聚类8种方法
五种常用系统聚类分析方法及其比较

五种常用系统聚类分析方法及其比较胡雷芳一、系统聚类分析概述聚类分析是研究如何将对象按照多个方面的特征进行综合分类的一种统计方法[1]。
然而在以往的分类学中,人们主要靠经验和专业知识作定性分类处理,许多分类不可避免地带有主观性和任意性,不能揭示客观事物内在的本质差别和联系;或者人们只根据事物单方面的特征进行分类,这些分类虽然可以反映事物某些方面的区别,但却往往难以反映各类事物之间的综合差异。
聚类分析方法有效地解决了科学研究中多因素、多指标的分类问题[2]。
在目前的实际应用中,系统聚类法和K均值聚类法是聚类分析中最常用的两种方法。
其中,K均值聚类法虽计算速度快,但需要事先根据样本空间分布指定分类的数目,而当样本的变量数超过3个时,该方法的可行性就较差。
而系统聚类法(Hierarchicalclusteringmethods,也称层次聚类法)由于类与类之间的距离计算方法灵活多样,使其适应不同的要求。
该方法是目前实践中使用最多的。
这该方法的基本思想是:先将n个样本各自看成一类,并规定样本与样本之间的距离和类与类之间的距离。
开始时,因每个样本自成一类,类与类之间的距离与样本之间的距离是相同的。
然后,在所有的类中,选择距离最小的两个类合并成一个新类,并计算出所得新类和其它各类的距离;接着再将距离最近的两类合并,这样每次合并两类,直至将所有的样本都合并成一类为止。
这样一种连续并类的过程可用一种类似于树状结构的图形即聚类谱系图(俗称树状图)来表示,由聚类谱系图可清楚地看出全部样本的聚集过程,从而可做出对全部样本的分类[3]。
二、五种常用系统聚类分析方法系统聚类法在进行聚类的过程中,需要计算类与类之间的距离。
根据类与类之间的距离计算方法的不同,我们可以将系统聚类法分为单连接法、完全连接法、平均连接法、组平均连接法与离差平方和法等。
1.单连接法(Singlelinkage)单连接法又称最短距离法。
该方法首先将距离最近的样本归入一类,即合并的前两个样本是它们之间有最小距离和最大相似性;然后计算新类和单个样本间的距离作为单个样本和类中的样本间的最小距离,尚未合并的样本间的距离并未改变。
聚类分析

聚类分析聚类分析又称群分析,它是研究(样品或指标)分类问题的一种多元统计方法,所谓类,通俗地说,就是指相似元素的集合。
聚类分析内容非常丰富,按照分类对象的不同可分为样品分类(Q-型聚类分析)和指标或变量分类(R-型聚类分析);按照分类方法可分为系统聚类法和快速聚类法。
1. 系统聚类分析先将n 个样品各自看成一类,然后规定样品之间的“距离”和类与类之间的距离。
选择距离最近的两类合并成一个新类,计算新类和其它类(各当前类)的距离,再将距离最近的两类合并。
这样,每次合并减少一类,直至所有的样品都归成一类为止。
系统聚类法直观易懂。
1.1系统聚类法的基本步骤:第一,计算n 个样品两两间的距离 ,记作D= 。
第二,构造n 个类,每个类只包含一个样品。
第三,合并距离最近的两类为一新类。
第四,计算新类与各当前类的距离。
第五,重复步骤3、4,合并距离最近的两类为新类,直到所有的类并为一类为止。
第六,画聚类谱系图。
第七,确定类的个数和类。
1.2 系统聚类方法:1.2.1最短距离法1.2.2最长距离法1.2.3中间距离法1.2.4重心法1.2.5类平均法1.2.6离差平方和法(Ward 法)上述6种方法归类的基本步骤一致,只是类与类之间的距离有不同的定义。
最常用的就是最短距离法。
1.3 最短距离法以下用ij d 表示样品i X 与j X 之间距离,用ij D 表示类i G 与j G 之间的距离。
定义类i G 与j G 之间的距离为两类最近样品的距离,即ij G G G G ij d D j J i i ∈∈=,min设类p G 与q G 合并成一个新类记为r G ,则任一类k G 与r G 的距离是:ij G X G X kr d D j j i i ∈∈=,min ⎭⎬⎫⎩⎨⎧=∈∈∈∈ij G X G X ij G X G X d d q j k i p j k i ,,min ,min min {}kq kp D D ,min = 最短距离法聚类的步骤如下:ij d {}ij d(1)定义样品之间距离,计算样品两两距离,得一距离阵记为)0(D ,开始每个样品自成一类,显然这时ij ij d D =。
聚类分析方法

聚类分析方法聚类分析是一种常用的数据分析方法,它可以将数据集中的对象按照其相似性进行分组,形成若干个簇。
通过聚类分析,我们可以发现数据中的内在结构,帮助我们更好地理解数据集的特点和规律。
在实际应用中,聚类分析被广泛应用于市场分割、社交网络分析、图像处理等领域。
本文将介绍聚类分析的基本原理、常用方法和应用场景,希望能够帮助读者更好地理解和应用聚类分析。
聚类分析的基本原理是将数据集中的对象划分为若干个簇,使得同一簇内的对象相似度较高,不同簇之间的对象相似度较低。
在进行聚类分析时,我们需要选择合适的相似性度量方法和聚类算法。
常用的相似性度量方法包括欧氏距离、曼哈顿距离、余弦相似度等,而常用的聚类算法包括K均值聚类、层次聚类、DBSCAN等。
不同的相似性度量方法和聚类算法适用于不同的数据类型和应用场景,选择合适的方法对于聚类分析的效果至关重要。
K均值聚类是一种常用的聚类算法,它通过不断迭代更新簇中心的方式,将数据集中的对象划分为K个簇。
K均值聚类的优点是简单、易于理解和实现,但是它对初始簇中心的选择较为敏感,容易收敛到局部最优解。
层次聚类是另一种常用的聚类算法,它通过逐步合并或分裂簇的方式,构建一棵层次化的聚类树。
层次聚类的优点是不需要事先确定簇的个数,但是它对大数据集的处理效率较低。
DBSCAN是一种基于密度的聚类算法,它能够发现任意形状的簇,并且对噪声数据具有较强的鲁棒性。
不同的聚类算法适用于不同的数据特点和应用场景,我们需要根据具体情况选择合适的算法进行聚类分析。
聚类分析在实际应用中有着广泛的应用场景。
在市场分割中,我们可以利用聚类分析将顾客分为不同的群体,从而制定针对性的营销策略。
在社交网络分析中,我们可以利用聚类分析发现社交网络中的社区结构,从而发现潜在的影响力人物。
在图像处理中,我们可以利用聚类分析对图像进行分割和特征提取,从而实现图像内容的理解和识别。
聚类分析在各个领域都有着重要的应用,它为我们理解和利用数据提供了有力的工具。
时间序列聚类方法

