湖北省洪湖市贺龙高级中学高中数学 1.1.1集合新课案 新人教A版必修1
人教课标A版数学必修一1.1.1集合的含义与表示教案
1.1.1《集合的含义与表示》导学案班级组名:姓名【学习目标】A级目标:通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.B级目标:了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.【重点难点】重点:集合的基本概念与表示方法.难点:选择恰当的方法表示一些简单的集合.【学习过程】一、课题引入问题1.军训前学校通知:8月30日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?问题2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?二、自主探究得出结论阅读课本第2~3页,完成下列探究任务[问题一]①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(1)班全体学生组成的集合,用a表示高一(1)班的一位同学,b是高一(2)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?[问题二]阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.[问题三]①前面所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?三、合作交流,解决问题例1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点例2.在数集{2x,x 2-x}中,实数x 的取值范围是什么?例3.试分别用列举法和描述法表示下列集合:(1) 小于10的所有自然数组成的集合;(2) 方程x 2=x 的所有实数根组成的集合;(3) 由1~20以内的所有质数组成的集合.四.突破疑难例4.若集合A={}23,21,4a a a ---且3A -∈,求实数a 的值组成的集合.例5.已知集合A={x|ax 2-3x+2=0,a ∈R},若A 中至少有一个元素,求a 的取值范围.【当堂检测】1. (1) A={1,3},判断元素3,5和集合A 的关系,并用符号表示.(2) 所有素质好的人能否表示为集合?(3) A={2,2,4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合?2.方程ax 2+5x+c=0的解集是{21,31},则a=________,c=_______.3.已知A={x ∈R |x=abcabc bc bc ac ac ab ab c c b b a a ||||||||||||||++++++,abc ≠0},用列举法表示集合A.4.用列举法表示下列集合:(1) 所有绝对值等于8的数的集合A;(2) 所有绝对值小于8的整数的集合B.5.试分别用列举法和描述法表示下列集合:(1) 方程x 2-2=0的所有实数根组成的集合;(2) 由大于10小于20的所有整数组成的集合.【课后反思】1.今天你的收获是什么?2.你有哪些方面需要努力?【课后巩固提高】1.说出下面集合中的元素:(1) {大于3小于11的偶数};(2) {平方等于1的数};(3) {15的正约数}.2.判断正误:(1)所有属于N 的元素都属于N *. ( )(2)所有属于N 的元素都属于Z . ( )(3)所有不属于N *的数都不属于Z . ( )(4)所有不属于Q 的实数都属于R . ( )(5)不属于N 的数不能使方程4x=8成立. ( )3.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x 2-9=0的解组成的集合;(4){15以内的质数}; (5){x|x-36∈Z ,x ∈Z }. (6){(x,y)|x ∈N 且1≤x<4,y-2x=0};(7){(x,y)|x+y=6,x ∈N ,y ∈N }.4.用描述法分别表示下列集合:(1)二次函数y=x 2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.(4)方程ax+by=0(ab ≠0)的解;(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)能被3整除的整数.5.定义集合运算:A ⊙B={z|z=xy(x+y),x ∈A,y ∈B},设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为( )A.0B.6C.12D.186.集合A 中的元素由关于x 的方程kx 2-3x+2=0的解构成,其中k ∈R,若A 中仅有一个元素,求k 的值.7. 已知集合A 有三个元素2+a ,2)1(+a ,332++a a(1)若1A ∈,则集合A 中还有哪些元素?(2)若1A ∉,则a 应满足什么条件?拓展提升1.集合A={x|x=a+2b,a ∈Z ,b ∈Z },判断下列元素x=0、121-、231-与集合A 之间的关系.2.已知集合C={x|x=a+b,a ∈A,b ∈B}.(1)若A={0,1,2,3},B={6,7,8,9},求集合C 中所有元素之和S;(2)若A={0,1,2,3,4,…,2 005},B={5,6,7,8,9},试用代数式表示出集合C 中所有元素之和S;(3)联系高斯求S=1+2+3+4+…+99+100的方法,试求出(2)中的S.思路分析:先用列举法写出集合C,然后解决各个小题.答案:(1)列举法表示集合C={6,7,8,9,10,11,12},进而易求得S=6+7+8+9+10+11+12=63.(2)列举法表示集合C={5,6,7,…,2 013,2 014},由此可得S=5+6+7+…+2 013+2 014.(3)高斯求S=1+2+3+4+…+99+100时,利用1+100=2+99=3+98=…=50+51=101,进而得S=1+2+3+4+…+99+100=101×50=5 050.本题(2)中S=5+6+7+…+2 013+2 014=2 019×1 005=2 029 095.。
[教案精品]新课标高中数学人教A版必修一全册教案1.1.1集合的含义与表示
通过讨
A ,记作 a A ,读作“ a 不属于 A ”. 4.集合的元素的基本性质; ( 1)确定性: 集合的元素必须是确定
的.不能确定的对象不能构成集合. ( 2)互异性: 集合的元素一定是互异
的.相同的几个对象归于同一个集合时只 能算作一个元素.
的点的全体构成的集合.
“不属于”关系.
3.元素与集合的关系:
教学环节
教学内容
集合通常用英语大写字母
A 、 B 、 C,
表示,它们的元素通常用英语小写字母
a、
b、 c, 表示.
如果 a是集合 A 的元素,就说 a 属于 A ,
师生互动
设计意图
念 深化
记作 a∈A ,读作“ a属于 A ”. 教师提问: “我们班中高个子
题.
然后,依据元素个数的多少将
通过观 察实例, 发 现集合的 元素个数 具有不同 的类别, 从 而使学生
5.空集: 不含任何元素的集合,
集合分类. 记作
感受到有
让学生指出 ? 哪 些 是 无 限 集、空集存
6.集合的分类: 按所含元素的个数分
为有限集和无限集.
( 3 )平行四边形的全体构成的集
合.
并提问:① 你能指出各个集合的元素 吗?② 各个集合的元素与集合之间
引入 集合 是什么关系?③ 例( 2 )中数 0, –2
语言 描述 是这个集合的元素吗 ?
集合. 学生讨论交流,弄清元素与集
( 4 )平面上与一定点 O 的距离等于 r 合之间是从属关系,即“属于”或
.
3 .情感、态度与价值观
( 1)了解集合的含义,体会元素与集合的
新教材人教A版高中数学必修第一册 第一章 集合与常用逻辑用语 优秀教案教学设计
第一章集合与常用逻辑用语1.1 集合的概念 .............................................................................................................. - 1 -1.2 集合间的基本关系................................................................................................... - 6 -1.3 集合的基本运算..................................................................................................... - 10 -1.4.1 充分条件与必要条件.......................................................................................... - 15 -1.4.2充要条件 .............................................................................................................. - 20 -1.5.1 全称量词与存在量词.......................................................................................... - 25 -1.5.2 全称量词命题和存在量词命题的否定.............................................................. - 27 -1.1 集合的概念一、教学目标1. 了解集合的含义,理解元素与集合的“属于”与“不属于”关系,熟记常用数集专用符号;2. 深刻理解集合元素的确定性、互异性、无序性,能够用其解决有关问题;3. 会用集合的两种表示方法表示一些简单集合,感受集合语言的意义和作用.二、教学重难点1. 教学重点集合的含义与表示方法,元素与集合的关系.2. 教学难点元素与集合的关系,选择适当的方法表示具体问题中的集合.三、教学过程(一)新课导入探究下列问题:(1)1~10之间的所有偶数;(2)立德中学今年入学的全体高一学生;(3)所有正方形;(4)到直线l的距离等于定长d的所有点;(5)方程2320-+=的所有实数根;x x(6)地球上的四大洋.思考:上述每个问题都由若干个对象组成,每组对象的全体都能组成集合吗?(二)探索新知探究一:集合的概念1. 集合的概念一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).问题1 “较小的数”能否构成一个集合?答案:不能,组成它的元素不确定.结论:集合中的元素是确定的.问题2 由1,2,0,2-这些数组成的一个集合中有几个元素?-,|2|答案:集合中有4个不同元素1,2,0,2-.结论:集合中的元素是互异的.若构成两个集合的元素是一样的,则称这两个集合相等.问题3 高一(5)班的全体同学组成一个集合,调整座位后这个集合有没有变化?答案:集合没有变化.结论:集合中的元素是没有顺序的.问题4 小组讨论,归纳集合中元素的特性.归纳:确定性、互异性、无序性.2. 集合与元素的表示通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素. 探究二:元素和集合的关系问题5 已知下面的两个实例:(1)用A表示高一(1)班全体女生组成的集合;(2)用a表示高一(1)班的一位女学生,b表示高一(1)班的一位男学生.思考:那么a,b与集合A分别有什么关系?解:a是集合A中的元素,b不是集合A中的元素.概念:如果a是集合A中的元素,就说a属于集合A,记作a A∈;如果a不是集合A中的元素,就说a不属于集合A,记作a A∉.常用的数集及其记法:非负整数集(自然数集):N;正整数集:N*或N+;整数集:Z;有理数集:Q ;实数集:R .探究三:集合的表示方法1. 列举法思考1:地球上的四大洋组成的集合如何表示?答案:可以表示为{太平洋,大西洋,印度洋,北冰洋}.思考2:方程2320x x -+=的所有实数根组成的集合,如何表示?答案:可以表示为{1,2}.列举法:把集合的所有元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.例1 用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程2x x =的所有实数根组成的集合.解:(1)设小于10的所有自然数组成的集合为A ,那么A ={0,1,2,3,4,5,6,7,8,9}.(2)设方程2x x =的所有实数根组成的集合为B ,那么B ={1,0}.注意:由于元素完全相同的两个集合相等,而与列举的顺序无关,因此一个集合可以有不同的列举方法.例如,例1(1)还可以表示为A ={9,8,7,6,5,4,3,2,1,0}等;2. 描述法问题8 能否用列举法表示不等式37x -<的解集?该集合中的元素有什么特征?解析:不能,但是可以看出,这个集合中的元素满足特征:(1)集合中的元素都小于10;(2)集合中的元素都是实数.这个集合可以通过描述其元素性质的方法来表示,写作:10{|}x x x <∈R ,.问题9 奇数集怎么表示?偶数集怎么表示?有理数集怎么表示?奇数集可以表示为2{}1|x x k k ∈=+∈Z Z ,,偶数集可以表示为2{|}x x k k ∈=∈Z Z ,, 有理数集可以表示为|0{}q x x p q p p∈=≠=∈R Q Z ,,,.问题10 通过以上问题总结归纳出描述法的概念.描述法:一般地,设A 是一个集合,我们把集合A 中所有具有共同特征()P x 的元素x 所组成的集合表示为{|()}x A P x ∈,这种表示集合的方法称为描述法.显然,对于任何{|()}y x A P x ∈∈,都有y A ∈,且()P y 成立.例2 试分别用描述法和列举法表示下列集合:(1)方程220x -=的所有实数根组成的集合A ;(2)由大于10且小于20的所有整数组成的集合B .解:(1)设x A ∈,则x 是一个实数,且220x -=.