上海高中高考数学所有公式汇总

合集下载

上海高考数学常考公式

上海高考数学常考公式

上海高考数学常考公式上海高考数学常用公式1、摩根公式:C U (A B ) =C U A C U B ; C U (A B ) =C U A C U B .2、包含关系:A B =A ⇔A B =B ⇔A ⊆B ⇔C U B ⊆C U A ⇔A C U B =Φ⇔C U A B =R3、集合{a 1, a 2, , a n }的子集个数共有2 个;真子集有2-1个;非空子集有2-1个;非空的真子集有2-2个4、二次函数的解析式的三种形式:① 一般式f (x ) =ax 2+bx +c (a ≠0) ;② 顶点式f (x ) =a (x -h ) 2+k (a ≠0) ;③ 零点式nnnnf (x ) =a (x -x 1)(x -x 2)(a ≠0)5、闭区间上的二次函数的最值二次函数f (x ) =ax 2+bx +c (a ≠0) 在闭区间[p , q ]上的最值只能在x =-体如下:(1)当a>0时,若x =-b处及区间的两端点处取得,具2ab b∈[p , q ],则f (x ) min =f (-), f (x ) max =max {f (p ), f (q ) }; 2a 2ab∉[p , q ],f (x ) max =max {f (p ), f (q ) },f (x ) min =min {f (p ), f (q ) 2ab∈[p , q ],则f (x ) min =min {f (p ), f (q ) },(2)当ab∉[p , q ],则f (x ) max =max {f (p ), f (q ) },f (x ) min =min {f (p ), f (q ) } 若x =-2ax =-6、定区间上含参数的不等式恒成立(或有解) 的条件依据(1)在给定区间(-∞, +∞) 的子区间L (形如[α, β],(-∞, β],[α, +∞)不同)上含参数的不等式f (x ) ≥t (t 为参数) 恒成立的充要条件是f (x ) min≥t ,(x ∈L (2)在给定区间(-∞, +∞) 的子区间L 上含参数的不等式f (x ) ≤t (t 为参数) 恒成立的充要条件是f (x ) max ≤t ,(x ∈L (3)在给定区间(-∞, +∞) 的子区间L 上含参数的不等式f (x ) ≥t (t 为参数) 的有解充要条件是f (x ) m a x ≥t , (x ∈(4)在给定区间(-∞, +∞) 的子区间L 上含参数的不等式f (x ) ≤t (t 为参数) 有解的充要条件是f (x ) m i n ≤t , (x ∈7、常见结论的否定形式8、四种命题的相互关系:原命题若p 则q 互否否命题若┐p则┐q互逆逆逆互逆9、充要条件(记p 表示条件,q 表示结论)(1)充分条件:若p ⇒q ,则p 是q (2)必要条件:若q ⇒p ,则p 是q (3)充要条件:若p ⇒q ,且q ⇒p ,则p 是q10、函数的单调性的等价关系设x 1⋅x 2∈[a , b ], x 1≠x 2那么(x 1-x 2) [f (x 1) -f (x 2) ]>0⇔(x 1-x 2) [f (x 1) -f (x 2) ]f (x 1) -f (x 2)>0⇔f (x ) 在[x 1-x 2f (x 1) -f (x 2)11、如果函数f (x ) 和g (x ) 都是减函数, 则在公共定义域内, x ) 也是减函数; 如果函数f (x ) 和g (x ) 都是增函数, 则在公共定义域内, 和函数f (x ) +g (x y =f (u ) 和u =g (x ) 在其对应的定义域上都是减函数, 则复合函数y =f [g (x )]y =f(u ) 和u =g (x ) 在其对应的定义域上都是增函数, 则复合函数y =f [g (x )]和u =g (x ) 在其对应的定义域上一个是减函数而另一个是增函数, 则复合函数y =f [g (x12、奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 那么这个函数是奇函数;如果一个函数的图象关于y13、常见函数的图像:14、对于函数y =f (x ) (x ∈R ), f (x +a ) =f (b -x ) 恒成立, 则函数f (x ) 的对称轴是x =a +b; 两个函数2a +b2a15、若f (x ) =-f (-x +a ) , 则函数y =f (x ) 的图象关于点(, 0) 对称;2若f (x ) =-f (x +a ) , 则函数y =f (x ) 为周期为2a y =f (x +a ) 与y =f (b -x ) 的图象关于直线x =16、函数y =f (x ) 的图像的对称性:① 函数y =f (x ) 的图像关于直线x =a 对称⇔f (a +x ) =f (a -x ) ⇔f (2a -x ) =f (x ) . ② 函数y =f (x ) 的图像关于直线x =a +b对称⇔f (a +mx ) =f (b -mx ) 2⇔f (a +b -mx ) =f (mx ) .17、两个函数图像的对称性:① 函数y =f (x ) 与函数y =f (-x ) 的图像关于直线x =0(即y 轴) 对称;② 函数y =f (mx -a ) 与函数y =f (b -mx ) 的图像关于直线x =③ 函数y =f (x ) 和y =f18、分数指数幂:①a19、指数式与对数式的互化式:log a N =b ⇔a b =N (a >0, a ≠1, N >0) . 20、对数的换底公式:log a N =对数恒等式:ana +b对称; 2m-1(x ) 的图像关于直线y =x 对称.m n=a >0, m , n ∈N ,且n >1);② a*-mn=1am n(a >0, m , n ∈N *,且n >1)log m N(a >0, 且a ≠1, m >0, 且m ≠1, N >0)log m alog a N=N (a >0, 且a ≠1, N >0)推论:log a m b =nlog a b (a >0, 且a ≠1, N >0) m21、对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则M=log a M -log a N ; Nn n(3)log a M n =n log a M (n ∈R ) ;(4)log a m N =log a N (n , m ∈R )mn =1⎧s 1,22、数列的通项公式与前n 项的和的关系:(数列{a n }的前n 项的和为s n =a 1+a 2+ +a n ) a n =⎨⎩s n -s n -1, n ≥2(1)log a (MN ) =log a M +log a N ;(2)log a23、等差数列的通项公式:a n =a 1+(n -1) d =dn +a 1-d (n ∈N ) ;其前n 项和公式:s n =*n (a 1+a n ) n (n -1) d 1=na 1+d =n 2+(a 1-d ) n . 