时间序列聚类方法引言时间序列数据是在不同时间点上收集的数据,具有时间上的依赖关系和内在的序列性质。
时间序列聚类是将相似的时间序列数据分组,以便于分析和理解数据集中的模式和结构。
在本文中,将介绍几种常见的时间序列聚类方法及其应用。
一、K-means聚类算法K-means聚类算法是一种经典的聚类方法,通过迭代计算数据点与聚类中心之间的距离,并将数据点分配给与其最近的聚类中心。
该方法在时间序列聚类中的应用需要将时间序列数据转化为一维向量,例如通过提取统计特征或使用傅里叶变换等方法。
然后,可以使用K-means算法将时间序列数据进行聚类,以发现数据中的模式和结构。
二、基于密度的聚类算法基于密度的聚类算法是一种基于数据点密度的聚类方法,通过将数据点分配到高密度区域形成簇。
在时间序列聚类中,可以使用基于密度的聚类算法来发现数据中的异常点和突变点。
一种常见的基于密度的聚类算法是DBSCAN算法,它通过定义半径和最小密度来确定核心点、边界点和噪音点,并将核心点连接形成簇。
三、层次聚类算法层次聚类算法是一种自底向上或自顶向下的聚类方法,通过计算数据点之间的相似度或距离来构建聚类树。
在时间序列聚类中,可以使用层次聚类算法来发现数据中的层次结构和模式。
一种常见的层次聚类算法是凝聚层次聚类算法,它从每个数据点作为一个簇开始,然后迭代地合并相似的簇,直到达到预定的簇数目。
四、基于模型的聚类算法基于模型的聚类算法是一种将时间序列数据建模为概率模型或统计模型来进行聚类的方法。
在时间序列聚类中,可以使用基于模型的聚类算法来发现数据中的潜在分布和生成模式。
一种常见的基于模型的聚类算法是高斯混合模型聚类算法,它假设数据由多个高斯分布组成,并通过最大似然估计来估计模型参数。
五、动态时间规整聚类算法动态时间规整聚类算法是一种将时间序列数据进行规整化后进行聚类的方法。
在时间序列聚类中,由于数据点之间的时间差异和长度差异,可以使用动态时间规整聚类算法来处理这些问题。
层次聚类分析

D(0)
表1
D(0) G1={X1}G2={X2}G3={X3}G4={X4}G5={X5} G1={X1} 0
G2={X2} 1
G3={X3} 2.5
0
1.5 0
G4={X4} 6
G5={X5} 8
5
7
3.5
5.5
0
2 0
D(1)
表2
D(1) G6={G1, G2} G3={X3} G4={X4} G5={X5} G6 0 1.5 5 7 0 3.5 5.5 0 2 0 G3 G4 G5
层次聚类分析
hierarchical clustering method
聚类分析也是一种分类技术。是研究“ 物以类聚”的一种方法。与多元分析的 其他方法相比,该方法理论上还不完善 ,但由于它能解决许多实际问题,很受 人们的重视,应用方面取得了很大成功 。
举 例
对10位应聘者做智能检验。3项指标X,Y 和Z分别表示数学推理能力,空间想象能 力和语言理解能力。其得分如下,选择合 适的统计方法对应聘者进行分类。
D2(1) G6={X1, X2} G3={X3}
G6 0 4
G3
G4
G5
0
G4={X4}
G5={X5}
30.25
56.25
12.25
30.25
0
4 0
D2(2)
G7
G7
0
G4
G5
G4
G5
20.25
42.25
0
4 0
D2(3)
G7={X1, X2,X3} G8={X4,X5 }
ห้องสมุดไป่ตู้G7
0 30.25
• x11• •
聚类分析的类型与选择

聚类分析的类型与选择聚类分析是一种常用的数据分析方法,用于将一组数据分成不同的类别或群组。
通过聚类分析,可以发现数据中的内在结构和模式,帮助我们更好地理解数据和做出决策。
在进行聚类分析时,我们需要选择适合的聚类算法和合适的聚类类型。
本文将介绍聚类分析的类型和选择方法。
一、聚类分析的类型1. 划分聚类(Partitioning Clustering)划分聚类是将数据集划分为不相交的子集,每个子集代表一个聚类。
常用的划分聚类算法有K-means算法和K-medoids算法。
K-means算法是一种迭代算法,通过计算数据点与聚类中心的距离来确定数据点所属的聚类。
K-medoids算法是一种基于对象之间的相似性度量的划分聚类算法。
2. 层次聚类(Hierarchical Clustering)层次聚类是将数据集划分为一个层次结构,每个层次代表一个聚类。
常用的层次聚类算法有凝聚层次聚类和分裂层次聚类。
凝聚层次聚类是自底向上的聚类过程,开始时每个数据点都是一个聚类,然后逐步合并相似的聚类,直到形成一个大的聚类。
分裂层次聚类是自顶向下的聚类过程,开始时所有数据点都属于一个聚类,然后逐步将聚类分裂成更小的聚类。
3. 密度聚类(Density Clustering)密度聚类是基于数据点之间的密度来进行聚类的方法。
常用的密度聚类算法有DBSCAN算法和OPTICS算法。
DBSCAN算法通过定义数据点的邻域密度来确定核心对象和边界对象,并将核心对象连接起来形成聚类。
OPTICS算法是DBSCAN算法的一种改进,通过计算数据点的可达距离来确定聚类。
二、选择聚类分析的方法在选择聚类分析的方法时,需要考虑以下几个因素:1. 数据类型不同的聚类算法适用于不同类型的数据。
例如,K-means算法适用于连续型数值数据,而DBSCAN算法适用于密度可测量的数据。
因此,在选择聚类算法时,需要根据数据的类型来确定合适的算法。
2. 数据量和维度聚类算法的计算复杂度与数据量和维度有关。
聚类分析基础知识总结

聚类分析cluster analysis聚类分析方法是按样品(或变量)的数据特征,把相似的样品(或变量)倾向于分在同一类中,把不相似的样品(或变量)倾向于分在不同类中。
聚类分析根据分类对象不同分为Q型和R型聚类分析在聚类分析过程中类的个数如何来确定才合适呢?这是一个十分困难的问题,人们至今仍未找到令人满意的方法。
但是这个问题又是不可回避的。
下面我们介绍几种方法。
1、给定阈值——通过观测聚类图,给出一个合适的阈值T。
要求类与类之间的距离不要超过T值。
例如我们给定T=0.35,当聚类时,类间的距离已经超过了0.35,则聚类结束。
聚类分析的出发点是研究对象之间可能存在的相似性和亲疏关系。
样品间亲疏程度的测度研究样品或变量的亲疏程度的数量指标有两种,一种叫相似系数,性质越接近的变量或样品,它们的相似系数越接近于1或一l,而彼此无关的变量或样品它们的相似系数则越接近于0,相似的为一类,不相似的为不同类;另一种叫距离,它是将每一个样品看作p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。
变量之间的聚类即R型聚类分析,常用相似系数来测度变量之间的亲疏程度。
而样品之间的聚类即Q型聚类分析,则常用距离来测度样品之间的亲疏程度。
定义:在聚类分析中反映样品或变量间关系亲疏程度的统计量称为聚类统计量,常用的聚类统计量分为距离和相似系数两种。
距离:用于对样品的聚类。
常用欧氏距离,在求距离前,需把指标进行标准化。
相似系数:常用于对变量的聚类。
一般采用相关系数。
相似性度量:距离和相似系数。
距离常用来度量样品之间的相似性,相似系数常用来度量变量之间的相似性。
样品之间的距离和相似系数有着各种不同的定义,而这些定义与变量的类型有着非常密切的关系。
距离和相似系数这两个概念反映了样品(或变量)之间的相似程度。
相似程度越高,一般两个样品(或变量)间的距离就越小或相似系数的绝对值就越大;反之,相似程度越低,一般两个样品(或变量)间的距离就越大或相似系数的绝对值就越小。
系统聚类分析方法

