《用数轴上的点表示有理数》教案

合集下载

人教版初中七年级上册数学数轴教案三篇

人教版初中七年级上册数学数轴教案三篇

其中,原点、正方向和单位长度称为数轴的三要素。

【过程与方法】通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

【情感、态度与价值观】在数与形结合的过程中,体会数学学习的乐趣。

二、教学重难点【教学重点】数轴的三要素,用数轴上的点表示有理数。

【教学难点】数形结合的思想方法。

三、教学过程一引入新课提出问题通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

二探索新知学生活动小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系提问1上面的问题中,东与西、左与右都具有相反意义。

我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?学生活动画图表示后提问。

提问20代表什么?数的符号的实际意义是什么?对照体温计进行解答。

教师给出定义在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足任取一个点表示数0,代表原点;通常规定直线上向右或上为正方向,从原点向左或下为负方向;选取合适的长度为单位长度。

提问3你是如何理解数轴三要素的?师生共同总结原点是数轴的基准,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

三课堂练习如图,写出数轴上点,,,,表示的数。

四小结作业提问今天有什么收获?引导学生回顾数轴的三要素,用数轴表示数。

课后作业课后练习题第二题;思考到原点距离相等的两个点有什么特点?篇二一、教学内容分析12有理数122数轴。

这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。

同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。

日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。

小学数学数轴教案(5篇)-最新

小学数学数轴教案(5篇)-最新

小学数学数轴教案(5篇)数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

这次帅气的为您整理了5篇《小学数学数轴教案》,希望朋友们参阅后能够文思泉涌。

小学数学数轴教案篇一§2.2 数轴教学目标:1.知道什么是数轴,如何画数轴。

2.知道如何将有理数在数轴上表示出来,能说出数轴上表示有理数的点所表示的数。

知道任一个有理数在数轴上都有唯一的点与之对应。

教学重点:学习数轴,用数轴上的点表示有理数。

教学难点:利用数轴学习有理数的大小性质。

教学过程:一、引入:请读出下面温度计所表示的温度:二、讲授新课:1.考察温度计,直接给出数轴的定义。

2.讲解例1。

提问:在数轴上,已知一点p表示数(-5),如果数轴上的原点不选在原来位置。

改选在另一位置,那么p对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生提出:数轴的三要素缺一不可。

3.小结:如何根据数轴的定义画一条数轴?如何在数轴上画出表示有理数的点?4.随堂练习:1.教科书第54页练习第1,2,3题。

2.补充练习:在数轴上能否实际画出表示一亿万分之一的点?这个点存在吗?(答:很难画出;存在。

)四、课外作业1.2.补充题:(1)画一条数轴并画出分别表示±0.5,±0.1,±0.75的各点。

(2)画一条数轴并画出分别表示1000,2000,5000的各点。

注:以上两个补充题的目的是,用数轴表示已知数时,要根据已知数适当地选择单位长度和坐标原点的位置。

(3)在数轴上标出到原点距离小于3的整数所表示的点。

(4)在数轴上标出-5和+5之间的所有整数的点。

小学数学数轴教案篇二2.2 数轴10数本2班教学目标:1.使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示;2.向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想。

榆林市三中七年级数学上册 第二章 有理数 2.2 数轴教案 华东师大版

榆林市三中七年级数学上册 第二章 有理数 2.2 数轴教案 华东师大版

数轴课程分析本节主要让学生知道数轴上有原点、正方向和单位长度,会画数轴,并用数轴上的点表示整数或分数.通过学习使学生会正确画出数轴,初步了解有理数与数轴上的点的对应关系,能将有理数用数轴上的点来表示,理解利用数轴上点的位置关系比较有理数大小的法则,从而发现和认识负数小于零,正数大于零,向学生渗透对立统一的辩证唯物主义观点以及数形结合的数学思想.教材分析1.地位与作用:数轴是继正负数、有理数之后的又一个新的概念,同时又是数形结合的一个重要范例.其重要性体现在它一方面锻炼学生的动手操作、观察分析的能力,另一方面体现代数与几何的一个结合,为下一步研究相反数、绝对值奠定基础,在数学的发展上具有重要作用.本节的学习对下一步的后继学习是非常关键的,具有承上启下的作用.2.重点与难点:本节的重点是数轴的概念,利用数轴比较数的大小;难点是从直观认识到理性认识,从而建立数轴的概念,正确地画出数轴.教法分析重视相关知识的联系,要通过复习、回忆原有知识,对照有理数中新增加的负数,联系生活经验,从温度计上得到启发,引出数轴,故采用启发诱导,自主学习与合作学习相结合的数学方法.讲解数轴概念及画法时,重点讲明原点作用,在数轴上标注负数单位时,要强调方向,并与正数单位作比较,可以多举一些实例.在讲解本节重点时,可以根据教学情况和学习练习,加深对数轴概念的理解;在通过观察数轴上点的位置关系,初步比较有理数的大小这部分内容时,要注意启发学生自己得出这一法则,并认识其合理性,重点要突出负数和零的大小比较.本节教学中涉及图形和数量的对应关系,可以向学生指明这是数学研究的一种重要方法,并注意在后继内容的教学中适时渗透.学法分析学习本节内容时应通过实践画图、交流、反思,真正掌握数轴的概念,理解用数轴可以直观地表示有理数,在数轴上比较有理数的大小,学习时应充分注意数形结合,理解数轴的定义时注意结合直观图形,如温度计,这样更容易理解.教学目标知识与技能1.认识数轴,会用数轴上的点表示有理数.2.了解数轴的概念,知道数轴的三要素,会画数轴.过程与方法从直观认识到理性认识,从而建立数轴的概念.情感态度与价值观通过数轴的学习,体会数形结合的数学思想方法,认识事物之间的联系,感受数学与生活的联系.教学重难点重点:数轴的概念.难点:从直观认识到理性认识,建立数轴的概念,正确地画出数轴.教学过程活动1:创设情境,导入新课设计意图:直接抛出数轴的名称,对应学生小学中已经接触过的用直线上的点表示数,引起学生的学习兴趣,建立初步的数轴印象.师:提问有理数包括哪些数?0是正数还是负数?在日常生活中,你能举出一些用刻度来表示物品的数量的例子吗?让学生充分讨论,明确知识是从实践中得到的,它与我们的生活息息相关;再有,数除了可以用符号表示外,还有其他表示方法,从而引出新课:数轴.活动2:学习数轴的概念,探索数轴的画法设计意图:通过教具的使用,使学生能够直观地感受数与形之间的对应关系,渗透数形结合的数学思想,通过讨论、自主学习、合作交流等形式,使学生对数轴从感性认识上升到理性认识.1.教师出示温度计,问:你会读温度计吗?温度上的刻度与数值之间有什么关系?2.教师出示图片,提出:怎样用数简明的表示树、电线杆与汽车站的相对位置关系(方向、距离)?说明:将公路看作直线,将各个事物看作点.学生动手操作,感受画数轴的过程,之后,师让学生阅读教材15页上的三段话,正确规范地理解数轴的概念,然后师生共同总结数轴的三要素.活动3:学习有理数在数轴上的表示方法设计意图:会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来,这是本节课要求学生掌握的最基本的技能,也是以后继续学习坐标系的基础.让学生通过练习感受数与形之间的对应关系,感受数学直观与抽象之间的联系.师:数轴上的点都是整数,分数或小数能用数轴上的点表示吗?生:思考后回答,然后完成教材16页练习.师:观察数轴,数轴上原点左边的数都是什么数,右边呢?学生讨论后进行归纳,最后教师作点评.活动4:课后作业下列所画数轴对不对?如果不对,指出错在哪里.【答案】①错,没有原点;②错,没有正方向;③正确; ④错,没有单位长度;⑤错,单位不统一;⑥错,正方向标错.板书设计活动1:创设情境,导入新课活动2:学习数轴的概念,探索数轴的画法.活动3:学习有理数在数轴上的表示方法.活动4:课后作业章末复习【知识与技能】1。