因此,用描述法表示为2{|20}A x x =∈-=R .方程220x -=-A =-. (2)设x B ∈,则x 是一个整数,即x ∈Z ,且1020x <<.因此,用描述法表示为{|1020}B x x =∈<<Z .大于10且小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为B={11,12,13,14,15,16,17,18,19}.问题11 列举法和描述法表示集合时,各自的特点和适用对象?答案:列举法是把每个元素一一列举出来,非常直观明显地表示元素,当元素有限或者元素有规律性的时候,是常采用的方法;描述法表示的集合中元素具有明显的共同特征,集合中的元素基本是无限的,这是比较常用的集合表示法.(三)课堂练习1.下列对象不能构成集合的是( )①我国近代著名的数学家;②所有的欧盟成员国;③空气中密度大的气体.A.①②B.②③C.①②③D.①③答案:D解析:研究一组对象能否构成集合的问题,首先要考查集合中元素的确定性.①中的“著名”没有明确的界限;②中的研究对象显然符合确定性;③中“密度大”没有明确的界限,故选D.2.R ;②14∉Q ;③0∈Z .其中正确的个数是( ) A.1 B.2 C.3 D.0答案:B 解析:①正确;②因为14∈Q ,错误;③0∈Z ,正确. 故选B. 3.a ,b ,c ,d 为集合A 的四个元素,那么以 a ,b ,c ,d 为边长构成的四边形可能是( )A.矩形B.平行四边形C.菱形D.梯形答案:D解析:由于集合中的元素具有“互异性”,故 a ,b ,c ,d 四个元素互不相同,即组成四边形的四条边互不相等. 故选D.4.设集合{}230|A x x x a =-+=,若4A ∈,则集合A 用列举法表示为___________.答案:{-1,4}解析:∵4A ∈,∴16120a -+=,∴4a =-,∴{}234014|{}A x x x =--==-,.(四)小结作业小结:1.集合的概念;2.元素和集合的“属于”关系;3.常见数集的专用符号;4.集合的表示方法.作业:四、板书设计1.1集合的概念1. 集合的概念2. 集合元素的三个特征:确定性、互异性、无序性3. 元素和集合的关系:a 属于集合A ,记作a A ∈;a 不属于集合A ,记作a A ∉.4. 常见数集的专用符号5. 集合的表示方法:列举法和描述法.1.2 集合间的基本关系一、教学目标1. 了解集合之间包含与相等的含义,能识别给定集合的子集;2. 理解子集、真子集、空集的概念;3. 能使用Venn 图表达集合间的关系,体会数形结合的思想.二、教学重难点1. 教学重点集合间的包含与相等关系,子集与真子集的概念,空集的概念.2. 教学难点元素与子集,即属于与包含之间的区别.三、教学过程(一)新课导入实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,思考两个集合之间是否也有类似的关系呢?要求:学生自由发言,教师引导学生进一步探究.(二)探索新知探究一:子集1. 观察以下几组集合,并指出它们元素间的关系:①A ={l,2,3},B ={1,2,3,4,5};②C为立德中学高一(2)班全体女生组成的集合,D为这个班全体学生组成的集合;在(1)中,集合A的任何一个元素都是集合B的元素.这时我们说集合A包含于集合B,或集合B包含集合A.同样,在(2)中,集合C包含于集合D,集合D包含集合C.2. 子集定义:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集.记作:A B⊇.⊆或B A读作:“A包含于B”(或“B包含A”)3. 韦恩图(Venn图):用平面上封闭曲线的内部来代表集合的图称为韦恩图(Venn图).练习1:下图中,集合A是否为集合B的子集?练习2:判断集合A是否为集合B的子集,若是则在()打√,若不是则在()打×:①A ={1,3,5},B ={1,2,3,4,5,6}(√)②A={1,3,5},B={1,3,6,9}(×)③A ={0},B ={x | x2+2=0}(×)④A ={a,b,c,d},B ={d,b,c,a}(√)探究二:集合相等1. 观察下列两个集合,并指出它们元素间的关系.A = {x | x是两条边相等的三角形},B = {x | x是等腰三角形}.集合A中的元素和集合B中的元素相同.2. 定义:如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作A = B.也就是说,若A B⊆,则A = B.⊆,且B A牛刀小试3:.集合A与B什么关系?答案:A = B.探究三:真子集1. 观察以下几组集合,并指出它们元素间的关系:(1)A ={1,3,5},B ={1,2,3,4,5,6};(2)A ={四边形},B ={多边形}.2. 定义:如果集合A B⊆,但存在元素x B∉,就称集合A是集合B的真子集.∈,且x A记作:A B(或B A).韦恩图表示:探究四空集1. 方程x2 + 1 = 0没有实数根,所以方程x2 + 1 = 0的实数根组成的集合中没有元素.2. 定义:一般地,我们把不含任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集.问题:你还能举几个空集的例子吗?探究五1. 包含关系{}a A⊆与属于关系a A∈有什么区别?答案:前者为集合之间的关系,后者为元素与集合之间的关系.2. 由上述集合之间的基本关系,可以得到下列结论:(1)任何一个集合是它本身的子集,即A A⊆.(2)对于集合A,B,C,如果A B⊆.⊆,那么A C⊆,且B C例1 写出集合{a,b}的所有子集,并指出哪些是它的真子集.解:集合{a,b}的所有子集:∅,{a},{b},{a,b}.真子集:∅,{a},{b}.例2 判断下列各题中集合A是否为集合B的子集,并说明理由:(1)A ={1,2,3},B ={x | x是8的约数};(2)A ={ x | x是长方形},B ={ x | x是两条对角线相等的平行四边形}.解:(1)因为3不是8的约数,所以集合A不是集合B的子集.(2)因为若x是长方形,则x一定是两条对角线相等的平行四边形,所以集合A是集合B的子集.规律总结:1. 写集合子集的一般方法:先写空集,然后按照集合元素从少到多的顺序写出来,一直到集合本身.2. 写集合真子集时除集合本身外其余的子集都是它的真子集.3. 一般地,集合A 含有n 个元素,则A 的子集共有2n 个,A 的真子集共有21n -个.(三)课堂练习1.集合A ={-1,0,1},A 的子集中含有元素0的子集共有( )A.2个B.4个C.6个D.8个答案:B解析:根据题意,在集合A 的子集中,含有元素0的子集有{0},{0,1},{0,-1},{-1,0,1}四个,故选B.2.设集合A ={x | 1< x <2},B ={x | x < a },若A B ⊆,则a 的取值范围是()A. {|2}a a ≤B.{|1}a a ≤C.{|1}a a ≥D.{|2}a a ≥答案:D解析:由{|12},{|},A x x B x x a A B =<<=<⊆,则{|2}a a ≥.故选D.3.已知集合){}(2A x y x y x y =+=∈N ,,,,试写出A 的所有子集.解:因为){}(2A x y x y x y =+=∈N ,,,,所以A ={(0,2),(1,1),(2,0)}.所以A 的子集有:,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)}∅,{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.(四)小结作业小结:1.本节课我们主要学习了哪些内容?2.集合间的基本关系有哪些?3.本节课主要用到了哪些数学思想方法?作业:四、板书设计1.2集合间的基本关系1. 子集的定义2. Venn图3. 集合的相等4. 真子集的定义5. 空集的定义6. 结论1.3 集合的基本运算一、教学目标1. 理解并集、交集、补集的概念,掌握其基本运算;2. 正确掌握并熟练运用集合的运算性质进行综合运算;3. 能利用补集的思想,数形结合的思想与方法解题.二、教学重难点1. 教学重点理解两个集合的并集与交集的含义,会用集合语言表达数学对象或数学内容.2. 教学难点区别交集与并集的概念及符号表示.三、教学过程(一)新课导入实数除了可以比较大小外,还可以进行加、减、乘、除等运算,类比实数的运算,集合是否也有类似的运算呢?(二)探索新知探究一并集思考1:观察下面的集合,类比实数的加法运算,说出集合C与集合A,B之间的关系.(1)A ={1,3,5},B ={2,4,6},C ={1,2,3,4,5,6};(2)A ={x | x是有理数},B ={x | x是无理数},C ={x | x是实数}.要求:学生分小组讨论,每组选出代表回答,教师引导学生进一步探究.可以看出,集合C是由所有属于集合A或属于集合B的元素组成的.并集定义:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作A B,读作“A并B”,即{|},或.=∈∈A B x x A x B用Venn图表示为在思考1中,集合A与B的并集是C,即A B C=.例1 设A = {4,5,6,8},B = {3,5,7,8},求A B.解:A B= {4,5,6,8} ∪ {3,5,7,8}= {3,4,5,6,7,8}.例2 设集合A = {x | -1 < x < 2},集合B = {x | 1 < x < 3},求A B.解:法一:A B= {x | -1 < x < 2}{x | 1 < x < 3} = {x | -1 < x < 3}.法二:利用数轴直观表示.根据并集的概念及Venn图,得出并集的运算性质:(1)A A A=,即任何集合与其本身的并集等于这个集合本身;(2)A A∅=,即任何集合与空集的并集等于这个集合本身.探究二交集思考2:观察下面的集合,说出集合A,B与集合C之间的关系.(1)A ={ 2,4,6,8,10 },B ={ 3,5,8,12 },C ={8};(2)A ={x | x是立德中学今年在校的女同学},B ={x | x是立德中学今年在校的高一年级同学},C ={x | x是立德中学今年在校的高一年级女同学}.要求:学生分小组讨论,每组选出代表回答,教师引导学生进一步探究.可以看出,集合C是由所有既属于集合A又属于集合B的元素组成的.交集定义:一般地,由所有属于集合A且属于集合B的元素组成的集合,称为集合A与B的交集,记作A B,读作“A交B”,即{|},且.A B x x A x B=∈∈用Venn 图表示为在思考2中,集合A 与B 的交集是C ,即AB C =.例3 某中学开运动会,设A ={x | x 是立德中学高一年级参加百米赛跑的同学}, B ={x | x 是该中学高一年级参加跳高比赛的同学},求AB .解:A B 就是该中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合.所以AB ={x | x 是立德中学高一年级既参加百米赛跑又参加跳高比赛的同学}.例4 设平面内直线1l 上点的集合为1L ,直线2l 上点的集合为2L ,试用集合的运算表示1l ,2l 的位置关系.解:平面内直线1l ,2l 可能有三种位置关系,即相交于一点、平行或重合. (1)直线1l ,2l 相交于一点P 可表示为12{}L L P =点;(2)直线1l ,2l 平行可表示为12L L =∅; (3)直线1l ,2l 重合可表示为1212L L L L ==.交集的运算性质: (1)AA A =,即任何集合与其本身的交集等于这个集合本身;(2)A ∅=∅,即任何集合与空集的交集等于空集.探究三 补集思考3:求方程2(2)(3)0x x --=在有理数范围内的解集,在实数范围内的解集. 要求:学生自行作答,教师总结答案.答:方程在有理数范围内只有一个解2,解集为2{|(2)(3)0}{2}x x x ∈--==Q , 在实数范围内有三个解:233-,,解集为2{|(2)(3)0}{233}x x x ∈--==R ,. 全集定义:一般地,如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U .补集定义:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作UA ,即{|}UA x x U x A =∈∉,且.用Venn 图表示为例5 设U = {x | x 是小于9的正整数},A ={ 1,2,3 },B ={ 3,4,5,6 },求UA ,UB .解:根据题意可知,U = { 1,2,3,4,5,6,7,8 },所以UA = { 4,5,6,7,8 },UB ={ 1,2,7,8 }.例6 设全集U = {x | x 是三角形},A = {x | x 是锐角三角形},B = {x | x 是钝角三角形},求AB ,()UA B .解:根据三角形的分类可知,AB =∅,A B = {x | x 是锐角三角形或钝角三角形},()UA B = {x | x 是直角三角形}.(三)课堂练习1. 已知全集{}0123U =,,,,集合{}{}0113A B ==,,,,则()U A B =C ( )A.{}02,B.{}03,C.{}012,,D.{}013,, 答案:C解析:因为{}{}012313U B ==,,,,,,所以{}02U B =,C ,又{}01A =,,所以(){}012U AB =,,C .故选C. 2. 已知集合{|2}{|111}M x x N x x =<=-<-<,,则( ) A.M N = B.M N N = C.M N =R D.M N N =答案:D解析:由题知,集合{}02|N x x =<<,所以|02}{MN x x =<<.故选D.3. 已知集合{}{}123456{123567}8U A B ===,,,,,,,,,,,,,则UB A 中元素的个数为( )A.4B.5C.6D.7答案:B 解析:{456}{45678}UUA BA ==,,,,,,,,所以UBA 中元素的个数为5.故选B.4. 已知集合{}1236A =-,,,,{}|23B x x =-<<,则A B =________.