数器和任意进制计数器。

本次实验设计的是一个简单的十进制加法计数器,采用同步时序逻辑电路设计方法。

计数器由触发器、门电路等组成,通过对触发器的时钟信号和输入信号的控制,实现计数功能。

三、实验设备与器材1、数字电路实验箱2、集成电路芯片:74LS160(十进制同步加法计数器)、74LS00(二输入与非门)、74LS04(六反相器)3、示波器4、直流电源5、导线若干四、实验内容与步骤1、设计电路根据实验要求,选择合适的计数器芯片 74LS160,并确定其引脚功能。

设计计数器的清零、置数和计数控制电路,使用与非门和反相器实现。

画出完整的电路原理图。

2、连接电路在数字电路实验箱上,按照电路原理图连接芯片和导线。

仔细检查电路连接是否正确,确保无短路和断路现象。

3、调试电路接通直流电源,观察计数器的初始状态。

输入计数脉冲,用示波器观察计数器的输出波形,检查计数是否正确。

若计数不正确,逐步排查故障,如检查芯片引脚连接、电源电压等,直至计数器正常工作。

4、功能测试测试计数器的清零功能,观察计数器是否能在清零信号作用下回到初始状态。

测试计数器的置数功能,设置不同的预置数,观察计数器是否能按照预置数开始计数。

五、实验结果与分析1、实验结果成功实现了十进制加法计数器的设计,计数器能够在输入脉冲的作用下进行正确计数。

清零和置数功能正常,能够满足实验要求。

2、结果分析通过对计数器输出波形的观察和分析,验证了计数器的工作原理和逻辑功能。

数字逻辑电路实验报告

数字逻辑电路实验报告

一、实验目的1. 熟悉数字逻辑电路的基本原理和基本分析方法。

2. 掌握常用逻辑门电路的原理、功能及实现方法。

3. 学会使用数字逻辑电路实验箱进行实验操作,提高动手能力。

二、实验原理数字逻辑电路是现代电子技术的基础,它由逻辑门电路、触发器、计数器等基本单元组成。

本实验主要涉及以下内容:1. 逻辑门电路:与门、或门、非门、异或门等。

2. 组合逻辑电路:半加器、全加器、译码器、编码器等。

3. 时序逻辑电路:触发器、计数器、寄存器等。

三、实验仪器与设备1. 数字逻辑电路实验箱2. 示波器3. 信号发生器4. 万用表5. 逻辑笔四、实验内容及步骤1. 逻辑门电路实验(1)与门、或门、非门、异或门原理实验步骤:1)按实验箱上的逻辑门电路原理图连接电路;2)使用信号发生器产生输入信号,用逻辑笔观察输出信号;3)分析实验结果,验证逻辑门电路的原理。

(2)组合逻辑电路实验步骤:1)按实验箱上的组合逻辑电路原理图连接电路;2)使用信号发生器产生输入信号,用逻辑笔观察输出信号;3)分析实验结果,验证组合逻辑电路的原理。

2. 时序逻辑电路实验(1)触发器实验步骤:1)按实验箱上的触发器原理图连接电路;2)使用信号发生器产生输入信号,用示波器观察输出信号;3)分析实验结果,验证触发器的原理。

