离子交换树脂的再生
离子交换树脂再生原理
离子交换树脂再生原理
离子交换树脂是一种常用于水处理和水质改善的方法。
当水中存在着一些不需要的离子,如钙离子、镁离子等,离子交换树脂可以通过吸附和释放离子的方式,将水中的有害离子去除或置换为无害的离子。
离子交换树脂的再生是指将树脂中吸附的目标离子从树脂表面释放出来,使树脂恢复到可再次进行吸附的状态。
离子交换树脂的再生过程主要有两个步骤:洗涤和再生。
洗涤是指通过向树脂中加入逆离子或酸性洗涤剂来去除树脂上残留的杂质和未被释放的目标离子。
逆离子可以与树脂表面上的阳离子形成离子交换,将其释放出去。
酸性洗涤剂则可以通过酸碱中和反应将树脂表面的阳离子中和并释放出去。
洗涤的目的是去除污染物并准备树脂进行再生。
再生是指将洗涤后的树脂恢复到吸附离子的状态。
再生通常通过向树脂中加入盐水或碱性溶液来实现。
盐水中的阴离子可以与树脂表面上的阳离子形成离子交换,重新吸附在树脂上。
碱性溶液可以通过酸碱反应中和树脂表面的阴离子,将其释放出来并将树脂恢复为原始状态。
再生后的离子交换树脂可以继续使用,反复进行吸附和再生的循环。
需要注意的是,随着多次使用和再生,离子交换树脂的吸附效率和容量逐渐下降,需要定期更换或再生以保持其良好的处理效果。
离子交换树脂再生方法
离子交换树脂再生方法
离子交换树脂是一种用于水处理、化学工业和制药工业中的重要工艺方法。
但是,随着使用时间的增加,树脂表面的离子可以逐渐被吸附或散失,从而降低其效果。
因此,必须定期对离子交换树脂进行再生。
下面将介绍离子交换树脂的再生方法,包括以下几点:
1. 热再生法:
热再生法是通过加热离子交换树脂,以去除附着在其表面的离子。
这种方法需要在高温下进行,通常在150~200°C下进行。
然而,要注意的是,这种方法只适用于耐高温的树脂。
2. 酸再生法:
酸再生法是用酸性溶液来清洗离子交换树脂,将表面的离子吸附并去除。
通常使用的酸是盐酸或硫酸。
使用这种方法时,必须逐步增加酸的浓度,并将树脂放在酸中浸泡数小时,以确保树脂表面附着的所有离子都被去除。
3. 碱再生法:
碱再生法是使用碱性溶液清洗离子交换树脂,将表面的离子吸附并去除。
常用的碱是氢氧化钠或碳酸钠。
这种方法与酸再生法相似,必须逐步增加碱的浓度,并将树脂放在碱性溶液中浸泡数小时。
4. 盐水再生法:
盐水再生法是使用盐水清洗离子交换树脂,然后再用水冲洗干净。
该
方法适用于在水处理工艺中使用的一些树脂,如强酸树脂或强碱树脂。
总之,再生离子交换树脂的方法可以根据不同的需求选择。
热再生法、酸再生法和碱再生法都需要在处理完离子交换树脂后进行废液处理和
洗涤,同时还需要对废液进行处理,以确保废物不会对环境造成影响。
盐水再生法可减少废物处理的成本和复杂性,但其效率较低。
因此,
在选择再生方法时,必须考虑到各种因素,如处理效率、成本和环保性。
离子交换树脂再生原理
离子交换树脂再生原理离子交换树脂是一种常用于水处理、化学分析和工业生产中的重要材料。
它能够通过吸附和释放离子来实现对溶液中离子的选择性分离和去除。
然而,随着时间的推移,树脂会逐渐失去吸附能力,需要进行再生以恢复其活性。
本文将详细介绍离子交换树脂再生的原理。
一、离子交换树脂的结构和工作原理离子交换树脂是由高分子材料制成的,通常呈珠状或颗粒状。
它具有许多固定在高分子链上的功能基团,这些功能基团能够与溶液中的离子发生化学反应,并实现对离子的选择性吸附。
当溶液经过含有离子交换树脂的柱床时,其中的阳离子或阴离子会被树脂上相应类型的功能基团吸附住,并与其发生化学反应。
这样,溶液中的目标离子就被有效地去除了。
同时,树脂上原先吸附的其他非目标离子也会被新进溶液中的离子替代,实现了离子交换。
二、离子交换树脂的失效原因随着离子交换树脂的使用时间增加,其表面功能基团逐渐被目标离子吸附饱和,无法继续吸附更多的离子。
此时,树脂失去了对目标离子的选择性吸附能力,需要进行再生。
离子交换树脂失效的原因主要有以下几点:1. 功能基团饱和:树脂上的功能基团吸附了大量目标离子,无法再吸附更多。
2. 杂质积聚:溶液中存在一些杂质物质,如悬浮物、有机物等,它们会在树脂上沉积并堵塞孔隙。
3. pH变化:溶液中的pH值发生变化时,树脂上的功能基团可能会发生结构改变或失活。
三、离子交换树脂再生方法为了恢复失效的离子交换树脂活性,常用的再生方法包括物理方法和化学方法。
1. 物理方法:物理方法主要是通过改变溶液的温度、pH值或流速等条件来实现树脂的再生。
- 温度变化:通过加热或冷却溶液,可以改变树脂上吸附离子的解吸速率,从而实现再生。
- pH变化:通过调整溶液的pH值,可以改变树脂上功能基团的电荷状态,使吸附在树脂上的离子释放出来。
- 流速调节:调节溶液通过树脂床的流速,可以改变离子在树脂上停留的时间,从而促进离子的解吸。
2. 化学方法:化学方法主要是通过使用一些特定的化学试剂来实现对树脂进行再生。
阳离子交换树脂的再生作业与原理
阳离子交换树脂的再生作业与原理阳离子交换树脂的再生作业与原理1.PH范围:1142.高使用温度:氢型≤100℃,钠型≤120℃,3.转型膨胀率:(Na+→H+)8104.工业用树脂层高度:1.5m以上。
5.再生液浓度 NaCl:810,HCl:456.再生液用量:NaCl(810)体积:树脂体积=1.52:1HCl(45)体积:树脂体积=23:17.再生液流速: 58 m/h8.再生接触时间: 4560 min9.正洗流速: 1020 m/h10.正洗时间:约30 min11.运行流速: 1530 m/h12.工作交换容量:≥1000mol/m3六、用途主要用于水的处理(包括硬水软化、高压炉水、无离子水、注射水、海水淡化等),废水中贵金属的回收,抗生素的提纯,代替人体内肾脏的作用。
七、包装及贮运本产品用内衬塑料袋的编织袋包装,每袋25kg,也可根据需求用塑料桶或其它容器包装,本品为非危险品。
贮运温度540℃,严禁脱水、曝晒。
一、树脂的运输和贮存:离子交换树脂内含有一定量的水份,在运输及贮存过程中应尽量保持这部分水份。
如果贮存过程中树脂脱了水,应先用浓食盐水(810)浸泡12小时,再逐渐稀释,不得直接放于水中,以免树脂急剧膨胀而破碎。
树脂在贮存或运输过程中,应保持在540℃的温度环境中,避免过冷或过热,影响质量。
若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水的温度可根据气温而定。
二、新树脂的予处理:新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸着铁、铝、铜等重金属离子。
当树脂与水、酸、碱或其它溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。
所以,新树脂在投运前要进行预处理。