系统聚类分析方法聚类分析是研究多要素事物分类问题的数量方法。
基本原理是根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。
常见的聚类分析方法有系统聚类法、动态聚类法和模糊聚类法等。
1. 聚类要素的数据处理假设有m 个聚类的对象,每一个聚类对象都有个要素构成。
它们所对应的要素数据可用表3.4.1给出。
(点击显示该表)在聚类分析中,常用的聚类要素的数据处理方法有如下几种。
①总和标准化②标准差标准化③极大值标准化经过这种标准化所得的新数据,各要素的极大值为1,其余各数值小于1。
④极差的标准化经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在0与1之间。
2. 距离的计算距离是事物之间差异性的测度,差异性越大,则相似性越小,所以距离是系统聚类分析的依据和基础。
①绝对值距离选择不同的距离,聚类结果会有所差异。
在地理分区和分类研究中,往往采用几种距离进行计算、对比,选择一种较为合适的距离进行聚类。
例:表3.4.2给出了某地区九个农业区的七项指标,它们经过极差标准化处理后,如表3.4.3所示。
对于表3.4.3中的数据,用绝对值距离公式计算可得九个农业区之间的绝对值距离矩阵:3. 直接聚类法直接聚类法是根据距离矩阵的结构一次并类得到结果。
▲ 基本步骤:①把各个分类对象单独视为一类;②根据距离最小的原则,依次选出一对分类对象,并成新类;③如果其中一个分类对象已归于一类,则把另一个也归入该类;如果一对分类对象正好属于已归的两类,则把这两类并为一类;每一次归并,都划去该对象所在的列与列序相同的行;④那么,经过m-1次就可以把全部分类对象归为一类,这样就可以根据归并的先后顺序作出聚类谱系图。
★直接聚类法虽然简便,但在归并过程中是划去行和列的,因而难免有信息损失。
因此,直接聚类法并不是最好的系统聚类方法。
[举例说明](点击打开新窗口,显示该内容)例:已知九个农业区之间的绝对值距离矩阵,使用直接聚类法做聚类分析。
聚类分析应用

聚类分析简介
▪ 聚类分析的算法选择
1.根据数据集的特点和聚类目的选择合适的聚类算法,例如对于大规模数据集可以采用高效的 划分聚类算法,对于形状复杂的簇可以采用密度聚类算法。 2.对于不同的聚类算法,需要了解它们的优缺点和适用场景,以便在实际应用中选择最合适的 算法。 3.聚类算法的选择需要考虑数据的维度、规模、分布等因素,以及聚类结果的解释性和可用性 。 以上是关于聚类分析简介的三个主题内容,希望能够帮助到您。
聚类分析应用
目录页
Contents Page
1. 聚类分析简介 2. 聚类分析方法 3. 数据预处理 4. 距离度量方法 5. 聚类质量评估 6. 常见聚类算法 7. 聚类应用案例 8. 总结与展望
聚类分析应用
聚类分析简介
聚类分析简介
▪ 聚类分析简介
1.聚类分析是一种无监督学习方法,用于将数据集中的对象根据相似性进行分组,使得同一组 (即簇)内的对象尽可能相似,而不同组的对象尽可能不同。 2.聚类分析可以应用于各种领域,如数据挖掘、模式识别、图像处理、生物信息学等,帮助研 究者发现数据中的内在结构和规律。 3.常见的聚类算法包括划分聚类、层次聚类、密度聚类、网格聚类等,不同的算法有着不同的 优缺点和适用场景。
▪ 共享最近邻聚类
1.共享最近邻聚类是一种基于数据点之间共享最近邻信息的聚 类方法,通过计算数据点之间的相似度,实现簇的划分。 2.共享最近邻聚类算法对噪声和异常点有较好的鲁棒性,可以 处理形状复杂的簇和高维数据,但计算复杂度较高。 3.通过改进相似度计算方式、引入近似算法或结合其他技术, 可以优化共享最近邻聚类的性能和可扩展性。
常见聚类算法
▪ 密度峰值聚类
1.密度峰值聚类是一种基于密度的聚类方法,通过寻找具有最 高局部密度的数据点作为聚类中心,实现簇的划分。 2.密度峰值聚类算法不需要预先设定簇的数量,对形状复杂的 簇和噪声有较好的鲁棒性,但计算复杂度较高。 3.通过优化密度峰值定义方式、引入核函数或结合其他算法, 可以提高密度峰值聚类的性能和效率。
数据仓库与数据挖掘PPT第10章 聚类方法

3. 连通性相似性度量
数据集用图表示,图中结点是对象,而边代表对象之 间的联系,这种情况下可以使用连通性相似性,将簇定义 为图的连通分支,即图中互相连通但不与组外对象连通的 对象组。
也就是说,在同一连通分支中的对象之间的相似性度 量大于不同连通分支之间对象的相似性度量。
某种距离函数
4. 概念相似性度量
值ε,即:
k
SSE
| o mx |2
x1 oCx
k-均值算法示例
【例10.3】如图10.4所示是二维空间中的10个数据点 (数据对象集),采用欧几里得距离,进行2-均值聚类。其 过程如下:
初始的10个点
(1)k=2,随机选择两个点作为质心,假设选取的质 心在图中用实心圆点表示。
(2)第一次迭代,将所有点按到质心的距离进行划分, 其结果如图10.5所示。
10.1.6 聚类分析在数据挖掘中的应用
① 聚类分析可以用于数据预处理。 ② 可以作为一个独立的工具来获得数据的分布情况。 ③ 聚类分析可以完成孤立点挖掘。
10.1.7 聚类算法的要求
① 可伸缩性。 ② 具有处理不同类型属性的能力。 ③ 能够发现任意形状的聚类。 ④ 需要(由用户)决定的输入参数最少。 ⑤ 具有处理噪声数据的能力。 ⑥ 对输入记录顺序不敏感。 ⑦ 具有处理高维数据的能力。 ⑧ 支持基于约束的聚类。 ⑨ 聚类结果具有好的可解释性和可用性。
只有在簇的平均值被定义的情况下才能使用,那当涉 及有分类属性的数据时该怎么办?
需要事先给出k,即簇的数目 不能处理噪声数据和孤立点 不适合发现非凸面形状的簇
5. 二分k-均值算法
二分k-均值算法是基本k-均值算法的直接扩充,它基于 一种简单的想法:为了得到k个簇,将所有点的集合分为两 个簇,从这些簇中选取一个继续分裂,如此下去,直到产 生k个簇。
四种常用聚类方法