(2)计数器实验步骤:1)按实验箱上的计数器原理图连接电路;2)使用信号发生器产生输入信号,用示波器观察输出信号;3)分析实验结果,验证计数器的原理。

五、实验结果与分析1. 逻辑门电路实验实验结果:通过实验,我们验证了与门、或门、非门、异或门的原理,观察到了输入信号与输出信号之间的逻辑关系。

2. 组合逻辑电路实验实验结果:通过实验,我们验证了半加器、全加器、译码器、编码器的原理,观察到了输入信号与输出信号之间的逻辑关系。

3. 时序逻辑电路实验实验结果:通过实验,我们验证了触发器、计数器的原理,观察到了输入信号与输出信号之间的时序关系。

时序逻辑实验报告

时序逻辑实验报告

一、实验目的1. 理解时序逻辑电路的基本概念和工作原理。

2. 掌握时序逻辑电路的设计方法和测试方法。

3. 熟悉常用中规模集成计数器和寄存器的逻辑功能和使用方法。

二、实验原理时序逻辑电路是指其输出不仅取决于当前输入信号,还取决于电路的过去状态。

本实验主要涉及计数器和寄存器两种时序逻辑电路。

计数器:计数器是一种能够对输入脉冲进行计数的时序逻辑电路。

常见的计数器有二进制计数器、十进制计数器和可编程计数器等。

寄存器:寄存器是一种用于存储二进制信息的时序逻辑电路。

常见的寄存器有D型寄存器、移位寄存器和计数寄存器等。

三、实验设备1. 数字电子技术实验箱2. 示波器3. 信号源4. 集成芯片:74LS163、74LS00、74LS20等四、实验内容1. 计数器设计(1)设计一个4位二进制加法计数器,实现0-15的循环计数。

(2)设计一个10进制计数器,实现0-9的循环计数。

2. 寄存器设计(1)设计一个D型寄存器,实现数据的存储和读取。

(2)设计一个移位寄存器,实现数据的右移和左移。

3. 时序逻辑电路测试(1)测试计数器的计数功能。

(2)测试寄存器的存储和读取功能。

五、实验步骤1. 计数器设计(1)根据计数器的功能要求,设计电路图。

(2)根据电路图,选择合适的集成芯片。

(3)搭建实验电路。

(4)测试计数器的计数功能。

2. 寄存器设计(1)根据寄存器的功能要求,设计电路图。

(2)根据电路图,选择合适的集成芯片。

(3)搭建实验电路。

(4)测试寄存器的存储和读取功能。

3. 时序逻辑电路测试(1)测试计数器的计数功能。

(2)测试寄存器的存储和读取功能。

六、实验结果与分析1. 计数器设计(1)4位二进制加法计数器能够实现0-15的循环计数。

(2)10进制计数器能够实现0-9的循环计数。

2. 寄存器设计(1)D型寄存器能够实现数据的存储和读取。

(2)移位寄存器能够实现数据的右移和左移。

3. 时序逻辑电路测试(1)计数器的计数功能正常。

时序逻辑电路实验报告

时序逻辑电路实验报告

一、实验目的1. 理解时序逻辑电路的工作原理和基本结构;2. 掌握触发器、计数器等时序逻辑电路的设计方法;3. 熟悉Multisim软件在时序逻辑电路设计与仿真中的应用;4. 培养实际操作能力和分析问题、解决问题的能力。

二、实验原理时序逻辑电路是一种在时钟信号控制下,输出不仅与当前输入有关,还与电路历史状态有关的数字电路。

其基本结构包括触发器、计数器等。

触发器是时序逻辑电路的基本单元,用于存储一位二进制信息。

计数器是时序逻辑电路的一种应用,用于对输入脉冲进行计数。

三、实验内容1. 触发器实验(1)实验目的:熟悉触发器的工作原理和功能,掌握触发器的使用方法。

(2)实验内容:设计一个JK触发器,实现时钟信号控制下的同步置1、同步置0、计数等功能。

(3)实验步骤:① 使用Multisim软件,搭建JK触发器电路;② 搭建计数器电路,实现时钟信号控制下的计数功能;③ 设置输入信号,观察触发器和计数器的输出波形,验证功能。

2. 计数器实验(1)实验目的:掌握计数器的设计方法,熟悉不同计数器电路的功能。

(2)实验内容:设计一个模为24的二进制计数器和模为60的十进制计数器。

(3)实验步骤:① 使用Multisim软件,搭建二进制计数器电路;② 设置输入信号,观察计数器的输出波形,验证功能;③ 使用Multisim软件,搭建十进制计数器电路;④ 设置输入信号,观察计数器的输出波形,验证功能。