222224、等比数列的通项公式:a n =a 1qn -1a 1n⋅q (n ∈N *) ; q⎧a 1(1-q n ) ⎧a 1-a n q, q ≠1, q ≠1⎪⎪其前n 项的和公式为:s n =⎨1-q 或s n =⎨1-q ⎪na , q =1⎪na , q =1⎩1⎩125、特殊数列的极限1=0 n →∞n⎧0⎪n(2)lim q =⎨1n →∞⎪不存在⎩(1)lim|q |.⎧0(ka k n k +a k -1n k -1+ +a 0⎪a t(3)lim =⎨(k =t ) .n →∞b n t +b n t -1+ +b b t t -10⎪k⎪不存在 (k >t ) ⎩(4)S =lima 11-q n1-qn →∞)=a 1n -1(S 无穷等比数列a 1q } (|q |{26、数列极限的四则运算法则若lim a n =a , lim b n =b ,则n →∞n →∞(1)lim (a n ±b n )=a ±b ;(2)lim (a n ⋅b n )=a ⋅b ;(3)lim n →∞n →∞a n a=(b ≠0)n →∞b b n(4)lim (c ⋅a n )=lim c ⋅lim a n =c ⋅a ( c是常数n →∞n →∞n →∞27、同角三角函数的基本关系式:sin θ+cos θ=1,tan θ=28、正弦、余弦的诱导公式(奇变偶不变,符号看象限)n⎧n π⎪(-1) 2sin α, sin(+α) =⎨ n -12⎪(-1) 2co s α,⎩22sin θ,tan θ⋅cot θ=1. cos θn⎧n π⎪(-1) 2cos α+α) =⎨ n +12⎪(-1) 2sin α⎩29、和角与差角公式sin(α±β) =sin αcos β±cos αsin β;cos(α±β) =cos αcos β sinαsin βtan α±tan βtan(α±β) =1tan αtan βa sin α+b cos αα+ϕ) (辅助角ϕ所在象限由点(a , b ) 的象限决定, tan ϕ=30、二倍角公及降幂公式b ) asin 2α=2sin αcos α=222tan α;1+tan 2α21-tan 2αcos 2α=cos α-sin α=2cos α-1=1-2sin α= 21+tan α2tan αtan 2α=. 21-tan α1-cos 2α1+cos 2αsin 2α=,cos 2α=2231、三角函数的周期公式函数y =sin(ωx +ϕ) ,x ∈R 及函数y =cos(ωx +ϕ) ,x ∈R(A,ω, ϕ为常数,且A ≠0) 的周期T =函数y =tan(ωx +ϕ) ,x ≠k π+32、正弦定理:2π; |ω|π2, k ∈Z (A,ω, ϕ为常数,且A ≠0) 的周期T =π |ω|a b c===2R (R 为∆ABC 外接圆的半径) sin A sin B sin C⇔a =2R sin A , b =2R sin B , c =2R sin C ⇔a :b :c =sin A :sin B :sin C2222222233、余弦定理:a =b +c -2bc cos A ;b =c +a -2ca cos B ;c =a +b -2ab cos C34、面积定理111ah a =bh b =ch c (h a 、h b 、h c 分别表示a 、b 、c 边上的高) 222111(2)S =ab sin C =bc sin A =ca sin B222(1)S =35、三角形内角和定理:在△ABC 中,有A +B +C =π⇔C =π-(A +B ) ⇔36、平面两点间的距离公式C πA +B =-⇔2C =2π-2(A +B ) 222dA ,B =|AB |==(x 1, y 1) ,B (x 2, y 2) )37、向量的平行与垂直:设a =(x 1, y 1) , b =(x 2, y 2) ,且b ≠0,则a ||b ⇔b =λ a ⇔x 1y 2-x 2y 1=0a ⊥b (a ≠0) ⇔ a ·b =0⇔x 1x 2+y 1y 2=038、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为A(x1,y 1) 、B(x2,y 2) 、C(x3,y 3) , 则△ABC 的重心的坐标是G (x 1+x 2+x 3y 1+y 2+y 3, ) 3339、常用不等式:(1)a , b ∈R ⇒a +b ≥2ab (当且仅当a =b 时取“=”号)22a +b≥当且仅当a =b 时取“=”号) 2(3)a -b ≤a +b ≤a +b(2)a , b ∈R +⇒40、极值定理:已知x , y 都是正数,则有(1)若积xy 是定值p ,则当x =y 时和x +y 有最小值2p ;(2)若和x +y 是定值s ,则当x =y 时积xy 有最大值(3)已知a , b , x , y ∈R +,若ax +by =1,则有1s 41111by ax +=(ax +by )(+) =a +b ++≥a +b +=x y x y x ya b(4)已知a , b , x , y ∈R +,若+=1,则有x ya b ay bxx +y =(x +y )(+) =a +b ++≥a +b +=2x y x y41、一元二次不等式ax 2+bx +c >0(或0) ,如果a 与ax +bx +c 同号,则其解集在两根之外;如果 a 与ax +bx +c 异号,则其解集在两根之间. 简言之:同号两根之外,异号两根之间.22x 1x 2⇔(x -x 1)(x -x 2) >0(x 142、含有绝对值的不等式:当a> 0时,有 x2x >a ⇔x 2>a 2⇔x >a 或x43、分式不等式⎧f (x ) ⋅g (x ) ≥0⎧f (x ) ⋅g (x ) ≤ 0f (x ) f (x )≥0⇔⎨≤0⇔⎨g (x ) g (x ) ⎩g (x ) ≠0⎩g (x ) ≠044、无理不等式:(1⎧f (x ) ≥0⎪>⎨g (x ) ≥0⎪f (x ) >g (x ) ⎩⎧f (x ) ≥0⎧f (x ) ≥0⎪>g (x ) ⇔⎨g (x ) ≥0或⎨⎪f (x )>[g (x )]2⎩g (x )g (x ) ⇔⎨g (x ) >0⎪f (x )(2(345、指数不等式与对数不等式:(1)当a >1时a f (x ) >a g (x )⎧f (x ) >0⎪⇔f (x ) >g (x ) ;log a f (x ) >log a g (x ) ⇔⎨g (x ) >0.