1、阳树脂的预处理阳树脂的预处理步骤如下:首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐溶液中浸泡1820小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;其次再用24NaOH溶液,其量与上相同,在其中浸泡24小时(或小流量清洗),放尽碱液后,冲洗树脂直至排出水接近中性为止;后用5HCL溶液,其量亦与上述相同,浸泡48小时,放尽酸液,用清水漂流至中性待用。
离子交换树脂的再生方法
离子交换树脂的再生方法离子交换树脂是一种广泛应用于水处理、化学工业和生物科学等领域的重要材料。
随着使用时间的增长,离子交换树脂会逐渐失去对离子的吸附能力,需要进行再生以恢复其吸附性能。
本文将介绍离子交换树脂的再生方法,包括酸洗法、碱洗法、盐洗法和热解法等。
1. 酸洗法酸洗法是一种常用的离子交换树脂再生方法,适用于强酸型阳离子交换树脂和强碱型阴离子交换树脂。
具体步骤如下:•将需要再生的离子交换树脂放入酸性溶液中浸泡,通常使用稀硫酸或盐酸;•在适当的温度下进行搅拌或循环,促使酸性溶液与树脂充分接触;•洗涤干净后,将树脂进行中和处理,恢复其中性状态;•最后用水冲洗干净,使树脂完全去除酸性溶液。
酸洗法能够有效去除离子交换树脂表面的污染物和附着物,恢复其吸附能力。
但需要注意的是,酸洗法只适用于耐酸性的离子交换树脂。
2. 碱洗法碱洗法是一种适用于强碱型阳离子交换树脂和强酸型阴离子交换树脂的再生方法。
具体步骤如下:•将需要再生的离子交换树脂放入碱性溶液中浸泡,通常使用氢氧化钠或氢氧化钾;•在适当的温度下进行搅拌或循环,促使碱性溶液与树脂充分接触;•洗涤干净后,将树脂进行中和处理,恢复其中性状态;•最后用水冲洗干净,使树脂完全去除碱性溶液。
碱洗法能够有效去除离子交换树脂表面的污染物和附着物,恢复其吸附能力。
但需要注意的是,碱洗法只适用于耐碱性的离子交换树脂。
3. 盐洗法盐洗法是一种适用于强酸型阳离子交换树脂和强碱型阴离子交换树脂的再生方法。
具体步骤如下:•将需要再生的离子交换树脂放入盐水中浸泡,通常使用氯化钠溶液;•在适当的温度下进行搅拌或循环,促使盐水与树脂充分接触;•洗涤干净后,将树脂进行中和处理,恢复其中性状态;•最后用水冲洗干净,使树脂完全去除盐水。
盐洗法能够有效去除离子交换树脂表面的污染物和附着物,恢复其吸附能力。
但需要注意的是,盐洗法只适用于耐盐性的离子交换树脂。
4. 热解法热解法是一种适用于各种类型离子交换树脂的再生方法。
离子交换树脂的电再生技术(EDI)
离子交换树脂的电再生技术(EDI)离子交换水处理的主要方式有混床和复床两种,混床和复床树脂的电再生各有不同的特点。
下面将在简述混床树脂电再生的基础上,着重讨论复床树脂电再生特点、原理和试验研究结果及电再生器的结构。
1 混床树脂电再生在EDI过程中,水电离所产生的H+ 和OH-离子,不断地自再生填充在淡水室内的树脂,这一自再生作用是EDI净水设备得以连续出水且出水水质很高的关键因素。
因此,如果制造出结构上类似于EDI净水设备而其淡水室不填混床树脂的电再生器,那么设法将失效的混床树脂送入其中,并通电和通纯水,使该电再生器运行一段时间,这些失效的混床树脂就必然得到彻底再生。
在这一电再生器的再生室内,水电离所产生的H+ 和OH-离子不断地电再生失效的混床树脂,从其树脂上置换下来的盐类离子,又受电场作用不断地被迁移至浓水室排出。
失效混床阴、阳树脂,从盐基型转为H、OH型树脂,完成了再生过程。
由于失效树脂不流动,称这种方式为静态体外电再生。
相应地,只要源源不断地将失效混床树脂送入树脂体外电再生器,就有再生好的混床树脂从其中徐徐流出,从而实现了混床树脂的动态体外电再生,其工作原理示意地如图1所示。
图1 混床树脂动态体外电再生原理示意图1—阴膜;2—阳膜;3—混床树脂电再生室;4—下部失效混床树脂;5—中部已部分再生的混床树脂;6—上部已再生混床树脂。
混床树脂体外电再生是在直流电场作用下,利用水作为再生剂,用它代替酸碱再生失效混床树脂,再生时不必采用分离、再生、混合、清洗等复杂的再生步骤,只需用水力输送法将失效混床树脂送入体外电再生器进行再生,不用酸、碱化学药剂,对环境无污染,只消耗少量电能,使用方便,费用低廉,使传统的离子交换水处理工艺发生根本性的变化。
除了普通混床外,还有凝结水精处理用高速混床,这种混床通常在120 m/h的高流速下工作,树脂失效后要靠水力输送至专门的树脂再生装置进行酸碱化学再生,再生后再回输至原高速混床使用。
离子交换树脂再生原理
离子交换树脂再生原理首先,离子交换树脂再生的原理是基于树脂表面的功能基团与被吸附物质之间的离子交换作用。
在使用过程中,树脂表面的功能基团会逐渐被被吸附物质所替代,导致树脂失去吸附能力。
因此,再生的关键在于恢复树脂表面的功能基团,使其重新具有吸附能力。
其次,离子交换树脂的再生方法主要包括化学再生和物理再生两种。
化学再生是指通过化学方法将被吸附物质从树脂表面去除,常用的方法包括酸碱法、盐溶液法等。
物理再生则是通过物理手段将被吸附物质从树脂表面去除,如高温脱附、超声波清洗等。
两种方法各有优劣,具体选择应根据树脂类型、被吸附物质特性以及再生设备条件等因素综合考虑。
再者,离子交换树脂再生的效果受到多种因素的影响。
首先是树脂的类型和质量,不同类型的离子交换树脂其再生方法和效果也会有所不同。
其次是被吸附物质的性质,不同的被吸附物质对树脂的影响程度不同,需要针对性地选择再生方法。
此外,再生设备的操作条件和再生剂的选择也会影响再生效果。
因此,在进行离子交换树脂再生时,需要综合考虑这些因素,选择合适的再生方法和条件,以达到最佳的再生效果。
最后,离子交换树脂再生后,需要对树脂进行再生后的性能进行检测,以确保其再生效果符合要求。
常用的检测方法包括树脂的吸附容量、离子交换容量、表观密度等。
通过这些检测数据,可以评估再生效果,并对再生方法进行调整和改进。
总之,离子交换树脂再生是保证树脂持续利用的重要环节,其原理是基于离子交换作用,再生方法包括化学再生和物理再生,再生效果受到多种因素的影响。
在实际应用中,需要根据具体情况选择合适的再生方法,并对再生后的树脂性能进行检测,以确保其再生效果符合要求。
离子交换树脂的再生方法
离子交换树脂的再生方法离子交换树脂是一种常用的水处理材料,它可以去除水中的离子,使水变得更加纯净。
但是,在使用一段时间后,树脂会被吸附的离子饱和,需要进行再生。
下面将介绍离子交换树脂的再生方法。
首先,需要了解离子交换树脂的类型。
通常分为阴离子交换树脂和阳离子交换树脂。
因此,在进行再生时需要针对不同类型的树脂采取不同的方法。
对于阴离子交换树脂,可以采用碱性溶液进行再生。
具体来说,将碱性溶液(如氢氧化钠)通过阴离子交换树脂床层,使其与吸附在树脂上的阴离子发生置换反应,从而将吸附在树脂上的阴离子清除掉。
在置换反应完成后,用水洗涤残留物质即可。
对于阳离子交换树脂,则可以采用酸性溶液进行再生。