聚类就是按照某个特定标准把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。
即聚类后同一类的数据尽可能聚集到一起,不同类数据尽量分离。
主要的聚类算法可以划分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法以及基于模型的方法。
下面主要对k-means聚类算法、凝聚型层次聚类算法、神经网络聚类算法之SOM,以及模糊聚类的FCM算法通过通用测试数据集进行聚类效果的比较和分析。
k-means聚类算法k-means是划分方法中较经典的聚类算法之一。
由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。
目前,许多算法均围绕着该算法进行扩展和改进。
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。
k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。
这个过程不断重复,直到准则函数收敛。
通常,采用平方误差准则,其定义如下:E=\sum_{i=1}^{k}\sum_{p\in C_i}\left\|p-m_i\right\|^2这里E是数据中所有对象的平方误差的总和,p是空间中的点,$m_i$是簇$C_i$的平均值[9]。
该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。
算法流程:输入:包含n个对象的数据和簇的数目k;输出:n个对象到k个簇,使平方误差准则最小。
步骤:(1) 任意选择k个对象作为初始的簇中心;(2) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇;(3) 更新簇的平均值,即计算每个簇中对象的平均值;(4) 重复步骤(2)、(3)直到簇中心不再变化;层次聚类算法根据层次分解的顺序是自底向上的还是自上向下的,层次聚类算法分为凝聚的层次聚类算法和分裂的层次聚类算法。
时间序列聚类方法

时间序列聚类方法引言:时间序列数据是指按照一定时间间隔采集到的数据,具有时序关系的数据集合。
时间序列数据广泛应用于金融、气象、交通、医疗等领域。
对时间序列数据进行聚类分析,可以帮助我们发现数据中的模式和规律,揭示隐藏在数据背后的信息,从而对未来的趋势进行预测和决策提供依据。
本文将介绍几种常见的时间序列聚类方法,包括基于距离的方法、基于模型的方法和基于特征的方法。
一、基于距离的时间序列聚类方法基于距离的时间序列聚类方法是一种常见且广泛使用的方法。
其基本思想是通过计算时间序列数据之间的距离来度量它们的相似性,从而将相似的时间序列归为一类。
1. K-means聚类算法K-means算法是一种经典的聚类算法,也适用于时间序列数据的聚类。
它通过迭代更新聚类中心的方式,将数据划分为K个簇。
在时间序列数据中,可以使用欧氏距离或动态时间规整(DTW)距离来计算数据之间的距离。
2. DBSCAN聚类算法DBSCAN算法是一种基于密度的聚类算法,它将数据划分为高密度区域和低密度区域。
在时间序列数据中,可以使用动态时间规整(DTW)距离来度量数据之间的距离,从而找到高密度的时间序列。
二、基于模型的时间序列聚类方法基于模型的时间序列聚类方法是一种通过拟合时间序列数据的模型来进行聚类的方法。
1. ARIMA模型ARIMA模型是一种常用的时间序列预测模型,也可以用于时间序列聚类。
ARIMA模型通过拟合数据的自回归部分和移动平均部分,来描述和预测时间序列数据的变化趋势。
2. 隐马尔可夫模型(HMM)隐马尔可夫模型是一种常用的时间序列建模方法,可以用于时间序列的聚类分析。
HMM模型假设时间序列数据的生成过程是一个马尔可夫链,通过观测序列和状态序列之间的关系来描述时间序列数据的特征。
三、基于特征的时间序列聚类方法基于特征的时间序列聚类方法是一种将时间序列数据转化为特征向量,然后使用传统聚类算法进行聚类分析的方法。
1. 傅里叶变换傅里叶变换是一种将时间序列数据转化为频域特征的方法。
聚类 课件

基于网格的聚类算法
将数据空间划分为网格,然后在网格 上进行聚类,如STING算法、 CLIQUE算法等。
02
K-means聚类算法
K-means算法的原理
K-means算法是一种基于距离的聚 类算法,通过迭代过程将数据点划分 为K个聚类,使得每个数据点与其所 在聚类的中心点之间的距离之和最小 。
DBSCAN算法的步骤
01 扫描所有点,标记为核心点、边界点和噪 声点。
02 对于每个核心点,以其为起点,扩展与其 密度相连的区域。
03
将扩展的区域内的所有点标记为同一簇。
04
重复上述步骤,直到所有点都被处理。
DBSCAN算法的优缺点
01
优点
02
对异常值具有较强的鲁棒性。
能够发现任何形状的簇。
03
互信息
总结词
衡量聚类结果与真实类别之间相似度的指标,值越大表示聚 类效果越好。
详细描述
互信息是一种衡量聚类结果与真实类别之间相似度的指标, 其计算方法为聚类结果与真实类别之间的熵值之差。如果聚 类效果好,则聚类结果与真实类别之间的相似度会较高,熵 值之差会较小,因此互信息值会较大。
调整兰德指数
总结词
步骤2
重复以下步骤,直到满足终止条件
• 步骤2.1
将每个数据点与最近的簇中心点合并,形成新的 簇中心点。
• 步骤2.2
更新簇中心点为新合并的簇中所有点的平均值或中 心点。
• 步骤2.3
重复步骤2.1和步骤2.2,直到所有数据点都归入某 个簇或达到预设的簇数量。
输出聚类结果。
步骤3
层次聚类算法的优缺点
DBSCAN算法的优缺点
20、聚类算法层次聚类

1 层次聚类概述层次法(hierarchical methods):先计算样本之间的距离。
每次将距离最近的点合并到同一个类。
然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。
不停的合并,直到合成了一个类。
其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。
比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。
层次聚类算法根据层次分解的顺序分为:自下向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerative nesting和divisive analysis),也可以理解为自下而上法(bottom-up)和自上而下法(top-down)。
自下而上法:凝聚型层次聚类,就是一开始每个个体(object)都是一个类,然后根据linkage寻找同类,最后形成一个“类”。
自上而下法:分裂型层次聚类,就是反过来,一开始所有个体都属于一个“类”,然后根据linkage排除异己,最后每个个体都成为一个“类”。
这两种路方法没有孰优孰劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快。
根据linkage判断”类”的方法就是:最短距离法、最长距离法、中间距离法、类平均法等,其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中。
为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。
2 层次聚类的流程凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。
绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。
这里给出采用最小距离的凝聚层次聚类算法流程:(1) 将每个对象看作一类,计算两两之间的最小距离;(2) 将距离最小的两个类合并成一个新类;(3) 重新计算新类与所有类之间的距离;(4) 重复(2)、(3),直到所有类最后合并成一类。
各种聚类算法介绍及对比