7. 1对4新课教案-数学用数轴上的点表示数

7. 1对4新课教案-数学用数轴上的点表示数

教师学生上课时间学科数学年级课题名称用数轴上的点表示数教学目标理解数轴上的点与实数一一对应,掌握实数绝对值的意义,会比较实数的大小,会用数轴上的点表示实数,会在数轴上找出一个数的对应点.重点难点1.数轴上的点与实数一一对应,会比较实数的大小.2.实数绝对值的意义.3.有理数的绝对值意义,比较有理数的大小,用数轴上的点表示有理数,在数轴上找出一个有理数的对应点,圆周长,圆周率,线段的和差.用数轴上的点表示数一、课前回顾1、将下列各数填入相应的圈内:二、新课导入实数的分类:三、新课讲解1、用数轴上的点表示无理数2和π。

(1)每个有理数都可以用数轴上的点表示,反之数轴上的点所表示的数是不是都是有理数?(2)无理数是否也可以用数轴上的点表示出来呢?(3)你能否可以用数轴上的点表示2,π…?作出一个线段使它等于2个长度单提示:以线段AB为1个单位长度,你能否位;用直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点o',点o'所表示的数就是π。

A B在数轴上表示2在数轴上表示π小结:每一个无理数都可以用数轴上的一个点表示出来。

实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都可以表示一个实数。

全体实数所对应的点布满整条数轴。

2、求绝对值和相反数有理数范围内已有的绝对值、相反数等概念,在实数范围内有同样的意义。

一个实数在数轴上所对应的点到原点的距离叫做这个数的绝对值。

实数a的绝对值记作∣a∣。

绝对值相等,符号相反的两个数叫做互为相反数。

零的相反数是零,非零实数a的相反数是 -a。

练习:2的相反数是;-π的相反数;0的的相反数是。

2的绝对值是;即∣2∣= ;-π的绝对值是;即∣-π∣= ;0的绝对值是;即∣0∣= ;小结:(1)数a的相反数是-a,这里的a表示非零实数,零的相反数是零。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

七年级数学上册 第二章 有理数 数轴(第2课时)教案 (新版)苏科版

七年级数学上册 第二章 有理数 数轴(第2课时)教案 (新版)苏科版

2.3 数轴(2)1.会正确画出数轴,知道数轴的三要素;2.知道有理数和无理数都可以用数轴上的点表示,会用数轴上的点表示有理数,能说出数轴上的点所表示的数;3.会用数轴比较两个数的大小;4.初步感受数形结合的思想.1.用数轴上的点表示有理数,能说出数轴上的点所表示的数;2.用数轴比较两个数的大小.用数轴上的点表示有理数,用数轴比较两个数的大小.教学过程(教师) 学生活动点表示的数的大小关系:、5℃、-3℃、-2℃按从低到高的顺序排列.画出表示0、5、3-、2-的点,你能比较这几?出几个数,并在数轴上画出表示这几个数的点,个数的大小吗? 点的位置与它们所表示的数的大小有什么关比较下列各组数的大小: ; (2)102-和; 3; (4)3 0 1.5-、、. 如图,画出数轴,并用数轴上的点表示0、5、3-、2-. -3 < -2 < 0 < 5归纳得出:在数轴上表示的两个数,右边的数总比左边的数大.正数都大于0,负数都小于0,正数大于负数.解:(1)5>0; (2)102-<; (3)2>一3; (4)30 1.5-<<.两个数的大小解:如图,在数轴上分别画出表示-3.5和-0.5的点A 、B . 因为点B 在点A 的右边,所以0.53.5-->.顺序连接起来:35 1.5.-, -, ,根据各点在数轴上的位置,得 13 1.502 5.2---<<<<< 出表示下列各数的点.并用“<”号将这些数顺序连接起来:4.5, 0.5, 4, 3.--点A 、B 、C 表示的3个数中,哪个最大、哪个A 和B 分别表示12-与34-,哪一个点离原点12-与34-哪一个数较大? 独立完成,课堂交流.回顾本节课的教学内容,从知识和方法两个层面进行总结.。

《数轴》七年级数学教案(精选6篇)

《数轴》七年级数学教案(精选6篇)

《数轴》七年级数学教案(精选6篇)《数轴》七年级数学教案1教学目标1.了解数轴的概念和数轴的画法,掌握数轴的三要素;2.会用数轴上的点表示有理数,会利用数轴比较有理数的大小;3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议一、重点、难点分析本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。

难点是正确理解有理数与数轴上点的对应关系。

数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。

另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。

通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础二、知识结构有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的。

重要思想方法,本课知识要点如下表:定义三要素应用数形结合规定了原点、正方向、单位长度的直线叫数轴原点正方向单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

《数轴》七年级数学教案2教学目标:1、正确理解数轴的意义,理解数轴的三要素。

2、掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。

3、理解相反数的意义及求法。

4、对学生渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力。

重点难点:1、正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数。

2、有理数和数轴上的的点的对应关系。

教学方法:合作探究交流学法指导:观察归纳概括教学过程:一、情景引入:(1)你会读温度计吗?完成课本43页最上面的读温度计的问题。

1.2用数轴上的点表示有理数

1.2用数轴上的点表示有理数

-4
-3
-2
-1 0
1
2
3
4
拓展应用,深化认识
4.如果瓢虫先向左移动2个单位长度,再向右移动几个 单位长度才能回到自己的家?
-4
-3
-2
-1
0
1
2
3
4
拓展应用,深化认识
5.如果瓢虫第1次先向左移动1个单位长度,第2次再向右移动 2个单位长度,第3次再向左移动1个单位长度,第4次再向右 移动2个单位长度,如此第8次,瓢虫回到自己的家了吗?如 此下去,第100次瓢虫终点表示的数为__________.
请同学们观看一段视频,回答下列问题。 1、怎样的一条直线就是数轴? 2、数轴有哪些要素? 3、画数轴应注意的问题有哪些?
-5 -4 -3 -2 -1 0 1 2 3 4 5
归纳:像这样,规规定定了_原__点__、_正__方__向__、__单_位__长__度__的直线叫做数轴。
(二)应用新知,巩固提高
一般地,如果a是一个正数,则数轴上表示数a的点在原点_右__
边,距离原点_a_个单位长度;表示数-a的点在原点_左_边,距 离原点_a_个单位长度
任何一个有理数都可以用数轴上的一个点来表示。
例2:写出数轴上A,B,C,D ,E 表示的数:
EB
AC
D
-5 -4 -3 -2 -1 0 1 2 3 4 5
数轴的画法
一画(直线) 二定(原点) 三选(正方向) 四统一(单位长度)
判断下面所画数轴是否正确,并说明理由. 原点、正方向和单位长度缺一不可.
(三)应用迁移,动手实践
例1:画出数轴,试说出下列各数分别在数轴上的什么位置? 并在数轴上找到表示下列各数的点 。