⎪f (x ) >g (x ) ⎩⎧f (x ) >0⎪⇔f (x ) log a g (x ) ⇔⎨g (x ) >0⎪f (x )(2)当0a f (x ) >a g (x )46、斜率公式 k =y 2-y 1(P 1(x 1, y 1) 、P 2(x 2, y 2) ).x 2-x 147、直线的四种方程(1)点斜式:y -y 0=k (x -x 0) (直线l 过点P 0(x 0, y 0) ,且斜率为k )(2)斜截式:y =kx +b (b为直线l 在y 轴上的截距). (3)两点式:y -y 1x -x 1(y 1≠y 2)(P =1(x 1, y 1) 、P 2(x 2, y 2) (x 1≠x 2)).y 2-y 1x 2-x 1x -x 0y -y 0= u v(5)点法向式:a (x -x 0) +b (y -y 0) =0(4)点方向式:(6)一般式:Ax +By +C =0(其中A 、B 不同时为0)48、两条直线的平行和垂直(1)若l 1:y =k 1x +b 1,l 2:y =k 2x +b 2①l 1||l 2⇔k 1=k 2, b 1≠b 2;②l 1⊥l 2⇔k 1k 2=-1(2)若l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0, 且A 1、A 2、B 1、B 2都不为零, ①l 1 l 2⇔A 1B 1C 1;②l 1⊥l 2⇔A ;=≠1A 2+B 1B 2=0A 2B 2C 249、夹角公式:cos α=A 1A 2+B 1B 2A 1+B 122A 2+B 222(l 1:A ) 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,A 1A 2+B 1B 2≠0直线l 1⊥l 2时,直线l 1与l 2的夹角是50、点到直线的距离:d =π2(点P (x 0, y 0) , 直线l :Ax +By +C =0)C 1-C 251、两条平行线之间的距离:d =(两条直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0)22A +B52、圆的三种方程(1)圆的标准方程:(x -a ) +(y -b ) =r22(2)圆的一般方程:x +y +Dx +Ey +F =0(D +E -4F >0)22222(3)圆的参数方程:⎨⎧x =a +r cos θy =b +r sin θ⎩53、点与圆的位置关系:点P (x 0, y 0) 与圆(x -a ) 2+(y -b ) 2=r 2的位置关系有三种若d =d >r ⇔点P 在圆外;d =r ⇔点P 在圆上;d54、直线与圆的位置关系直线Ax +By +C =0与圆(x -a ) 2+(y -b ) 2=r 2的位置关系有三种: d >r ⇔相离⇔∆0x 2y 255、椭圆的标准方程:2+2=1(a >b >0)a b ⎧x =a cos θ椭圆的参数方程是⎨⎩y =b sin θ56、椭圆的内外部x 2y 2(1)点P (x 0, y 0) 在椭圆2+2=1(a >b >0) 的内部⇔a b x 2y 2(2)点P (x 0, y 0) 在椭圆2+2=1(a >b >0) 的外部⇔a bx 2y 257、双曲线2-2=1(a >0, b >0)a b58、双曲线的内外部22x 0y 0+2+>1 a 2b 222x 0y 0x 2y 2(1)点P (x 0, y 0) 在双曲线2-2=1(a >0, b >0) 的内部⇔2-2>a b a b 22x 0y 0x 2y 2(2)点P (x 0, y 0) 在双曲线2-2=1(a >0, b >0) 的外部⇔2-2a b a b59、双曲线的方程与渐近线方程的关系x 2y 2x 2y 2b(1)若双曲线方程为2-2=1⇒渐近线方程:2-2=0⇔y =±xa ab a bx y x 2y 2b(2)若渐近线方程为y =±x ⇔±=0⇒双曲线可设为2-2=λa b a a bx 2y 2x 2y 2(3)若双曲线与2-2=1有公共渐近线,可设为2-2=λa b a b(λ>0,焦点在x 轴上,λ60、椭圆的焦点三角形面积公式:S ∆PF 1F 2=b tan22θ2双曲线的焦点三角形面积公式:S ∆PF 1F 2=b cot61、抛物线y =2px 的焦半径公式2θ2(其中点P 为椭圆或双曲线上的一点,∠F 1PF 2=θ)抛物线y 2=2px (p >0) 焦半径CF =x 0+过焦点弦长CD =x 1+p p+x 2+=x 1+x 2+p 22y62、抛物线y =2px 上的动点可设为P ( , y ) 或P (2pt 2, 2pt ) 或 P(x , y ) ,其中 y 2=2px .2p2263、直线与圆锥曲线相交的弦长公式:AB =AB =+k 2x 1-x 2=+k 2∆1=+2y 1-y 2 a k⎧y =kx +b 2(弦端点A (x 1, y 1), B (x 2, y 2) ,由方程⎨消去y 得到ax +bx +c =0,∆>0, α为直线AB 的倾斜⎩F (x , y ) =0角,k 为直线的斜率)64、圆锥曲线的两类对称问题:(1)曲线F (x , y ) =0关于点P (x 0, y 0) 成中心对称的曲线是F (2x 0-x ,2y 0-y ) =0. (2)曲线F (x , y ) =0关于直线Ax +By +C =0成轴对称的曲线是F (x -2A (Ax +By +C ) 2B (Ax +By +C ), y -) =0.A 2+B 2A 2+B 2特别地,曲线F (x , y ) =0关于原点O 成中心对称的曲线是F (-x , -y ) = 曲线F (x , y ) =0关于直线x 轴对称的曲线是F (x , -y ) = 曲线F (x , y ) =0关于直线y 轴对称的曲线是F (-x , y ) = 曲线F (x , y ) =0关于直线y =x 轴对称的曲线是F (y , x ) = 曲线F (x , y ) =0关于直线y =-x 轴对称的曲线是F (-y , -x ) =65、“四线”一方程:对于一般的二次曲线Ax +Bxy +Cy +Dx +Ey +F =0,用x 0x代x ,用y 0y 代y ,2222x 0y +xy 0x +x y +y代xy ,用0代x ,用0代y 即得方程 222x y +xy 0x +x y +yAx 0x +B ⋅0+Cy 0y +D ⋅0+E ⋅0+F =0,曲线的切线,切点弦,中点弦,弦中点方程均是222此方程得到66、球的半径是R ,则其体积是V =67、柱体、锥体的体积4πR 3, 其表面积是S =4πR 2 31V 柱体=Sh (S 是柱体的底面积、h 是柱体的高)31V 锥体=Sh (S 是锥体的底面积、h 是锥体的高)368、求夹角是不可缺少的重要题型之一,要牢记各类角的范围,倾斜角的取值范围是:0≤α范围:0≤α≤180。