一、层次聚类1、层次聚类的原理及分类1层次法Hierarchical methods先计算样本之间的距离;每次将距离最近的点合并到同一个类;然后,再计算类与类之间的距离,将距离最近的类合并为一个大类;不停的合并,直到合成了一个类;其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等;比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离;层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法agglomerative和divisive,也可以理解为自下而上法bottom-up和自上而下法top-down;自下而上法就是一开始每个个体object都是一个类,然后根据linkage寻找同类,最后形成一个“类”;自上而下法就是反过来,一开始所有个体都属于一个“类”,然后根据linkage排除异己,最后每个个体都成为一个“类”;这两种路方法没有孰优孰劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快;至于根据Linkage判断“类”的方法就是最短距离法、最长距离法、中间距离法、类平均法等等其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中;为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位;2Hierarchical methods中比较新的算法有BIRCHBalanced Iterative Reducing and Clustering Using Hierarchies利用层次方法的平衡迭代规约和聚类主要是在数据量很大的时候使用,而且数据类型是numerical;首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化;ROCKA Hierarchical Clustering Algorithm for Categorical Attributes主要用在categorical 的数据类型上;ChameleonA Hierarchical Clustering Algorithm Using Dynamic Modeling里用到的linkage是kNNk-nearest-neighbor算法,并以此构建一个graph,Chameleon的聚类效果被认为非常强大,比BIRCH好用,但运算复杂度很高,On^2;2、层次聚类的流程凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足;绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同;这里给出采用最小距离的凝聚层次聚类算法流程:1 将每个对象看作一类,计算两两之间的最小距离;2 将距离最小的两个类合并成一个新类;3 重新计算新类与所有类之间的距离;4 重复2、3,直到所有类最后合并成一类;聚类的效果如下图,黑色是噪音点:另外我们可以看出凝聚的层次聚类并没有类似基本K均值的全局目标函数,没有局部极小问题或是很难选择初始点的问题;合并的操作往往是最终的,一旦合并两个簇之后就不会撤销;当然其计算存储的代价是昂贵的;3、层次聚类的优缺点优点:1,距离和规则的相似度容易定义,限制少;2,不需要预先制定聚类数;3,可以发现类的层次关系;4,可以聚类成其它形状缺点:1,计算复杂度太高;2,奇异值也能产生很大影响;3,算法很可能聚类成链状r语言中使用hclustd, method = "complete", members=NULL:进行层次聚类;d为距离矩阵;method 表示类的合并方法,single最短距离法,complete最长距离法,median中间距离法,mcquitty相似法,average类平均法,centroid重心法,ward离差平方和法;members为NULL或d长度的矢量;二、划分聚类法k-means基于划分的方法Partition-based methods:其原理简单来说就是,想象你有一堆散点需要聚类,想要的聚类效果就是“类内的点都足够近,类间的点都足够远”;首先你要确定这堆散点最后聚成几类,然后挑选几个点作为初始中心点,再然后依据预先定好的启发式算法heuristic algorithms给数据点做迭代重置iterative relocation,直到最后到达“类内的点都足够近,类间的点都足够远”的目标效果;Partition-based methods聚类多适用于中等体量的数据集,但我们也不知道“中等”到底有多“中”,所以不妨理解成,数据集越大,越有可能陷入局部最小;1、Kmeans算法的原理k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低;k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心,即选择K个初始质心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值; 这个过程不断重复,直到准则函数收敛,直到质心不发生明显的变化;通常,采用平方误差准则,误差的平方和SSE作为全局的目标函数,即最小化每个点到最近质心的欧几里得距离的平方和;此时,簇的质心就是该簇内所有数据点的平均值;选择K个点作为初始质心repeat将每个点指派到最近的质心,形成K个簇重新计算每个簇的质心until簇不发生变化或达到最大迭代次数时间复杂度:OtKmn,其中,t为迭代次数,K为簇的数目,m为记录数,n为维数空间复杂度:Om+Kn,其中,K为簇的数目,m为记录数,n为维数K-Means 算法的详细过程从上图中,我们可以看到,A, B, C, D, E 是五个在图中点;而灰色的点是我们的种子点,也就是我们用来找点群的点;有两个种子点,所以K=2;然后,K-Means的算法如下:①随机在图中取K这里K=2个种子点;②然后对图中的所有点求到这K个种子点的距离,假如点Pi离种子点Si最近,那么Pi属于Si点群;我们可以看到A,B属于上面的种子点,C,D,E属于下面中部的种子点③接下来,我们要移动种子点到属于他的“点群”的中心;见图上的第三步④然后重复第2和第3步,直到,种子点没有移动我们可以看到图中的第四步上面的种子点聚合了A,B,C,下面的种子点聚合了D,E;聚类的效果如下图,折线是历次循环时3个簇的质心的更新轨迹,黑点是初始质心:我们查看基本K均值算法实现步骤及上面的聚类效果可以发现,该聚类算法将所有数据点都进行了指派,不识别噪音点;另外选择适当的初试质心是基本K均值过程的关键;2、k均值的优缺点及分类优点:1,简单,易于理解和实现;2,时间复杂度低缺点:1kmeans要手工输入类数目,对初始值的设置很敏感;所以有了k-means++、intelligent k-means、genetic k-means;2k-means对噪声和离群值非常敏感,所以有了k-medoids和k-medians;3k-means只用于numerical类型数据,不适用于categorical类型数据,所以k-modes;4k-means不能解决非凸non-convex数据,所以有了kernel k-means;5k-means主要发现圆形或者球形簇,不能识别非球形的簇;3、k-means与DBSCAN的区别k-means聚类算法的初始点选择不稳定,是随机选取的,这就引起聚类结果的不稳定;k-means属于动态聚类,往往聚出来的类有点圆形或者椭圆形;kmeans对于圆形区域聚类效果较好,dbscan基于密度,对于集中区域效果较好;对于不规则形状,kmeans完全无法用,dbscan可以起到很好的效果;4、k-means注意问题1K如何确定kmenas算法首先选择K个初始质心,其中K是用户指定的参数,即所期望的簇的个数;这样做的前提是我们已经知道数据集中包含多少个簇,但很多情况下,我们并不知道数据的分布情况,实际上聚类就是我们发现数据分布的一种手段;如何有效的确定K值,这里大致提供几种方法:①与层次聚类结合2经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果粗的数目,并找到一个初始聚类,然后用迭代重定位来改进该聚类;②稳定性方法3稳定性方法对一个数据集进行2次重采样产生2个数据子集,再用相同的聚类算法对2个数据子集进行聚类,产生2个具有k个聚类的聚类结果,计算2个聚类结果的相似度的分布情况;2个聚类结果具有高的相似度说明k个聚类反映了稳定的聚类结构,其相似度可以用来估计聚类个数;采用次方法试探多个k,找到合适的k值;③系统演化方法3系统演化方法将一个数据集视为伪热力学系统,当数据集被划分为K个聚类时称系统处于状态K;系统由初始状态K=1出发,经过分裂过程和合并过程,系统将演化到它的稳定平衡状态Ki,所对应的聚类结构决定了最优类数Ki;系统演化方法能提供关于所有聚类之间的相对边界距离或可分程度,适用于明显分离的聚类结构和轻微重叠的聚类结构;④使用canopy算法进行初始划分4基于Canopy Method的聚类算法将聚类过程分为两个阶段Stage1、聚类最耗费计算的地方是计算对象相似性的时候,Canopy Method在第一阶段选择简单、计算代价较低的方法计算对象相似性,将相似的对象放在一个子集中,这个子集被叫做Canopy ,通过一系列计算得到若干Canopy,Canopy之间可以是重叠的,但不会存在某个对象不属于任何Canopy的情况,可以把这一阶段看做数据预处理;Stage2、在各个Canopy 内使用传统的聚类方法如K-means,不属于同一Canopy 的对象之间不进行相似性计算;从这个方法起码可以看出两点好处:首先,Canopy 不要太大且Canopy 之间重叠的不要太多的话会大大减少后续需要计算相似性的对象的个数;其次,类似于K-means这样的聚类方法是需要人为指出K 的值的,通过Stage1得到的Canopy 个数完全可以作为这个K值,一定程度上减少了选择K的盲目性;其他方法如贝叶斯信息准则方法BIC可参看文献5;2初始质心的选取选择适当的初始质心是基本kmeans算法的关键步骤;常见的方法是随机的选取初始质心,但是这样簇的质量常常很差;处理选取初始质心问题的一种常用技术是:多次运行,每次使用一组不同的随机初始质心,然后选取具有最小SSE误差的平方和的簇集;这种策略简单,但是效果可能不好,这取决于数据集和寻找的簇的个数;第二种有效的方法是,取一个样本,并使用层次聚类技术对它聚类;从层次聚类中提取K个簇,并用这些簇的质心作为初始质心;该方法通常很有效,但仅对下列情况有效:1样本相对较小,例如数百到数千层次聚类开销较大;2K相对于样本大小较小第三种选择初始质心的方法,随机地选择第一个点,或取所有点的质心作为第一个点;然后,对于每个后继初始质心,选择离已经选取过的初始质心最远的点;使用这种方法,确保了选择的初始质心不仅是随机的,而且是散开的;但是,这种方法可能选中离群点;此外,求离当前初始质心集最远的点开销也非常大;为了克服这个问题,通常该方法用于点样本;由于离群点很少多了就不是离群点了,它们多半不会在随机样本中出现;计算量也大幅减少;第四种方法就是上面提到的canopy算法;3距离的度量常用的距离度量方法包括:欧几里得距离和余弦相似度;两者都是评定个体间差异的大小的;欧几里得距离度量会受指标不同单位刻度的影响,所以一般需要先进行标准化,同时距离越大,个体间差异越大;空间向量余弦夹角的相似度度量不会受指标刻度的影响,余弦值落于区间-1,1,值越大,差异越小;但是针对具体应用,什么情况下使用欧氏距离,什么情况下使用余弦相似度从几何意义上来说,n维向量空间的一条线段作为底边和原点组成的三角形,其顶角大小是不确定的;也就是说对于两条空间向量,即使两点距离一定,他们的夹角余弦值也可以随意变化;感性的认识,当两用户评分趋势一致时,但是评分值差距很大,余弦相似度倾向给出更优解;举个极端的例子,两用户只对两件商品评分,向量分别为3,3和5,5,这两位用户的认知其实是一样的,但是欧式距离给出的解显然没有余弦值合理;4质心的计算对于距离度量不管是采用欧式距离还是采用余弦相似度,簇的质心都是其均值,即向量各维取平均即可;5算法停止条件一般是目标函数达到最优或者达到最大的迭代次数即可终止;对于不同的距离度量,目标函数往往不同;当采用欧式距离时,目标函数一般为最小化对象到其簇质心的距离的平方和;当采用余弦相似度时,目标函数一般为最大化对象到其簇质心的余弦相似度和;6空聚类的处理如果所有的点在指派步骤都未分配到某个簇,就会得到空簇;如果这种情况发生,则需要某种策略来选择一个替补质心,否则的话,平方误差将会偏大;一种方法是选择一个距离当前任何质心最远的点;这将消除当前对总平方误差影响最大的点;另一种方法是从具有最大SSE的簇中选择一个替补的质心;这将分裂簇并降低聚类的总SSE;如果有多个空簇,则该过程重复多次;另外,编程实现时,要注意空簇可能导致的程序bug;三、基于密度的聚类基于密度的方法Density-based methods:k-means解决不了不规则形状的聚类;于是就有了Density-based methods来系统解决这个问题;该方法同时也对噪声数据的处理比较好;基于密度聚类的思想:思路就是定一个距离半径,最少有多少个点,然后把可以到达的点都连起来,判定为同类;其原理简单说画圈儿,其中要定义两个参数,一个是圈儿的最大半径,一个是一个圈儿里最少应容纳几个点;最后在一个圈里的,就是一个类;DBSCAN Density-Based Spatial Clustering of Applications with Noise就是其中的典型,可惜参数设置也是个问题,对这两个参数的设置非常敏感;DBSCAN的扩展叫OPTICSOrdering Points To Identify Clustering Structure通过优先对高密度high density进行搜索,然后根据高密度的特点设置参数,改善了DBSCAN的不足;1、DBSCAN的概念dbscan基于密度,对于集中区域效果较好,为了发现任意形状的簇,这类方法将簇看做是数据空间中被低密度区域分割开的稠密对象区域;一种基于高密度连通区域的基于密度的聚类方法,该算法将具有足够高密度的区域划分为簇,并在具有噪声的空间数据中发现任意形状的簇;DBSCAN中的几个定义:Ε邻域:给定对象半径为Ε内的区域称为该对象的Ε邻域;核心对象:如果给定对象Ε领域内的样本点数大于等于MinPts,则称该对象为核心对象;直接密度可达:对于样本集合D,如果样本点q在p的Ε领域内,并且p为核心对象,那么对象q从对象p直接密度可达;密度可达:对于样本集合D,给定一串样本点p1,p2….pn,p= p1,q= pn,假如对象pi从pi-1直接密度可达,那么对象q从对象p密度可达;注意:密度可达是单向的,密度可达即可容纳同一类;密度相连:存在样本集合D中的一点o,如果对象o到对象p和对象q都是密度可达的,那么p和q密度相联;密度可达是直接密度可达的传递闭包,并且这种关系是非对称的;密度相连是对称关系;DBSCAN目的是找到密度相连对象的最大集合;有了以上的概念接下来就是算法描述了:DBSCAN通过检查数据库中每点的r邻域来搜索簇;如果点p 的r邻域包含的点多于MinPts个,则创建一个以p为核心对象的新簇;然后,DBSCAN迭代的聚集从这些核心对象直接密度可达的对象,这个过程可能涉及一些密度可达簇的合并;当没有新的点可以添加到任何簇时,该过程结束;例如:Eg: 假设半径Ε=3,MinPts=3,点p的E领域中有点{m,p,p1,p2,o}, 点m的E领域中有点{m,q,p,m1,m2},点q的E领域中有点{q,m},点o的E领域中有点{o,p,s},点s的E领域中有点{o,s,s1}.那么核心对象有p,m,o,sq不是核心对象,因为它对应的E领域中点数量等于2,小于MinPts=3;点m从点p直接密度可达,因为m在p的E领域内,并且p为核心对象;点q从点p密度可达,因为点q从点m直接密度可达,并且点m从点p直接密度可达;点q到点s密度相连,因为点q从点p密度可达,并且s从点p密度可达;2、簇的生成原理及过程1DBSCAN聚类算法原理的基本要点:确定半径eps的值①DBSCAN算法需要选择一种距离度量,对于待聚类的数据集中,任意两个点之间的距离,反映了点之间的密度,说明了点与点是否能够聚到同一类中;由于DBSCAN算法对高维数据定义密度很困难,所以对于二维空间中的点,可以使用欧几里德距离来进行度量;②DBSCAN算法需要用户输入2个参数:一个参数是半径Eps,表示以给定点P为中心的圆形邻域的范围;另一个参数是以点P为中心的邻域内最少点的数量MinPts;如果满足:以点P为中心、半径为Eps 的邻域内的点的个数不少于MinPts,则称点P为核心点;③DBSCAN聚类使用到一个k-距离的概念,k-距离是指:给定数据集P={pi; i=0,1,…n},对于任意点Pi,计算点Pi到集合D的子集S={p1, p2, …, pi-1, pi+1, …, pn}中所有点之间的距离,距离按照从小到大的顺序排序,假设排序后的距离集合为D={d1, d2, …, dk-1, dk, dk+1, …,dn},则dk就被称为k-距离;也就是说,k-距离是点pi到所有点除了pi点之间距离第k近的距离;对待聚类集合中每个点pi都计算k-距离,最后得到所有点的k-距离集合E={e1, e2, …, en};④根据经验计算半径Eps:根据得到的所有点的k-距离集合E,对集合E进行升序排序后得到k-距离集合E’,需要拟合一条排序后的E’集合中k-距离的变化曲线图,然后绘出曲线,通过观察,将急剧发生变化的位置所对应的k-距离的值,确定为半径Eps的值;⑤根据经验计算最少点的数量MinPts:确定MinPts的大小,实际上也是确定k-距离中k的值,DBSCAN 算法取k=4,则MinPts=4;⑥另外,如果觉得经验值聚类的结果不满意,可以适当调整Eps和MinPts的值,经过多次迭代计算对比,选择最合适的参数值;可以看出,如果MinPts不变,Eps取得值过大,会导致大多数点都聚到同一个簇中,Eps过小,会导致一个簇的分裂;如果Eps不变,MinPts的值取得过大,会导致同一个簇中点被标记为噪声点,MinPts过小,会导致发现大量的核心点;我们需要知道的是,DBSCAN算法,需要输入2个参数,这两个参数的计算都来自经验知识;半径Eps的计算依赖于计算k-距离,DBSCAN取k=4,也就是设置MinPts=4,然后需要根据k-距离曲线,根据经验观察找到合适的半径Eps的值;2连通核心点生成簇核心点能够连通有些书籍中称为:“密度可达”,它们构成的以Eps长度为半径的圆形邻域相互连接或重叠,这些连通的核心点及其所处的邻域内的全部点构成一个簇;假设MinPts=4,则连通的核心点示例,如下图所示:计算连通的核心点的思路是,基于广度遍历与深度遍历集合的方式:从核心点集合S中取出一个点p,计算点p与S集合中每个点除了p点是否连通,可能会得到一个连通核心点的集合C1,然后从集合S中删除点p和C1集合中的点,得到核心点集合S1;再从S1中取出一个点p1,计算p1与核心点集合S1集中每个点除了p1点是否连通,可能得到一个连通核心点集合C2,再从集合S1中删除点p1和C2集合中所有点,得到核心点集合S2,……最后得到p、p1、p2、……,以及C1、C2、……就构成一个簇的核心点;最终将核心点集合S中的点都遍历完成,得到所有的簇;参数eps的设置,如果eps设置过大,则所有的点都会归为一个簇,如果设置过小,那么簇的数目会过多;如果MinPts设置过大的话,很多点将被视为噪声点;3、根据数据点的密度分为三类点:1核心点:该点在邻域内的密度超过给定的阀值MinPs;2边界点:该点不是核心点,但是其邻域内包含至少一个核心点;3噪音点:不是核心点,也不是边界点;有了以上对数据点的划分,聚合可以这样进行:各个核心点与其邻域内的所有核心点放在同一个簇中,把边界点跟其邻域内的某个核心点放在同一个簇中;聚类的效果如下图,黑色是噪音点:初识聚类算法:因为DBSCAN使用簇的基于密度的定义,因此它是相对抗噪音的,并且能处理任意形状和大小的簇;但是如果簇的密度变化很大,例如ABCD四个簇,AB的密度大大大于CD,而且AB附近噪音的密度与簇CD 的密度相当,这是当MinPs较大时,无法识别簇CD,簇CD和AB附近的噪音都被认为是噪音;当MinPs 较小时,能识别簇CD,但AB跟其周围的噪音被识别为一个簇;这个问题可以基于共享最近邻SNN的聚类结局;4、DBSCAN的优缺点:优点:1. 与K-means方法相比,DBSCAN不需要事先知道要形成的簇类的数量;2. 与K-means方法相比,DBSCAN可以发现任意形状的簇类;3. 同时,DBSCAN能够识别出噪声点;对于数据库中样本的顺序不敏感,即Pattern的输入顺序对结果的影响不大;但是,对于处于簇类之间边界样本,可能会根据哪个簇类优先被探测到而其归属有所摆动;缺点:1. DBScan不能很好反映高尺寸数据;2. DBScan不能很好反映数据集变化的密度;3.对于高维数据,点之间极为稀疏,密度就很难定义了;。
聚类分析参考答案