七年级上册数学数轴教案4篇

七年级上册数学数轴教案4篇

七年级上册数学数轴教案4篇七班级上册数学数轴教案1教学目标1,把握数轴的概念,理解数轴上的点和有理数的对应关系; 2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会依据数轴上的点读出所表示的有理数;3,感受在特定的条件下数与形是可以互相转化的,体验生活中的数学。

教学难点数轴的概念和用数轴上的点表示有理数学问重点教学过程〔师生活动〕设计理念设置情境引入课题老师通过实例、课件演示得到温度计读数.问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?〔多媒体出示3幅图,三个温度分别为零上、零度和零下〕问题2:在一条东西向的公路上,有一个汽车站,汽车站东3 m 和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.〔小组商量,沟通合作,动手操作〕创设问题情境,激发同学的学习热忱,发觉生活中的数学点表示数的感性熟悉。

点表示数的理性熟悉。

合作沟通探究新知老师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?让同学在商量的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必需满意什么条件?从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特殊强调数轴三要求。

从嬉戏中学数学做嬉戏:老师预备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,如今请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,假如规定第3个同学为原点,嬉戏还能进行吗?同学嬉戏体验,对数轴概念的理解查找规律归纳结论问题3:1,你能举出一些在现实生活中用直线表示数的实际例子吗? 2,假如给你一些数,你能相应地在数轴上找出它们的精确位置吗?假如给你数轴上的点,你能读出它所表示的数吗?3,哪些数在原点的左边,哪些数在原点的右边,由此你会发觉什么规律?4,每个数到原点的距离是多少?由此你会发觉了什么规律?〔小组商量,沟通归纳〕归纳出一般结论,教科书第12的归纳。

北京课改版-数学-七年级上册-教案:2用数轴表示有理数

北京课改版-数学-七年级上册-教案:2用数轴表示有理数

授课日期9月3日课型新授课授课教师单大禹教学课题总课时:第 1 课时教学目标知识与技能:通过实例了解数轴的概念和数轴的画法;知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应,知道互为相反数的一对数在数轴上的位置关系。

过程与方法:通过探究活动,使学生从直观认识到理性认识。

从而建立数轴概念;通过数轴概念的学习,初步体会对应的思想,数形结合的思想方法。

情感态度价值观:通过本课的学习使学生体会到数学知识与现实世界的联系,体现数学充满着探索性,培养学生良好的数学兴趣,能够在师评,生评,自评的影响下,树立学习数学的自信心。

教学重点会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。

教学难点数轴的引入教学方法讲授法教学准备电脑课件、三角板、温度计教学过程教师活动设计学生活动设计设计意图时间安排一、情境创设导语:大家在日常生活中见过温度计吗?你知道它的用途是什么吗?教师评价学生的回答后,出示问题(出示幻灯片一)三个温度计,其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面上0刻度。

三个温度计所表示的温度是多少?教师对学生的回答给予鼓励性评价。

一、结合温度计,探索数轴:(出示幻灯片二)温度的大小可以用温度计来表示,温度计上的读数是有限的,我们前面学习的有理数是无限的,如果要表示有理数的大小的话,把有理数要放在什么上好呢?教师针对学生回答情况给予评价,若存在困难,可适当启发,:小学中已学过用一条直线表示自然数,这里也可以用一条直线来表示有理数,从而引出课题。

(板书:2.2数轴(出示幻灯片三)观察与思考:这条直线上须添加上什么条件和要素才能用来表示有理数?教师参与学生讨论,适时加以引导、启发,对学生的大胆想象加以鼓励,表扬,最后归纳总结出数轴的概念。

(板书:在黑板上画一条数轴)学生小组讨论相互交流可自由发言。

学生仔细观察温度计,类似比较,同桌之间相互讨激情导入,激发学生的兴趣考查学生的生活经验,培养学生的观察能力,同时为引入新课作下铺垫培养学生用类比的方法去思考问题,同时为引出数轴的概念作好准备通过学生的观察讨论,培养学生的观察能力、类比想象能力和合作探究意识。

新人教版六年级数学下册《数轴》教案

新人教版六年级数学下册《数轴》教案

7.2.2 数轴一、教学目标(一)学习目标1.理解数轴的意义和数轴上的点与有理数的对应关系;2.会正确画出数轴,会根据数轴上的点读出所表示的有理数,会用数轴上的点表示给定的有理数;3.掌握从数与形两方面考虑问题的方法,能够用数轴解决现实生活中的实际问题。

(二)学习重点理解数轴上的点与有理数的对应关系(三)学习难点用数轴上的点表示有理数,并用数轴解决现实生活中的实际问题。

二、教学设计(一)课前设计1.预习任务(1)规定了原点、正方向、单位长度的一条直线叫作数轴;(2)所有的有理数都可以用数轴上的点来表示,数轴上的原点表示的数是0;(3)一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数a 的点在原点的左边,与原点的距离是a 个单位长度。

2.预习自测(1)下列表示的数轴,正确的是( )【知识点】数轴【解题过程】解:单位长度不统一,故A 错误;-1、-2标反了,故B 错误;没有正方向,故D 错误,所以应选C【思路点拨】根据数轴的三要素即可判断.【答案】 C-20 -1 2 1 -1 -2 0 1 2 3 -3 -1 0 1 2 3-2 0 A B C D(2)在数轴上,原点及原点右边的数是( )A .正数B .负数C .整数D .非负数【知识点】数轴【解题过程】解:在数轴上,原点及原点右边表示的数是非负数。

【思路点拨】根据数轴的概念即可求解;【答案】D(3)在数轴上表示-3,0,5,4,21-的点中,在原点左边的点有( ) A .0个 B .1个 C .2个 D .3个【知识点】数轴【解题过程】在数轴上表示-3,0,5,4,21-的点中,在原点左边的点有-3,21- 【思路点拨】根据数轴的概念知,在原点左边的点表示负数即可求解.【答案】C(4)如图,在数轴上,A 、B 、C 、D 、E 各表示什么数?【知识点】数轴【解题过程】解:由图可知:A 表示-1,B 表示1.5,C 表示-1.5,D 表示-3.5,E 表示3.【思路点拨】可先观察该点在原点的左侧或是右侧,判断其正负,再看该点到原点的距离即可判断.【答案】A 表示-1,B 表示1.5,C 表示-1.5,D 表示-3.5,E 表示3.(二)课堂设计1.知识回顾(1)什么叫正数?什么叫负数?(2)整数和分数统称什么数?整数包括哪些数?分数包括哪些数?2.问题探究探究一 理解数轴的意义★●活动探究:在一条东西向的马路上,有一个汽车站,汽车站东3m 和7.5m 处分别有一棵柳树和一棵杨树,汽车站西3m 和4.8m 处分别有一棵槐树和一根电线杆,试画图表示这一情境. -3-4-2-10 1 2 3A B C D E师问:(1)用什么可表示马路?方向呢?(2)可以以什么地方为基准点?为什么?(分组讨论,交流合作,动手操作)师生合作画出对应的图形师问:能否用数简明地表示这些树、电线杆与汽车站牌的相对位置关系呢?生答:问题中,由于“东”与“西”、“左”与“右”都是具有相反意义,所以可以用正、负数来表示它们。