四、实验结果与分析1. 触发器实验实验结果显示,设计的JK触发器能够实现同步置1、同步置0、计数等功能。

在计数过程中,触发器的输出波形符合预期,验证了JK触发器的功能。

2. 计数器实验实验结果显示,设计的模为24的二进制计数器和模为60的十进制计数器均能实现预期的计数功能。

在计数过程中,计数器的输出波形符合预期,验证了计数器电路的功能。

五、实验总结本次实验通过设计、搭建和仿真时序逻辑电路,掌握了触发器、计数器等时序逻辑电路的设计方法,熟悉了Multisim软件在时序逻辑电路设计与仿真中的应用。

时序逻辑电路实验报告

时序逻辑电路实验报告

实验题目实验题目 时序逻辑电路时序逻辑电路 小组合作小组合作一、实验目的一、实验目的1、掌握由集成触发器构成的二进制计数电路的工作原理。

、掌握由集成触发器构成的二进制计数电路的工作原理。

2、掌握中规模集成计数器的使用方法。

、掌握中规模集成计数器的使用方法。

3、学习运用上述组件设计简单计数器的技能。

、学习运用上述组件设计简单计数器的技能。

4、验证计数器、寄存器的逻辑功能。

、验证计数器、寄存器的逻辑功能。

5、使用74LS248显示计数器。

显示计数器。

二.实验环境二.实验环境1、数字电路试验箱、数字电路试验箱 1 1台2、共阴极数码显示器、共阴极数码显示器 2 2个3、集成电路:、集成电路:双双D 触发器触发器 74LS74 2 74LS74 2片 16进制计数器进制计数器 74LS160 1 74LS160 1片 数码显示管数码显示管数码显示管 74LS248 1 74LS248 1片 三、实验内容与步骤三、实验内容与步骤1、寄存器,利用两片74LS74芯片,组成如图5.1所示具有存储和移位功能的电路,即为寄存器,用于寄存一组二值代码,和移位功能的电路,即为寄存器,用于寄存一组二值代码,N N 位寄存器由N 个触发器组成,可存放一组N 位二值代码。

只要求其中每个触发器可置1,置0。

四位寄存器的电路图如图5.1所示:所示:图5.1 5.1 四位寄存器四位寄存器四位寄存器2 2、用、用K1清零,再试K1为高电平;为高电平;3 3、在串行数据输入中,使、在串行数据输入中,使K2=1K2=1,按动单次脉冲,观察,按动单次脉冲,观察Q0-Q3并记录结果;记录结果;4 4、交替改变、交替改变K2(1011),K2(1011),依次按动单次脉冲,观察并记录实验结依次按动单次脉冲,观察并记录实验结果,绘出波形图。

果,绘出波形图。

5、利用74LS160芯片组成的用于计数、分频、定时、产生节拍脉冲等的电路,脉冲等的电路,按时钟分,按时钟分,同步、同步、异步,按计数过程中数字增减分,异步,按计数过程中数字增减分,加、加、减和可逆,减和可逆,减和可逆,按计数器中的数字编码分,二进制、二按计数器中的数字编码分,二进制、二按计数器中的数字编码分,二进制、二--十进制和循环码…,按计数容量分,十进制,六十进制…同步计数器的原理图如图5.2所示:所示:图5.2 5.2 同步计数器的原理图同步计数器的原理图同步计数器的原理图6、测试74LS160芯片的逻辑功能,测试结果。