答案:{}12-,解析:{}{}1236{|23}12AB x x =--<<=-,,,,.5. 已知全集{}12345U =,,,,,{}12A =,,{}124B =,,,则()UA B =________.答案:{}35,解析:{}124A B =,,,(){35}U AB ∴=,.(四)小结作业 小结:1. 并集、交集、补集的概念及Venn 图表示;2. 集合的运算性质及其相关运算. 作业: 四、板书设计1.3 集合的基本运算1. 并集的定义及Venn 图表示; 并集的运算性质;2. 交集的定义及Venn 图表示; 交集的运算性质;3. 全集的定义;补集的定义及Venn 图表示.1.4.1 充分条件与必要条件一、教学目标1. 理解充分条件、必要条件的意义;2. 会判断充分条件、必要条件.二、教学重难点1. 教学重点充分条件、必要条件的概念及判断方法.2. 教学难点必要条件的理解和判断.三、教学过程(一)新课导入在初中的时候我们学习过命题,会判断一个命题的条件和结论,并能判断其真假.下面我们来复习一下(老师引导学生回答):两个面积相等的三角形全等,它的条件是三角形的面积相等;结论是三角形全等;这个命题是假的.下面我们来看一下课本P17中的思考,并依次说出它们的条件,结论及真假.要求:学生自由发言,教师引导学生进一步探究.(二)探索新知探究:充分条件、必要条件1. 前提(要牢记):p是条件,q是结论.⇒;“若p,则q”为假命题,记作p⇒q.2. 命题“若p,则q”为真命题,记作p q⇒,则称p是q的充分条件,q是p的必要条件.3. 充分条件、必要条件:若p q4. 由刚才的讨论,我们已经知道命题(1)(4)是真命题,所以p是q的充分条件,q是p 的必要条件;(2)(3)是假命题,所以p不是q的充分条件,q不是p的必要条件.例1下列“若p,则q”形式的命题中,哪些命题中的p是q的充分条件?(1)若四边形的两组对角分别相等,则这个四边形是平行四边形;(2)若两个三角形的三边成比例,则这两个三角形相似;(3)若四边形为菱形,则这个四边形的对角线互相垂直;(4) 若21x =,则1x =; (5) 若a b =,则ac bc =;(6) 若x ,y 为无理数,则xy 为无理数.解:(1)这是一条平行四边形的判定定理,p q ⇒,所以p 是q 的充分条件. (2)这是一条相似三角形的判定定理,p q ⇒,所以p 是q 的充分条件. (3)这是一条菱形的性质定理,p q ⇒,所以p 是q 的充分条件.(4)由于2=1(-1),但11-≠,p ⇒q ,所以p 不是q 的充分条件. (5)由等式的性质知,p q ⇒,所以p 是q 的充分条件.(62=为有理数,p ⇒q ,所以p 不是q 的充分条件. 那同学们在想一下,q 是p 的什么条件?(1)必要条件; (2)必要条件; (3)必要条件; (4)不必要条件; (5)必要条件; (6)不必要条件. 思考1例1中命题(1)给出了“四边形是平行四边形”的一个充分条件,即“四边形的两组对角分别相等”.这样的充分条件唯一吗?如果不唯一,那么你能再给出几个不同的充分条件吗?答:不唯一.初中的时候我们还学过其它的平行四边形的判定定理,也就是判断四边形是平行四边形的其它条件:①若四边形的两组对边分别相等,则这个四边形是平行四边形; ②若四边形的一组对边平行且相等,则这个四边形是平行四边形; ③若四边形的两条对角线互相平分,则这个四边形是平行四边形.所以,“四边形的两组对边分别相等”“四边形的一组对边平行且相等”“四边形的两条对角线互相平分”都是“四边形是平行四边形”的充分条件.因此,一般来说,对给定结论q ,使得q 成立的条件p 是不唯一的.一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件.例2 下列“若p ,则q”形式的命题中,哪些命题中的q 是p 的必要条件? (1)若四边形为平行四边形,则这个四边形的两组对角分别相等; (2)若两个三角形相似,则这两个三角形的三边成比例;(3)若四边形的对角线互相垂直,则这个四边形是菱形; (4)若1x =,则21x =; (5)若ac bc =,则a b =;(6)若xy 为无理数,则,x y 为无理数.解:(1)这是平行四边形的一条性质定理,p q ⇒,所以q 是p 的必要条件. (2)这是三角形相似的一条性质定理,p q ⇒,所以q 是p 的必要条件.(3)如图1.4-1,四边形ABCD 的对角线互相垂直,但它不是菱形,p q ⇒,所以,q 不是p 的必要条件.(4)显然,p q ⇒,所以,q 是p 的必要条件.(5)由于(1)010-⨯=⨯,但11-≠,p q ⇒,所以,q 不是p 的必要条件. (6)由于122=2不全是无理数,p q ⇒,所以q 不是p 的必要条件.一般地,要判断“若p ,则q”形式的命题中q 是否为p 的必要条件,只需判断是否有“p q ⇒”,即“若p ,则q”是否为真命题.说明:(1)p q ⇒,q 是p 的必要条件(p 是q 的充分条件);(2)p q ⇒,q 不是p 的必要条件(p 不是q 的充分条件).思考2例2中命题(1)给出了“四边形是平行四边形”的一个必要条件,即“这个四边形的两组对角分别相等”.这样的必要条件是唯一的吗?如果不唯一,你能给出“四边形是平行四边形”的几个其他必要条件吗?答:不唯一.例如,下列命题都是真命题:①若四边形是平行四边形,则这个四边形的两组对边分别相等; ②若四边形是平行四边形,则这个四边形的一组对边平行且相等;③若四边形是平行四边形,则这个四边形的两条对角线互相平分.这表明,“四边形的两组对边分别相等”“四边形的一组对边平行且相等”“四边形的两条对角线互相平分”都是“四边形是平行四边形”的必要条件.因此,一般来说,给定条件p ,由p 可以推出的结论q 是不唯一的.一般地,数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件. 规律总结:1. 在命题“若p ,则q”中,要判断p 是否为q 的充分条件,关键是判断“若p ,则q”的真假,即p q ⇒或p q ⇒.2. 在命题“若p ,则q”中判断q 是否为p 的必要条件,实质上仍是判断“若p ,则q”的真假,即p q ⇒或p q ⇒.(三)课堂练习1. 下列“若p ,则q”形式的命题中,哪些命题中的p 是q 的充分条件? (1)若平面内点P 在线段AB 的垂直平分线上,则PA=PB ;(2)若两个三角形的两边及一边所对的角分别相等,则这两个三角形全等; (3)若两个三角形相似,则这两个三角形的面积比等于周长比的平方. 解:(1)线段垂直平分线的性质,p q ⇒,p 是q 的充分条件;(2)三角形的两边及一边所对的角分别相等的两个三角形不一定全等,p q ⇒,p 不是q 的充分条件;(3)相似三角形的性质,p q ⇒,p 是q 的充分条件.2. 下列“若p ,则q”形式的命题中,哪些命题中的q 是p 的必要条件? (1)若直线l 与⊙O 有且仅有一个交点,则l 为⊙O 的一条切线; (2)若x 是无理数,则x 2也是无理数.解:(1)这是圆的切线定义,p q ⇒,所以q 是p 的必要条件;(2是无理数,但22=不是无理数,p q ⇒,所以q 不是p 的必要条件.3. 如图,直线a 与b 被直线l 所截,分别得了∠1,∠2,∠3和∠4.请根据这些信息,写出几个“a ∥b ”的充分条件和必要条件.解:“a∥b”的充分条件:∠1=∠2,∠1=∠4,∠1+∠3=180°;“a∥b”的必要条件:∠1=∠2,∠1=∠4,∠1+∠3=180°.(四)小结作业小结:1.本节课我们主要学习了哪些内容?2.充分条件和必要条件是如何判断的?作业:四、板书设计1.4.1充分条件与必要条件1. “若p,则q”的形式2. 充分条件和必要条件的定义3. 充分条件和必要条件的判定方法1.4.2充要条件一、教学目标1. 理解充要条件的意义;2. 会判断充要条件、充分不必要条件、必要不充分条件、既不充分也不必要条件.二、教学重难点1. 教学重点对充分、必要、充要条件的判断与证明.2. 教学难点对充分、必要、充要条件的判断与证明,并根据不同条件求参数的值或范围.三、教学过程(一)新课导入在上节课的时候我们学习了命题的充分条件和必要条件,那我们在学习充要条件之前先复习一下上节课所学的内容.“如果p可以推出q,那p是什么条件,q又是什么条件?”老师引导学生回答.接下来我们在看书中的思考,其中提到了逆命题,那我们先来回想一下,什么是逆命题,老师引导学生发言,并总结(命题“若p,则q”的逆命题为“若q,则p”).同学们要记住,将命题“若p,则q”中的条件p和结论q互换,就得到一个新的命题“若q,则p”,称这个命题为原命题的逆命题.(二)探索新知思考下列“若p,则q”形式的命题中,哪些命题与它们的逆命题都是真命题?(1)若两个三角形的两角和其中一角所对的边分别相等,则这两个三角形全等;(2)若两个三角形全等,则这两个三角形的周长相等;(3)若一元二次方程ax2+bx+c=0有两个不相等的实数根,则ac<0;(4)若A∪B是空集,则A与B均是空集.先引导学生回答出四个逆命题分别是什么,在判断真假.(1)若两个三角形全等,则这两个三角形的两角和其中一角所对的边分别相等;(2)若两个三角形的周长相等,则这两个三角形全等;(3)若ac<0,则一元二次方程ax2+bx+c=0有两个不相等的实数根;(4)若A 与B 均是空集,则A ∪B 是空集.不难发现,上述命题中的命题(1)(4)和它们的逆命题都是真命题;命题(2)是真命题,但它的逆命题是假命题;命题(3)是假命题,但它的逆命题是真命题.探究一:充要条件1. 定义:如果“若p ,则q ”和它的逆命题“若q ,则p ”均是真命题,此时既有p q ⇒,又有q p ⇒,就记作p q ⇔.此时p 既是q 的充分条件,也是q 的必要条件,我们就说p 是q 的充分必要条件,简称为充要条件.此时p 与q 互为充要条件.2. p 与q 互为充要条件时,也称“p 等价于q ”“q 当且仅当p ”等.3. 根据充要条件的定义可知,若原命题“若p ,则q ”及其逆命题“若q ,则p ”都是真命题,则p 与q 互为充要条件.例3 下列各题中,哪些p 是q 的充要条件?(1) p :四边形是正方形,q :四边形的对角线互相垂直且平分;(2) p :两个三角形相似,q :两个三角形三边成比例;(3) p :xy>0,q :x>0,y>0;(4) p :x =1是一元二次方程ax 2+bx+c=0的一个根,q :a+b+c=0(a ≠0).解:(1)因为对角线互相垂直且平分的四边形不一定是正方形(也可能是菱形),所以q p ⇒,所以p 不是q 的充要条件.(2)因为“若p ,则q ”是相似三角形的性质定理,“若q ,则p ”是相似三角形的判定定理,所以它们均为真命题,即p q ⇔,所以p 是q 的充要条件.(3)因为xy>0时,x>0,y>0不一定成立(因为xy>0时,也可能x<0,y<0),所以p q ⇒,所以p 不是q 的充要条件.(4)因为“若p ,则q ”与“若q ,则p ”均为真命题,即p q ⇔,所以p 是q 的充要条件.小结:在命题中“若p ,则q ”中,如何判断p 与q 互为充要条件?只要判断出p q ⇒,且q p ⇒,即p q ⇔即可,其实质都是判断命题“若p ,则q ”与它的逆命题的真假,若都为真,则p 与q 互为充要条件.探究二:通过上面的学习,你能给出“四边形是平行四边形”的充要条件吗?(1)两组对边分别平行;。
高中数学 第一章《集合》教案 新人教A版必修1
课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)∈6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
新课程人教A版必修1全部教案
第一章集合与函数概念§1.1集合1.1.1集合的含义与表示(第一课时)教学时间:2004年8月26日星期四教学班级:高一(11、12)班教学目标:1.理解集合的含义。
2.了解元素与集合的表示方法及相互关系。
3.熟记有关数集的专用符号。
4.培养学生认识事物的能力。
教学重点:集合含义教学难点:集合含义的理解教学方法:尝试指导法教学过程:引入问题(I)提出问题问题1:班级有20名男生,16名女生,问班级一共多少人?问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?讨论问题:按小组讨论。
归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(板书标题)。
复习问题问题3:在小学和初中我们学过哪些集合?(数集,点集)(如自然数的集合,有理x-<的解的集合,到一个定点的距离等于定长的点的集合,到一条线数的集合,不等式73段的两个端点距离相等的点的集合等等)。
(II)讲授新课1.集合含义通过以上实例,指出:(1)含义:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。
说明:在初中几何中,点,线,面都是原始的,不定义的概念,同样集合也是原始的,不定义的概念,只可描述,不可定义。
(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
问题4:由此上述例中集合的元素分别是什么?由以上四个问题可知,集合元素具有三个特征:(1)确定性:设A是一个给定的集合,a是某一具体的对象,则a或者是A的元素,或者不是A的元素,两种情况必有一种而且只有一种成立。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)若a是集合A中的元素,则称a属于集合A,记作a∈A;若a不是集合A的元素,则称a不属于集合A,记作a∉A。
高中数学人教A版必修1《1.1.1集合的含义与表示》教案3