初中数学用数轴上的点表示有理数教案

初中数学用数轴上的点表示有理数教案

初中数学用数轴上的点表示有理数教案用数轴上的点表示有理数教学目的1.使先生正确了解数轴的意义,掌握数轴的三要素;2.使先生学会由数轴上的点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使先生初步了解数形结合的思想方法.教学重点和难点重点:初步了解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.难点:正确了解有理数与数轴上点的对应关系.课堂教学进程设计一、从先生原有认知结构提出效果1.小学里曾用〝射线〞上的点来表示数,你能在射线上表示出1和2吗?2.用〝射线〞能不能表示有理数?为什么?3.你以为把〝射线〞做怎样的改动,才干用来表示有理数呢?待先生回答后,教员指出,这就是我们本节课所要学习的内容数轴.二、讲授新课让先生观察挂图缩小的温度计,同时教员给予言语指点:应用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,依据温度计的液面的不同位置就可以读出不同的数,从而失掉所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计相似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、正数和零.详细方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,假设所需的都是正数,也可倾向左边)用这点表示0(相当于温度计上的0℃);2.规则直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可罗列几个数)在此基础上,给出数轴的定义,即规则了原点、正方向和单位长度的直线叫做数轴.进而提问先生:在数轴上,一点P表示数-5,假设数轴上的原点不选在原来位置,而改组在另一位置,那么P对应的数能否还是-5?假设单位长度改动呢?假设直线的正方向改动呢?经过上述提问,向先生指出:数轴的三要素原点、正方向和单位长度,缺一不可.三、运用举例变式练习例1 画一个数轴,并在数轴上画出表示以下各数的点:例2 指出数轴上A,B,C,D,E各点区分表示什么数.课堂练习示出来.2.说出下面数轴上A,B,C,D,O,M各点表示什么数?最后引导先生得出结论:正有理数可用原点左边的点表示,负有理数可用原点左边的点表示,零用原点表示.四、小结指点先生阅读教材后指出:数轴是十分重要的数学工具,它使数和直线上的点树立了对应关系,它提醒了数和形之间的内在联络,为我们研讨效果提供了新的方法.本节课要求同窗们能掌握数轴的三要素,正确地画出数轴,在此还要提示同窗们,一切的有理数都可用数轴上的点来表示,但是反过去不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个效果以后再研讨.五、作业课堂教学设计说明从先生已有知识、阅历动身研讨新效果,是我们组织教学的一个重要原那么.小学里曾学过应用射线上的点来表示数,为此我们可引导先生思索:把射线怎样做些改良就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要仔细剖析它的作用,使先生从直观看法上升到理性看法.直线、数轴都是十分笼统的数学概念,当然对初学者不宜讲的过多,但适当引导先生停止笼统的思想活动还是可行的.例如,向先生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.。

1.2用数轴上的点表示有理数-北京版七年级数学上册教案

1.2用数轴上的点表示有理数-北京版七年级数学上册教案

**欠款人家属承诺还款保证书**一、债权人信息债权人姓名:[XXXXX]身份证号码:[身份证号码]联系电话:[联系电话]通讯地址:[通讯地址]二、债务人信息债务人姓名:[XXXXX]身份证号码:[身份证号码]联系电话:[联系电话]通讯地址:[通讯地址]三、欠款金额和明细根据双方协议,债务人截至XXXX年XX月XX日共欠债权人人民币XX 元,明细如下:1. 借款本金:XX元2. 利息:XX元3. 其他费用:XX元总计:XX元四、还款承诺和计划债务人及家属承诺按以下计划进行还款:1. XX年XX月XX日前,偿还欠款本金XX元。

2. XX年XX月XX日前,偿还利息及费用XX元。

3. XX年XX月XX日前,偿还剩余欠款本金及利息。

五、保证措施和责任为确保上述还款计划的履行,债务人及家属提供以下保证措施:1. 保证将所有收入及时存入指定账户,并授权债权人随时查账和划款。

2. 提供担保或抵押物,确保还款计划的履行。

3. 保证及时通知债权人任何可能导致还款计划执行受阻的事项。

4. 如有违反本保证书的行为,同意接受相应的法律责任。

六、违约责任和罚则如债务人及家属未能按期履行还款计划,债权人有权采取以下措施:1. 要求债务人立即偿还所有欠款及利息。

2. 追讨因违约产生的相关费用,包括但不限于律师费、诉讼费等。

3. 对抵押物进行处置,以收回欠款。

4. 其他合法手段进行追偿。

七、争议解决方式如因本保证书产生的任何争议,双方应首先友好协商解决;协商不成的,任何一方均有权向债权人所在地人民法院提起诉讼。

八、签署和日期债务人及家属在此签署本保证书,以示对上述承诺和计划的确认。

本保证书一式两份,债权人和债务人各执一份。

本保证书自签署之日起生效。

2.2用数轴上的点表示有理数(1)s

2.2用数轴上的点表示有理数(1)s
2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是-3.
3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)
A.7 B.-3 C.7或-3 D.不能确定
4.在数轴上,原点及原点左边的点所表示的数是(D)
A.正数B.负数C.不是负数D.不是正数
5.数轴上表示5和-5的点离开原点的距离是5,但它们分别在原点的两边.
例3如果a是一个正数,则数轴上表示数a的点在原点的什么位置上?表示-a的点在原点的什么位置上呢?
【提示】由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.
【答案】所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.
【点评】数与数轴上的点结合,这是一种重要的数学思想,数形结合.
三.动手动脑学用新知
例1下列所画数轴对不对?如果不对,指出错在哪里.
【答案】①错.没有原点②错.没有正方向③正确④错.没有单位长度⑤错.单位长度不统一⑥正确⑦错.正方向标错
例2试一试:用你画的数轴上的点表示4,1.5,-3,- ,0
Байду номын сангаас【答案】
图中A点表示4,B点表示1.5,C点表示-3,D点表示- ,E点表示0.
师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.也就是本节内容──数轴.
二.合作交流探究新知
点拨(1)引导学生学会画数轴.
第一步:画直线定原点
第二步:规定从原点向右的方向为正(左边为负方向)
第三步:选择适当的长度为单位长度(据情况而定)
第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.

