光伏电站设计方案实例
光伏电站设计方案和对策
![光伏电站设计方案和对策](https://img.taocdn.com/s3/m/7aee3cb74793daef5ef7ba0d4a7302768e996fd8.png)
光伏电站设计方案和对策光伏电站是一种利用太阳能将光能直接转化为电能的设施。
在设计光伏电站的方案时,需要考虑多个因素,包括技术可行性、经济性、环境可持续性等。
同时,也需要制定一系列对策,以应对设计和运营过程中可能遇到的问题。
以下是一个关于光伏电站设计方案和对策的示例,供参考。
一、光伏电站设计方案1.地点选择:选择光照充足、阴影较少、地形平整、土壤稳定等地点进行光伏电站的建设。
同时,考虑到电网接入的便利性,选择靠近电力输送线路的位置。
2.光伏组件布局:根据光照强度、太阳高度角等因素,合理确定光伏组件的布局。
可以采用固定架式或跟踪架式,以最大程度地提高光伏组件的能量利用效率。
3.逆变器和电网接入:选择高效的逆变器,并合理设计电网接入方案,确保光伏电站可以稳定地将发电功率输送到电网中,同时确保安全可靠。
4.安全防护:考虑光伏电站的使用寿命长,要做好安全防护,包括防风、防火、防盗等措施。
同时,要定期检查设备,及时发现和修复可能存在的安全隐患。
二、光伏电站设计对策1.降低成本:光伏电站的建设和运营成本通常较高。
可以采取多种对策来降低成本,例如:采购大规模的光伏组件以获得折扣、采用最新的高效技术、提高设备利用率、优化电网接入方案等。
2.提高效率:提高光伏电站的能量利用效率是一个重要目标。
可以通过定期清洁光伏组件、优化组件布局、添加反光镜、使用高效逆变器等方法来提高效率。
3.做好运维管理:光伏电站的长期稳定运行离不开有效的运维管理。
需要建立完善的运维体系,包括定期检查设备、及时处理故障、监测发电量和质量等。
同时,建立合理的预算和采购计划,确保设备的及时维修和更换。
4.环境保护:在光伏电站的设计和运营过程中,要充分考虑环境保护。
可以采用低碳材料、节能设备,减少对土壤、水源和生态环境的影响。
同时,合理安置电站,避免对野生动植物栖息地的破坏。
5.应对天气变化:光伏电站的发电量会受到天气变化的影响。
可以采取多种措施来应对不同天气条件下的发电量波动,例如:安装备用发电设备、添加储能系统、建立智能控制系统等。
10MW光伏电站设计方案
![10MW光伏电站设计方案](https://img.taocdn.com/s3/m/b5cd0f5b876fb84ae45c3b3567ec102de3bddf54.png)
10MW光伏电站设计方案光伏电站是一种利用太阳能光伏技术发电的设施,它具有可再生、清洁、无噪音、无污染等优点,被广泛应用于不同地区的发电领域。
本文将介绍一个10MW的光伏电站设计方案,包括选址、组件选择、系统设计和运营管理等内容。
选址首先,选址是光伏电站建设的关键步骤。
在选址时需要考虑以下因素:日照条件、地形地貌、土地所有权、周围环境等。
为了确保光伏电站的发电效率和稳定性,选址地应具备充足的日照资源,地形地貌平坦,土地所有权清晰,并且周围环境不会对发电效率产生影响。
通过综合考虑这些因素,我们可以选择适合建设10MW光伏电站的区域。
组件选择在光伏电站建设中,组件的选择直接影响电站的发电效率和寿命。
一般来说,光伏组件主要分为单晶硅、多晶硅和薄膜三种类型。
在这里我们选择多晶硅组件,因为它具有成本低、发电效率高、寿命长等优点。
同时,可以选择具有较高转换效率和较长寿命的组件,以确保电站的长期稳定发电。
系统设计光伏电站系统设计包括光伏组件布局、支架设计、电池串并联及逆变器选择等方面。
在光伏组件布局时,要充分考虑组件的朝向、倾角和阴影等因素,以最大程度地提高光伏组件的发电效率。
支架设计是确保光伏组件安全稳定运行的关键,选择合适的支架材料和结构设计可以有效延长光伏电站的使用寿命。
电池串并联设计是保障系统电压和电流稳定输出的关键,根据组件的输出电压和电流选择合适的串并联方式进行布线。
逆变器是将直流电转换为交流电的设备,选择具有高效率、稳定性和可靠性的逆变器是电站系统设计的关键。