必修一《1.1.1集合的含义与表示》教学案教学目标1.了解集合的含义;理解元素与集合的“属于”关系;熟记常用数集专用符号.2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3.能选择不同的形式表示具体问题中的集合.重点难点教学重点:集合的基本概念与表示方法.教学难点:选择适当的方法表示具体问题中的集合.教学过程导入新课思路1.集合对我们来说可谓是“最熟悉的陌生人”.说它熟悉,是因为我们在现实生活中常常用到“集合”这个名词;比如说,军训的时候,教官是不是经常喊:“高一(4)班的同学,集合啦!”那么说它陌生,是因为我们还未从数学的角度理解集合,从数学的层面挖掘集合的内涵.那么,在数学的领域中,集合究竟是什么呢?集合又有着怎样的含义呢?就让我们通过今天这堂课的学习,一起揭开“集合”神秘的面纱.思路2.你经常会谈论你的家庭,你的班级.其实在讲到你的家庭、班级的时候,你必定在联想构成家庭、班级的成员,例如:家庭成员就是被你称为父亲、母亲、哥哥、姐姐、妹妹、弟弟……的人;班级成员就是与你在同一个教室里一起上课、一起学习的人;一些具有特定属性的人构成的群体,在数学上就是一个集合.那么,在数学中,一些对象的总体怎样才可以构成集合、集合中的元素有哪些特性?集合又有哪些表示方法呢?这就是本节课我们所要学习的内容.思路3.“同学们,在小学和初中的学习过程中,我们已经接触过一些集合的例子,比如说:有理数集合,到一个定点的距离等于定长的点的集合(圆),那么大家是否能够举出更多关于集合的例子呢?”(通过两个简单的例子,引导大家进行类比,运用发散性思维思考说出更多的关于集合的实例,然后教师予以点评.)“那么,集合的含义究竟是什么?它又该如何表示呢?这就是我们今天要研究的课题.”推进新课新知探究提出问题①中国有许多传统的佳节,那么这些传统的节日是否能构成一个集合?如果能,这个集合由什么组成?②全体自然数能否构成一个集合?如果能,这个集合由什么组成?③方程x2-3x+2=0的所有实数根能否构成一个集合?如果能,这个集合由什么组成?④你能否根据上述几个问题总结出集合的含义?讨论结果:①能.这个集合由春节、元宵节、端午节等有限个种类的节日组成,称为有限集.②能.这个集合由0,1,2,3,……等无限个元素组成,称为无限集.③能.这个集合由1,2两个数组成.④我们把研究对象统称为“元素”,把一些元素组成的总体叫做“集合”.提出问题通过以上的学习我们已经知道集合是由一些元素组成的总体,那么是否所有的元素都能构成集合呢?请看下面几个问题.①近视超过300度的同学能否构成一个集合?②“眼神很差”的同学能否构成一个集合?③比较问题①②,说明集合中的元素具有什么性质?④我们知道冬虫夏草既是一种植物,又是一种动物.那么在所有动植物构成的集合中,冬虫夏草出现的次数是一次呢还是两次?⑤组成英文单词every的字母构成的集合含有几个元素?分别是什么?⑥问题④⑤说明集合中的元素具有什么性质?⑦在玩斗地主的时候,我们都知道3,4,5,6,7是一个顺子,那比如说老师出牌的时候把这五张牌的顺序摆成了5,3,6,7,4,那么这还是一个顺子么?类比集合中的元素,一个集合中的元素是3,4,5,6,7,另外一个集合中的元素是5,3,6,7,4,这两个集合中的元素相同么?集合相同吗?这体现了集合中的元素的什么性质?讨论结果:①能.②不能.③确定性.问题②对“眼神很差”的同学没有一个确定的标准,到底怎样才算眼神差,是近视300度?400度?还是说“眼神很差”只是寓意?我们不得而知.因此通过问题①②我们了解到,对于给定的集合,它的元素必须是确定的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合中元素的确定性.④一次.⑤4个元素.e,v,r,y这四个字母.⑥互异性.一个集合中的元素是互不相同的,也就是说,集合中的元素不能重复出现.⑦是.元素相同.集合相同.体现集合中元素的无序性,即集合中的元素的排列是没有顺序的.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.提出问题①如果用A表示所有的自然数构成的集合,B表示所有的有理数构成的集合,a=1.58,那么元素a和集合A,B分别有着怎样的关系?②大家能否从问题①中总结出元素与集合的关系?③A表示“1~20内的所有质数”组成的集合,那么3__________A,4__________A.讨论结果:①a是集合B中的元素,a不是集合A中的元素.②a是集合B中的元素,就说a属于集合B,记作a∈B;a不是集合A中的元素,就说a不属于集合A,记作a∉A.因此元素与集合的关系有两种,即属于和不属于.③3∈A,4∉A.提出问题①从这堂课的开始到现在,你们注意到我用了几种方法表示集合吗?②字母表示法中有哪些专用符号?③除了自然语言法和字母表示法之外,课本还为我们提供了几种集合的表示方法?分别是什么?④列举法的含义是什么?你能否运用列举法表示一些集合?请举例!⑤能用列举法把下列集合表示出来吗?小于10的质数;不等式x-2>5的解集.⑥描述法的含义是什么?你能否运用描述法表示一些集合?请举例!⑦集合的表示方法共有几种?讨论结果:①两种,自然语言法和字母表示法.②非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.③两种,列举法与描述法.④把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.例如“地球上的四大洋”组成的集合可以用列举法表示为{太平洋,大西洋,印度洋,北冰洋},方程x2-3x+2=0的所有实数根组成的集合可以用列举法表示为{1,2}.⑤“小于10的质数”可以用列举法表示出来;“不等式x-2>5的解集”不能够用列举法表示出来,因为这个集合是一个无限集.因此,当集合是无限集或者其元素数量较多而不便于无一遗漏地列举出来的时候,如果我们再用列举法来表示集合就显得不够简洁明了.⑥用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例如,不等式x-2>5的解集可以表示为{x∈R|x>7};所有的正方形的集合可以表示为{x|x是正方形},也可写成{正方形}.⑦自然语言法、字母表示法、列举法、描述法.应用示例例1下列所给对象不能构成集合的是__________.(1)高一数学课本中所有的难题;(2)某一班级16岁以下的学生;(3)某中学的大个子;(4)某学校身高超过1.80米的学生.活动探究:教师首先引导学生通过读题、审题,了解本题考查的基本知识点——集合中元素的确定性;然后指导学生对4个选项进行逐一判断;判断所给元素是否能构成集合,关键是看是否满足集合元素的确定性.解析:(1)不能构成集合.“难题”的概念是模糊的,不确定的,无明确的标准,对于一道数学题是否是“难题”无法客观地判断.实际上一道数学题是“难者不会,会者不难”,因而“高一数学课本中所有的难题”不能构成集合.(2)能构成集合,其中的元素是某班级16岁以下的学生.(3)因为未规定大个子的标准,所以(3)不能组成集合.(4)由于(4)中的对象具备确定性,因此,能构成集合.答案:(1)(3)例2用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.活动探究:讲解例2的过程中,可以设计如下问题引导学生:针对例2(1):①自然数中是否含有0?②小于10的自然数有哪些?③如何用列举法表示小于10的所有自然数组成的集合?针对例2(2):①解一元二次方程的方法有哪些?分别是什么?②方程x2=x的解是什么?③如何用列举法表示方程x2=x的所有实数根组成的集合?针对例2(3):①如何判断一个数是否为质数(即质数的定义是什么)?②1~20以内的质数有哪些?③如何用列举法表示由1~20以内的所有质数组成的集合?在用列举法表示集合的过程中,应让学生先明确集合中的元素,再把元素写入“{}”内,并用逗号隔开.解:(1)小于10的自然数有0,1,2,3,4,5,6,7,8,9,设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9};(2)方程x2=x的两个实根为x1=0,x2=1,设方程x2=x的所有实数根组成的集合为B,那么B={0,1};(3)1~20以内的质数有2,3,5,7,11,13,17,19,设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.点评:本题主要考查了集合表示法中的列举法,通过本题的教学可以体会利用集合表示教学内容的严谨性和简洁性.例3试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.活动探究:讲解例3的过程中,可以设计如下问题引导学生:针对例3(1)——列举法①方程x2-2=0的解是什么?②如何用列举法表示方程x2-2=0的所有实数根组成的集合?针对例3(1)——描述法①描述法的定义是什么?②所求集合中元素有几个共同特征?分别是什么?③如何用描述法表示所求集合?针对例3(2)——列举法①大于10小于20的所有整数有哪些?②由大于10小于20的所有整数组成的集合用列举法如何表示?针对例3(2)——描述法①所求集合中元素有几个共同特征?分别是什么?②如何用描述法表示所求集合?解:(1)设方程x2-2=0的实数根为x,并且满足x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0};方程x2-2=0的两个实根为x1=-2,x2=2,因此,用列举法表示为A ={-2,2}.(2)设大于10小于20的整数为x,它满足条件x∈Z且10<x<20,因此,用描述法表示为B ={x∈Z|10<x<20};大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为{11,12,13,14,15,16,17,18,19}.点评:例2和例3是通过“问题引导”的方式,使学生逐步逼近答案的过程.在此过程中,既帮助学生理清了解答问题的基本思路,又使得列举法和描述法在实例中得到进一步的巩固.知能训练课后练习1,2.【补充练习】1.考查下列对象能否构成集合:(1)著名的数学家;(2)某校2013年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x 2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体.答案:(1)(2)(5)(6)不能组成集合,(3)(4)能组成集合.2.用适当的符号填空:(1)0__________N ,5__________N ,16__________N ;(2)-12__________Q ,π__________Q ,e __________C R Q (e 是个无理数);(3)2-3+2+3=__________{x |x =a +6b ,a ∈Q ,b ∈Q }.答案:(1)∈ ∉ ∈ (2)∈ ∉ ∈ (3)∈3.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,求实数m 的值. 解:∵2∈A ,∴m =2或m 2-3m +2=2.若m =2,则m 2-3m +2=0,不符合集合中元素的互异性,舍去.若m 2-3m +2=2,求得m =0或3.m =0不合题意,舍去.∴m 只能取3.4.用适当方法表示下列集合:(1)函数y =ax 2+bx +c (a ≠0)的图象上所有点的集合;(2)一次函数y =x +3与y =-2x +6的图象的交点组成的集合;(3)不等式x -3>2的解集;(4)自然数中不大于10的质数集.答案:(1)描述法:{(x ,y )|y =ax 2+bx +c ,x ∈R ,a ≠0}.(2)描述法:⎩⎨⎧ (x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =x +3y =-2x +6=⎩⎨⎧ (x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x =1y =4.列举法:{(1,4)}.(3)描述法:{x |x >5}(4)列举法:{2,3,5,7}.拓展提升问题1:设集合P ={x -y ,x +y ,xy },Q ={x 2+y 2,x 2-y 2,0},若P =Q ,求x ,y 的值及集合P ,Q .活动探究:首先,应让学生思考两个数集相等的条件——集合中的元素分别对应相等;然后,再引导学生讨论:本题中集合P ,Q 对应相等时,其元素可能出现的几种情况,并根据讨论的结果进行计算;最后,应当指导学生自主探究,应用集合中元素的性质检验所求结果是否符合要求.解:∵P =Q 且0∈Q ,∴0∈P .若x +y =0或x -y =0,则x 2-y 2=0,从而Q ={x 2+y 2,0,0},与集合中元素的互异性矛盾,∴x +y ≠0且x -y ≠0;若xy =0,则x =0或y =0.当y =0时,P ={x ,x ,0},与集合中元素的互异性矛盾,∴y ≠0;当x =0时,P ={-y ,y ,0},Q ={y 2,-y 2,0},由P =Q 得⎩⎪⎨⎪⎧ -y =y 2,y =-y 2,y ≠0, ① 或⎩⎪⎨⎪⎧ -y =-y 2,y =y 2,y ≠0.②由①得y =-1,由②得y =1,∴⎩⎪⎨⎪⎧ x =0,y =-1或⎩⎪⎨⎪⎧ x =0,y =1,此时P =Q ={1,-1,0}.点评:本题综合性地考查了两数集相等的条件、集合中元素的性质以及学生的运算能力和分类讨论能力.问题2:已知集合A ={x |ax 2-3x +2=0},若A 中的元素至多只有一个,求a 的取值范围. 活动探究:讨论关于x 的方程ax 2-3x +2=0实数根的情况,从中确定a 的取值范围,依题意,方程有一个实数根或两个相等的实数根或无实数根.解:(1)a =0时,原方程为-3x +2=0,x =23,符合题意.(2)a ≠0时,方程ax 2-3x +2=0为一元二次方程.由Δ=9-8a ≤0,得a ≥98.∴当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合(1)(2),知a =0或a ≥98.点评:“a =0”这种情况最容易被忽视,只有在“a ≠0”的条件下,方程ax 2-3x +2=0才是一元二次方程,才能用判别式Δ解决问题.问题3:设S={x|x=m+2n,m,n∈Z}.(1)若a∈Z,则a是否是集合S中的元素?(2)对S中的任意两个x1,x2,则x1+x2,x1·x2是否属于S?活动探究:针对问题(1)——首先引导学生仔细观察集合S中元素的共同特征与构成方式;然后,再引导学生思考题中所给的元素a能否表示成m+2n的形式;如果能,m和n分别是多少,如果不能,请说明理由;最后小结,判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.针对问题(2)——首先引导学生将x1,x2分别表示出来,再引导大家根据正确的表示结果,推断x1+x2,x1·x2是否是集合S中的元素.解:(1)a是集合S中的元素,a=a+2×0∈S.(2)不妨设x1=m+2n,x2=p+2q,m,n,p,q∈Z.则x1+x2=(m+2n)+(p+2q)=(m+p)+2(n+q),m,n,p,q∈Z.∴x1+x2∈S;x1·x2=(m+2n)·(p+2q)=(mp+2nq)+2(mq+np),m,n,p,q∈Z.∴x1·x2∈S.综上,x1+x2,x1·x2都属于S.点评:本题考查集合的描述法以及元素与集合间的关系.课堂小结本节学习了:(1)集合的含义;(2)集合中元素的性质;(3)元素与集合的关系;(4)集合的表示方法.课后作业习题1.1A组3,4.。