具体来说,将酸性溶液(如盐酸)通过阳离子交换树脂床层,使其与吸附在树脂上的阳离子发生置换反应,从而将吸附在树脂上的阳离子清除掉。
在置换反应完成后,用水洗涤残留物质即可。
需要注意的是,在进行再生之前,需要先将离子交换树脂床层进行反冲洗。
这是为了去除床层中的杂质和污垢,以便更好地进行再生。
此外,在进行离子交换树脂的再生时,需要注意以下几点:1. 离子交换树脂的再生周期应该根据实际情况来定。
如果水中含有大量的离子,则需要更频繁地进行再生。
2. 在使用碱性溶液或酸性溶液进行再生时,需要注意安全问题。
这些溶液具有强酸性或强碱性,对人体有一定危害。
3. 在进行反冲洗和再生时,应该避免过度冲洗和过度置换。
否则会导致树脂失效或者影响其使用寿命。
综上所述,离子交换树脂是一种重要的水处理材料,在使用过程中需要注意进行再生。
通过正确的再生方法,可以有效地延长树脂的使用寿命,保证水的纯净度。
离子交换设备中树脂再生能力的影响因素
离子交换设备中树脂再生能力的影响因素通常来说,阳离子交换树脂的再生可用5%--10%盐酸、0.5%--5%硫酸、10%的食盐水或海水其中之一种,阴离子交换树脂的再生可用2%--10%氢氧化钠、2%--4%氨水或10%食盐水其中之一种,均浸泡24小时。
离子交换树脂的再生是一个复杂的过程,再生浓度、流速和时间等都会影响再生的效果。
下面详细分析下影响离子交换树脂再生特性的主要因素。
1、影响再生特性的主要因素①离子相对浓度高低对树脂的交换性质会产生很大的影响。
当水溶液中氢离子的浓度相当大时,钙型或镁型的阳离子交换树脂中的钙离子或镁离子,可与氢离子进行交换,重新成为氢型阳离子交换树脂。
换言之,交换反应也可以反方向进行。
由于离子交换过程是可逆的,因此当交换树脂交换了一定量的离子后,可用相对浓度较高的氢离子再取代下来,使之一再重复被循环使用,这种作用称为再生(regeneration)。
其反应式如下:(R-SO3)2Ca +2H+ →2R-SO3H +Ca2+ (R-COO)2Ca +2H+ →2R-COOH +Ca2+ 当氢型树脂中的氢离子,都被其它硬度离子交换后,这些树脂就没有软化水质作用,此时之状态称为饱和状态。
再生操作主要目的就是将已经达到“饱和”状态的树脂,利用“再生剂”洗出所交换来的阳离子,让树脂重新再回复到原有的交换容量,或所期望的容量程度,或原有的树脂型态等。
无论是强酸性或弱酸性阳离子交换树脂,都可以使用稀硫酸或稀盐酸作为再生剂,但一般认为以稀硫酸作为再生剂,效果可能会好一些。
因为树脂若吸附有机物的话,稀硫酸较稀盐酸更能解析出有机物,所以一般工艺多采用稀硫酸为再生剂。
不过实际应用时,可能因为硫酸的取得较为困难,所以多使用盐酸作为再生剂居多。
②氢型树脂的再生特性与它的类型和结构有密切关系,强酸性氢型树脂的再生比较困难,需要的再生酸液的剂量比理论值高许多,而且必须较长的接触时间。
相形之下,弱酸性氢型树脂的再生则比较容易,需要的再生酸液的剂量仅比理论值高一些,也不需要长的接触时间。
离子交换树脂的再生
离子交换树脂的再生一、常规的再生处理离子交换树脂使用一段时间后,吸附的杂质接近饱和状态,就要进行再生处理,用药剂将树脂所吸附的离子和其他杂质洗脱除去,使之恢复原来的组成和性能;在实际运用中,为降低再生费用,要适当控制再生剂用量,使树脂的性能恢复到最经济合理的再生水平,通常控制性能恢复程度为 70~80% ;如果要达到更高的再生水平,则再生剂量要大量增加,再生剂的利用率则下降;树脂的再生应当根据树脂的种类、特性,以及运行的经济性,选择适当的再生药剂和工作条件;树脂的再生特性与它的类型和结构有密切关系;强酸性和强碱性树脂的再生比较困难,需用再生剂量比理论值高相当多;而弱酸性或弱碱性树脂则较易再生,所用再生剂量只需稍多于理论值;此外,大孔型和交联度低的树脂较易再生,而凝胶型和交联度高的树脂则要较长的再生反应时间;再生剂的种类应根据树脂的离子类型来选用,并适当地选择价格较低的酸、碱或盐;例如:钠型强酸性阳树脂可用 10%NaCl 溶液再生,用药量为其交换容量的 2 倍用NaCl 量为117g/ l 树脂 ;氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物;为此,宜先通入 1~2% 的稀硫酸再生;氯型强碱性树脂,主要以 NaCl 溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl + %NaOH 的碱盐液再生,常规用量为每升树脂用150~ 200g NaCl ,及 3~4g NaOH; OH 型强碱阴树脂则用 4%NaOH 溶液再生;树脂再生时的化学反应是树脂原先的交换吸附的逆反应;按化学反应平衡原理,提高化学反应某一方物质的浓度,可促进反应向另一方进行,故提高再生液浓度可加速再生反应,并达到较高的再生水平;为加速再生化学反应,通常先将再生液加热至 70~80℃;它通过树脂的流速一般为1~ 2 BV/h ;也可采用先快后慢的方法,以充分发挥再生剂的效能;再生时间约为一小时;随后用软水顺流冲洗树脂约一小时水量约4BV ,待洗水排清之后,再用水反洗,至洗出液无色、无混浊为止;一些树脂在再生和反洗之后,要调校 pH 值;因为再生液常含有碱,树脂再生后即使经水洗,也常带碱性;而一些脱色树脂特别是弱碱性树脂宜在微酸性下工作;此时可通入稀盐酸,使树脂 pH 值下降至6左右,再用水正洗,反洗各一次;树脂在使用较长时间后,由于它所吸附的一部分杂质特别是大分子有机胶体物质不易被常规的再生处理所洗脱,逐渐积累而将树脂,使树脂效能降低;此时要用特殊的方法处理;例如:阳离子树脂受含氮的两性化合物污染,可用 4%NaOH 溶液处理,将它溶解而排掉;阴离子树脂受有机物污染,可提高碱盐溶液中的 NaOH 浓度至~%,以溶解有机物;二、特殊的再生处理污染较严重的树脂,可用酸或碱性食盐溶液反复处理,如先用 10%NaCl +1%NaOH 碱盐溶液溶解有机物,再用 4%HCl 或分别用 10%NaOH 及 1%HCl 溶解无机物,随后再用10%NaCl +1%NaOH 处理,在约 70℃下进行;如果上述处理的效果未达要求,可用氧化法处理;即用水洗涤树脂后,通入浓度为 % 的次氯酸钠溶液,控制流速 2~4BV/h ,通过量 10~20BV ,随即用水洗涤,再用盐水处理;应当注意,氧化处理可能将树脂结构中的大分子的连接键氧化,造成树脂的降解,膨胀度增大,容易碎裂,故不宜常用;通常使用 50 周期后才进行一次氧化处理;由于氯型树脂有较强的耐氧化性,故树脂在氧化处理前应用盐水处理,变为氯型,这还可避免处理过程中的 pH 值变化,并使氧化作用比较稳定;三、再生废液的处置糖厂用树脂脱色,树脂再生的废液含有大量的色素和有机物,颜色很深;用原糖生产精糖时,每 100 吨糖的再生废液量约为 6~9m3 ;要经过处理才能排放或循环,这也是一个难题;Bento 