第三章 聚类分析一、填空题1.在进行聚类分析时,根据变量取值的不同,变量特性的测量尺度有以下三种类型: 间隔尺度 、 顺序尺度 和 名义尺度 。
2.Q 型聚类法是按___样品___进行聚类,R 型聚类法是按_变量___进行聚类。
3.Q 型聚类统计量是____距离_,而R 型聚类统计量通常采用_相似系数____。
4.在聚类分析中,为了使不同量纲、不同取值范围的数据能够放在一起进行比较,通常需要对原始数据进行变换处理。
常用的变换方法有以下几种:__中心化变换_____、__标准化变换____、____规格化变换__、__ 对数变换 _。
5.距离ij d 一般应满足以下四个条件:对于一切的i,j ,有0≥ij d 、 j i =时,有0=ij d 、对于一切的i,j ,有ji ij d d =、对于一切的i,j,k ,有kj ik ij d d d +≤。
6.相似系数一般应满足的条件为: 若变量i x 与 j x 成比例,则1±=ij C 、 对一切的i,j ,有1≤ij 和 对一切的i,j ,有ji ij C C =。
7.常用的相似系数有 夹角余弦 和 相关系数 两种。
8.常用的系统聚类方法主要有以下八种: 最短距离法 、最长距离法、中间距离法、重心法、类平均法、可变类平均法、可变法、离差平方和法。
9.快速聚类在SPSS 中由__K-mean_____________过程实现。
10.常用的明氏距离公式为:()qpk q jk ik ij x x q d 11⎥⎦⎤⎢⎣⎡-=∑=,当1=q 时,它表示 绝对距离 ;当2=q 时,它表示 欧氏距离 ;当q 趋于无穷时,它表示 切比雪夫距离 。
11.聚类分析是将一批 样品 或 变量 ,按照它们在性质上 的 亲疏、相似程度 进行分类。
12.明氏距离的缺点主要表现在两个方面:第一 明氏距离的值与各指标的量纲有关 ,第二 明氏距离没有考虑到各个指标(变量)之间的相关性 。
聚类算法方法归纳