湖北省洪湖市贺龙高级中学高中数学 1.1.1集合练习案 新人教A版必修1
高中数学人教版必修1:1.1.1集合练习案姓名: 班级: 组别: 组名:【知识梳理】1.集合的概念.2.元素与集合之间的关系.3.集合元素的特征.4.集合的表示方法. 【题型探究】探究1:集合的基本概念例1.下列各组对象中不能构成集合的是( )A .正三角形的全体B .所有的无理数C .高一课本中的所有难题D .不等式2x+3>1的解探究2: 元素与集合之间的关系例2.若所有形如)(26N x N x∈∈+的数组成集合A. (1)试判断元素1和2与集合A 的关系;(2)求集合A 中的元素.【题后反思】【变式1】若所有形如),(23Z b Z a b a ∈∈+的数组成集合A ,判断226-是不是集合A中的元素.【题后反思】【变式2】若数集A 满足条件:若2),1(-11,=≠∈∈a a A aA a 若则,试求出A 中的所有元素.探究4: 集合的表示方法例4.用适当的方法表示下列集合:(1) 比5大3的数组成的集合;(2) 所有正偶数组成的集合;(3) 方程0136422=++-+y x y x 的解集;(4) 不等式564<-x 的解集;(5) 函数32+=x y 的图像上的点集.【题后反思】【限时训练】一.双基达标(限时10分钟)1.下面有四个语句:(1)集合*N 中最小的数是0;(2)N a N a ∈∉-则,;(3),,N b N a ∈∈则b a +的最小值是2;(4)x x 212=+的解集中含有2个元素.其中正确语句的个数是( )A.0B.1C.2D.32.①R ∈π;②Q ∉3;③0*N ∈;④*4N ∉-;⑤{}00=;⑥R ∈5;⑦Z ∈-3;正确的为 .3.若一个集合中的三个元素a,b,c 的是ABC ∆的三边长,则此三角形一定不是( )A .锐角三角形 B. 直角三角形 C. 钝角三角形 D.等腰三角形4.定义集合{}B b A a b a x x B A ∈∈-==,,*,若{}2,1=A ,{}2,0=B ,则B A *中所有元素之和为 .5.下列说法: ①集合{}x x N x =∈3用列举法表示为{}1,0,1-; ②实数集可以表示为{}为所有实数x x 或{}R ; ③方程组⎩⎨⎧-=-=+13y x y x 的解集为{}2,1==y x 正确的个数为 .二.综合提高(限时25分钟)6.已知x 、y 、z 为非零实数,代数式xyzxyz z z y y x x +++的值所组成的集合是M ,则集合M 为 .7.已知集合{}01682=+-=x kx x A 只有一个元素,试求实数k 的值,并用列举法表示集合A.8. 已知集合{}33,)1(,222++++=a a a a A ,若A ∈1,求实数a 的值.9.已知集合M 中含有三个元素2,a,b ,集合N 中含有三个元素2a,2,2b ,且M=N ,求a,b 的值.10.设集合{}{},,,12,,2B b A a Z k k x x B Z k k x x A ∈∈∈+==∈==若试判断a+b 与集合A,B 的关系.【小结】。
人教新课标版数学高一A版必修1 1.1集合的含义及表示2 教案
课 题:§1.2 集合的含义与表示(二)教学要求:更进一步理解集合、元素等概念,掌握集合的表示方法,会用适当的方法表示集合。
教学重点:会用适当的方法表示集合。
教学难点:选择恰当的表示方法。
教学过程:一、复习准备:1.提问:集合概念?什么叫元素?集合中元素有什么特征?集合与元素有何关系?2.集合A={x +2x +1}的元素是 ,若1∈A ,则x= 。
3.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系?二、讲授新课:1. 列举法的教学:① 比较:{方程210x -=的根}、{1,1}-、2{|10}x R x ∈-= ② 列举法:把集合的元素一一列举出来,并用花括号“{ }”括起来。
→P4 例1 ③ 练习:分别表示方程x(x -1)=0的解的集合、15以内质数的集合。
注意:不必考虑顺序,“,”隔开;a 与{a}不同。
2. 描述法的教学:① 描述法:用集合所含元素的共同特征表示集合的方法,一般形式为{|}x A P ∈,其中x 代表元素,p 是确定条件。
→P5 例2② 练习: A.“不等式x-3>0的解”与“抛物线y =x-1上的点的坐标”用描述法表示B. 用描述法表示方程x(x -1)=0的解的集合、方程组⎩⎨⎧=+=+2732223y x y x 解集。
C.用描述法表示:所有等边三角形的集合、方程x+1=0的解集。
③ 简写原则:从上下文关系来看,x R ∈、x Z ∈明确时可省略,如{|32,}x x k k Z =+∈,{|0}x x >强调:描述法表示集合应注意集合的代表元素,如{(x,y)|y= x 2+3x+2}与 {y|y= x 2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z 。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。
下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
新课标人教A版高中数学(必修一)课后习题解答全册答案完整版
人教A版高中数学必修1课后习题答案目录第一章集合与函数概念 (1)1.1集合 (1)【P5】1.1.1集合的含义与表示【练习】 (1)【P7】1.1.2集合间的基本关系【练习】 (2)【P11】1.1.3集合的基本运算【练习】 (4)【P11】1.1集合【习题1.1 A组】 (5)【P12】1.1集合【习题1.1 B组】 (9)1.2函数及其表示 (10)【P19】1.2.1函数的概念【练习】 (10)【P23】1.2.2函数的表示法【练习】 (12)【P24】1.2函数及其表示【习题1.2 A组】 (13)【P25】1.2函数及其表示【习题1.2 B组】 (20)1.3函数的基本性质 (23)【P32】1.3.1单调性与最大(小)值【练习】 (23)I【P36】1.3.2单调性与最大(小)值【练习】 (26)【P44】复习参考题A组 (33)【P44】复习参考题B组 (37)第二章基本初等函数(I) (42)2.1 指数函数 (42)【P54】2.1.1指数与指数幂的运算练习 (42)【P58】2.1.2指数函数及其性质练习 (42)【P59】习题2.1 A组 (43)【P60】习题2.1 B组 (45)2.2 对数函数 (47)【P64】2.2.1对数与对数运算练习 (47)【P68】2.2.1对数的运算练习 (47)【P73】2.2.2对数函数及其性质练习 (48)【P74】习题2.2 A组 (48)【P74】习题2.2 B组 (50)2.3幂函数 (51)【P79】习题2.3 (51)II【P82】第二章复习参考题A组 (51)【P83】第二章复习参考题B组 (53)第三章函数的应用 (56)3.1函数与方程 (56)【P88】3.1.1方程的根与函数的零点练习 (56)【P91】3.1.2用二分法求方程的近似解练习 (58)【P92】习题3.1 A组 (59)【P93】习题3.1 B组 (61)3.2 函数模型及其应用 (63)【P98】3.2.1几类不同增长的函数模型练习 (63)【P101】3.2.1几类不同增长的函数模型练习 (64)【P104】3.2.2函数模型的应用实例练习 (64)【P106】3.2.2函数模型的应用实例练习 (65)【P107】习题3.2 A组 (65)【P107】习题3.2 B组 (66)【P112】第三章复习参考题A组 (66)【P113】第三章复习参考题B组 (68)IIIIV1第一章 集合与函数概念1.1集合【P5】1.1.1集合的含义与表示【练习】1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则中国_____A ,美国_____A ,印度____A ,英国____A ;(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 解答:1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;2(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.解答:2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩, 即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.【P7】1.1.2集合间的基本关系【练习】1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;3取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈a 是集合{,,}abc 中的一个元素; (2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;4(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.【P11】1.1.3集合的基本运算【练习】1.设{3,5,6,8},{4,5,7,8}A B ==,求,AB A B . 1.解:{3,5,6,8}{4,5,7,8}{5,8}AB ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B . 2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,AB A B . 3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形.54.已知全集U={1,2,3,4,5,6,7}, A={2,4,5}, B={1,3,5,7},求)(B C A U ,)()(B C A C U U . 4.解:显然,{1,3,6,7}=A C U ,}6,4,2{=B C U 则,}4,2{)(=B C A U ,}6{)()(=B C A C UU 【P11】1.1集合【习题1.1 A 组】1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ; (4R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈25=是个自然数. 2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.6 3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;7(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,8则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()AB C =∅. (1){|}A B x x =是参加一百米跑或参加二百米跑的同学;(2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形{|}B x x =是菱形 {|}C x x =是矩形,求B C ,B C A 、A C s9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即B C A ={x |x 是领边不相等的平行四边形},A C s ={x |x 是梯形}。
湖北省洪湖市贺龙高级中学高中数学 函数复习课导学案 新人教A版必修1[001]
高中数学人教版必修1:函数复习课姓名: 班级: 组别: 组名:【学习目标】1.知道函数单调性的定义,会根据函数的图像判断函数的单调性.2.会利用函数的单调性求解不等式.3.会利用函数的单调性求函数的最大(小)值并适当处理一些含参数的函数的最值.【重点难点】重点:函数单调性的定义.难点:利用函数的单调性进行解题.【学法指导】利用数形结合的思想进行思考【知识链接】增函数与减函数的定义【学习过程】知识点一:利用 判断函数的单调性或求单调区间A1.(选自长江全能学案P14)若函数b mx y +=在),(+∞-∞上是增函数,那么A.0>bB.0<bC.0>mD.0<mA2.(选自长江全能学案练习册P19)函数2)1(2)(2+-+=x a x x f 在)4,(-∞上是减函数,那么实数a 的取值范围是A.3-≤aB.3-≥aC.5≤aD.3≥a.B4.(选自长江全能学案练习册P17)函数32)(2--=x x x f 的增区间是 .B5.(选自长江全能学案练习册P25)已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f ,若)()2(2a f a f >-则实数a 的取值范围是 .C6.(选自长江全能学案练习册P19)已知函数⎪⎩⎪⎨⎧>≤+-=)1(2)1(5)3()(x x a x x a x f 是()+∞∞-,上的减函数,那么a 的取值范围是 .小结:解决以上六题使用了什么方法?请对你所需掌握的基本初等函数的图像进行一下归纳.知识点二:利用函数的单调性解B7.(选自长江全能学案练习册P17)已知)(x f 在定义域[]1,1-上是增函数,且)1()1(2-<-x f x f ,则x 的取值范围是 .C8.(选自长江全能学案练习册P18)已知)(x f 是定义在()+∞,0上的增函数,1)2(=f ,且)()()(y f x f y x f -=,解不等式2)31()(≤--x f x f .C9.(选自长江全能学案练习册P18)已知)(x f 在R 上满足,0)()(=+-x f x f 且在[)+∞,0上为增函数,若1)21(=f ,则0)12(1≤+<-x f 的解集为 .小结:解决以上三题使用了什么方法?请尝试对通性通法进行一下归纳,并尝试说明该注意什么?知识点三:利用函数的单调性求函数的B10.(选自长江全能学案P15)求函数1)(-=x x x f 在[]5,2上的最大值与最小值.C11.(选自长江全能学案练习册P19)已知函数x x x g x x f 2)(,23)(2-=-=,构造函数)(x F ,定义如下:当)()(x g x f ≥时,)()(x g x F =;当)()(x g x f <时,)()(x f x F =;那么)(x FA.有最大值3,最小值-1;B.有最大值3,无最小值C.有最大值727-,无最小值;D.无最大值,也无最小值C12.(选自长江全能学案练习册P19)已知二次函数a ax x x f +-=2)(2在区间[]3,0上的最小值是-2,求a 值.小结:解决以上三题使用了什么方法?请尝试对通性通法进行一下归纳小结.【课堂小结】知识点小结:方法小结:【当堂检测】B1. 如果奇函数)(x f y =在区间[]7,3上是增函数,且最小值为5,则在区间[]3,7--上为 (填写“增”或“减”)函数且有最 (“大”或“小”)值-5.【课后反思】本节课我最大的收获是我还存在的疑惑是我对导学案的建议是。