数轴

数轴

数轴教案示例一、教学目标通过与温度计的类比理解数轴,会用数轴上的点表示有理数.二、教法设计比较法、讨论法、观察法、投影演示法.三、教学重点和难点会用数轴上的点表示有理数,把有理数用数轴上的点表示.四、课时安排1 课时五、师生互动活动设计创设情景,观察猜想,举例论证六、教学思路(一)、创设情景.引导学生通过观察温度计.体会用直线上的点来表示有理数的方法,导入课题1.展示不同读数的温度计,先让学生读出各个温度计的数后,提问:你能只用直线上的点来表示有理数吗?同学讨论、交流,最后教师边板书边讲述:画一条水平直线,在直线上取一点O(叫原点),选择某一长度作为单位长度,规定直线上向右的方向为正方向,得到数轴.(导入新课)2.数轴与温度计作类比,让学生亲自操作实践.(真像一个平放的温度计)+3用数轴上位于原点右边3个单位的点表示,-4用数轴上位于原点左边4个单位的点表示,原点右边个单位的点表示(),原点左边1.5个单位的点表示(-1.5).(二)、投影出示例1、例2,让学生独立完成,教师总结例1 指出数轴上已知点所表示的数是由“形”到“数”的思维过程.例1让学生口答.例2 把给定的数用数轴上的点表示,是由“数”到“形”的思维过程.例2让学生动手填在数轴上.(三)、想一想,促动学生之间合作在流1.投影片上打出问题,小组讨论,发展学生的思维空间.由小组代表发言,不同意见由其他小组代表阐述,给予同学肯定、鼓励.2.师生共同总结数轴的概念,以及各类数在数轴的位置关系.七、小结同学们你们学会了什么呢?1.理解了数轴.2.用数标出数轴上的点,并会用数轴上的点表示数.八、作业布置课本习题2.2中l-4题自我评价本教案的设计有以下特点:能根据教材编写思路,自制教具创造性使用新教材中的问题情景,把教材中不动的问题情景转化为学生互动的问题情景,使学生在互动中去感受数轴.相关的一些知识,都是在教师的引导下,经过学生充分的思考、讨论,并结合大量特例,由学生自己归纳、总结发现的.教师根据实际情况,对不同的学生实行有针对性的指导,使不同的学生都有发展,真正把课堂还给了学生,使学生真正地变为课堂学习的主人,老师仅仅学生学习的引导者和组织者.典型例题例题1 选择题:如图,下面是一些同学在作业中所画的数轴.其中,画图准确的是()A.①②③④ B.①②③ C.② D.②③分析图①中表示相邻两整数的点之间的距离不一致;图③中负有理数的标记不对了;图④中漏画了表示方向的箭头和长度单位.解选C.说明书写与画图的规范性对于学者来说是非常重要的,读者要自觉地培养良好的学习习惯.为了分析某个具体问题,在草稿纸上画图④那样的图未尝不可,但完成画数轴的作业,则切切不可.例题2 利用数轴,比较-2.9,-3.8和-2.1的大小,用“<”把它们连结起来.分析(l)办法是在数轴上把这三个数表示出来,并且按从左到右的顺序排列三个数.(2)表示-2.9和-2.l的点在表示-2与-3的两个点之间,表示-3.8的点在表示-3与-4的两个点之间.(3)-2.9与-2.1互相比较,-2.9更接近于-3,-2.1更接近于-2,这是画图时能够参考,以免画错位置的.(4)所给的三个有理数都是精确到十分位的,所以画数轴时,单位长度的选择不宜过小.解这三个数在数轴上的位置如下:所以,-3.8<-2.9<-2.1.说明初学者在数轴上表示负数时必须小心谨慎.比如在数轴上表示-2.35与-2.38,就容易把它们的位置弄颠倒.本例题“分析”中提供的办法是很有使用价值的.这里的办法实质是利用了数轴的方向性.比如,从原点向左,先是-l,然后是-2,-3,…;同样,从原点向左,先是-0.l,再是-0.2,-0.3…;从-2向左,先是-2.1,再是-2.2,-2.3,…,-2.9;先是-2.35,再是-2.38.这样考虑,就不容易出错了.例3 指出数轴上A、B、C、D、E各点分别表示什么数.分析:表示正数的点都在原点的右侧,表示负数的点都在原点的左侧.要特别注意相邻两个负整数点之间的等分点所表示的数,例如:-2,-3之间的A点是表示,而不是.解:O表示0,A表示,B表示1,C表示,D表示-4,E表示-0.5.例4 下面说法中错误的是 [ ].A.数轴上原点的位置是任意取的,不一定要居中;B.数轴上单位长度的大小要根据实际需要选择.1厘米长的线段能够代表1个单位长度,也能够代表2个、5个、10个、100个、…单位长度,但一经取定,就不可改动;C.如果a<b,那么在数轴上表示a的点比表示b的点距离原点更近;D.所有的有理数都能够用数轴上的点表示,但不能说数轴上所有的点都表示有理数.解:当a,b都是正数时,C的结论成立;当a,b不都是正数时,例如a=-10,b=2,此时-10<2,也满足条件a<b,但表示a的点与原点的距离(10)比表示b的点与原点的距离(2)远,C的结论不成立.∴C错.说明:因为有理数包含正数、负数和0,所以用字母表示数时,这个字母就能够代表正数、负数或0.在分析问题时,忘记字母代表的数可能是负数或0经常是造成错误的原因.例5 比较下列各组数的大小:分析:依据“正数都大于0,负数都小于0;正数大于一切负数.”和“在数轴上表示的两个数,右边的数总比左边的数大.”比较两个数的大小.用通分的方法比较(5)中的两个分数的大小是很麻烦的,如果都与(中间数)比较,则可化繁为简;(6)中的两个负数,理应把小数化为分数或把分数化为小数后才便于比较.解:说明:分母不同的两个分数比较大小时,一般采用通分的方法.当分母比较大时,通分是比较麻烦的,这时理应考虑其他的方法和技巧.例如:借助中间数的方法;让分子相等比分母的方法,比较它们的倒数的方法等等.习题精选一、选择题1.在已知的数轴上,表示-2.75的点是().A.E点B.F点C.G点D.H点2.一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动7个单位长度,这时点所对应的数是().A.3B.1C.-2D.-43.以下四个数,分别是数轴上A、B、C、D四个点可表示的数,其中数写错的是().4.下列各语句中,错误的是().A.数轴上,原点位置的确定是任意的;B.数轴上,正方向能够是从原点向右,也能够是从原点向左;C.数轴上,单位长度1的长度的确定,可根据需要任意选择;D.数轴上,与原点的距离等于36.8的点有两个.5.用表示的数一定是().A.负数 B.负整数 C.正数或负数 D.以上结论都不对6.有一种记分方法:以80分为准,88分记+8分,某个学生得分为74分,则应记为(). A.74 B.+6C.-74 D.-67.给出下列四种说法:(l)自然数即是正整数;(2)正数、0、负数统称为有理数;(3)整数分为正整数和负整数;(4)非负整数和负整数组成整数集合.其中准确的说法个数为().A.1B.2C.3 D.48.如图,根据、、、在数轴上的位置,下列关系准确的是().A. B.C. D.9.若有理数在数轴上点表示数,点表示数,则有().A.点在点的左边 B.点在点的右边C.点在原点的右边,点在原点的左边 D.点和点均在原点左边10.比较,,的大小,准确的是().A. B.C. D.11.若数轴上的点对应的数是,那么与相距1个单位长度的点所对应的数是().A. B. C.或D.或二、填空题1.数轴的三要素是____,____和____.2.用“>”、“<”、“=”连接下列各组中的两数:(1)0.001______-0.001;(2)-3.14_____-;(3) ____;(4)0____-0.1 3.在数轴上,原点左边的数都是________数,原点左边的数都是________数.4.数轴上,离开原点4个单位长度的数是__________.5.把-3在数轴上对应的点沿数轴移动5个单位长度后,所得的点对应的数是_________.6.不小于-4,又不大于0的整数是________.7.已知点在数轴上对应的有理数为,将向左移4个单位长度后,再向右移动1个单位长度得到点,点对应的数为,则有理数 ________.8.若为有理数,在与之间有2001个整数,则的取值范围是_______.三、解答题1.下面数轴是以1厘米为长度单位的,请写出它上面A、B、C、D各点所表示的数,并且用“<”连结它们.2.填空题(l)数轴上到原点的距离等于3的点表示的数是___________.(2)数轴上到表示-5的点和到表示-3的点距离相等的点,表示的数是___________.(3)数轴上表示1的点和表示___________的点到表示-l的点的距离相等.(4)一个点从数轴上表示___________的点开始,向右移动5个单位,到达表示3的点处.(5)数轴上,表示-3的点到原点的距离和到表示___________的点的距离都是___________.(6)数轴上的原点到表示-10.l的点之间的距离为___________.3.选择题(1)观察数轴能够知道,下列语句中准确的是()A.1是最小的正有理数B.-l是最大的负有理数C.0是最大的非正的整数D.有最小的正整数和最小的正有理数(2)数轴上,点A、B表示的数分别是-1.2和2.2,点C到A、B两点的距离相等,则点C表示的数是()A.1 B.0.5 C.0.6 D.0.84.数轴上,到表示1的点的距离等于2.5的点有几个?请在数轴上画出来.参考答案:一、1.D 2.D 3.B 4.B 5.D 6.D 7.B 8.B 9.B 10.B 11.C二、1.原点,正方向,单位长度;2.(1)>(2)>(3)<(4)>;3.正、负;4.;5.或;6.0、、、、7.;8..三、1.略2.(1)(2)(3)(4)(5)3,相等(6)10.1 3.C4.略。