详细研究了用化学方法处理再生液,使色素和其他有机物沉淀,除去杂质后再循环使用,减少排放,并充分利用其中的氯化钠;由于再生液中色素的浓度比糖汁中高 10 倍以上,液体数量较小,没有糖液的粘性,并能容许强烈的条件如强碱性和高温等而无需顾虑糖的分解,用化学处理比较方便;再生液加入 5~10% 容积的石灰乳浓度为含CaO100g/ l ,加热到60℃并轻微搅拌,大量的有色物沉淀析出;再加入碳酸钠或二氧化碳、磷酸钠或磷酸并保持碱性,都可使较多的有色物沉淀;处理后的液体添加少量食盐可返回作树脂的初级再生液,其后再用新的盐水再生;对废液的处理还研究过多种方法:用颗粒活性炭吸附,用次氯酸钠、次氯酸钙、氯气或臭氧将它氧化,用超过滤或反渗透法分离它的有机物,或用粉状树脂吸附等;最近Guimaraes 等研究用将它的有色物降解,取得较好效果钠型阳离子交换树脂使用寿命及工作原理,阴阳离子交换树脂,全自动软化水设备时间:2010-08-21 13:40:17来源:作者:钠型阳离子交换树脂使用寿命及工作原理,,全自动软化水设备国内目前常用的优级阳离子软化树脂为中英合资生产的“漂莱特”钠型阳离子交换树脂,厂家提供的软化水树脂使用年限工业上为5-8年理论值,实际运行当中,树脂受原水影响的主要原因为:A、原水管路一般为碳钢管道,水与管路发生氧化反应,生成铁离子,进入树脂后,随运行时间的延长,树脂的功能交换基团下降,其表现为耗盐量高,再生水质差;B、树脂反复再生:由于树脂的长时间频繁再生,每次再生时,树脂间都做相互擦洗运动,受水压及树脂间的机械磨损,树脂的交联值机械强度逐渐下降,骨架变形,运行中其表现为出水有时为黄褐色,产水周期明显缩短,再生效果不理想;C、树脂的理化值:聚合物骨架-----------------------------------------------聚苯乙烯-二乙烯苯功能基------------------------------------------------------聚苯乙烯磺酸基出厂型式---------------------------------------------------钠型外观---------------------------------------------------------淡色球壮颗粒水份钠型---------------------------------------------46--50%粒度---------------------------------------------------- +<5%; <1%全交钠型-----------------------------------------------≥L湿树脂----------------------------------------------≥kg干树脂膨胀率Na+→H+-------------------------------------≤5%pH稳定性----------------------------------------------------0-14比重钠型操作温度钠型---------------------------------------------≤150℃离子交换法的工作原理钠离子交换软化处理的原理是将原水通过钠型阳离子交换树脂,使水中的硬度成分Ca2+、Mg2+与树脂中的Na+相交换,从而吸附水中的Ca2+、Mg2+,使水得到软化;如以RNa代表钠型树脂,其交换过程如下:2RNa + Ca2+ = R2Ca + 2Na+2RNa + Mg2+ = R2Mg + 2Na+即水通过钠离子交换器后,水中的Ca+、Mg+被置换成Na+;当钠离子交换树脂失效之后,为恢复其交换能力,就要进行再生处理;再生剂为价廉货广的食盐溶液;再生过程反应如下:R2Ca + 2NaCl = 2RNa + CaCl2R2Mg + 2NaCl = 2RNa + MgCl2为了使您易于理解接受,以下的说法是尽量通俗的说法,与标准工具书的说法可能不尽一致但不会出现技术性错误;离子交换树脂是一种聚合物,带有相应的功能基团;一般情况下,常规的钠离子交换树脂带有大量的钠离子;当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降;硬水就变为软水,这是软化水设备的工作过程;当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”;由于实际工作的需要, 软化水设备的标准工作流程主要包括:工作有时叫做产水,下同、反洗、吸盐再生、慢冲洗置换、快冲洗五个过程;不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程;任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的其中,全自动软化水设备会增加盐水重注过程;反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证;反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走;这个过程一般需要5-15分钟左右;吸盐再生:即将盐水注入树脂罐体的过程,传统设备是采用盐泵将盐水注入,全自动的设备是采用专用的内置喷射器将盐水吸入只要进水有一定的压力即可;在实际工作过程中,盐水以较慢的速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以软化水设备都是采用盐水慢速流过树脂的方法再生,这个过程一般需要30分钟左右,实际时间受用盐量的影响;慢冲洗置换:在用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程中仍有大量的功能基团上的钙镁离子被钠离子交换,根据实际经验,这个过程中是再生的主要过程,所以很多人将这个过程称作置换;这个过程一般与吸盐的时间相同,即30分钟左右;快冲洗:为了将残留的盐彻底冲洗干净,要采用与实际工作接近的流速,用原水对树脂进行冲洗,这个过程的最后出水应为达标的软水;一般情况下,快冲洗过程为5-15分钟; 3、特点管路简化,节省占地空间;运行稳定可靠;节约再生用盐;运行费用低;免维护;适用性广:可用于工业锅炉、热交换器、中央空调及食品、制药、电子等行业4、技术要求原水硬度:3-10mmol/L;出水残余硬度:≤L;工作压力:;工作温度:2 -50℃;自控电源:220V 50Hz;耗电量:10W;树脂型号:001×7型强酸性阳离子交换树脂;入口压力低于需加装管道泵;设备总压损:;PH范围:1-14最高使用温度:钠型≤120°C型变膨胀率%:H+-Na+8-10再生液浓度:NaCl:3-10%;HCl:4-5%;NaOH:4-5% 再生液用量:NaCl:8-10%;体积:树脂体积=:1HC14-5%体积:树脂体积=2-3:1NaOH4-5%;体积:树脂体积=2-3:1再生液流速:5-8m/h;再生接触时间:30-60min正洗流速:10-20m/h;正洗时间:约30min运行流速:10-40m/h钠型阳离子交换树脂使用寿命及工作原理,,全自动软化水设备。