实验五时序逻辑电路实验报告

实验五时序逻辑电路实验报告

实验五时序逻辑电路实验报告一、实验目的1.了解时序逻辑电路的基本原理和设计方法。

2.掌握时序逻辑电路的设计方法。

3.运用Verilog语言进行时序逻辑电路的设计和仿真。

二、实验原理时序逻辑电路是指在电路中引入记忆元件(如触发器、计数器等),通过电路中的时钟信号和输入信号来控制电路的输出。

时序逻辑电路的输出不仅与当前输入有关,还与之前输入和输出的状态有关,因此对于时序逻辑电路的设计,需要考虑时钟信号的频率、输入信号的变化及当前状态之间的关系。

三、实验内容本次实验通过使用Verilog语言设计和仿真下列时序逻辑电路。

1.设计一个10进制累加器模块,实现对输入信号进行累加并输出,并在仿真中验证结果的正确性。

2.设计一个4位二进制计数器模块,实现对输入时钟信号的计数,并在仿真中验证结果的正确性。

3.设计一个4位带加载/清零控制功能的二进制计数器模块,实现对输入时钟信号的计数,并在仿真中验证结果的正确性。

四、实验步骤1.根据实验原理和要求,利用Verilog语言设计10进制累加器模块。

在设计中需要注意时钟的频率和输入信号的变化。

2.编译并运行仿真程序,验证设计的10进制累加器模块的正确性。

3.在设计时钟频率和输入信号变化的基础上,设计4位二进制计数器模块。

4.编译并运行仿真程序,验证设计的4位二进制计数器模块的正确性。

5.在设计4位二进制计数器模块的基础上,引入加载/清零控制功能,设计一个4位带加载/清零控制功能的二进制计数器模块。

6.编译并运行仿真程序,验证设计的带加载/清零控制功能的二进制计数器模块的正确性。

7.总结实验结果,撰写实验报告。

五、实验结果与分析1.经过验证实验,10进制累加器模块能够正确实现对输入信号的累加并输出正确的结果。

2.经过验证实验,4位二进制计数器模块能够正确实现对输入时钟信号的计数,并输出正确的计数结果。

3.经过验证实验,带加载/清零控制功能的二进制计数器模块能够正确实现对输入时钟信号的计数,并在加载或清零信号的控制下实现加载或清零操作。

数电综合实验报告(3篇)

数电综合实验报告(3篇)

第1篇一、实验目的1. 巩固和加深对数字电路基本原理和电路分析方法的理解。

2. 掌握数字电路仿真工具的使用,提高设计能力和问题解决能力。

3. 通过综合实验,培养团队合作精神和实践操作能力。

二、实验内容本次实验主要分为以下几个部分:1. 组合逻辑电路设计:设计一个4位二进制加法器,并使用仿真软件进行验证。

2. 时序逻辑电路设计:设计一个4位计数器,并使用仿真软件进行验证。

3. 数字电路综合应用:设计一个数字时钟,包括秒、分、时显示,并使用仿真软件进行验证。

三、实验步骤1. 组合逻辑电路设计:(1)根据题目要求,设计一个4位二进制加法器。

(2)使用Verilog HDL语言编写代码,实现4位二进制加法器。

(3)使用ModelSim软件对加法器进行仿真,验证其功能。

2. 时序逻辑电路设计:(1)根据题目要求,设计一个4位计数器。

(2)使用Verilog HDL语言编写代码,实现4位计数器。

(3)使用ModelSim软件对计数器进行仿真,验证其功能。

3. 数字电路综合应用:(1)根据题目要求,设计一个数字时钟,包括秒、分、时显示。

(2)使用Verilog HDL语言编写代码,实现数字时钟功能。

(3)使用ModelSim软件对数字时钟进行仿真,验证其功能。

四、实验结果与分析1. 组合逻辑电路设计:通过仿真验证,所设计的4位二进制加法器能够正确实现4位二进制加法运算。

2. 时序逻辑电路设计:通过仿真验证,所设计的4位计数器能够正确实现4位计数功能。

3. 数字电路综合应用:通过仿真验证,所设计的数字时钟能够正确实现秒、分、时显示功能。

五、实验心得1. 通过本次实验,加深了对数字电路基本原理和电路分析方法的理解。

2. 掌握了数字电路仿真工具的使用,提高了设计能力和问题解决能力。

3. 培养了团队合作精神和实践操作能力。

六、实验改进建议1. 在设计组合逻辑电路时,可以考虑使用更优的电路结构,以降低功耗。

2. 在设计时序逻辑电路时,可以尝试使用不同的时序电路结构,以实现更复杂的逻辑功能。

时序实验实验报告

时序实验实验报告

时序实验实验报告时序实验实验报告引言:时序实验是计算机科学中一个重要的实验内容,通过对时序逻辑电路的设计和测试,可以深入了解数字电路的工作原理和时序逻辑的设计方法。