数轴教案

数轴教案

【教学重点与难点】教学重点:正确理解数轴的概念和用数轴上的点表示有理数。

教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形的结合的思方法是本节课的教学难点。

【教学目标】1、理解数轴的概念,会画数轴;2、知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应;会利用数轴解决有关问题。

3、通过生活中的实例,由直观认识到理性认识,从而建立数轴概念;通过数轴概念的学习,初步体会对应的思想,数形结合的思想方法,进而初步认识事物之间的联系性。

【教材处理】本节一课时完成,将从生活中的实例入手,引导学生由直观认识到理性认识,从而自然建立数轴概念,进而探究数轴的画法、作用、数与点的对应。

【教学方法】通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。

整节课以观察、动手、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,并教给学生“多观察、善动脑、大胆猜、勤钻研”的研讨式学习方法。

教学中给学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

【教学过程】一、问题解决引入实例(设计说明:从生活中的实例出发引出数轴,贴近生活,直观具体,易于学生接受,同时能够调动学生自主学习的兴趣和积极性。

)问题1:在一条东西走向的马路上,有一个汽车站,汽车站东3米和7.5米处分别有一棵柳树和一棵杨树,汽车站西3米和4.8米处分别有一棵槐树和一根电线杆,你能画图表示这一情境吗?学生会画一条直线表示马路,并在直线的左、右侧分别标上西、东,在直线上取一点O表示车站的位置,规定一个单位长度表示1米,于是点O的右边距离点分别3个和7.5个单位的点A和点B,分别表示柳树和杨树的位置,点O的左边距离点3个和4.8个单位的点C 和点D分别表示槐树和电线杆的位置。

二、提出问题感受特征问题2:怎样用数简明地表示这些树、电线杆与车站的相对位置关系呢?(用数体现出方向、距离的不同)规定从左向右表示从东到西,把点O左右两边的数分别用负数和正数表示。

《数轴》教案1

《数轴》教案1

《数轴》教案教学目的1、通过与温度计的类比认识数轴,并会用数轴上的点表示有理数.2、借助数轴了解相反数的概念,知道互为相反数的一对数在数轴上的位置关系,能利用数轴比较有理数的大小.教学重难点重点:用数轴上的点表示有理数及相反数的概念.难点:对相反数概念的理解.教学过程一、引入新课前面我们学习了有理数以后,具有相反意义的两个量就可以用正数和负数表示出来了,比如:零上3度和零下3度可表示成+3度和—3度;盈利10万元和亏损10万元可记作+10万元与—10万元等.我们日常生活所用的温度计是以什么数为基准数的呢?你会读温度计吗?你能用数轴表示有理数吗?二、教授新课1、数轴的画法:画一条直线,在直线上取一点表示0(叫做原点)选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到下面的数轴.同学们议一议,数轴有什么特征?它与直线有什么区别?数轴不仅是一条直线,而是规定了原点、正方向、单位长度的一条直线.它与温度计类似,温度计上必须有一个0℃,与其类似,数轴上规定一个原点;温度计上0℃以上为正,0℃以下为负,与其类似,数轴上规定原点向右为正方向,相反方向为负方向;温度计上1℃为1小格的长度,与其类似,数轴上选择适当的长度为单位长度.2、+3可以用数轴上位于原点右边3个单位的点表示,—4可以用数轴上位于原点左边4个单位的点表示,0可以用原点表示;在原点右边41个单位的点表示41,在原点左边41个单位的点表示41-.你看,数轴像不像一个平放着的温度计?0 1 —1 2—2 11-0 1任何一个有理数都可以用数轴上的一个点表示.3、教学例1.指出数轴上A 、B 、C 、D 各点分别表示什么数.解:点A 表示—2,点B 表示2,点C 表示0,点D 表示—1.4、教学例2.画出数轴,并用数轴上的点表示下钱各数:23,-3.5,0,5,-4,23-. 5、请同学们议一议:数轴上两个点,右边点表示的数与左边点表示的数有怎样的大小关系?结论:数轴上两个点表示的数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数. 比如:温度计上表示—5℃比—7℃温度高,所以—5>—7.6、比较下列每组数的大小:(1)—2和+6 (2)0和—1.8 (3)23-和—4. 三、课堂小结通过温度计的类比,我们认识了数轴.并且利用数轴可以比较有理数的大小. —3 —2 —1 0 1 2 3越来越大。