运营管理光伏电站的运营管理是确保电站长期稳定运行的重要环节,包括设备监控、故障检修、维护保养等。
通过建立完善的监测系统,对电站的发电情况、设备运行状态、能耗情况等进行实时监控,及时发现故障并进行维修。
定期进行设备维护保养,保持设备的良好状态,延长设备的使用寿命,确保电站的稳定发电。
总结通过以上的光伏电站设计方案,我们可以建设一座10MW的光伏电站,利用太阳能资源进行清洁、可再生的发电。
150MW农光互补光伏电站项目-设计方案
![150MW农光互补光伏电站项目-设计方案](https://img.taocdn.com/s3/m/bdab87dc4b35eefdc9d33376.png)
胶东机场二期用地150MW农光互补光伏电站项目设计方案1、建设目标光伏大棚就是在普通日光大棚的顶部安装太阳能薄膜电池板,利用太阳光能,将太阳辐射分为植物需要的光能和太阳能发电的光能,既满足了植物生长的需要,又实现了光电转换,一棚两用。
大棚生产区是以休闲农业为业态,基于农业文化基因和园区农业基底,融合胶东地区特色民俗风情和上合融通之路沿线非物质文化遗产,集文化体验、生态农业示范、民俗风情体验、亲子娱乐、特色旅居为一体的农耕体验式项目;主旨以农业旅游文化为内涵,以休闲农业为基础,融合主题民俗深度体验和品尚休闲。
利用大棚顶部建设光伏发电场,充分利用清洁能源和可再生能源,为“3060”目标贡献胶州力量。
在项目区内采取一系列积极有效的技术措施,开展多种经营生产,实现经济效益、生态效益和社会效益的三者统一。
2、建设规模及内容本项目规划用地面积约200万平方米,约合3000亩,拟建设光伏日光大棚温室150万平方米,利用大棚棚顶建设150MW集中光伏电站一座,办公及生活区800平方米,广场及停车场8600平方米,道路10500平方米,景观绿化1200平方米,及围墙大门、电气、给排水、消防等其他配套设施。
3、项目宗旨●安全、环保和多功能为标志的现代化农业项目的快速发展,光伏农业大棚项目是观光农业与设施园艺有机结合的产物,它集光伏发电、农业观光、农业作物、农业技术、园林景观及文化发展于一体的创新型农业产业,是资源的合理利用和先进高效的技术充分结合的一种农业产业。
●农业光伏温室大棚是太阳能光伏发电、智能温控、现代高科技种植为一体的温室大棚,采用钢制骨架,上覆太阳能光伏组件,以保证太阳能光伏发电组件的光照要求和整个温室大棚的采光要求。
太阳能光伏发出的直流电直接支持温室大棚农业设备的正常运行,驱动水资源灌溉并解决冬季温室大棚供暖,提高大棚温度,促进作物的快速增长,推动绿色农业生产,真正实现科技、高效的循环生态农业。
●光伏农业大棚电站建设项目,形成农业大棚与屋顶相结合的光伏发电系统,不仅保证了棚内设施的正常运行,而且降低了大棚的电力消耗,是集低碳、节能、环保、旅游为一体的新型农业产业生态项目。
屋顶分布式光伏电站设计及施工方案三篇
![屋顶分布式光伏电站设计及施工方案三篇](https://img.taocdn.com/s3/m/91069bb6ad51f01dc281f1d5.png)
屋顶分布式光伏电站设计及施工方案三篇篇一:屋顶分布式光伏电站设计及施工方案1、项目概况一、项目选址本项目处于山东省聊城市,位于北纬35°47’~37°02’和东经115°16’~116°32‘之间。
地处黄河冲击平原,地势西南高、东北低。
平均坡降约1/7500,海拔高度27.5-49.0米。
属于温带季风气候区,具有显著的季节变化和季风气候特征,属半干旱大陆性气候。
年干燥度为1.7-1.9。
春季干旱多风,回暖迅速,光照充足,太阳辐射强;夏季高温多雨,雨热同季;秋季天高气爽,气温下降快,太阳辐射减弱。
年平均气温为13.1℃。
全年≥0℃积温4884—5001℃,全年≥10℃积温4404—4524℃,热量差异较小,无霜期平均为193—201天。
年平均降水量578.4毫米,最多年降水量为1004.7毫米,最少年降水量为187.2毫米。
全年降水近70%集中在夏季,秋季雨量多于春季,春季干旱发生频繁,冬季降水最少,只占全年的3%左右。