本实验旨在通过设计和测试一个简单的时序电路,掌握时序逻辑电路设计的基本方法和实验操作技巧。

实验目的:1. 了解时序逻辑电路的基本概念和工作原理;2. 掌握时序逻辑电路的设计方法;3. 学会使用实验设备和软件进行时序逻辑电路的测试和验证。

实验原理:时序逻辑电路是一种基于时钟信号的数字电路,其输出信号的状态不仅取决于当前输入信号的状态,还取决于过去的输入信号状态。

时序逻辑电路通常由触发器、计数器、状态机等组成。

在本实验中,我们将以一个简单的计数器为例,介绍时序逻辑电路的设计和测试方法。

实验步骤:1. 设计计数器的逻辑电路图;2. 使用逻辑门电路和触发器电路搭建计数器电路;3. 使用数字电路实验箱搭建电路;4. 使用示波器观察时序信号的波形;5. 进行时序电路的测试和验证。

实验结果:经过实验,我们成功设计和测试了一个简单的时序逻辑电路。

通过示波器观察时序信号的波形,可以清晰地看到计数器的工作过程和输出信号的变化。

实验结果表明,设计的时序逻辑电路能够实现预期的功能,满足设计要求。

实验分析:通过本次实验,我们深入了解了时序逻辑电路的设计和测试方法。

在实验过程中,我们不仅掌握了逻辑门电路和触发器电路的搭建方法,还学会了使用示波器观察时序信号的波形。

通过观察波形,我们可以判断电路的工作状态和是否存在问题。

此外,实验还提醒我们在设计和测试时要注意时钟信号的频率和稳定性,以确保电路的正常工作。

实验总结:时序实验是计算机科学中重要的实验内容之一,通过对时序逻辑电路的设计和测试,可以深入了解数字电路的工作原理和时序逻辑的设计方法。

本次实验使我们对时序逻辑电路有了更深入的认识,并掌握了相关的设计和测试技巧。

通过实践,我们不仅提高了实验操作的能力,还培养了团队合作和问题解决的能力。

实验五--时序逻辑电路实验报告

实验五--时序逻辑电路实验报告

实验五时序逻辑电路(计数器和寄存器)-实验报告一、实验目的1.掌握同步计数器设计方法与测试方法。

2.掌握常用中规模集成计数器的逻辑功能和使用方法。

二、实验设备设备:THHD-2型数字电子计数实验箱、示波器、信号源器件:74LS163、74LS00、74LS20等。

三、实验原理和实验电路1.计数器计数器不仅可用来计数,也可用于分频、定时和数字运算。

在实际工程应用中,一般很少使用小规模的触发器组成计数器,而是直接选用中规模集成计数器。

2.(1) 四位二进制(十六进制)计数器74LS161(74LS163)74LSl61是同步置数、异步清零的4位二进制加法计数器,其功能表见表5.1。

74LSl63是同步置数、同步清零的4位二进制加法计数器。

除清零为同步外,其他功能与74LSl61相同。

二者的外部引脚图也相同,如图5.1所示。

表5.1 74LSl61(74LS163)的功能表清零预置使能时钟预置数据输入输出工作模式R D LD EP ET CP A B C D Q A Q B Q C Q D0 ××××()××××0 0 0 0 异步清零1 0 ××D A D B D C D D D A D B D C D D同步置数1 1 0 ××××××保持数据保持1 1 ×0 ×××××保持数据保持1 1 1 1 ××××计数加1计数3.集成计数器的应用——实现任意M进制计数器一般情况任意M进制计数器的结构分为3类,第一类是由触发器构成的简单计数器。