离子交换树脂再生办法
离子交换树脂再生方法一.阳床1.阳床再生(顺流再生)①配酸比重≥3,同时将阳床内水全部放空;②打开进酸阀、上排阀,其他阀门全部关闭,打开酸泵;③待进酸液面超过树脂以上20cm后,开启下排,下排流量和进酸流量相同,此时流量控制在600~1000L/h,进酸时间不低于40分钟。
1.阳床清洗进酸完毕后可直接进行清洗,先开启砂过滤,精密过滤,精密过滤处于上排上进状态。
放掉阳床进酸管道、上进管道内的残酸方法为:开启上进下进,下排开启进酸阀。
此时将精密过滤出水阀打开、关闭上排阀,将进酸管道内的残酸冲洗到酸槽后关闭进酸阀。
关闭阳床下进阀,开始进行清洗,清洗时打开阳床上排阀,阳床内的水须始终漫过树脂,注意不要使树脂失水。
清洗到下排阀出水PH值为7左右(接近中性)为止。
二.阴床1.阴床再生(水流再生)①配碱比重≥5,将阴床内水放空;②打开进碱阀、上排阀,其他阀门全部关闭,然后开启碱泵;③待碱液液面超过树脂20cm后,开启下排,下排流量与进碱流量一致,此时流量控制在600~1000L/h,进碱时间不得少于60min,进碱完毕后放空阴床内碱液。
2.阴床清洗清洗时打开中间水箱泵、风机,防止碱液倒流至中间水箱槽。
将进碱管道内残碱冲洗到碱槽内及即可以开始阴床清洗。
同阳床清洗一样,清洗到下排排出水PH值约为7(中性),测试电导率小于5即可。
三.混床1.混床再生①阴阳树脂同步再生。
首先对混床内树脂进行分层:开启清洗阀、上排阀并启动清洗泵,此时分层开始。
若分层困难,可进少量酸帮助树脂分层,在混床内树脂出现明显分层时分层完毕,再开启上进阀、中排阀(同时混床以前的阴、阳床正常开启运行)将阴离子交换树脂冲洗干净直至排出的水呈中性。
②进酸进碱配碱比重≥5、配酸比重≥3,碱液由上排进入,中排排出;酸液由下排进入、中排排出。
进酸进碱在同步进行时,必须保证各泵的流量一致,泵流量应保持在600~1000L/h,时间不低于30min。
阴、阳离子交换树脂再生完毕后进行清洗时清洗水分别从上排阀、下排阀进入,由中排阀排出,此时须确保清洗的同步进行以及进水流量的一致。
离子交换树脂再生原理
离子交换树脂再生原理离子交换树脂是一种能够吸附和释放离子的高分子化合物,广泛应用于水处理、化工、医药等领域。
然而,在长时间使用后,离子交换树脂会逐渐失去活性,需要进行再生以恢复其吸附能力。
离子交换树脂再生的原理是什么呢?接下来我们将详细介绍。
首先,离子交换树脂再生的原理基于其结构特点。
离子交换树脂通常由阳离子交换树脂和阴离子交换树脂组成,其结构中含有大量的功能基团,如硫酸基、羧基等。
这些功能基团能够与水中的离子发生置换反应,使得水中的离子被吸附到树脂上。
随着使用时间的增长,树脂表面的功能基团会逐渐被水中的离子所取代,导致其吸附能力下降。
其次,离子交换树脂再生的原理是通过化学方法恢复其吸附能力。
通常采用的再生方法包括酸再生和碱再生两种。
酸再生是指用稀酸溶液将树脂中吸附的阳离子释放出来,碱再生则是用稀碱溶液将树脂中吸附的阴离子释放出来。
在再生过程中,树脂与再生溶液进行接触,使得树脂表面的功能基团重新得到置换,恢复其原有的吸附能力。
另外,离子交换树脂再生的原理还包括物理方法。
物理方法主要是通过高温脱附和冲洗来恢复树脂的吸附能力。
高温脱附是指将树脂加热至一定温度,使得树脂中吸附的离子被释放出来,从而恢复其吸附能力。
而冲洗则是利用水或其他溶剂对树脂进行清洗,去除表面的杂质和残留物,以提高树脂的吸附效果。
最后,离子交换树脂再生的原理是一个循环往复的过程。
随着再生次数的增加,树脂的吸附能力会逐渐下降,直至无法再生为止。
因此,在实际应用中,需要根据树脂的使用情况和再生效果,及时更换或淘汰老化的树脂,以确保水处理和其他应用的效果。
综上所述,离子交换树脂再生的原理是基于其结构特点和化学、物理方法的相互作用,通过再生来恢复树脂的吸附能力。
在实际应用中,需要根据具体情况选择合适的再生方法,并定期更换或淘汰老化的树脂,以保证其长期稳定的使用效果。
离子交换树脂再生工艺
离子交换树脂再生工艺一、常规的再生处理离子交换树脂使用一段时间后,吸附的杂质接近饱和状态,就要进行再生处理,用化学药剂将树脂所吸附的离子和其他杂质洗脱除去,使之恢复原来的组成和性能。
在实际运用中,为降低再生费用,要适当控制再生剂用量,使树脂的性能恢复到最经济合理的再生水平,通常控制性能恢复程度为70~80%。
如果要达到更高的再生水平,则再生剂量要大量增加,再生剂的利用率则下降。
树脂的再生应当根据树脂的种类、特性,以及运行的经济性,选择适当的再生药剂和工作条件。
树脂的再生特性与它的类型和结构有密切关系。
强酸性和强碱性树脂的再生比较困难,需用再生剂量比理论值高相当多;而弱酸性或弱碱性树脂则较易再生,所用再生剂量只需稍多于理论值。
此外,大孔型和交联度低的树脂较易再生,而凝胶型和交联度高的树脂则要较长的再生反应时间。
再生剂的种类应根据树脂的离子类型来选用,并适当地选择价格较低的酸、碱或盐。
例如:钠型强酸性阳树脂可用10%NaCl?溶液再生,用药量为其交换容量的2倍?(用NaCl?量为117g/?l?树脂);氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物。
为此,宜先通入1~2%的稀硫酸再生。
氯型强碱性树脂,主要以NaCl?溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl?+?0.2%NaOH?的碱盐液再生,常规用量为每升树脂用150~200g?NaCl?,及3~4g?NaOH。
OH型强碱阴树脂则用4%NaOH溶液再生。
树脂再生时的化学反应是树脂原先的交换吸附的逆反应。
按化学反应平衡原理,提高化学反应某一方物质的浓度,可促进反应向另一方进行,故提高再生液浓度可加速再生反应,并达到较高的再生水平。
为加速再生化学反应,通常先将再生液加热至70~80℃。
它通过树脂的流速一般为1~2BV/h。
也可采用先快后慢的方法,以充分发挥再生剂的效能。
离子交换树脂填料如何再生即使用时的注意事项
离子交换树脂填料如何再生即使用时的注意事项离子交换树脂是一种多孔性固体聚合物,它在水处理、化学分离和提纯等领域有着广泛的应用。
在使用过程中,树脂会逐渐丧失其交换能力,需要进行再生以恢复其功能。
以下是关于离子交换树脂再生的一般步骤以及使用时的注意事项:再生步骤:1. 反冲洗:用清水从下向上逆向清洗树脂层,以去除树脂中的悬浮颗粒和破碎树脂。
2. 浸泡:将树脂放入合适的再生液中浸泡,如强酸或强碱溶液,以使树脂上的离子被新离子替换。
3. 正冲洗:用清水从上向下冲洗树脂层,以彻底清除残留的再生液。