光资源比较充足,年平均日照时数为2567小时,年太阳总辐射为120.1—127.1千卡/cm^2,有效辐射为58.9—62.3千卡/cm^2。
属于太阳能资源三类可利用地区。
结合当地自然条件,根据公司要求的勘察单选定站址,并充分考虑了以下关键要素:1、有无遮光的障碍物(包括远期与近期的遮挡)2、大风、冬季的积雪、结冰、雷击等灾害本方案屋顶有效面积60m2,采用260Wp光伏组件24块组成,共计建设6.44KWp屋顶分布式光伏发电系统。
系统采用1台6KW光伏逆变器将直流电变为220V交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,送入电网。
房屋周围无高大建筑物,在设计时未对此进行阴影分析。
2、配重结构设计根据最新的建筑结构荷载规范GB5009-20XX中,对于屋顶活荷载的要求,方阵基础采用C30混凝土现浇,预埋安装地角螺栓,前后排水泥基础中心间距0.5m。
光伏电站施工方案设计
![光伏电站施工方案设计](https://img.taocdn.com/s3/m/1577c93ea517866fb84ae45c3b3567ec102ddcf7.png)
光伏电站施工方案设计光伏电站是通过太阳能光伏发电技术将太阳能转化为电能的设施,具有环保、可持续、清洁等优点,被广泛应用于能源供应和减少环境污染的领域。
光伏电站的施工方案设计是确保光伏电站能够安全高效地建设和运营的重要环节,下面是一个光伏电站施工方案设计的例子。
一、项目概况该光伏电站项目位于地区,总装机容量为XX兆瓦,用地面积为XX平方米。
项目的建设目标是实现清洁能源的利用,减少对传统能源的依赖和环境污染。
二、项目设计1.光伏组件选型:根据项目的需求和环境条件,选择高效率、高可靠性的光伏组件,确保电站的发电效率和稳定性。
2.数字化监控系统:建立数字化监控系统,实时监测光伏组件的工作状态、发电量、温度等参数,通过数据分析提高电站的运行效率和发电量。
3.逆变器选择:根据光伏组件的电压和电流参数,选择适合的逆变器,确保光伏电能转化为交流电能的效率和稳定性。
4.建设布局设计:根据电站的用地面积和组件选择结果,进行合理的电站布局设计,确保光伏组件的光照和通风条件,以提高发电效率。
5.排水系统设计:根据能够预测的降雨量和地表水位,设计排水系统,将电站区域内的雨水排出,确保电站的安全和正常运行。
6.光伏支架结构设计:根据电站的安装位置和组件选择结果,设计合适的光伏支架结构,并考虑地震、风压等因素,确保支架的稳固和安全性。
7.输电系统设计:根据电站的容量和电网接入条件,设计合适的输电系统,包括电缆敷设、变电站建设等,确保发电能够全部接入电网。
三、施工流程1.土地准备:清理建设用地,确保光伏电站的平整和稳定。
2.基础施工:根据设计要求,进行光伏支架基础的挖掘、预埋件的安装和混凝土浇筑。
3.技术设备安装:安装光伏组件、逆变器、数字监控系统等技术设备,确保安装质量和技术要求。
4.输电系统建设:进行电缆敷设、变电站建设等相关工程,确保发电能够全部接入电网。
5.系统调试:对光伏组件、逆变器、数字监控系统等设备进行调试和测试,确保设备的正常运行。
40KW光伏电站设计方案
![40KW光伏电站设计方案](https://img.taocdn.com/s3/m/cd541524c1c708a1294a4420.png)
屋顶40KW并网发电方案
设计者:
日期:2021-4-18
目录
第一、.工程综合说明
第二、整体方案设计和布局
第三、配件选择
第四、工程概算
第五、效益测算
第一章、.工程综合说明
装机容量为40KWh,年均生产发电量为43800KWH(度).其中大局部自行消耗,余电送入国家电网。
1.2装机地点为:周村
1.3目的:工程建成后即可为建筑提供新电源,又不增加环境压力,还可以起到良好的环境保护示范宣传作用,具有明显的社会效益和环境效益。
第二章、整体方案设计和布局
55瓦30V多晶硅电池组件,数量为160pcs,合计装机容量为kw。
0片一组,分为8组阵列
构成部件由太阳能电池板〔组件〕、逆变器、支架及变配电会流系统组成布局:
第三章、配件选择
3.1太阳能电池板〔组件〕
.