聚类算法方法归纳
1. K-Means 聚类:这是一种最常见的聚类算法,它通过确定 k 个初始中心点,并将每个数据点分配给最近的中心点,然后不断更新中心点的位置,直到达到最优的聚类结果。
2. 层次聚类:这种方法通过构建一棵树来表示数据的层次结构,从而实现聚类。
它可以是凝聚的(自下而上)或分裂的(自上而下)。
3. DBSCAN 聚类:基于密度的空间聚类应用程序和噪声(DBSCAN)是一种基于密度的聚类算法,它通过计算样本点之间的距离来判断样本点的密度,将样本点分为不同的簇。
4. 高斯混合模型(GMM):GMM 是一种概率模型,它假设数据是由多个高斯分布混合而成的。
通过最大化似然函数来估计模型参数,从而实现聚类。
5. OPTICS 聚类:这是一种基于密度的聚类算法,它通过计算样本点之间的距离来判断样本点的密度,将样本点分为不同的簇。
6. Agglomerative 聚类:这种方法通过不断合并最相似的两个簇来构建聚类层次结构。
7. 模型-based 聚类:这种方法使用统计模型(如混合模型、隐马尔可夫模型等)来描述数据的分布,并通过最大化模型的对数似然来确定最佳的聚类数量和成员。
这些是聚类算法的一些常见方法,每种方法都有其优缺点,适用于不同类型的数据和应用场景。
在选择聚类算法时,需要考虑数据的特征、聚类的目标以及计算效率等因素。
文本聚类方法