2020-2021学年数学新教材人教A版必修第一册 1.1 集合的概念 教案 (1)
【新教材】1.1集合的概念教学设计由于空间时间维度的不同,同一个事物会有不同的解释,如:在平面内,所有到定点的距离等于定长的点组成一个圆;而在空间中,所有到定点的距离等于定长的点组成一个球面。
因此明确研究对象、确定研究范围是研究数学问题的基础。
为了简洁、准确地表达数学对象及研究范围,我们需要使用集合的语言和工具。
作为高中数学的第一节,本节主要通过实例研究研究集合的含义,表示方法及表示方法,比较简单。
课程目标1. 了解集合的含义;理解元素与集合的“属于”与“不属于”关系;熟记常用数集专用符号.2. 深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3. 会用集合的两种表示方法表示一些简单集合。
感受集合语言的意义和作用。
数学学科素养1.数学抽象:集合概念的理解,描述法表示集合的方法;2.逻辑推理:集合的互异性的辨析与应用;3.数学运算:集合相等时的参数计算,集合的描述法转化为列举法时的运算;4.数据分析:元素在集合中对应的参数满足的条件;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。
重点:集合的基本概念,集合中元素的三个特性,元素与集合的关系,集合的表示方法.难点:元素与集合的关系,选择适当的方法表示具体问题中的集合.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、预习课本,引入新课阅读课本2-5页,思考并完成以下问题1.集合和元素的含义是什么?各用什么字母表示?2.集合有什么特性?3.元素和集合之间有哪两种关系?有什么符号表示?4.常见的数集有哪些?用什么字母表示?5.集合有哪两种表示方法?它们如何定义?6.它们各自有什么特点?7.它们使用什么符号表示?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
二、知识归纳、梳理1.元素与集合的概念(1)元素:一般地,把研究对象统称为元素.元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集).集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.(4)元素的特性:确定性、无序性、互异性.2.元素与集合的关系3把集合的元素一一列举出来出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.5.描述法(1)定义:用集合所含元素的共同特征表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.三、典例分析、举一反三题型一集合的含义例1考查下列每组对象,能构成一个集合的是()①某校高一年级成绩优秀的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④【答案】B解题技巧:(判断一组对象能否组成集合的标准)判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.跟踪训练一1.给出下列说法:①中国的所有直辖市可以构成一个集合;②高一(1)班较胖的同学可以构成一个集合;③正偶数的全体可以构成一个集合;④大于2 013且小于2 018的所有整数不能构成集合.其中正确的有________.(填序号)【答案】①③题型二元素与集合的关系例2(1)下列关系中,正确的有()①12∈R;②2∉Q;③|-3|∈N;④|-3|∈Q.A.1个B.2个C.3个D.4个(2)集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为________.【答案】(1) C (2) 0,1,2解题技巧:判断元素与集合关系的两种方法(1)直接法:如果集合中的元素是直接给出,只要判断该元素在已知集合中是否出现即可。
高中数学 1.1.1集合的含义与表示第一课时教案 新人教A版必修1
1.1.1 集合的含义与表示一.教学目标1.知识与技能①通过实例,了解集合的含义,体会元素与集合的属于关系.②知道常用数集及其专用记号.③会用集合语言表示有关数学对象.2.过程与方法①让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.②让学生归纳整理本节所学的知识.3.情感、态度与价值观增强学生的社会责任感,增强学习的积极性.二.教学重点与难点1.重点:集合的含义与表示方法.2.难点:用描述法表示集合.三.教学设计(一)创设情境,揭示课题同学们看一下,这两个图形分别是什么?他们的定义是什么?那么,集合的含义是什么呢?我们这节课就来学习一下……(二)研探新知如果把昌江中学高一(1)班的每一个同学作为元素,这些元素的全体就是一个集合.请全体女生起立,如果把我们班的每一个女同学作为元素,这些元素的全体也是一个集合.思考:下面的例子也都能组成集合吗?他们的元素分别是什么?① 1~20以内的所有质数;②所有的正方形;③到直线L的距离等于定长d的所有的点;④方程x2+3x+2=0的所有实数根.1.集合的含义一般地,我们把研究的对象统称为元素,把一些元素组成的总体叫做集合(简称为集).给定一个集合,它的元素必须是确定的,例如,我们班的全体同学构成一个集合,你们每个同学都在这个集合中,隔壁班的同学不在这个集合中.“美女”能构成一个集合吗?不能.因为组成它的元素是不确定的.我们班有模样相同的两个同学吗?没有.说明集合中的元素是互不相同的.我们班每个星期都会换座位,我们班所有同学组成的集合改变了吗?没变.说明只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.思考:判断下列元素的全体是否组成集合,并说明理由:①大于3小于11的偶数;②我国的小河流;③中国的直辖市;④身材较高的人.2.元素与集合的关系通常用大写的拉丁字母A,B,C,…表示集合,小写的拉丁字母a,b,c,…表示集合中的元素.如果a是集合A的元素,就说a属于集合A,记作a∈A;如果a不是集合A的元素,就a A.说a不属于集合A,记作如果用A表示“我们班的所有女生”组成的集合,xx属于A,xxx不属于A.3.集合的表示方法①自然语言②字母表示常见的数集及其记法:自然数集N;正整数集N*或N+;整数集Z;有理数集Q;实数集R.记忆.随机提问③列举法:“我国的直辖市”组成的集合表示为{北京,天津,上海,重庆}像这样把集合的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.注意:在花括号内不多,不漏,元素之间用“,”隔开.分组:男生一组,女生一组,分组讨论,比赛,输的一方要负责发动全校的同学为玉树地震灾区筹集资金.分组讨论:然后收集一些学生的答案,并分析.例1. 用列举法表示下列集合:①小于10的所有自然数组成的集合;②方程x2=x的所有实数根组成的集合;③由1~20以内的所有质数组成的集合.解:①{0,1,2,3,4,5,6,7,8,9}.②{0,1}.③{2,3,5,7,11,13,17,19}.思考:你能用列举法表示不等式x-7<3 的解集吗?不能,因为这个集合中的元素是列举不完的.但是我们可以用这个集合中元素所具有的共同特征来描述.④描述法:用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再划一条竖线,在竖线后写出这个集合中元素所具有的共同特征.注意:表示元素的符号及取值范围,共同特征.例2. 试分别用列举法和描述法表示下列集合:①方程x2-2=0的所有实数根组成的集合;②由大于10小于20的所有整数组成的集合.解:①用描述法表示为{ x∈R|x2-2=0}.用列举法表示为{2,-2}s②用描述法表示为{x∈Z|10<x<20}.用列举法表示为{11,12,13,14,15,16,17,18,19}通过例2,让学生发现,用描述法表示集合时,如果从上下文的关系来看,元素的取值范围是确定的,则可以省略范围,只写其元素.思考:试比较用列举法和描述法表示集合时,各自的特点和适用的对象.(三)巩固练习:选择适当的方法表示下列集合:1. 所有奇数组成的集合;2. 一次函数y=x+3与y=-2x+6的图像的交点组成的集合.(四)小结1.集合的含义.2.元素与集合.3.集合的表示:①自然语言;②字母表示;③列举法;④描述法.(五)作业: P5 练习1.2.四.板书1.1.1 集合的含义与表示1.集合的含义. 3.集合的表示:集合相等①自然语言;2.元素与集合②字母表示;a∈Aa A ④描述法.五.教学反思。
湖北省洪湖市贺龙高级中学人教必修1【学案】1.1.3集合的基本运算
姓名: 班级: 组别: 组名: 【学习目标】1.理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.2.理解全集与补集的定义,会求给定子集的补集.3.熟练掌握集合的交、并、补综合运算及应用. 【重点难点】重点:集合的交集、并集与补集的概念. 难点:集合的交、并、补综合运算及应用. 【知识链接】班主任为了了解班级中最近一段时间的学习情况,把班级中在中考中取得数学与英语单科成绩均在全校前200名的同学集合起来开座谈会。
如果把班级中在中考中取得数学或英语单科成绩在全校前200名的同学集合起来开座谈会。
若数学单科成绩列全校前200名的同学构成一个集合A ,英语单科成绩列全校前200名的同学构成一个集合B ,那么前面提到的两个座谈会的召集分别相当于集合间的什么运算? 【学习过程】阅读课本第8页到第9页的并集部分的内容,尝试回答以下问题: 知识点一 并集问题1.你是怎样理解并集定义中的“或”这个词的?问题2.集合A 与集合B 的并集用什么符号来表示?问题3.根据Venn 图(又称韦恩图),回答A B 与B A 有什么关系?问题4.例4中集合A 与集合B 都含有元素5、8,答案能否写成}{4,5,6,8,3,5,7,8A B =?问题5.根据韦恩图1.1-2,填空: (1)若A B ⊆,则A B =________;(2)A _____A B ; (3)B_____A B ; (4)∅_____AB .问题6.下列关系式成立吗? (1)A A A = (2)A A ∅=问题7.典例解析例1.集合A={06|2=--x x x },B={03|2=-x x x },试求A B .问题2.集合A 与集合B 的交集用什么符号来表示?问题3.当集合A 与集合B 没有公共元素时,A B =________.问题4.根据韦恩图1.1-4,回答A B 与B A 有什么关系?问题5.根据韦恩图1.1-4,填空: (1)若A B ⊆,则A B =________;(2)A B _____A (3)AB _____ B(4)∅_____A B问题6.在平面直角坐标系中,第二象限内的点构成的集合为(){},x y问题7.下列关系式成立吗? (1)A A A = (2)A ∅=∅问题8.典例解析例2.已知集合A={-4,2a-1,2a },B={a-5,1-a,9},分别试求适合下列条件的a 的值. (1)9B A ∈; (2){9}=B A阅读课本第10页到第11页补集部分的内容,尝试回答以下问题: 知识点三 补集问题1.结合全集的定义,你认为全集是固定不变的还是依据具体问题来加以选择的?试举例说明.问题2.全集用什么符号来表示?全集U 中子集A 的补集怎么表示?问题3.结合补集的定义填空(1) U C U =__________; (2)U C ∅=__________; (3)A (A C U )=__________; (4)A (A C U )=__________; (5))(A C C U U = __________.问题4.例8中我们是用_______法来表示集合}{9U x x =是小于的正整数的,用_______法来表示集合}{1,2,3,4,5,6,7,8,9U =的.问题5.例9中集合}{U x x =是三角形的元素是什么?三角形可分为哪几类?问题6.你能理解集合U C ()A B 吗?我们是如何来求U C ()A B 的,分几个步骤?知识点四 集合的交、并、补综合运算及应用例3.已知集合S={x |1<x ≤7},A={x |2≤x <5},B={x |3≤x <7},求: (1)(A C S ) (B C S ); (2))(B A C S ; (3)(A C S ) (B C S ); (4))(B A C S .问题1.用不等式表示的集合的交、并、补集的运算,常用什么样的数学工具来解答?问题2.请解答此题,相信你能行!思考:从本题的结果你可以发现什么规律?【基础达标】A1.设}{3,5,6,8A =,}{4,5,7,8B =,求A B ,A B .B2.设集合}{24A x x =≤<,}{3782B x x x =-≥-,求A B ,A B .B3.已知全集U={x |-2≤x ≤1},A={x |-2<x <1},B={x |022=-+x x },C={x |-2≤x <1},则( )A 、C ⊆AB 、C A C U ⊆ C 、C B C U =D 、B A C U = C4.设集合}{37A x x =≤<,}{210B x x =<<,求R C ()A B ,R C ()A B ,(R C A )B ,A (R C B ).【当堂检测】B1.设}{A x x =是小于9的正整数,}{1,2,3B =,}{3,4,5,6C =,求AB ,AC ,()AB C ,()A B C ,)()(C A B A ,)()(C A B A .【课后反思】本节课我最大的收获是 我还存在的疑惑是 我对导学案的建议是。