【最新】人教版七年级数学上册第一章《有理数(第2课时)》教案

【最新】人教版七年级数学上册第一章《有理数(第2课时)》教案

新人教版七年级数学上册第一章《有理数(第2课时)》教案一、内容和内容解析1.内容数轴的概念,用数轴上的点表示有理数.2.内容解析数轴是初中数学的核心概念,它是数形结合思想的产物.数轴是把数和形统一起来的第一次尝试.数轴建立了直线上的点与实数的对应,是一维的坐标系.数轴使数的概念和运算可以与位置、方向、距离等统一起来,使数的语言得到了几何解释,有了直观意义.这不仅有助于对数的概念的理解,而且还可以从中得到启发而提出新的问题或结论(例如,相反数、绝对值、大小比较等).用数轴上的点表示实数,就是要使任意一个实数都能用唯一确定的点表示,同时,任意一个点只能表示一个实数(这样要求的意义需要学生逐渐体会).在这样的要求下,明确规定原点、方向和单位长度“三要素”是必须而且自然的.这时,我们有:原点↔0(原点是区分方向的“基准”,0是区分正负的基准.)单位长度↔1(单位长度是度量线段长度的单位,1是实数单位,“单位”实际上给出了一个统一的标准.)方向↔符号(空间中,A,B两点“位置差别”的定量化定义,必须且只需“方向”和“长度”.数轴上,方向只有“左”“右”两种,可以理解为“相反方向”.在数轴上,正与负具有“相反方向”,正数与负数的实际意义就是描述现实中的“相反意义的量”.确定一个实数,需要“符号”和“绝对值”两个要素,它们正好对应了定量化定义A,B两点“位置差别”的“方向”和“长度”.)基于以上分析,可以确定本课的教学重点:体会数轴的三要素;体会用数轴上的点表示数的合理性,感受其中的数形结合思想.二、教材解析本节课是在学习了有理数的概念之后,为了描述数与点的对应,引进了数轴的概念.它是数形结合的产物,用数轴可以直观的表示有理数,从而也为学生提供了理解相反数、绝对值的直观工具,同时也为学习有理数的运算法则作了准备.本节课的重点和难点是对数轴三要素的理解.学生在学习过程中可能无法深刻理解“数轴三要素”的作用以及相互之间的对应关系,因此,在教学时,要利用引例通过三个步骤逐步抽象出数轴的概念:1.用直线上的点表示位置;2.用数表示直线上的点;3.用数轴上的点直观的表示有理数.三、教学目标和目标解析1.教学目标(1)了解数轴的概念,会用数轴上的点表示有理数;(2)体会数轴三要素和有理数集(或实数集)中0、1以及数的符号之间的对应关系,从而体会数形结合思想.2.目标解析达成目标(1)的标志:学生知道数轴是一条规定了原点、方向和单位长度的直线;给定一个有理数,学生能在数轴上找到表示它的点;能画出数轴,并用数轴上的点表示有理数.目标(2)是“内容所蕴含的思想方法”,学生需要体会的是在“用点表示数”时,数轴“三要素”保证了点与数的“一一对应”——给定一个数,就有唯一确定的点与之对应;反之,给定一个点,就有唯一确定的数与之对应.但本节课只要能体会有理数与数轴上点的对应性,不要刻意强调“给一个点,不一定有一个有理数与之对应”.四、教学问题诊断分析学生第一次遇到用形表示数的问题,困难在于其中蕴含的思想.可以借鉴引入负数时的经验,通过生活实例进行讲解.但在基本思想上,还是要借助于具体情境,教师先讲解,学生获得体验后进行模仿式举例.本节课中,“三要素”及其对于确定“数轴上的点”的意义(根据“三要素”,可以在数轴上找到唯一确定的点,否则“存在性”“唯一性”就做不到),有理数集(或实数集)中0,1以及数的符号与数轴上的相关要素的对应性,都需要教师引导.本课的教学难点:数轴“三要素”与有理数集(或实数集)中0,1以及数的符号的对应性.五、教学过程设计1.问题情境下的三次概括问题1在一条东西向的马路上,有一个汽车站牌,汽车站牌东3 m和7.5 m处分别有一棵柳树和一棵杨树,汽车站牌西3 m和4.8 m处分别有一棵槐树和一根电线杆,试画图表示这一情境.师生活动:学生分组讨论解决问题的方法,学生代表画图演示.学生画图后,教师提问:(1)马路可以用什么几何图形代表?(直线)(2)你认为站牌起什么作用?(基准点)(3)你是怎么确定问题中各物体的位置的?(方向,与站牌的距离)【设计意图】“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题.这是实际问题的第一次数学抽象.说明:学生也可能只用与站牌的距离来表示,可以与下面的方法做比较,看哪个更方便.问题2上面的问题中,“东”与“西”,“左”与“右”都具有相反意义.我们知道,正数和负数可以表示两种具有相反意义的量,那么如何用数表示这些树、电线杆与汽车站牌的相对位置呢?学生画图表示后,教师提问:(1)0代表什么?(基准点)(2)数的符号的实际意义是什么?(方向)(3)如图,在一条直线上,A,B的距离等于B,C的距离,B点用3表示,C点用7.5表示,可以吗?为什么?(不可以,单位长度不一致,与实际情境不符)(4)上述方法表示了这些树、电线杆与汽车站牌的相对位置关系.例如,-4.8表示位于汽车站牌西侧4.8 m处的电线杆.你能再举个例子吗?【设计意图】继续以“三要素”为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础.问题3 大家都见过温度计吗?你能描述一下温度计的结构吗?比较上面的问题,你认为它用了什么数学知识?教师可以先解释0℃的含义(冰水混合物的温度规定为0℃——温度的基准点).【设计意图】借助生活中的常用物品,说明正数、负数的作用.引导学生用“三要素”表达,为定义数轴概念提供又一个直观基础.问题4 你能说说上述两个实例的共同点吗?【设计意图】进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点”的思想方法,为定义数轴概念提供进一步的直观基础.2.定义、辨析数轴概念明确数轴的概念,并请学生带着下列问题阅读教科书:(1)画数轴的步骤是什么?(2)根据上述实例的经验,“原点”起什么作用?(原点是数轴的“基准”,表示0,是正数和负数的分界点.)(3)你是怎么理解“选取适当的长度为单位长度”的?(与问题的需要相关,表示较大的数,单位长度取小一些等)(4)数轴上,原点右边的点,表示的数是;原点左边的点,所表示的数是.【设计意图】明晰概念,并让学生在教师设计的问题中,加深对数轴概念中“三要素”的理解.3.练习、巩固概念(1)教科书第9页练习1,2;(2)数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示数-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示数a的点和表示数-a的点进行同样的讨论.【设计意图】练习(1)通过指出数轴上的点表示的有理数和画数轴表示有理数,使学生进一步巩固数轴的概念,并使学生了解所有的有理数都可以用数轴上的点表示.练习(2)通过从特殊到一般的方法归纳出数轴上不同位置(原点左右)点的特点.培养学生的抽象概括(由具体的数到字母表示的数)能力.4.小结、布置作业教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)数轴的“三要素”各指什么?它们各起什么作用?(3)你能举出引进数轴概念的一个好处吗?【设计意图】通过小结,使学生梳理本节课所学内容,掌握本节课的核心——数轴“三要素”,感受通过数轴把数与形结合起来的好处.布置作业:教科书第9页练习第3题,习题1.2第2,3,7,8题.六、目标检测设计1.在数轴上,表示+2的点在原点的侧,距原点个单位长度;表示-7的点在原点的侧,距原点个单位长度;两点之间的距离为个单位长度.【设计意图】检测学生对数轴的正方向和单位长度的理解.2. 画出数轴并表示下列各数:+3,0,-3,41,1,21,-3,-1.25 【设计意图】检测学生对数轴的概念及用数轴上的点表示有理数的掌握情况.3.在数轴上,把表示3的A 点沿着数轴向负方向移动5个单位长度,到达B 点,则点B 表示的数是 .【设计意图】体会点在运动过程中所表示的数的变化规律.4.小明的家(记为A )、他所在学校(记为B )以及书店(记为C )依次座落在一条东西向的大街上,A 位于B 西边300 m 处,C 位于B 东边1 000 m 处。