上海高中数学公式总结大全

上海高中数学公式总结大全

上海高中数学公式总结大全摘要:一、引言二、上海高中数学公式概述1.数学分析2.高等数学3.概率论与数理统计4.线性代数5.数学建模三、数学分析公式1.极限2.导数与微分3.积分四、高等数学公式1.微分方程2.多元函数微分学3.多元函数积分学五、概率论与数理统计公式1.概率分布2.随机变量3.假设检验六、线性代数公式1.矩阵运算2.线性方程组3.特征值与特征向量七、数学建模公式1.模型建立2.模型求解3.模型评价与优化八、结论正文:一、引言在上海高中数学学习中,数学公式起着至关重要的作用。

为了帮助同学们更好地掌握这些公式,本文对上海高中数学公式进行了总结,涵盖了数学分析、高等数学、概率论与数理统计、线性代数以及数学建模等五个方面。

希望同学们能够通过本文,提高自己的数学学习效率,取得更好的成绩。

二、上海高中数学公式概述1.数学分析数学分析是研究函数、极限、连续、微分、积分等概念及其性质的学科。

在上海高中数学课程中,数学分析部分的公式主要包括:(1)极限公式(2)导数与微分公式(3)积分公式2.高等数学高等数学是数学的重要分支,主要包括微分方程、多元函数微分学、多元函数积分学等内容。

在上海高中数学课程中,高等数学部分的公式主要包括:(1)微分方程公式(2)多元函数微分学公式(3)多元函数积分学公式3.概率论与数理统计概率论与数理统计是研究随机现象及其规律的学科。

在上海高中数学课程中,概率论与数理统计部分的公式主要包括:(1)概率分布公式(2)随机变量公式(3)假设检验公式4.线性代数线性代数是研究向量、矩阵、线性方程组等概念的学科。

在上海高中数学课程中,线性代数部分的公式主要包括:(1)矩阵运算公式(2)线性方程组公式(3)特征值与特征向量公式5.数学建模数学建模是运用数学方法解决实际问题的学科。

在上海高中数学课程中,数学建模部分的公式主要包括:(1)模型建立公式(2)模型求解公式(3)模型评价与优化公式三、结论上海高中数学公式总结大全旨在帮助同学们系统地学习和掌握高中数学公式,提高数学成绩。

上海高中高考数学所有公式汇总

上海高中高考数学所有公式汇总

上海高考高三数学所有公式汇总集合命题不等式公式1、C u (Ac B) = _____ C u A u C u B _____ ; C u (A u B) = _____ C u Ac C u B ________ _: 2 、 A B =A u _ A B _ ; A_. B =B :=_ A B __C u B 二 C uAu _A 二 B ___;Ac Cu B= 0 ______ AJ B _____ ; C U A Q B =U = _______ A9 B _____ 。

3、 含n 个元素的集合有:个子集,__2n -1—个真子集,_2n —1__个非 空子集,_2n -2—个非空真子集。

4、 常见结论的否定形式5、 四种命题的相互关系: —原命题—与— 逆否命题—互为等价命题; _______ 否 命题 与 逆命题 互为等价命题。

6、 若 p= q ,贝U p 是q 的 充分 条件;q 是 p 的 必要 条件。

7、 基本不等式:(1) a, b ^R : _______ a 2+b 2兰2ab ______________ 且仅当a = b 时取等号。

(2) a,b ^R *: ____________ a+b A 2j ab ____________ 且仅当 a = b 时取等号。

(3) 绝对值的不等式: _________ |a| -|b|冃a 士b 冃a| + |b| ___________ 8均值不等式:a, b Rab等且仅当a 二b 时取等号。

f(x)一0-f (x) g(x) -0 f(x )"一 g(x).g(x)=0g(x )9、分式不等式:f ( x) g(x) 0g(x 尸 0f(n)n2a20、a 芝0时,y max"f(—2ba ) m£—n b f (m) -一兰 mi 2a4、奇函数f(-x)= ________ - f (x) ______ ,函数图象关于 原点 对称;偶函数f(-x)= ________ f(x) ________ =_f(|x|)___,函数图象关于 y 轴对称。

沪高考知识点公式总结

沪高考知识点公式总结

沪高考知识点公式总结
一、数学
1. 几何公式
(1)三角形面积公式:S = a*b*sinC/2
(2)三角形周长公式:P = a+b+c
(3)矩形面积公式:S = l*w
(4)圆周长公式:C = 2*π*r
(5)圆面积公式:S = π*r*r
2. 代数公式
(1)二次方程求根公式:x = (-b±√(b²-4ac))/(2a) (2)直线斜率公式:k = (y2-y1)/(x2-x1)
(3)直线方程公式:y = kx+b
3. 统计学公式
(1)均值公式:μ = Σx/n
(2)方差公式:Σ(x-μ)²/n
(3)标准差公式:√(Σ(x-μ)²/n)
二、物理
1. 力学公式
(1)牛顿第一定律:F = ma
(2)牛顿第二定律:F = dp/dt
(3)牛顿第三定律:F1 = -F2
2. 动力学公式
(1)速度公式:v = x/t
(2)加速度公式:a = Δv/Δt
(3)牛顿运动定律:F = ma
三、化学
1. 化学平衡公式
(1)动态平衡常数公式:Kc = [C]c/[A]a[B]b
(2)平衡常数公式:K = e^(-ΔG/RT)
(3)反应速率常数公式:k = Ae^(-Ea/RT)
2. 化学反应公式
(1)原子分子量公式:M = Σ(ni*mi)
(2)摩尔浓度公式:c = n/V
(3)摩尔体积公式:V = V/n
总结:上海高考数学、物理、化学知识点公式主要包括几何公式、代数公式、统计学公式、力学公式、动力学公式、化学平衡公式和化学反应公式,掌握这些公式对于高考的考试非
常重要。

上海高考数学必备公式(完整资料)

上海高考数学必备公式(完整资料)