人教A版高中数学必修一洪湖贺龙高级集合新课案新
湖北省洪湖市贺龙高级中学高中数学人教版必修1:1.1.1集合新课案姓名: 班级: 组别: 组名:【学习目标】1.正确理解集合的含义及集合中元素的三性.2.能熟练的运用集合的概念及性质判定集合.3.能熟练的运用自然语言法、列举法、描述法表示集合.【重点难点】重点:集合的含义.难点:1.集合中元素的三性即确定性、互异性、无序性及其应用.2.集合表示法.【知识链接】生活中,人们往往习惯于将某些性质相同的事物进行归类,并给它一个总称。
如桃子、苹果、梨等,总称为水果;桌子、椅子、床等,总称为家具。
数学里,人们把一些事物放在一起考虑时,就说他们组成了一个集合。
这些基本的事物就叫这个集合的元素.【学习过程】阅读课本第2页到第3页的内容,尝试回答以下问题:知识点一集合的定义问题1.通过你对第2页内容的学习,请你用自己的语言描述集合和元素.(相信你能做到)问题2.请先回答下列问题:(1)你认为“北门中学的高个子”能够组成集合吗?为什么?(2)集合常用符号{ }表示。
你认为{a,a,b,c}能够组成一个集合吗?为什么?那么{a,b,c}呢?(3)你认为{a,b,c}和{c,b,a}是同一个集合吗?请回答两个集合相等的条件?请尝试给出集合中的元素具有的三个特性:,, .请回答两个集合相等的条件?阅读课本第3页到第4页前面的内容,尝试回答以下问题:知识点二 列举法问题1.教材第2页中的例子是用自然语言法表示集合的。
请你说说怎样用列举法表示集合?列举法:把集合中的元素 的方法.问题2.{0}是表示集合中什么都没有吗?0与{0}是什么关系?问题3.{2 , 3}与{(2,3)}是同一个集合吗?为什么?问题4.已知2x ∈{0,1,x },求实数x 的值。
并总结一下处理集合问题时,最后的结论应注意什么?阅读课本第4页到第5页的内容,尝试回答以下问题:知识点三 描述法问题1.怎样用描述法表示集合?具体的方法是什么?问题2.自然语言法:“文字叙述”形式,列举法:“{a,b,c,…}”形式,用描述法表示集合时,关键在于确定竖线前的代表元素及代表元素所满足的数学条件,其形式为: “{()}A x I P x =∈”,请根据前面的特点总结各自的适用对象?小资料:{})(|x P R x ∈可以写成{})(|x P x ,即当R x ∈时,可省略不写。
湖北省洪湖市贺龙高级中学高中数学 1.1.1《任意角》导
高中数学人教版必修4::1.1.1《任意角》导学案【学习目标】1﹑理解任意角的概念.2﹑会写终边相同的角组成的集合.3﹑会用数形结合的思想解题.【重点难点】▲重点:正角﹑负角﹑零角的定义,终边相同的角的表示.▲难点:终边相同的角的表示.【知识链接】甲:第40届体操锦标赛上,“程菲跳”----踺子后手翻转体︒180,接前直空翻︒540. 乙:有︒540的角吗?甲:当然有了,有比︒540更大的角,并且还有负角呢!乙:太神奇了,那高中所学的三角函数与初中所学的三角函数区别很大吧?甲:高中所学的三角函数是在初中所学的基础上,把角的概念推广到任意角而得到的. 乙:我知道2130sin =︒,那么︒90sin 等于多少呢?甲:这就要用到诱导公式了,学完本章就都明白了,让我们开始学习吧!【学习过程】阅读课本2页到3页的内容,尝试回答以下问题:知识点1:任意角的概念问题1﹑在日常生活中,我们遇到很多关于角的问题,你能举出几个与角有关的例子吗?问题2﹑任意角是怎样定义的?你认为定义中有哪几个关键词?问题3﹑分别写出正角﹑负角﹑零角的定义,并找出其中的关键词.知识点2:直角坐标系中角的分类问题1﹑对于给定的一个角,在直角坐标系中使角的顶点与原点重合,始边与x 轴的正半轴重合,则终边的位置有哪几种情况?问题2﹑什么是象限角?什么是轴线角?问题3﹑尝试回答︒︒︒︒--270,120,60,30,︒150分别是第几象限角?你采用的是什么方法?知识点3:终边相同的角问题1﹑在直角坐标系中,使角的顶点与原点重合,始边与x 轴的正半轴重合,则其终边也就确定了,反之,以该终边为终边的角是否唯一确定?问题2﹑︒︒︒-332,388,28终边相同吗?观察他们之间有何特征?问题3﹑所有和α终边相同的角该如何表示?表达式中需注意什么?问题4﹑和α终边相同的角唯一吗?你能写出其它的表示吗?问题5﹑你能写出与︒-756角终边相同的所有角的集合吗?问题6、问题5中的所有角中在︒-720和︒360之间的角分别是多少?你是如何得到的?【基础达标】A1.在︒0到︒360范围内,找出与下列各角终边相同的角,并判断他们是第几象限角? ①︒-120 ②︒640B2.第一象限角的集合为:第二象限角的集合为:第三象限角的集合为:第四象限角的集合为:终边落在x 轴的非负半轴上的角的集合为:终边落在x 轴的非正半轴上的角的集合为:终边落在x 轴上的角的集合为:终边落在y 轴的非负半轴上的角的集合为:终边落在y 轴的非正半轴上的角的集合为:终边落在y 轴上的角的集合为:【小结】【当堂检测】A1.判断下列各角分别属于哪个象限的角?①︒-265 ②︒-1000 ③'10843︒- ④︒3900【课后反思】本节课我最大的收获是 我还存在的疑惑是 我对导学案的建议是。
(新教材)202年高中数学人教A版必修第一册教案:1.1集合的概念 1.1.1集合的含义(含解析)
第一章集合与常用逻辑用语1.1集合的概念【素养目标】1.通过实例,能说出集合的含义,体会元素与集合的“属于”关系;2.记住集合元素的特性以及常用数集;3.会用集合元素的特性解决相关问题. 【重点】用元素与集合的“属于”关系判断元素与集合的关系;用集合元素的特性解答相关问题. 【难点】集合元素特性的应用.1.1.1 集合的含义 要点整合夯基础 基础知识定义元素一般地,我们把研究对象统称为元素,常用小写的拉丁字母a ,b ,c ,…表示.集合把一些元素组成的总体叫做集合(简称为集),常用大写拉丁字母A ,B ,C ,…表示.集合相等指构成两个集合的元素是一样的.集合中元素的特性: 确定性、互异性和无序性(1)河北《红对勾》书业的员工;(2)平昌冬奥会速滑比赛中滑得很快的选手; (3)一次函数()0y kx b k =+≠的图象上的若干个点;(4)不超过2019的非负数.提示:(1)能构成集合.河北《红对勾》书业的员工是确定的,因此有一个明确的标准,可以确定出来.所以能构成一个集合.(2)“滑得很快”无明确的标准,对于某位选手是否“滑得很快”无法客观地判断,因此,“平昌冬奥会速滑比赛中滑得很快的选手”不能构成一个集合.(3)“若干个点”是模糊的概念,因此与之对应的对象都是不确定的,自然它们不能构成集合,故“一次函数()0y kx b k =+≠的图象上的若干个点”不能构成一个集合.(4)任给一个实数x ,可以明确地判断x 是不是“不超过2019的非负数”,即“02019x ≤≤”与“0x <或2019x >”,两者必居其一,且仅居其一,故“不超过2019的非负数”能构成一个集合.思考2:若集合A 由0,1与x 三个元素组成,则x 的取值有限制吗?为什么? 提示:有限制,0x ≠且1x ≠.因为集合中的任意两个元素必须是互异的.知识点二 元素与集合的关系如果a 是集合A 中的元素,就说a 属于(belong to)集合A ,记作∈;如果a 不是集合A 中的元素,就说a 不属于(not belong to)集合A ,记作∉.思考3:若集合A 是由元素1,2,3,4所组成的集合,问1与A ,5与A 有什么关系? 提示:1A ∈,5A ∉.名称非负整数集(或自然数集)正整数集整数集有理数集 实数集思考4:常用的数集符号N ,*N ,N +有什么区别?提示:(1)N 为非负整数集(即自然数集),而*N 或N +表示正整数集,不同之处就是N 包括元素0,而*N 或N +不包括元素0.(2)*N 和N +的含义是一样的,初学者往往误记为*N 或N +,为避免出错,对于*N 和N +可形象地记为“星星(*)在天上,十字架(+)在地下”. 思考5:用符号“∈”或“∉”填空.(1)1∈*N ;(2)3-∉N ;(3)13∈Q ;∉Q ;(5)12-∈R .典例讲练破题型 题型探究类型一 集合的概念【例1】下列所给的对象能构成集合的是__(1)(4)(5)______. (1)所有的正三角形;(2)高中数学必修第一册课本上的所有难题; (3)比较接近1的正数全体;(4)某校高一年级的16岁以下的学生;(5)平面直角坐标系内到原点距离等于1的点的集合; (6)参加里约奥运会的年轻运动员.【解析】(1)能构成集合.其中的元素需满足三条边相等;(2)不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成集合;(3)不能构成集合.因“比较接近1”的标准不明确,所以元素不确定,故不能构成集合; (4)能构成集合.其中的元素是“16岁以下的学生”;(5)能构成集合.其中的元素是“到坐标原点的距离等于1的点”;(6)不能构成集合.因为“年轻”的标准是模糊的,不确定的,故而不能构成集合. 【通法提炼】判断元素能否构成集合,关键是集合中元素的确定性,即能否找到一个明确的评判标准来衡量元素是否为集合中的元素,若标准明确则可以构成集合,否则不可以. 【变式训练1】下列对象能组成集合的是( )B.某个班级中学习好的所有同学C.2018年全国高考数学试卷中所有难题D.屠呦呦实验室的全体工作人员【解析】D 中的对象都是确定的,而且是不同的.A 中的“近似值”,B 中的“学习好”,C 中的“难题”标准不明确,不满足确定性,因此A ,B ,C 都不能构成集合.类型二 集合中元素的特性命题视角1:集合元素的互异性【例2】已知集合A 中含有两个元素a 和2a ,若1A ∈,求实数a 的值.【分析】本题中已知集合A 中有两个元素且1A ∈,根据集合中元素的特点需分1a =或21a =两种情况讨论,另外还要注意集合中元素的互异性.根据集合中元素的确定性,可以解出字母的所有可能值,再根据集合中元素的互异性对集合中的元素进行检验.另外,利用集合中元素的特性解题时,要注意分类讨论思想的应用. 【解析】若1A ∈,则1a =或21a =,即1a =±.当1a =时,2a a =,集合A 有一个元素,∴1a ≠.当1a =-时,集合A 含有两个元素1,1-,符合互异性. ∴1a =-.【通法提炼】当一个集合中的元素含字母时,可根据题意并结合集合中元素的确定性求出集合中字母的所有取值,再根据集合中元素的互异性进行检验.【变式训练2】(1)若集合M 中的三个元素是ABC ∆的三边长,则ABC ∆一定不是( D ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形(2)由2a ,2a -,4组成一个集合A ,且集合A 中含有3个元素,则实数a 的取值可以是( C ) A .1B .2-C .6D .2【解析】(1)集合中任何两个元素不相同.(2)由题意知24a ≠,24a ≠-,22a a ≠-,解得2a ≠±,且1a ≠.结合选项知C 正确.故选C命题视角2:集合元素的无序性【例3】集合A 中含有三个元素0,ba ,b ,集合B 中含有三个元素1,a b +,a ,若A ,B两个集合相等,求20192019ab +的值. 【分析】由两个集合相等,所含元素相同列出a ,b 的关系式,解出a 与b ,再求20192019ab +的值.【解析】由两个集合相等易知0a ≠,1a ≠,故0a b +=,且1b =或1b a =.若1b =,由0a b +=得1a =-,经验证,符合题意; 若1b a =,则a b =,结合0a b +=,可知0a b ==,不符合题意. 综上知1a =-,1b =.所以20192019201920191(10)a b =++-=. 【通法提炼】两个集合相等,元素相同,因为集合元素无序,所以要进行讨论.同时还需要对集合求值问题代入验证,注意集合中元素的互异性.【变式训练3】集合A 由1,3,5,7四个元素组成,已知实数a ,b A ∈,那么ab 的不同值有( B )A .12个B .13个C .16个D .17个【解析】a ,b 是集合A 的元素,ab 的值会因a ,b 的顺序不同而不同.a ,b 所取的值按顺序分别为:1,1;3,3;5,5;7,7;1,3;3,1;1,5;5,1;1,7;7,1;3,5;5,3;3,7;7,3;5,7;7,5,其对应的ab 有13个不同的值. 类型三 元素与集合的关系【例4】(1)给出下列关系:①12∈RQ ;③||3∉N -;④|∈Q ;⑤0∉N .其中正确的个数为( B ) A .1 B .2C .3 D .4(2)集合A 中的元素x 满足63Nx ∈-,x ∈N ,则集合A 中的元素为____0,1,2____. 【解析】(1)12|33|-=是自然数;|是无理数;0是自然数.故①②正确,③④⑤不正确.(2)由63Nx ∈-,x ∈N 知0x ≥,603x ≥-,且3x ≠,故03x ≤<.又x ∈N ,故0,1,2x =.当0x =时,6320N -=∈,当1x =时,6331N-=∈,当2x =时,6362N-=∈.故集合A 中的元素为0,1,2.【通法提炼】判断一个元素是否属于某一集合,就是判断这个元素是否满足该集合元素的条件.若满足,就是“属于”关系;若不满足,就是“不属于”关系.特别注意,符号“∈”与“∉”只表示元素与集合的关系.【变式训练4】已知不等式320x +>的解集为M . (1)试判断元素1-,0与集合M 的关系;(2)若1a -是集合M 中的元素,求a 的取值范围.