数轴教案模板(共5篇)

数轴教案模板(共5篇)

数轴教案模板〔共5篇〕第1篇:数轴教案学科:数学教学内容:数轴【学习目的】1.通过与温度计的类比,认识数轴,会用数轴上的点表示有理数.2.借助数轴理解相反数的概念,认识互为相反数的一对数在数轴上的位置关系,能用数轴比拟有理数的大小.【根底知识精讲】1.数轴三要素及数轴画法(1)数轴三要素:原点、单位长度、正方向.其中可以选取某一长度作为单位长度,规定直线上向右的方向为正方向.(2)取一直线,直线上具备了数轴的三要素,那么它就可以称为数轴了. 2.数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示.(反之那么不成立.因为数轴上的点不仅可以表示有理数,还有一些点表示的数不在有理数的范围内)3.利用数轴比拟两个有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.图2—1(2)正数大于0,负数小于0,正数大于负数.图2—2 由于数轴上正数在0的右边,0在负数的右边,所以正数>0,0>负数,正数>负数.如:+7>-10(正数大于负数)0>-3(0大于负数),0<+2(0小于正数)4.相反数的有关知识(1)定义:假如两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.如:-3和3,11和-,-3.2和+3.2…… 77(2)在数轴上,表示互为相反数的两个点位于原点的两侧,并且与原点的间隔相等.图2—3 如:-3和+3是一对互为相反数,它们在原点的左右两侧,且它们到原点的间隔都是3个单位长度.(3)相反数是它本身的数是0.说明:数轴是数学中数与图形结合的典范.理解数轴及和数轴有关的知识都可以从几何和代数两方面入手.【学习方法指导】[例1]画一个数轴,并在数轴上表示出以下各数,并用“<”号连接起来.111,-3,-1,0,2 23点拨:①画数轴应必须具备数轴三要素:原点、单位长度、正方向.②用“<”号连接这些数,需要将这些数从小到大排列.而在数轴上右边的数总是大于左边的数,所以只要将数轴上的数从左到右用“<”号连接即可.解答:图2—4 -3<-111<0<1<2 32[例2]m,n在数轴上位置如图2—5,那么下面结论正确的选项是…〔〕图2—5 A.m>0,n<0 B.m>0,n>0 C.m<0,n<0 D.m<0,n>0 点拨:在数轴上的数,右边的总比左边的大.对于m和0,m在0的右边,即m>0,而n在0的左边,所以0>n即n<0.解答:m>0,n<0.选A.[例3]数轴上间隔原点3个单位长度的数是_____.点拨:先画出数轴,找到原点.从原点开场向左、向右各数3个单位长度,这两个点到原点的间隔相等,且符合题意.记住:类似的题目答案一般会有两个数.解答:+3和-3 [例4]填空:(1)-5的相反数是_____ 2(2)b的相反数是_____(3)-m的相反数是_____ 点拨:不管是数字或是字母,互为相反数的两个数只有符号不同.解答:(1)5(2)-b(3)m 2[例5]数轴上表示互为相反数的两个点A和B,它们两点间的间隔是5,那么这两个数分别是_____和_____.点拨:画出数轴,表示出A和B.由于它们互为相反数,所以这两个点到原点的间隔相等,那么每个点距原点2.5个单位长度.在原点左边的点为-2.5,在原点右边那么为+2.5.图2—6 解答:+2.5和-2.5.[例6]比拟大小(1)0_____-3(2)-1_____-2(3)7_____-10 2点拨:假设正数、负数、0互相比拟,那么用“正数>0>负数”进展比拟.假设两负数进展比拟,将它们标注在数轴上,右边的数大于左边的数.解答:(1)>(0大于负数)(2)>(数轴上,-1所对应的点在-2所对应点的右侧)2图2—7(3)>(正数大于负数)【拓展训练】求以下各数的相反数.(1)-(+7)(2)+(-m)点拨:由于互为相反数的两个数只有一个符号不同:一个为正,一个为负.因为在此题中将括号里的数看做一个整体,括号外的才是它的符号.找相反数时,只要改变括号外的符号即可.解答:(1)-(+7)的相反数是+(+7)(2)+(-m)的相反数是-(-m)第2篇:数轴教案1.2.2 数轴教学目的:1.使学生知道数轴上有原点、正方向和单位长度,能将数在数轴上表示出来,能说出数轴上的点所表示的数,知道有理数都可以用数轴上的点表示;2.向学生浸透对立统一的辩证唯物观点及数形结合的数学思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《用数轴上的点表示有理数》教案
教学目的
1、通过与温度计的类比,认识数轴,会用数轴上的点表示有理数.
2、经历从实际中抽出数学模型,感受类比、数形结合思想在数学学习中的作用.发展应用意识.
3、能利用数轴比较有理数的大小.
教学重难点
重点:能将已知数在数轴上表示出来,说出数轴上已知点所表示的数.
难点:数轴的引入,利用数轴比较数的大小.
教学过程
一、引入新课
前面我们学习了有理数以后,具有相反意义的两个量就可以用正数和负数表示出来了,比如:零上3度和零下3度可表示成+3度和—3度;盈利10万元和亏损10万元可记作+10万元与—10万元等.
我们日常生活所用的温度计是以什么数为基准数的呢?你会读温度计吗?你能在温度计上表示0℃和-13℃吗?
二、教授新课
1、数轴的画法:画一条直线,在直线上取一点表示0(叫做原点)选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到下面的数轴.
同学们议一议,什么是数轴?它与直线有什么区别?
数轴是一条规定了原点、正方向、单位长度的直线.它与温度计类似,温度计上必须有一个0℃,与其类似,数轴上规定一个原点;温度计上0℃以上为正,0℃以下为负,与其类似,数轴上规定原点向右为正方向,相反方向为负方向;温度计上1℃为1小格的长度,与其类似,数轴上选择适当的长度为单位长度.
2、+3可以用数轴上位于原点右边3个单位的点表示,—4可以用数轴上位于原点左边4个单位的点表示,0可以用原点表示;在原点右边41个单位的点表示41,在原点左边4
1
个单0 1
位的点表示4
1-.
你看,数轴像不像一个平放着的温度计?
任何一个有理数都可以用数轴上的一个点表示.
3、教学例题. 画出数轴,并用数轴上的点表示下列各数:
2,-1.5,0,3.5,
-4.
4、师生共同完成书上练习.
5、请同学们议一议:数轴上两个点,右边点表示的数与左边点表示的数有怎样的大小关系?
结论:数轴上两个点表示的数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数.
比如:温度计上表示—5℃比—7℃温度高,所以—5>—7.
师生共同学习书上例2、例3.
6、比较下列每组数的大小:
(1)—2和+6 (2)0和—1.8 (3)23-
和—4. 三、课堂小结
通过温度计的类比,我们认识了数轴,并且利用数轴可以比较有理数的大小. 0 1 —1 2 —2 11-
—3 —2 —1 0 1 2 3
越来越大。

相关文档
最新文档