【最新整理,下载后即可编辑】1、 含有n 个元素的集合的子集共有 个,真子集有 个;非空子集有 个;非空的真子集有 个.2、⇔=A B A ;⇔=A B A .3、若A 是B 的子集,则A x ∈ B x ∈.(填推出关系)4、如果0,>>c b a ,那么ac bc ;如果0,=>c b a ,那么ac bc ;如果0,<>c b a ,那么ac bc . 如果0>>b a ,那么a1b 1; 如果0<<a b ,那么a1b 1;如果b a >>0,那么a1b1.5、一元二次不等式)0(02>>++a c bx ax)0(02><++a c bx ax0>∆ 0=∆ 0<∆ 分式不等式⇔<0)()(x g x f ⎩⎨⎧⇔≥0)()(x g x f含绝对值的不等式⇔><)0(||a a x⇔>>)0(||a a x指数、对数不等式 利用指数函数、对数函数的 求解 不忘定义域6、基本不等式:对于任意实数b a 、,有 ,当且仅当 时等号成立.对于任意实数+∈R b a 、,有 ,当且仅当 时等号成立.对于第二个基本不等式求最值,要注意“ ”原则. 7、方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的系数矩阵是 增广矩阵是=D=x D=y D有唯一解的充要条件是 此时方程组的解为方程组无解的充要条件为 方程组无穷多解的充要条件为 8、行列式对角线法则1122a b a b =333222111c b a c b a c b a =三阶行列式中1b 的余子式为 1b 的代数余子式为 行列式按某行某列展开333222111c b a c b a c b a = =9、等差数列递推公式=+1n a 通项公式=n a等差中项公式 +=m n a a),(*N n m ∈若),,,(*N q p n m q p n m ∈+=+,则=+n m a a 若)(2*N k k n m ∈=+,则=+n m a a求和公式=n S =10、等比数列递推公式=+1n a 通项公式=n a等比中项公式 ⋅=m n a a),(*N n m ∈若),,,(*N q p n m q p n m ∈+=+,则=⋅n m a a若)(2*N k k n m ∈=+,则=⋅n m a a 求和公式=n S 11、等差数列、等比数列前n 项和若数列}{n a 为等差数列,}{n b 为等比数列,前n 项和分别为n S ,n T ,若c bn an S n ++=2,b kq T n n +=,则 .数列中n a 与n S 的关系式=n a 12、等差数列与等比数列类比:加变 ,减变 ,乘变 ,除变 ,0变 .13、⎪⎩⎪⎨⎧=++++--∞→ 122111limk k p p n n b n a n b n a (按k p ,的大小关系进行分类)⎪⎩⎪⎨⎧=∞→n n q lim (注意q 的取值范围)无穷等比数列各项和公式=S 其中q 满足的条件为14、 利用递推公式求通项公式的方法:①累加法,形如 的数列.② 累乘法,形如 的数列. ③ 倒数法,形如 的数列.④ 待定系数法,形如 的数列.15、 数列求和方法:分组求和法裂项相消法 倒序相加法 错位相减法 16、因式分解=+33b a =-33b a 17、=⋅n m a a =÷n m a a =nma )(=mn a(根式)=-mn a(根式) 18、=+N M a alog log=-N M aalog log=naM log =n a b mlog =N alog(换底公式) 1log =b a =N aa log=+b N a a log19110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的 .多项式函数()P x 是偶函数⇔()P x 的 . 20、函数的单调性设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是函数.判断复合函数)]([x g f y =的单调性法则为 .21、二次函数)0()(2≠++=a c bx ax x f 的图象是一条抛物线,对称轴的方程为 . 22、函数)0,0()(>>+=b a xbax x f ,当0>x 时,函数在上递减,在 上递增,当=x 时,=min )(x f ;当0<x 时,函数在 上递增,在 上递减,当=x 时,=max )(x f . 23、函数)0,0()(>>-=b a xbax x f 单调性为 . 24、函数)0,0()(中至少有一个不为、且d c a bax dcx x f ≠++=,图象的对称中心为 .25、如果)()(x f T x f -=+,则 是)(x f 的一个周期;如果)(1)(x f T x f ±=+, 则 是)(x f 的一个周期;如果)()(T x f T x f -=+,则 是)(x f 的一个周期.26、若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数 的图象.若)()(x b f x a f -=+,则函数)(x f 关于直线 对称,反之亦然.若b x a f x a f 2)()(=-++,则函数)(x f 关于点 对称,反之亦然.27、函数)(x f 存在反函数的充要条件是 ,充分不必要条件是 .若)(x f 的反函数为)(1x f -,则⇔=b a f )( .28、指数方程b a x = =x 对数方程b x a =log =x解指数、对数方程还经常用到 法29、 函数与方程:方程的解可转化为函数的零点或两函数的交点问题⑴a x f =)(有解⇔ .⑵a x f =)(无解⇔ .⑶)()(x g x f =有解⇔ .⑷方程解的个数问题可以转化为函数图象交点个数的问题. 30、不等式恒成立问题⑴a x f >)(对D x ∈恒成立⇔ .⑵a x f <)(对D x ∈恒成立⇔ .31、=-+))((bi a bi a =++dic bia设bi a z +=),(R b a ∈,则=||z =z=⋅z z=||21z z=21z z)0(2≠z=||n z在复平面内||21z z -表示的几何意义为 . 32、设i 2321+-=ω,则=2ω =++21ωω33、一元二次方程02=++c bx ax (其中R c b a ∈,,且0≠a ):当0>∆时,方程有两个不相等的实数根: 当0=∆时,方程有两个相等的实数根:当0<∆时,方程有两个共轭虚根: 根与系数的关系若有两个虚数根,则两根互为共轭复数,且两根之积等于ac ,意味着==||||21x x .复系数方程假设未知数),(R n m ni m x ∈+= 利用 列方程组求解34、扇形弧长公式 扇形面积公式=扇S 35、αsin 在四个象限符号 αcos 在四个象限符号αtan 在四个象限符号36、αsin 与αcos 的关系式同角三角比的商数关系同角三角比的三个倒数关系 37、=-)sin(α=-)sin(απ=+)2sin(απ=+)cos(απ=-)2cos(απ =-)2tan(απ=-)tan(απ=+)23sin(απ=-)23cos(απ38、=+)sin(βα =+)cos(βα =-)tan(βα 辅助角公式=+ααcos sin b a =α2sin =α2tan=α2cos= =降幂=x 2sin =x 2cos =x x cos sin 39、余弦定理正弦定理 三角形面积公式40、三角函数),0,0()sin(R x A B x A y ∈>>++=ωϕω的最小正周期为最大值 此时=x 最小值 此时=x求单调区间的方法为 求对称轴的方法为 求对称中心的方法为 若定义域改为),(b a ,求值域的方法为 41、三角方程)1|(|sin ≤=a a x =x)1|(|cos ≤=a a x =xa x =tan =x42、设a 与b 夹角为θ,则=⋅b a =θcos∈θa 在b 方向上的投影为 = 与a 方向相同的单位向量为 设a=),(11y x ,b =),(22y x ,则=⋅ =||=2a⇔⊥b a ⇔ a 与b 共线⇔43、 △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则线段AB 的中点坐标为 △ABC 的重心的坐标是.44、过点),(00y x P ,),(v u =的直线的点方向式方程为 斜率过点),(00y x P ,),(b a =的直线的点法向式方程为 斜率直线0=++c by ax 的方向向量 法向量 斜率直线的倾斜角∈θ =k ⎩⎨⎧=θ45、已知直线1l :0111=++c y b x a ,直线2l :0222=++c y b x a :1l 与2l 平行的充要条件是 . 1l 与2l 垂直的充要条件是 . 46、已知直线1l :11b x k y +=,直线2l :22b x k y +=:1l 与2l 平行的充要条件是 .1l 与2l 垂直的充要条件是 .47、点到直线的距离=d 平行线之间的距离=d两直线夹角∈θ=θcos=θtan点),(11y x A 、点),(22y x B 在直线0=++c by ax 同侧的充要条件为异侧的充要条件为48、圆022=++++F Ey Dx y x 的圆心为 ,半径为 49、判断直线与圆的位置关系的方法是 过圆外一点的切线方程可设为00()y y k x x -=-,再利用 求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.50、求动点轨迹方程的一般步骤为常见方法有:51、椭圆的定义为焦点在x 轴的标准方程为 (其中c b a ,,关系: )几何性质:①对称性②顶点、焦点、长轴、短轴、焦距③y x ,的取值范围52、双曲线的定义为焦点在x 轴的标准方程为 (其中c b a ,,关系: )几何性质:①对称性②顶点、焦点、实轴、虚轴、焦距 ③y x ,的取值范围 ④等轴双曲线的概念53、抛物线的定义为开口左右的标准方程为 开口上下的标准方程为开口左右的几何性质:①对称性②顶点、焦点、准线方程 ③y x ,的取值范围 54、若点P 在椭圆上,且θ=∠21PF F ,则=∆21PF F S .若点P 在双曲线上,且θ=∠21PF F ,则=∆21PF F S .55、若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b-=⇔ .若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为 . 若双曲线与12222=-by a x 有公共渐近线,可设为 .56、设抛物线方程px y 22=,F 为其焦点,AB 为过点F 的弦,且),(11y x A 、),(22y x B ,则=||FA,=||FB ,=||AB ;并且满足=21x x ,=21y y .57、判断直线与圆锥曲线的位置关系的方法:把直线方程与圆锥曲线方程联立,可以得到一个方程,若是一元二次方程,计算该方程的判别式∆,若0<∆,则为 ;若0=∆,则为 ;若0>∆,则为 .58、圆锥曲线弦长公式=||AB =圆中弦长=||AB 抛物线焦点弦长=||AB 59、涉及到直线截圆锥曲线所成线段的中点问题,不要忘记用 法.60、已知曲线C ,求曲线C 关于某一定点、定直线的对称曲线'C ,用 法.61、证明线面平行的方法:证明线面垂直的方法: 空间异面直线夹角∈θ求异面直线的一般步骤为:① ② ③ 62、体积面积公式=柱V=锥V =球V=圆柱侧S =圆锥侧S=球S63、异面直线间的距离是指 的长度计算点到面的距离若射影位置不好作 常用 法 球面距离=l2017上海高三数学公式强化 姓名:【最新整理,下载后即可编辑】 64、=m n P = 全排列=n n P 规定=!0==m m m n m n P P C =组合数的两个性质①=m n C ②=+-m n m n C C 1 65、=+n b a )( *N n ∈ 共 项通项=+1r T),,2,1,0(n r = 二项式系数和为 求各项系数和用 法66、二项展开式的二项式系数中最大的为 (n 为奇数), (n 为偶数).67、数据n x x x x ,,,,321 的平均数为 ,方差为 ,标准差的点估计值为 .68、如果总体(或样本)中有n 个个体,它们的值分别为n x x x x ,,,,321 ,平均数为x ,方差为2σ,标准差为σ,则b ax b ax b ax b ax n ++++,,,,321 的平均数为 ,方差为 ,标准差为 .。