【解析】(1)∵21(10)3⨯+=-<-,∴1-不是集合M 中的元素,∴1M ∉-. 又30220⨯+=>,∴0是集合M 中的元素,∴0M ∈. (2)∵1a M -∈,∴()3120a -+>.∴31a >,∴13a >.课堂达标练经典1.下列各组对象不能构成集合的是(B) A .某中学所有身高超过1.8米的大个子 B .约等于0的实数 C .某市全体中学生D .北京大学建校以来的所有毕业生【解析】由于“约等于0”没有一个明确的标准,因此B 中对象不能构成集合. 2.下列命题中,正确命题的个数是(C )①集合*N 中最小的数是1;②若*a ∉N -,则*a ∈N ;③若*a ∈N ,*b ∈N ,则a b +的最小值是2;④244x x +=的解集是{2,2}.A .0B .1C .2D .3【解析】*N 是正整数集,最小的正整数是1,故①正确;当0a =时,*a ∉N -,*a ∉N ,故②错误;若*a ∈N ,则a 的最小值是1,同理,*b ∈N ,b 的最小值也是1,∴当a 和b 都取最小值时,a b +取最小值2,故③正确;由集合中元素的互异性,知④是错误的.3.已知a ,b 是非零实数,代数式||||||a b ab a b ab ++的值组成的集合是M ,则下列判断正确的是( B )A .0M ∈B .1M -∈C .3M ∉D .1M ∈【解析】当a ,b 全为正数时,代数式的值是3;当a ,b 全是负数时,代数式的值是1-;当a ,b 是一正一负时,代数式的值是1-.综上可知B 正确.4.集合A 由元素1-和2构成,集合B 是方程20x ax b ++=的解,若A B =,则a b +=__3-__.【解析】∵A B =,∴方程20x ax b ++=的解是1-或2. ∴1a =-,2b =-,∴3a b +=-.5.已知集合A 由21a a -+,|1|a +两个元素构成,若3A ∈,求a 的值.【解析】∵3A ∈,∴213a a -+=或||13a +=.①若213a a -+=,则2a =或1a =-.当2a =时,||13a +=,此时集合A 中含有两个3,因此应舍去. 当1a =-时,||103a +=≠,满足题意. ②若||13a +=,则4a =-或2a =(舍去).当4a =-时,21213a a +=≠-,满足题意. 综上可知1a =-或4a =-.课时作业 A 组 素养自测一、选择题1.下列各组对象能组成一个集合的是( C )①某中学高一年级所有聪明的学生;②在平面直角坐标系中,所有横坐标与纵坐标相等的点;③所有不小于3A .①②B .③④C .②③D .①③【解析】①④不符合集合中元素的确定性.故选C . 2.若集合A 只含有元素a ,则下列各式正确的是( C ) A .0A ∈B .a A ∉C . a A ∈D .a A =【解析】由题意知A 中只有一个元素a ,∴0A ∉,a A ∈,元素a 与集合A 的关系不应该用“=”,故选C . 3.若以方程2560x x +=-和220x x --=的解为元素组成集合M ,则M 中元素的个数为( C ) A .1B .2C .3D .4【解析】方程2560x x +=-的解为2x =或3x =,220x x --=的解为2x =或1x =-,所以集合M 中含有3个元素. 4.由实数x ,x -,x( A )A .2B .3C .4D .5【解析】∵x,x=-,故当0x =时,这几个实数均为0;当0x >时,它们分别是x ,x -,x ,x ,x -;当0x <,它们分别是x ,x -,x -,x -,x .最多表示2个不同的数,故集合中的元素最多为2个.5.设x ∈N ,且1x ∈N,则x 的值可能是( B ) A .0 B .1 C .1- D .0或1【解析】∵1N -∉,∴排除C ;0∈N ,而10无意义,排除A 、D ,故选B .6.如果集合A 中含有三个元素2,4,6,若a A ∈,且6a A -∈,那么a 为( B ) A .2 B .2或4 C .4 D .0【解析】∵a A ∈,∴当2a =时,64a -=,∴6a A -∈;当4a =时,62a -=,∴6a A -∈;当6a =时,60a -=,∴6a A -∉,故2a =或4.二、填空题7.设A 表示“中国所有省会城市”组成的集合,则深圳__∉__A ,广州__∈__A (填“∈”或“∉”). 【解析】深圳不是省会城市,而广州是广东省的省会.8.设直线23y x =+上的点集为P ,点(2,7)与点集P 的关系为(2,7)__∈__P (填“∈”或“∉”).【解析】直线23y x =+上的点的横坐标x 和纵坐标y 满足关系:23y x =+,即只要具备此关系的点就在直线上.由于当2x =时,2237y =⨯+=,∴(2,7)P ∈. 9.已知集合A 含有三个元素1,0,x ,若2x A ∈,则实数x 的值为__1-__.【解析】因为2x A ∈,所以21x =或20x =或2x x =,解得1x =-,0,1.经检验,只有1x =-时,满足集合元素的互异性.三、解答题10.记方程20x x m --=的解构成的集合为M ,若2M ∈,试写出集合M 中的所有元素. 【解析】因为2M ∈,所以2220m --=,解得2m =.解方程220x x --=,即2)10()(x x -=+,得1x =-或2x =.故M 含有两个元素1-,2.11.由a ,ba ,1组成的集合与由2a ,ab +,0组成的集合是同一个集合,求20202020ab +的值.【解析】由a ,b a ,1组成一个集合,可知0a ≠,1a ≠,由题意可得0ba =,即0b =,此时两集合中的元素分别为a ,0,1和2a ,a ,0,因此21a =,解得1a =-或1a =(不满足集合中元素的互异性,舍去),因此1a =-,且0b =,所以202020202020(10)1ab +-+==.B 组 素养提升一、选择题1.如果a 、b 、c 、d 为集合A 的四个元素,那么以a 、b 、c 、d 为边长构成的四边形可能是( D )A .矩形B .平行四边形C .菱形D .梯形【解析】由于集合中的元素具有“互异性”,故a 、b 、c 、d 四个元素互不相同,即组成四边形的四条边互不相等.2.已知集合A 是由0,m ,232m m -+三个元素组成的集合,且2A ∈,则实数m 的值为( B )A .2B .3C .0或3D .0或2或3【解析】因为2A ∈,所以2m =,或2322m m +=-,解得0m =或3m =.又集合中的元素要满足互异性,对m 的所有取值进行一一检验可得3m =,故选B .3.(多选题)已知集合A 中元素满足31x k =-,k ∈Z ,则下列表示正确的是( BC ) A .2A -∈ B .11A -∉ C .231k A -∈ D .34A -∉ 【解析】令312k -=-,解得13k =-,13-∉Z ,∴2A -∉;令3111k -=-,解得103k =-,103-∉Z ,∴11A -∉;∵2k ∈Z ,∴231k A -∈;令3134k -=-,解得11k =-,11-∈Z , ∴34A -∈.故选BC . 4.已知x ,y都是非零实数,||||||x y xy x y y z x ++=可能的取值组成的集合为A ,则下列判断正确的是( B )A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉ 【解析】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈.故选B . 二、填空题5.用适当的符号填空:已知{|}32,A x x k k Z ==+∈,{|}61,B x x m m Z ==-∈,则17__∈__A ;5-__∉__A ;17__∈__B .【解析】令3217k +=,得5k =,5∈Z ,所以17A ∈;令325k +=-,得73k =-,73-∉Z ,所以5A -∉;令6117m -=,得3m =,3∈Z ,所以17B ∈.6.若11aa A -+∈,且集合A 中只含有一个元素a ,则a 的值为【解析】由题意,得11aa a-+=,∴2210a a -=+且1a ≠-,∴1a =-7.(2019·江苏泰州期末)集合A 中含有两个元素x 和y ,集合B 中含有两个元素0和2x ,若A ,B 相等,则实数x 的值为__1__,y 的值为__0__.【解析】因为集合A ,B 相等,所以0x =或0y =.①当0x =时,20x =,此时集合B 中的两个元素为0和0,不满足集合中元素的互异性,故舍去;②当0y =时,2x x =,解得0x =或1x =,由①知0x =应舍去,经检验,1x =符合题意,综上可知,1x =,0y =. 三、解答题8.已知集合A 中含有两个元素3a -和21a -. (1)若2-是集合A 中的元素,试求实数a 的值;(2)5-能否为集合A 中的元素?若能,试求出该集合中的所有元素;若不能,请说明理由. 【解析】(1)因为2-是集合A 中的元素, 所以23a -=-或221a -=-. 若23a -=-,则1a =,此时集合A 含有两个元素2-,1,符合要求;若221a -=-,则12a =-, 此时集合A 中含有两个元素72-,2-,符合要求.综上所述,满足题意的实数a 的值为1或12-.(2)不能.理由:若5-为集合A 中的元素,则35a -=-或215a -=-.当35a -=-时,解得2a =-,此时212215()a -⨯--==-,显然不满足集合中元素的互异性;当215a -=-时,解得2a =-,此时35a -=-显然不满足集合中元素的互异性. 综上,5-不能为集合A 中的元素.9.已知集合,{|},A x x m m n Z ==∈.(1)试分别判断1x2x23(1x -=与集合A 的关系;(2)设12,x x A ∈,证明:12·x x A ∈. 【解析】(1)10()1x =-+=0,1-∈Z ,所以1x A ∈;2112x ==+,因为1∈Z ,但12∉Z,所以2x A ∉;23(()1994x --+==-9,4-∈Z ,所以3x A ∈.(2)因为12,x x A ∈,所以可设111x m =,222x m =,且1122,,,m n m n ∈Z ,所以121212()·()x x m m =12211212)2m m m n m n n n =++12122112())2m m n n m n m n =++.因为12122m m n n ∈Z +,2112m n m n ∈Z +,所以12·x x A ∈.课堂小结本课堂需掌握的三个问题:1.理解集合的概念,关键是抓住集合中元素的三个特性:确定性、互异性和无序性.特别是处理含有参数的集合问题时,一定要注意集合中元素的互异性,即在求出参数的取值或取值范围后,一定要检验集合中元素的互异性.2.关于特定集合N ,*()N N +,Z ,Q ,R 等的意义是约定俗成的,解题时作为已知使用,不必重述它们的意义.3.对于一个元素a 与一个集合A 而言,只有“a A ∈”与“a A ∉”这两种结果,“∈”与“∉”具有方向性,左边是元素,右边是集合.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省洪湖市贺龙高级中学高中数学人教版必修1:1.1.1集合新课
案
姓名: 班级: 组别: 组名: 【学习目标】
1.正确理解集合的含义及集合中元素的三性.
2.能熟练的运用集合的概念及性质判定集合.
3.能熟练的运用自然语言法、列举法、描述法表示集合.
【重点难点】
重点:集合的含义.
难点:1.集合中元素的三性即确定性、互异性、无序性及其应用.
2.集合表示法.
【知识链接】
生活中,人们往往习惯于将某些性质相同的事物进行归类,并给它一个总称。
如桃子、苹果、梨等,总称为水果;桌子、椅子、床等,总称为家具。
数学里,人们把一些事物放在一起考虑时,就说他们组成了一个集合。
这些基本的事物就叫这个集合的元素.
【学习过程】
阅读课本第2页到第3页的内容,尝试回答以下问题:
知识点一集合的定义
问题1.通过你对第2页内容的学习,请你用自己的语言描述集合和元素.(相信你能做到)
问题2.请先回答下列问题:
(1)你认为“北门中学的高个子”能够组成集合吗?为什么?
(2)集合常用符号{ }表示。
你认为{a,a,b,c}能够组成一个集合吗?为什么?
那么{a,b,c}呢?
(3)你认为{a,b,c}和{c,b,a}是同一个集合吗?请回答两个集合相等的条件?
请尝试给出集合中的元素具有的三个特性:,, .
请回答两个集合相等的条件?
阅读课本第3页到第4页前面的内容,尝试回答以下问题:
知识点二列举法
问题1.教材第2页中的例子是用自然语言法表示集合的。
请你说说怎样用列举法表示集合?列举法:把集合中的元素的方法.
问题2.{0}是表示集合中什么都没有吗?0与{0}是什么关系?
问题3.{2 , 3}与{(2,3)}是同一个集合吗?为什么?
问题4.已知2x∈{0,1,x},求实数x的值。
并总结一下处理集合问题时,最后的结论应注意什么?
阅读课本第4页到第5页的内容,尝试回答以下问题:
知识点三描述法
问题1.怎样用描述法表示集合?具体的方法是什么?
问题2.自然语言法:“文字叙述”形式,列举法:“{a,b,c,…}”形式,用描述法表示集合时,
关键在于确定竖线前的代表元素及代表元素所满足的数学条件,其形式为:“{()}A x I P x =∈”,请根据前面的特点总结各自的适用对象?
小资料:{})(|x P R x ∈可以写成{})(|x P x ,即当R x ∈时,可省略不写。
【小结】(请尝试将以下知识点进行归纳整理)
(1)集合的概念.
(2)元素与集合之间的关系.
(3)集合元素的特征.
(4)集合的表示方法.
【基础达标】 A1.下列各组对象中不能形成集合的是( )
A. 高一年级全体女生
B .高二(1)班全体学生家长
C .高三年级开设的全体课程
D .高一(6)班个子较高的学生
A2.下列关系中,正确的是
①
12R ∈ Q ③3N +-∉ ④Q
B5.若}
{233,21,4a a a -∈---,求实数a
【当堂检测】
B1. 判断下列各组中几个集合是否相等 2{,}y y x x R =∈、2{,}x y x x R =∈和2{(,),}x y y x x R =∈
【课后反思】
本节课我最大的收获是
我还存在的疑惑是
我对导学案的建议是。