第二类是由集成二进制计数器构成计数器。

第三类是由移位寄存器构成的移位寄存型计数器。

第一类,可利用时序逻辑电路的设计方法步骤进行设计。

数电实验四——精选推荐

数电实验四——精选推荐

实验四:时序逻辑电路(集成寄存器和计数器)一、实验目的:1.熟悉中规模集成计数器的逻辑功能和使用方法;掌握用集成计数器组成任意模数为M的计数器。

2.加深理解移位寄存器的工作原理及逻辑功能描述;熟悉中规模集成移位寄存器的逻辑功能和使用方法;掌握用移位寄存器组成环形计数器的基本原理和设计方法。

二、知识点提示和实验原理:㈠计数器:计数器的应用十分广泛,不仅可用来计数,也可用于分频、定时和数字运算。

计数器种类繁多,根据计数体制不同,计数器可分为二进制计数器和非二进制计数器两大类。

在非二进制计数器中,最常用的是十进制计数器,其他的称为任意进制计数器。

根据计数器的增减趋势的不同,计数器可分为加法计数器和减法计数器。

根据计数脉冲引入方式不同,计数又可分为同步计数器和异步计数器。

在实际工程应用中,一般很少使用小规模的触发器组成计数器,而是直接选用中规模集成计数器。

用集成计数器实现任意M进制计数器:一般情况任意M进制计数器的结构分为3类,第一种是由集成二进制计数器构成,第二种为移位寄存器构成的移位寄存型计数器,第三种为集成触发器构成的简单专用计数器。

当M较小时通过对集成计数器的改造即可以实现,当M较大时,可通过多片计数器级联实现。

实现方法:(1)当所需计数器M值小于集成计数器本身二进制计数最大值时,用置数(清零)法构成任意进制计数器;⑵当所需计数器M值大于集成计数器本身二进制计数最大值时,可采用级联法构成任意进制计数器。

常用的中规模集成器件:4位二进制计数器74HC161,十进制计数器74HC160,加减计数器74HC191、74HC193,异步计数器74LS290。

所有芯片的电路、功能表见教材。

㈡寄存器:寄存器用来寄存二进制信息,将一些待运算的数据、代码或运算的中间结果暂时寄存起来。

按功能划分,寄存器可分为数码寄存器和移位寄存器两大类。

数码寄存器用来存放数码,一般具有接收数码、保持并清除原有数码等功能,电路结构和工作原理郡比较简单。

数字电路实验的实验报告(3篇)

数字电路实验的实验报告(3篇)

第1篇一、实验目的1. 理解和掌握数字电路的基本原理和组成。

2. 熟悉数字电路实验设备和仪器的基本操作。

3. 培养实际动手能力和解决问题的能力。

4. 提高对数字电路设计和调试的实践能力。

二、实验器材1. 数字电路实验箱一台2. 74LS00若干3. 74LS74若干4. 74LS138若干5. 74LS20若干6. 74LS32若干7. 电阻、电容、二极管等元器件若干8. 万用表、示波器等实验仪器三、实验内容1. 基本门电路实验(1)验证与非门、或非门、异或门等基本逻辑门的功能。