(完整版)上海高中高考数学知识点总结(大全),推荐文档

(完整版)上海高中高考数学知识点总结(大全),推荐文档

上海高中高考数学知识点总结(大全)一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝ 原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定 ∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2)或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa1=- m n m na a = 2.对数式b N a =log N a b =⇔(a>0,a ≠1)N M MN a a a log log log +=N M NMa a alog log log -= M n M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a a N a N a =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数) 4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换 平移:“左加右减,上正下负”α>101<<αα<0)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断) 注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 67同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =± ()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈ 9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sin CB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边)cos A =bca cb 2222-+(求角)面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则q p n m a a a a +=+2、等比数列定义:)0(1≠=+q q a ann通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 b a ⋅=θcos ⋅⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:b a =⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底)平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x模:a =22y x + =+=+2)(b a夹角:=θcos ||||b a ba 注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -= 模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=?除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=ni r rk i i =+43.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程 5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+-点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0)顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +)2a 、2b:椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴)开口(向右) 范围x ≥0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句 IF 条件 THEN IF 条件 THEN 语句1 语句ELSE END IF 语句2 END IF5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO循环体 循环体WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n +a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2 v 3=v 2x+a n -3 v n =v n -1x+a 0 注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n n n n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法” 例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=248=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

[上海高中数学公式]上海高考数学公式大全

[上海高中数学公式]上海高考数学公式大全

[上海高中数学公式]上海高考数学公式大全[上海高中数学公式]上海高考数学公式大全高中的数学公式定理大集中三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tan α ²cotα=1sin α ²cscα=1cos α ²secα=1 sinα/cosα=tan α=sec α/cscαcos α/sinα=cot α=csc α/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”)诱导公式(口诀:奇变偶不变,符号看象限。