4. 淋洗(可选):如果树脂用于生产高纯度水,可能需要进一步淋洗以减少可溶性杂质。
注意事项:安全防护:操作者应穿戴适当的防护设备,如橡胶手套、护目镜等,并避免直接接触皮肤和眼睛。
储存条件:树脂应储存在干燥的地方,避免暴露于阳光直射或极端温度下。
预处理:新树脂在使用前通常需要进行预处理,以去除制造过程中的杂质。
浓度控制:再生液的浓度要适当,浓度过高可能会损坏树脂,浓度过低则可能导致再生效果不佳。
时间控制:浸泡时间应根据实际情况调整,过短可能无法充分再生,过长则可能对树脂造成损伤。
水质监测:定期检查出水质量,当水质下降到一定水平时,应及时进行再生。
再生剂选择:选择适当的再生剂,例如阳离子树脂一般用硫酸或盐酸再生,阴离子树脂一般用氢氧化钠再生。
特定类型树脂的再生:对于不同的应用和树脂类型,再生方法可能有所不同。
例如:强酸性阳离子树脂用于钠离子交换器制取软水时,可用10%盐水反复浸泡3~4次,每次浸泡约1小时,然后完全再生。
制取纯水时,强酸性阳离子交换树脂依次用4~5%的HCl浸泡并水洗、4%的NaOH浸泡并水洗、4~5%的HCl浸泡并水洗,每次浸泡不少于1小时。
强碱型阴离子交换树脂依次用4%的NaOH浸泡并水洗、4~5%的HCl浸泡并水洗、4%的NaOH浸泡并水洗,每次浸泡不少于1小时。
离子交换树脂的再生意义
离子交换树脂的再生意义
离子交换树脂是一种用于去除水中离子的重要工具,它们可以去除水中的硬水离子(如钙和镁),以及其他有害离子(如铅、汞等),从而改善水的质量。
然而,随着时间的推移,离子交换树脂会逐渐饱和,导致其去除离子的效率下降。
因此,再生离子交换树脂具有重要的意义。
首先,再生离子交换树脂可以延长其使用寿命。
通过再生,树脂中的吸附离子可以被洗去,从而恢复其原始的去离子能力。
这样可以减少更换树脂的频率,节约成本,并减少对环境的影响。
其次,再生离子交换树脂有利于资源的可持续利用。
离子交换树脂通常是以有机高分子材料制成的,再生离子交换树脂可以减少对原材料的需求,有利于资源的节约和可持续利用。
此外,再生离子交换树脂也有利于减少废物的产生。
如果使用过的离子交换树脂被丢弃,其中吸附的有害离子可能会对环境造成污染。
通过再生,这些有害物质可以被有效地处理,减少对环境的负面影响。
最后,再生离子交换树脂对于保护水资源和改善水质具有重要
意义。
水资源是人类生存和发展的基础,再生离子交换树脂的使用
可以帮助去除水中的有害离子,保护水资源,提高供水质量,从而
造福人民。
综上所述,再生离子交换树脂具有延长使用寿命、资源可持续
利用、减少废物产生和保护水资源的重要意义。
通过再生离子交换
树脂,我们可以更加有效地利用这一重要的水处理工具,实现经济、环保和可持续发展的目标。
离子交换树脂再生剂用途
离子交换树脂再生剂用途
离子交换树脂再生剂是一种材料,可用于去除水中的离子,例如钠、钙或镁离子,通常用于工业或家庭水处理设备中。
这些树脂再生剂能够通过离子交换的方式,将水中的离子与树脂上的对应离子进行交换,从而达到净化水的目的。
当树脂再生剂中已经吸附了大量离子时,需进行再生。
再生过程中,通过向树脂再生剂中加入盐水或其他特定的化学物质,可以将已吸附的离子释放出来,使树脂再生剂恢复其吸附能力。
离子交换树脂再生剂的主要用途是水处理,例如软化水或去除水中的过多离子。
离子交换树脂再生方法
离子交换树脂再生方法
离子交换树脂是一种用于对水质中离子进行去除或浓缩的方法。
当树脂饱和或吸附了大量离子后,需要进行再生以恢复树脂的吸附能力。
离子交换树脂再生一般分为两种方法:物理再生和化学再生。
1. 物理再生:物理再生是通过改变树脂的条件来恢复其吸附能力,常见的物理再生方法包括:
- 背流冲洗(Backwashing):将水反向通过树脂床,以去除吸附在树脂上的悬浮颗粒和污垢。
- 疏水冲洗(Water rinsing):使用纯水冲洗树脂床,以去除吸附在树脂上的离子和溶解物。
- 热水再生(Hot water regeneration):使用热水冲洗树脂床,以去除吸附在树脂上的离子。
- 挤出冲洗(Squeeze rinsing):将树脂床挤压,以去除吸附在树脂内部的溶解物。
2. 化学再生:化学再生是通过使用化学物质来恢复树脂的吸附能力,常见的化学再生方法包括:
- 盐酸再生(Hydrochloric acid regeneration):使用盐酸溶液冲洗树脂床,以去除吸附在树脂上的离子。
- 碱再生(Alkaline regeneration):使用碱溶液冲洗树脂床,以去除吸附
在树脂上的离子。
- 盐再生(Salt regeneration):使用盐水溶液冲洗树脂床,以将吸附在树脂上的离子替换为盐离子。
再生方法的选择取决于离子交换树脂的类型、水质和需求,以及实际操作的可行性和经济性。
在实际应用中,常常结合多种再生方法使用,以达到最好的再生效果。
离子交换树脂的再生方式
离子交换树脂的再生方式离子交换树脂的再生方式离子交换剂失效后通过再生来恢复离子交换能力,常用再生方式有顺流再生与逆流再生。
一、顺流再生顺流再生时原水与再生液流过交换剂层的方向相同。
因此在再生液流过交换剂层时首先接触到的是交换剂层上部完全失效的已包含上部交换剂层被置换出来的离子,影响交换剂层下部的再主度(再生度指离子交换剂层中已再生离子量与全部交换容量的比值),造成处理水质降低、再生剂耗量增加。
顺流再生离子交换设备简单,工作可靠,但受原水水质组分影响大,再生效果换容量不能得到充分利用。
而再生后,下部再生度最低,为了提高出水质量和工作交换容量,必须增加再生剂的耗量。
二、逆流再生原水从交换器上部进人与再生液的方向相反,逆流再生(也称对流再生)过程。
1.逆流再生的优点与顺流再生比较,采用逆流再生提高了再生剂利用率,降低再生剂耗量30%-50%提高出水质量;降低清洗水耗量30%~50%降低再生废液排放量与排放浓度,排放再生废液中酸、碱浓度小于1%。
采用逆流再生原水含盐量500mg/L时,仍能保持出水质量;由丁辱部交换剂再生彻底,增”口交换剂工作层,同时原水先接触上部未彻底再生交换剂,减少了反离子效应,提高了交换剂工作交换容量。
2.逆流再生设备结构特点在运行中,如采用强酸阳树脂、强碱阴树脂,当由H型树脂转为Na型,由。
H型树脂转为Cl型时,体积收缩,交换剂层孔隙率逐渐减少,实际树脂失效时体积缩小80一l00mm。
逆流再生时,再生液从底部进人,需要保持交换剂层稳定,压实状态,因此需要增加压实层与顶压措施。
压实层的作用能截留悬浮杂质,使顶压的空气或水通过压实层能均匀分布于整个床层,保持床层在逆流再生时床层不上升或流动。
顶压措施有气顶压(在底部进再生液,同时在上部进净化压缩空气)、水顶压(在底部进再生液,同时在上部小流量进水)及无顶压(再生液在底部低速进人)三种方式。
压实层高度一般在中间排液管上面150~200mm。
离子交换树脂再生步骤
离子交换树脂再生步骤
嘿,朋友们!今天咱们来好好聊聊离子交换树脂的再生步骤,这可有趣啦!