3.2逆变器,选用20KW并网型逆变器2组三相380VAC逆变
汇流箱
A10汇一汇流箱,可以通过断路器进展限流保护B回路耐压大于>1000vdc;C 防雷功能
3.4支架,依照现场再定
第四章,固定资产投资估算表
序号工程名称单位数量单价
〔元〕综合投
资〔万〕
备注
1 太阳能电池板片160
第五、效益测算
年均生产发电量为43800,按上网电价0.98度/元计算,年收入42924,6-7年收回本钱,剩余18年全部为收益。
如果卖给业主参考当地电价,国家补助0.42元/度。
典型案例
【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。
300kw光伏电站设计方案
![300kw光伏电站设计方案](https://img.taocdn.com/s3/m/cdb71c64abea998fcc22bcd126fff705cc175ce0.png)
300kw光伏电站设计方案一、引言随着全球能源危机的不断加剧,清洁能源的开发利用成为解决能源问题的关键。
光伏电站作为最常见的清洁能源发电方式之一,具有环保、可再生、分布广泛等优势,逐渐受到人们的关注。
本文将详细介绍一种300kw的光伏电站设计方案。
二、方案概述本方案的目标是建设一座300kw的光伏电站,以太阳能光伏电池板为发电装置,通过光电转换将太阳能转化为电能。
该电站的设计经济寿命为20年,建设周期为6个月。
电站预计年发电量为400,000 kWh,可满足周边地区居民的用电需求。
三、选址与布局1. 选址要求光伏电站选址应充分考虑日照条件、地形地貌、土地使用、电力输送、环境保护等要素。
选址应尽量选择日照充足、地形平坦的地区,避免遮挡物对光伏电池板的影响。
同时,选址应符合国家规定的土地使用政策,避免占用农田等受限用地。
2. 布局设计根据选址情况和电站规模,将太阳能光伏电池板合理布置在场地上。
电池板间距应适度,避免阴影遮挡。
同时,在布置光伏电池板时要考虑维护通道的设置,方便设备的安装和维护。
四、光伏电池板选型与布置1. 电池板选型根据300kw光伏电站的需求,选择高效、稳定性好的太阳能光伏电池板。
考虑到电站的经济性,可以选择多晶硅或单晶硅太阳能电池板,具体型号和参数需根据实际情况进行选择。
2. 电池板布置在选定的电站布局上,按照电池板的尺寸和方向进行布置。
为了最大程度利用光能,电池板的倾斜角度应与当地地理纬度相对应,可采用固定式或可调式支架进行安装。
五、逆变器与电网连接1. 逆变器选择逆变器是将太阳能光伏电池板输出的直流电转换为交流电的关键设备。
根据电站的需求,选择逆变器时要考虑其额定功率、效率、可靠性等因素。
逆变器的品牌和型号需根据实际情况进行选择。
2. 电网连接将逆变器输出的交流电通过电缆连接至电网系统。
需符合电力行业相关的安全管理规定和标准,确保电网连接的安全稳定。
六、电站运维与监测1. 运维管理建设光伏电站后,需建立相应的运维管理团队,负责设备定期检查、维护和故障排除。
300kw光伏电站设计方案
![300kw光伏电站设计方案](https://img.taocdn.com/s3/m/9749da0ee55c3b3567ec102de2bd960590c6d93b.png)
300kw光伏电站设计方案一、项目背景随着清洁能源的日益重视和可再生能源的发展,光伏电站作为一种绿色、环保的能源发电项目受到越来越多的关注。
本设计方案旨在为建设一座300KW的光伏电站提供详尽的设计指导。
二、总体设计思路1. 建设地点:本光伏电站计划选址于阳光较为充足的地区,具备较高的发电潜力。
2. 光伏组件:选用高效率太阳能光伏电池组件,确保光伏电站的发电效率和性能。