)sin (-α)=-sin αcos (-α)=cos α tan(-α)=-tan αcot (-α)=-cot αsin (π/2-α)=cos αcos (π/2-α)=sin αtan (π/2-α)=cot αcot (π/2-α)=tan αsin (π/2+α)=cos αcos (π/2+α)=-sin αtan (π/2+α)=-cot αcot (π/2+α)=-tan αsin (π-α)=sin αcos (π-α)=-cos αtan (π-α)=-tan αcot (π-α)=-cot αsin (π+α)=-sin αcos (π+α)=-cos αtan (π+α)=tan αcot (π+α)=cot αsin (3π/2-α)=-cos αcos (3π/2-α)=-sin αtan (3π/2-α)=cot αcot (3π/2-α)=tan αsin (3π/2+α)=-cos αcos (3π/2+α)=sin αtan (3π/2+α)=-cot αcot (3π/2+α)=-tan αsin (2π-α)=-sin αcos (2π-α)=cos αtan (2π-α)=-tan αcot (2π-α)=-cot αsin (2k π+α)=sin αcos (2k π+α)=cos αtan (2k π+α)=tan αcot (2k π+α)=cot α(其中k∈Z)两角和与差的三角函数公式万能公式sin (α+β)=sin αcos β+cos αsin βsin (α-β)=sin αcos β-cos αsin βcos (α+β)=cos αcos β-sin αsin βcos (α-β)=cos αcos β+sin αsin βtan α+tan βtan (α+β)=——————1-tan α ²tanβtan α-tan βtan (α-β)=——————1+tan α ²tanβ2tan(α/2)sin α=——————1+tan2(α/2)1-tan2(α/2)cos α=——————1+tan2(α/2)2tan(α/2)tan α=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sin αcos αcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tan αtan2α=—————1-tan2αsin3α=3sin α-4sin3αcos3α=4cos3α-3cos α3tan α-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+β α-βsin α+sin β=2sin ———²cos———2 2α+β α-βsin α-sin β=2cos ———²sin———2 2α+β α-βcos α+cos β=2cos ———²cos———2 2α+β α-βcos α-cos β=-2sin ———²sin———2 2 1sin α ²cosβ=-[sin(α+β)+sin (α-β)]21cos α ²sinβ=-[sin(α+β)-sin (α-β)]21cos α ²cosβ=-[cos(α+β)+cos (α-β)]21sin α ²sinβ=— -[cos(α+β)-cos (α-β)]2化asin α ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式集合、函数集合简单逻辑任一x∈A x∈B,记作A BA B,B A A=BA B={x|x∈A,且x∈B}A B={x|x∈A,或x∈B}card (A B)=card (A )+card(B )-card (A B)(1)命题原命题若p 则q逆命题若q 则p否命题若p则q逆否命题若q,则p(2)四种命题的关系(3)A B,A 是B 成立的充分条件B A,A 是B 成立的必要条件A B,A 是B 成立的充要条件函数的性质指数和对数(1)定义域、值域、对应法则(2)单调性对于任意x1,x2∈D若x1<x2 f(x1)<f (x2),称f (x )在D 上是增函数若x1<x2 f(x1)>f (x2),称f (x )在D 上是减函数(3)奇偶性对于函数f (x )的定义域内的任一x ,若f (-x )=f (x ),称f (x )是偶函数若f (-x )=-f (x ),称f (x )是奇函数(4)周期性对于函数f (x )的定义域内的任一x ,若存在常数T ,使得f (x+T)=f(x),则称f (x )是周期函数(1)分数指数幂正分数指数幂的意义是负分数指数幂的意义是(2)对数的性质和运算法则loga (MN )=logaM+logaNlogaMn =nlogaM (n∈R)指数函数对数函数(1)y =ax (a >0,a≠1)叫指数函数(2)x∈R,y >0图象经过(0,1)a >1时,x >0,y >1;x <0,0<y <10<a <1时,x >0,0<y <1;x <0,y >1a >1时,y =ax 是增函数0<a <1时,y =ax 是减函数(1)y =logax (a >0,a≠1)叫对数函数(2)x >0,y∈R图象经过(1,0)a >1时,x >1,y >0;0<x <1,y <00<a <1时,x >1,y <0;0<x <1,y >0a >1时,y =logax 是增函数0<a <1时,y =logax 是减函数指数方程和对数方程基本型logaf(x)=b f(x )=ab (a >0,a≠1)同底型logaf (x )=logag (x )f(x )=g (x )>0(a >0,a≠1)换元型f(ax )=0或f (logax)=0数列数列的基本概念等差数列(1)数列的通项公式an =f (n )(2)数列的递推公式(3)数列的通项公式与前n 项和的关系an+1-an =dan =a1+(n -1)da ,A ,b 成等差2A=a+bm+n=k+l am+an=ak+al等比数列常用求和公式an =a1qn _1a ,G ,b 成等比G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a >b b<aa >b ,b >c a>ca >b a+c>b+ca+b>c a>c -ba >b ,c >d a+c>b+da >b ,c >0 ac>bca >b ,c <0 ac<bca >b >0,c >d >0 ac<bda >b >0 dn>bn (n∈Z,n >1)a >b >0 >(n∈Z,n >1)(a -b )2≥0a ,b∈R a2+b2≥2ab|a|-|b|≤|a±b|≤|a|+|b|证明不等式的基本方法比较法(1)要证明不等式a >b (或a <b ),只需证明a -b >0(或a -b <0=即可(2)若b >0,要证a >b ,只需证明,要证a <b ,只需证明综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。

上海高中高考数学所有公式汇总

上海高中高考数学所有公式汇总

上海高考高三数学所有公式汇总集合命题不等式公式1、C U2、(A B)A B=_____AC U A__C UB____; C U (AA B ___;B) =_____A B BC U A __C U B A______。

B __;C U B C U A__ A B ___;A CUB____ A B ____;C A U B U______ A B _____。

3、含 n 个元素的集合有: __ 2n __个子集, __ 2n1__个真子集, __ 2n1__个非空子集, __ 2n2个非空真子集。

__4、常见结论的否定形式原结论反设词原结论反设词是否至少有一个一个都没有都是不都是至多有一个至少有两个大于小于等于至少有 n 个至多 n-1 个小于大于等于至多有 n 个至少 n+1 个对所有 x 都成立至少有一个 x 不P 或 q(非 p)且(非成立q)对任何 x 都不成至少有一个 x 成P 且 q (非 p)或(非立立q)5、四种命题的相互关系:__原命题 ___与 ___逆否命题 __互为等价命题; ____否命题 ____与 ____逆命题 ___互为等价命题。

6、若 p q ,则 p 是 q 的___充分 ____条件; q 是 p 的____必要 ____条件。

7、基本不等式:( 1)a, b R :________a 2b2等且仅当a b时取等号。

2ab _____________( 2)a, b R :__________a b 2 ab __________等且仅当a b 时取等号。

( 3)绝对值的不等式: __________|| a | | b || | a b | | a || b |_________8、均值不等式:a, b R时,_______2___________ ab ________ a b______a2b2____1122a b等且仅当 a b 时取等号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海高考高三数学所有公式汇总集合命题不等式公式1、()U C A B ⋂=_____U U C A C B ⋃____;()U C A B ⋃=_____U U C A C B ⋂______。

2、A B A ⋂=⇔__A B ⊆___;A B B ⋃=⇔__A B ⊆__;U U C B C A ⊆⇔__A B ⊆___;U A C B ⋂=∅⇔____A B ⊆____;U C A B U ⋃=⇔______A B ⊆_____。

3、含n 个元素的集合有:__2n __个子集,__21n -__个真子集,__21n -__个非空子集,__22n -__个非空真子集。

4、常见结论的否定形式__原命题______逆否命题______否命题____与____逆命题___互为等价命题。

6、若p q ⇒,则p 是q 的___充分____条件;q 是p 的____必要____条件。

7、基本不等式:(1)R b a ∈,:________222a b ab +≥_____________等且仅当b a =时取等号。

(2)+∈R b a ,:__________a b +≥__________等且仅当b a =时取等号。

(3)绝对值的不等式:__________||||||||||||a b a b a b -≤±≤+_________ 8、均值不等式:+∈R b a ,时,_______211a b+______≤_____≤___2a b +___≤____等且仅当b a =时取等号。