想象一下,离子交换树脂就像是一群勤劳的小工人,一直在努力工作,为我们处理各种物质。
但是呢,工作久了它们也会累,这时候就需要咱们来给它们“充充电”,让它们重新活力满满,这就是再生啦!
第一步,咱们得把这些“小工人”从工作岗位上请下来,也就是把用过的离子交换树脂从设备里取出来。
这可得小心点儿,别把它们弄疼啦!
取出来之后,就到了清洗环节。
这就好比给它们洗个舒服的澡,把身上沾的那些脏东西都冲掉。
用清水好好冲冲,让它们干干净净的。
加完再生剂,就让它们安安静静地待一会儿,好好吸收这些营养。
这时候咱们别去打扰它们,就像人吃饭需要时间消化一样,它们也需要时间来完成这个过程。
等它们吸收得差不多了,就再用清水冲洗一下。
这一步是把多余的再生剂冲掉,免得影响后面的工作。
你看,离子交换树脂的再生步骤其实并不复杂,只要咱们用心对待,它们就能一直为我们服务,帮我们解决很多问题。
是不是很有趣呀?
所以呀,朋友们,以后遇到离子交换树脂需要再生的时候,别害怕,按照这些步骤来,轻松就能搞定!让咱们和这些勤劳的“小工人”一起,把工作做得漂漂亮亮的!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• H++NH4R⇌HR+NH4+
• 当静态浸泡再生时,随着反应物酸的浓度的降低,废液的生成,
反应达到平衡后不再进行。
• 1、再生步序
• (11) 化验用仪器、药品准备充分,能正 常使用。(酸碱滴定管、锥形瓶、标准溶 液)
• 2、再生步序
• (1) 阴床反洗、放水:开阴床反洗排水 阀、阴床反洗进水阀,当反洗排水清澈时, 关阴床反洗进水阀、反洗排水阀,阴床静 置沉降5min后,开阴床排气阀、中排阀放 水至中排不出水;
• (2) 阳床反洗、放水:开阳床反洗排水 阀、阳床反洗进水阀,当反洗排水清澈后 关阳床反洗入口阀、反洗排水阀,停运除 碳水泵。阳床静置沉降5min后,开阳床排 气阀、中排阀放水至中排不出水;
• (2) 放水:开排气阀、上部排水阀放水,上 排不出水后关闭排气阀、上部排水阀;
• (3) 预喷射、进酸碱:打开混床进碱阀、进 酸阀、中间排水阀,开混床碱喷射器进水阀、 酸喷射器进水阀,启动混床再生水泵,调整好 喷射器流量,使混床碱喷射器流量在8t/h左右, 混床酸喷射器流量在7t/h左右。检查正常后, 投运酸、碱浓度计,打开混床碱计量箱出碱阀、 混床酸计量箱出酸阀,用手动阀调整酸、碱浓 度分别在 5%左右。进完酸、碱液后(碱1.8m, 酸1.8m),关闭计量箱出碱阀、计量箱出酸阀, 停运酸、碱浓度计;
• (1)将失效的树脂用除盐水冲洗干净,除 盐水最好从下部通入。
• (2)将冲洗好的树脂加入盐酸溶液,控制 浓度为3%—5%,搅拌浸泡2—4小时。
• (3)将浸泡好的树脂用除盐水进行冲洗, 冲洗至排水为中性。
• 2、再生注意事项
• (1)再生好的树脂保存在除盐水中,避免 树脂失水造成树脂的破碎。
• (2)装填树脂时空气气泡容易滞留在树脂 空隙处,使空气中的二氧化碳进入测量水 样系统中,并在水溶液中发生电离反应, 影响氢电导率的测量。
• (3)树脂在浸泡方式下不能被彻底再生, 且再生程度与浸泡时间没有明显的关系。
• (4)在离子交换柱树脂柱外浸泡的再生方 式下,普遍存在着较高的氢交换柱附加误 差,绝大部分在线电导率表所测结果偏低。
• (4)反洗的目的:A、松动树脂层。
• B、清除树脂上层中的悬浮物、碎粒。树脂 层中的气泡。
• (5)再生废液的处理,阳床再生的废液排 入酸碱中和池,先暂时不排,等阴床再生 废液排至中和池中和后,测量PH合格方可 排至废水收集池。
• (6)为保证底层树脂始终维持较高的再生 度,每次再生时不应将树脂层打乱,只进 行小反洗。
• 7、再生好的阴阳混床,一定要连续投运4h 以上方可停运设备,以防再次投运正洗时 电导下降速度慢;
• 8、再生剂在树脂床中必须要均匀的分布,这 样才能对所有的树脂进行再生,提高树脂的再 生质量。
• 9、对混床树脂进行碱淋洗的方法:开混床排 气阀、上部排水阀,放水至上部排水阀不出水 后关闭混床排气阀、上部排水阀。开混床进碱 阀、正排阀、混床碱喷射器进水阀,启动混床 再生泵,开混床碱喷射器进碱阀,调整碱液浓 度为5%,控制进碱量为10cm后,关闭上述所 有阀门,停运混床再生泵。
罐内有足够的酸碱液。酸、碱计量箱内放 入规定量的酸碱液; • (2) 除盐水箱、除碳水箱保持高水位, 除碳水泵、阳床、阴床再生水泵处于备用 状态,出、入口门开启; • (3) 再生床进、出水阀及取样阀关闭严 密。非再生床进酸、碱阀应关闭严密;
• (4) 所有相关阀门完好,严密不泄漏, 关闭可靠、灵活,气动阀行程反馈位置正 确;
树脂溢出 • 2、为防止中间排水装置损坏,大反洗前可先
进行小反洗以松动树脂层,去除污泥,大反洗 洗量必须由小到大,逐步增加。 • 3、大反洗要求以不跑树脂为限度,尽量达到 最高的反洗膨胀高度 • 4、混床再生分层前先通入NaOH,目的是将阴 树脂再生成OH型,阳树脂转变为Na型,使阴、 阳树脂间的密度差加大,从而加快其分层;同 时可消除H型和OH型树脂互相黏结的现象,有 利于分层。
• 5、运行人员监盘时注意在线仪表的显示, 当运行设备接近失效时,应加强监督,增 加手工分析次数,当Na+、SiO2化验数值呈 上升趋势时,停运除盐设备;