(2)设计简单的组合逻辑电路,如全加器、译码器等。

2. 触发器实验(1)验证D触发器、JK触发器、T触发器等基本触发器的功能。

(2)设计简单的时序逻辑电路,如计数器、分频器等。

3. 组合逻辑电路实验(1)设计一个简单的组合逻辑电路,如4位二进制加法器。

(2)分析电路的输入输出关系,验证电路的正确性。

4. 时序逻辑电路实验(1)设计一个简单的时序逻辑电路,如3位二进制计数器。

(2)分析电路的输入输出关系,验证电路的正确性。

5. 数字电路仿真实验(1)利用Multisim等仿真软件,设计并仿真上述实验电路。

(2)对比实际实验结果和仿真结果,分析误差原因。

四、实验步骤1. 实验前准备(1)熟悉实验内容和要求。

(2)了解实验器材的性能和操作方法。

(3)准备好实验报告所需的表格和图纸。

2. 基本门电路实验(1)搭建与非门、或非门、异或门等基本逻辑电路。

(2)使用万用表测试电路的输入输出关系,验证电路的功能。

(3)记录实验数据,分析实验结果。

3. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发电路。

(2)使用示波器观察触发器的输出波形,验证电路的功能。

(3)记录实验数据,分析实验结果。

4. 组合逻辑电路实验(1)设计4位二进制加法器电路。

(2)搭建电路,使用万用表测试电路的输入输出关系,验证电路的正确性。

(3)记录实验数据,分析实验结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

肇 庆 学 院
电子信息与机电工程 学院 数字电路 课 实验报告
12电气(1) 班姓名 王园园 学号 2 实验日期2014年5 月26 日 实验合作者:李俊杰 老师评定
实验题目:时序逻辑电路——计数器实验
一、实验目的
(一)掌握由集成触发器构成计数器的方法。

(二)熟悉中规模集成计数器74LS161计数器的逻辑功能及使用方法。

(三)学习中规模集成计数器74LS192计数器的逻辑功能及使用方法。

(四)学习计数器清零端与置数端的功能、同步与异步的概念。

二、实验仪器:
DZX-1型电子学综合实验装置 UT52万用表 芯片74LS00 74LS161 74LS192
三、实验内容
图5-1 74LS161构成N 进制计数器目标电路图 图5-2 74LS161引脚排列图
输入 输出
CR
CP LD
CT P CT T D 3D 2D 1D 0 n
n n n Q Q Q Q 0123
C0 0 x x x x x 0 0 0 0
1 0 x x d 3d 2d 1d 0 d 3d 2d 1d 0
CO= CT T Q Q Q Q n
n n 123 1 1 1 1 x 计数 CO=n
n
n
n
Q Q Q Q 0123 1 x 1 0 x x 保持 CO= CT T
Q Q Q Q n
n n 123 1
x
1
x
x
保持
用十六进制同步加法计数器74LS161构成N 进制计数器的设计(异步清零,同步置数)
1.按图5-1接好。

从CP端输入时钟脉冲。

2.将M端接高电平,并把计数结果记录下来。

如下表5-2
3.将M端接低电平,并把计数结果记录下来。

4.如果将清零端与置数端接线交换,重复2、3步骤,计数器的N分别等于多少?
答:2,3步骤N都为16
接线交换后,LD=1输入无效。

加法计数器计数溢出后CO=1 => CR=0触发异步清零,然后CO=0 => CR=1,计数器重新从零开始加法计数,所以N=15
1 0010 1 1 0011 1 1 0100 1 1 0101 1 1 0110 1 1 0111 1 1 1000 1 1 1001 1 1 1010 1 1 1011 1 1 1100 1 1 1101 1 1 1110 0
1111
1
(二).用74LS192构成7进制减法计数器。

74LS192,十进制同步加减计数器(双时钟),其清零功能为异步;置数功能也为异步;其余功能参见管脚排列图。

图5-3 74LS192引脚排列图 图5-4 74LS192构成7进制减法计数器
输入 输出
CR LD
CT U CT D D 3D 2D 1D 0 n
n n n Q Q Q Q 0123
注释 0 x x x x
0 0 0 0 异步清零
1 0 x x d 3 d
2 d 1 d 0
d 3 d 2 d 1 d 0 异步置数
1 1 1 X
加法计数 CO = n n Q Q 03U CT
1 1 1 X 减法计数 BO = Q Q Q Q n n
n 12
3D CT 1
1
1
1
X
保持
BO =CO =1
按照图5-4接线,记录下实验结果
四、实验分析与结论:
1、由实验第(一)4可以瞧出,74ls161就是异步清零,同步置数的。

相关文档
最新文档