9、分式不等式:()0()f x g x ≥⇔()()0()0f x g x g x ⋅≥⎧⎨≠⎩ ()0()f x g x ≤⇔()()0()0f x g x g x ⋅≤⎧⎨≠⎩ 10、绝对值不等式:|()|(0)____()()________________f x a a f x a f x a>>⇔<->或|()|(0)____()__________f x a a a f x a<>⇔-<<11、指、对数不等式:(1)1>a时:()()_____()()_______log()log()_______0()()________f xg xa aa a f x g xf xg x f x g x<⇔<<⇔<<(2)10<<a时:()()______()()________log()log()______()()0________f xg xa aa a f x g xf xg x f x g x<⇔><⇔>>函数公式1、函数)(xfy=的图象与直线ax=交点的个数为 1 个2、一元二次函数解析式的三种形式:一般式:2(0)y ax bx c a=++≠__;顶点式:224()(0)4b ac by a x aa-=++≠_;零点式:____((0)y a x x a=-≠___________。

3、二次函数2()(0)y f x ax bx c a==++≠,[,]x m n∈的最值:10、0a>时,max()22()22b m nf mayb m nf na+⎧->⎪⎪=⎨+⎪-≤⎪⎩min()2()22()2bf n nab by f m na abf m ma⎧-≥⎪⎪⎪=-<-<⎨⎪⎪-≤⎪⎩20、0a<时,max()2()22()2bf n nab by f m na abf m ma⎧-≥⎪⎪⎪=-<-<⎨⎪⎪-≤⎪⎩min()22()22b m nf mayb m nf na+⎧->⎪⎪=⎨+⎪-≤⎪⎩4、奇函数()f x-=_____ ()f x-_____,函数图象关于原点对称;偶函数()f x-=_____ ()f x____=___(||)f x___,函数图象关于y轴对称。

奇函数若在x=0有意义,则)0(f= 05*、若)(xfy=是偶函数,则()f x a+=______()f x a--_______;若()y f x a=+是偶函数,则()f x a+=______()f x a-+_______。

6、函数()y f x=在[,]x m n∈单调递增(减)的定义:_____________任取12,[,]x x m n ∈,且12x x <,若12()()f x f x <,则函数()y f x =在[,]x m n ∈单调递增;若12()()f x f x >,则函数()y f x =在[,]x m n ∈单调递减________。

7、如果函数()f x 和()g x 在R 上单调递减,那么()()f x g x +在R 上单调递__减___,[()]f g x 在R 上单调递___增____。

8、奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。

(填写“相同”或“相反”) 9、互为反函数的两个函数的关系:()f a b =⇔___1()f b a -=_____。

10、)(x f y =与)(1x f y -=互为反函数,设)(x f 的定义域为D ,值域为A ,则有=-)]([1x f f ____)(A x x ∈_____;=-)]([1x f f ______)(D x x ∈______。

11、定义域上的单调函数一定有反函数。

(填写“一定有”,“可能有”,“一定没有”)12、奇函数如果存在反函数,则反函数的奇偶性 奇函数 ;互为反函数的两个函数具有相同的单调性。

(填写“相同”或“相反”) 13、函数)(x f y =的图像向右移a 个单位,上移b 个单位,得函数____b a x f y +-=)(____的图像;曲线(,)0f x y =的图像向右移a 个单位,上移b 个单位,得曲线(,)0f x a y b --=的图像。

1、函数图像的对称性与周期性(1)一个函数)(x f y =本身的对称性与周期性(2)(),(x b f y x a f y -=+=图像关于2ab x -=对称; )(),(x b f y x a f y --=+=图像关于)0,2(ab -对称; ()y f x =和1()y f x -=图像关于____直线y x =_____对称。

2、写出满足下列恒等关系的一个(组)具体的函数:幂指对函数公式1、*______(0,,,1)mm nna aa m n N n -==>∈>2、n =_____||a ___________ n n a a ⎧=⎨±⎩为奇数______ 为偶数3、有理指数幂的运算性质:_______;()__________;()______.(0,0,,)r s r s r s r s r r r a a a a a ab a b a b r s Q +===>>∈4、指数式与对数式的互化:log ___________.(0,1,0)b a N b a N a a N =⇔=>≠>5、对数换底公式:log log __.(0,1,0)log c a c NN a a N a=>≠>,推论:log log m n a a nb b m=⋅ 6、对数的四则运算:(0,1,,0)a a M N >≠>log ()log log ;log log log ;log log n a a a aa a a a MMN M N M N M n M N=+=-=⋅ 7、对数恒等式log a N a =_______N_________(0,1,0)a a N >≠> 8、幂函数:αx y =(α为常数,0≠α),图像恒过点(1,1),画出幂函数在第一象限的图像。

α>1 α=1 0<α<1 α<09、指数函数与对数函数)1,0(≠>=a a a y x )1,0(log ≠>=a a x y a定义域 R),0(+∞值域 ),0(+∞R 奇偶性 非奇非偶非奇非偶单调性a>1 增0<a<1 减a>1 增0<a<1 减图像三角比公式1、设α终边上任意一点坐标为),(y x P ,这点到原点的距离为)0(22>+=r y x r ,则sin ,cos ,tan ,cot ,sec ,csc y x y x r rr r x y x yαααααα======。

2、同角三角比公式:平方关系:1=22cos sin αα+=22sec tan αα-=22csc cot αα-。

商数关系:),2(cos sin tan Z k k ∈+≠=ππαααα ),(sin cos cot Z k k ∈≠=παααα 倒数关系:),(1csc sin Z k k ∈≠=πααα ),2(1sec cos Z k k ∈+≠=ππααα),2(1cot tan Z k k ∈≠=πααα 3、两角和与两角差公式:sin()αβ±=___sin cos cos sin )αβαβ±____;tan()αβ±=__tan tan 1tan tan αβαβ±___ cos()αβ±=___cos cos sin sin )αβαβ___。

4、辅助角公式:sin cos arctan )___(0)ba xb x x a a+=+>5、二倍角公式sin 2α=2sin cos αα;cos2α=22cos sin αα-=22cos 1α-=212sin α--;22tan tan 2___(,,)1tan 224k k k Z απππααπαα=≠+≠+∈- 6、半角公式:sin 2α=cos 2α=),(cos 1sin sin cos 1cos 1cos 12tanZ k k ∈≠+=-=+-±=παααααααα7、万能置换公式:2tan 12tan2sin 2ααα+=,2tan 12tan 1cos 22ααα+-=,2tan 12tan2tan 2ααα-=。

其中)(2,2Z k k k ∈+≠+≠ππαππα8、(理)三角比的积化和差与和差化积公式)]sin()[sin(21cos sin βαβαβα-++=,)]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++=,)]cos()[cos(21sin sin βαβαβα--+-=2cos2sin2sin sin βαβαβα-+=+,2sin2cos2sin sin βαβαβα-+=- 2cos2cos2cos cos βαβαβα-+=+,2sin2sin2cos cos βαβαβα-+-=-9、正弦定理:R CcB b A a 2sin sin sin ===,其中R 是三角形外接圆半径。

相关文档
最新文档