文本聚类方法文本聚类是一种将大量文本数据划分为若干个类别或群组的技术方法。
它可以帮助我们发现文本数据中的模式和隐藏的结构,从而更好地理解数据并进行进一步的分析和应用。
本文将介绍一些常用的文本聚类方法,包括传统方法和基于深度学习的方法。
传统的文本聚类方法主要有以下几种:1.基于词袋模型的聚类方法:这是最常见的文本聚类方法之一。
它将文本数据转化为词向量的表示,然后使用聚类算法,如K-means算法或层次聚类算法,将文本数据划分为不同的类别。
这种方法简单有效,但对于文本中的语义信息和上下文信息无视较多。
2.基于主题模型的聚类方法:主题模型是一种用于发现文本数据中隐藏主题的统计模型。
其中最著名的一种是LDA(Latent Dirichlet Allocation)模型。
基于主题模型的聚类方法将文本数据转化为主题分布的表示,然后使用聚类算法将文本数据划分为类别。
主题模型考虑了文本中词的分布和上下文关联,因此在一定程度上能更好地捕捉文本数据的语义信息。
3.基于谱聚类的聚类方法:谱聚类是一种通过图论的方法来进行聚类的技术。
将文本数据中的词或短语作为节点,考虑它们之间的相似度构建图,然后利用谱聚类算法将文本数据划分为不同的类别。
谱聚类在处理高维数据和复杂结构数据时具有很好的效果。
基于深度学习的文本聚类方法在最近几年得到了广泛的关注和应用。
这些方法利用深度神经网络来抽取文本数据中的语义信息,从而实现更准确和高效的文本聚类。
1.基于Word2Vec的文本聚类方法:Word2Vec是一种通过神经网络学习词的分布式表示的技术。
基于Word2Vec的文本聚类方法将文本数据中的词转化为词向量后,使用聚类算法将文本数据划分为不同的类别。
相比传统的基于词袋模型的方法,基于Word2Vec的方法能更好地捕捉词之间的语义关系。
2.基于卷积神经网络的文本聚类方法:卷积神经网络在图像处理中取得了很好的效果,而在处理文本数据中的局部结构时同样具有优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚类8种方法
聚类是一种无监督学习方法,它将数据集中的对象分成不同的组或簇,使得同一组内的对象相似度较高,而不同组之间的对象相似度较低。
聚类方法可以应用于各种领域,如数据挖掘、图像处理、生物信息学等。
本文将介绍8种常见的聚类方法。
1. K均值聚类
K均值聚类是最常见的聚类方法之一。
它将数据集中的对象分成K 个簇,每个簇的中心点称为质心。
算法的过程是先随机选择K个质心,然后将每个对象分配到最近的质心所在的簇中,接着重新计算每个簇的质心,重复以上步骤直到质心不再改变或达到预设的迭代次数。
2. 层次聚类
层次聚类是一种自下而上或自上而下的聚类方法。
它将数据集中的对象逐步合并成越来越大的簇,直到所有对象都被合并为一个簇或达到预设的簇数。
层次聚类有两种方法:凝聚聚类和分裂聚类。
凝聚聚类是自下而上的方法,它从每个对象开始,逐步合并成越来越大的簇。
分裂聚类是自上而下的方法,它从所有对象开始,逐步分裂成越来越小的簇。
3. DBSCAN聚类
DBSCAN聚类是一种基于密度的聚类方法。
它将数据集中的对象分为核心点、边界点和噪声点三类。
核心点是在半径为ε内有至少MinPts个对象的点,边界点是在半径为ε内有少于MinPts个对象的点,但它是核心点的邻居,噪声点是既不是核心点也不是边界点的点。
DBSCAN聚类的过程是从任意一个未被访问的核心点开始,找到所有密度可达的点,将它们合并成一个簇,直到所有核心点都被访问。
4. 密度聚类
密度聚类是一种基于密度的聚类方法,它将数据集中的对象分为不同的簇,每个簇的密度较高,而不同簇之间的密度较低。
密度聚类的过程是从任意一个未被访问的点开始,找到所有密度可达的点,将它们合并成一个簇,直到所有点都被访问。
5. 谱聚类
谱聚类是一种基于图论的聚类方法。
它将数据集中的对象看作是图中的节点,将它们之间的相似度看作是边的权重。
谱聚类的过程是将相似度矩阵转换成拉普拉斯矩阵,然后对拉普拉斯矩阵进行特征值分解,得到特征向量,将它们作为新的特征空间,再用K均值聚类或其他聚类方法进行聚类。
6. 高斯混合模型聚类
高斯混合模型聚类是一种基于概率的聚类方法。
它将数据集中的对象看作是由多个高斯分布组成的混合模型,每个高斯分布对应一个簇。
高斯混合模型聚类的过程是先随机初始化每个高斯分布的参数,然后用EM算法估计参数,最后将每个对象分配到概率最大的高斯分布所在的簇中。
7. 均值漂移聚类
均值漂移聚类是一种基于密度的聚类方法。
它将数据集中的对象看作是概率密度函数的样本,通过不断迭代来估计概率密度函数的峰值,将每个峰值作为一个簇的中心点。
均值漂移聚类的过程是先随机选择一个点作为起始点,然后计算它的密度函数,再计算密度函数的梯度,将当前点沿着梯度方向移动到密度函数的峰值处,重复以上步骤直到收敛。
8. 二分K均值聚类
二分K均值聚类是一种改进的K均值聚类方法。
它将数据集中的所有对象看作是一个簇,然后将该簇分成两个子簇,再对每个子簇进行K均值聚类,重复以上步骤直到达到预设的簇数。
二分K均值聚类的优点是可以避免陷入局部最优解,但缺点是计算复杂度较高。
总结
本文介绍了8种常见的聚类方法,它们各有优缺点,适用于不同的数据集和应用场景。
在实际应用中,需要根据具体情况选择合适的聚类方法,并对聚类结果进行评估和解释。
聚类方法的研究和应用将为数据分析和机器学习提供更多的工具和方法。