• 6、除盐设备再生时,进行大反洗时要注意 观察上部窥视窗,树脂反洗高度不得超过 上部窥视窗,以防树脂跑出;混床树脂进 行混脂操作步序时,一定要将床内水位下 降至上部排水阀不出水,再进行混脂操作;
• (5) 阳床充水、小正洗:启动除碳水泵,打开 阳床进水阀,待排气阀出水后,打开中排阀,关排 气阀。小正洗5min;
• (6) 阳床正洗、投入运行:打开阳床正洗排 水阀、关中排阀,阳床进行正洗至出水 Na+≤50µg/L时结束。开出水阀,关正洗排水阀, 阳床投入运行,向阴床进水;
• (7) 阴床充水、小正洗:开阴床进水阀,待 排气阀出水后开中排阀,关闭排气阀。小正洗 5min,转入阴床正洗;
• (8) 正洗:启动一级除盐系统,开混床 进水阀、排气阀,待空气阀出水后开中排 阀、关闭空气阀进行上部正洗。上部正洗 10min后开正洗排水阀,关中排阀进行正洗, 当正洗排水DD≤0.15µs /cm、SiO2≤10µg/L时, 正洗合格。关混床进水阀、正洗排水阀备 用,停运一级除盐系统。
• 3、混床再生注意事项 • 1、大反洗时,必须先将塔内空气排除,防止
• 10、若用反洗进水手动门不好调整时,建议 采用反洗排水门进行调节。
• 11、混床上中下三个窥视孔的作用:
• 上部窥视窗一般用来观察反洗时树脂的膨 胀情况;中部窥视窗用于观察设备中树脂 的水平面,确定是否需要补充树脂;下部 窥视窗用来检测再生前阴阳离子交换树脂 的分层情况。
氢离子交换柱树脂再生
• (8) 阴、阳床串洗(阴床正洗):打开阴床 正洗排水阀、关中排阀,阳、阴床串洗。串洗 5min后,打开电导率仪表取样手动阀及取样阀, 当正洗排水电导率DD≤5µs/cm,SiO2≤50µg/L时, 再生合格,串洗结束。关阴床进水阀、正洗排 水阀,关阳床进水阀、出水阀,停运除碳水泵。
• 3、再生注意事项
• (9) 工艺用储罐气源压力指示正常,气 源充足;(控制压力为0.20-0.25MPa)
• (10)排水地沟畅通无杂物,酸碱废水中 和池低液位,具备(1) 反洗分层:开反洗进水阀、反洗排水阀, 缓慢开启混床反洗进水手动阀。用混床反洗进 水手动阀调整反洗流量,使树脂充分松动、膨 胀。树脂高度不许超过上窥视孔中部,防止跑 树脂。当反洗排水清澈,关闭反洗进水阀、反 洗排水阀,关闭混床反洗进水手动阀,停运一 级除盐系统。待树脂沉降后,观察树脂分层是 否明显,若分层不明显,可重新执行反洗分层 步骤,若多次反洗分层后仍分层不明显,则需 要对混床进行碱淋洗后再进行反洗分层;
• (1)阳、阴床大反洗时,整个过程中必须 有操作人员在就地监视,严防树脂冲出;
• (2)酸、碱计量箱进酸碱时,必须有专人 负责监视液位,严防酸碱外溢;
• (3)再生过程中,应随时检查各处排水是 否带有有效颗粒的树脂,如发现跑树脂, 应立即切断水源,关闭进出水门,停止再 生,查明原因,消缺后再进行再生;
非再生床进酸、碱阀应关闭严密; • (4) 所有阀门完好,严密不泄漏,开关可靠、
灵活,气动阀行程反馈位置正确; • (5) 控制气源压力在0.40~0.60MPa,电磁
阀柜已送电、送气;
• (6) 酸、碱浓度计处于备用状态;
• (7) 再生混床进、出口手动阀处于关闭 状态;
• (8) 一级除盐单元至少有一套处于运行 或良好备用状态;
• (3) 预喷射,进酸、碱:开阴床进碱阀、阳床进 酸阀,开碱、酸喷射器进水阀,启动阳床、阴床再 生水泵,调整碱、酸喷射器入口流量在12t/h左右。 检查系统正常后,合上酸、碱浓度计电源,打开酸、 碱计量箱出酸、碱阀,用手动阀调整酸液浓度在 2~3%,碱液浓度在2~3%;
• (4) 置换:酸、碱注完后(酸0.5m,碱0.9m), 关闭酸、碱计量箱出酸、碱阀,停运酸、碱浓度计, 维持阳酸、阴碱喷射器原流量,置换30min后,停 运阳床、阴床再生水泵,关闭酸、碱喷射器进水阀, 关闭阳床进酸阀、中排阀,关闭阴床进碱阀、中排 阀;
技能提升培训
离子交换树脂的再生
• (一)阳阴床的再生 • 1、再生前的准备工作 • 2、再生的步序 • 3、再生注意事项 • (二)混床的再生 • 1、再生前的准备工作 • 2、再生的步序 • 3、再生注意事项
• (三)离子交换柱树脂再生 • 1、再生步序 • 2、再生注意事项
阴阳床的再生
• 1、再生前的准备工作 • (1) 酸碱系统处于备用状态。酸碱贮存
• (4) 置换:分别保持原再生流量进行置换 30min。当中排水呈中性时停止置换。停运混 床再生水泵,关闭混床进碱阀、混床碱喷射器 进水阀、混床进酸阀、混酸喷射器进水阀;
• (5)混合前阴树脂正洗:启动一级除盐系 统,打开混床排气阀、进水阀。当排气阀 出水后,开中间排水阀、关排气阀进行阴 树脂正洗,当排水DD≤10µs /cm时,阴树脂 正洗结束;
• (5) 控制气源压力在0.40~0.60MPa,电 磁阀柜已送电、送气;
• (6) 酸、碱浓度计处于备用状态;
• (7) 再生阴床的出口手动阀一定要处于 关闭状态;
• (8) 各电源工作正常,主机与PLC等控制 系统之间连接正常;
• (9) 另一列除盐设备处于非再生状态;
• (10) 排水地沟畅通无杂物,酸碱废水中 和池低液位,具备进水条件;
• (6) 混合前阳树脂正洗、放水:开混床 正洗排水阀,关闭中间排水阀,打开在线 仪表取样阀,投入在线仪表。当正洗排水 DD≤10µs /cm,关闭进水阀、正洗排水阀, 停运一级除盐系统。开排气阀、上部排水 阀放水至树脂层上200mm左右。关闭上部 排水阀、排气阀;