3. 收益计算:基于光伏发电的经济回报,通过光伏发电成本与发电收益之间的比较,计算出预期的投资回报周期。
4. 并网接入:将光伏电站与电网进行并网接入,实现电力的互补利用和销售,确保电站在不同气候条件下的稳定发电。
三、具体设计方案1. 光伏电站规模:本设计方案拟建设一座300KW的光伏电站,通过合理的布局和光伏组件的配置,使得光伏电站在充足的阳光条件下能够达到较高的发电效率。
2. 光伏组件选型:选择高效率的多晶硅太阳能电池组件,确保光伏系统具备较高的发电效率和稳定性。
同时,考虑光伏组件的寿命和维护成本,选择具有良好质量保证的厂家供应商。
3. 电站布局设计:根据场地条件和光伏组件的大小,合理规划电站的布局,确保光伏电站能够最大程度地利用可用的空间,提高发电效率。
4. 支架系统和阵列设计:选择适合本项目的支架系统,确保光伏组件能够稳定地固定在支架上,同时优化组件之间的布置和角度,以获得更好的太阳能吸收效果。
5. 逆变器选型:选择高效率的逆变器设备,将直流电能转换为交流电能,并保持电能输出的稳定性和可靠性。
6. 并网接入设计:根据地区的并网接入要求,进行并网装置的设计和选型,确保光伏电站与电网的安全连接和正常运行。
四、环境影响评价在光伏电站设计方案结束之后,需要进行环境影响评价,以评估光伏电站建设和运营对环境的影响程度。
主要评估内容包括但不限于对土壤、水资源和生态环境的影响等,以及相应的环境保护和修复措施。
五、经济效益分析在光伏电站的设计方案中,需要对投资回报率、年发电量、发电收益等进行详细计算和分析,以评估项目的经济效益。
光伏电站设计方案实例
![光伏电站设计方案实例](https://img.taocdn.com/s3/m/b4af34c7bdeb19e8b8f67c1cfad6195f312be8eb.png)
光伏电站设计方案实例光伏电站是利用太阳能发电的一种可再生能源电站,它通过将太阳能转换为电能,实现了清洁、环保的发电方式。
光伏电站的设计方案需要考虑多个因素,包括地理位置、光照条件、设备选择和布局等。
以下是一个光伏电站设计方案的实例,该电站位于中国南部的一个阳光资源较为丰富的地区。
1.地理位置:电站选址在一个开阔的平原地区,避免有大量阴影的地方,以确保光伏组件能够充分接收到阳光。
地理位置应具备便利的输电条件,以方便将发电的电能输送到市区。
2.光照条件:该地区的年均光照时间较长,阳光照射强度较高。
在选址时要选择较少被阴影覆盖、较平坦的地块,以确保光伏组件能够最大程度地吸收太阳能。
3.设备选择:光伏电站所需的主要设备包括光伏组件、逆变器、电池组和配电系统等。
在光伏组件的选择上,应优先考虑高效、耐久的产品,如单晶硅光伏组件。
逆变器应具备高转换效率和稳定性,能够将直流电转换为交流电并输出给电网。
电池组应能够存储多余的电能,以应对夜间或阴天等情况。
4.布局设计:光伏电站的布局设计应遵循最佳利用土地和光照条件的原则。
光伏组件可以采用固定倾斜安装或可调角度安装,以获取最佳的太阳能吸收效果。
每个光伏组件之间需要有一定的间距,以便维护和清洁。
5.电网连接:光伏电站应与电网连接,以便将发电的电能输送出去。
连接方式可以是并网式,即将发电的电能直接输入到电网中;也可以是离网式,即将发电的电能存储到电池组中,再根据需要使用或向电网供电。
6.安全措施:光伏电站的设计也需要考虑安全因素。
电站周边应设置安全栏杆和警示标志,以保护现场人员的安全。
电站内部应有防雷系统和地网接地系统,以防雷击和火灾风险。
7.运维管理:光伏电站的运维管理也是一个重要的方面。
应建立完善的运维管理体系,包括定期巡检、设备维护和故障处理等。
定期的清洁和设备检查可以保证光伏组件的正常运行和发电效率。
该光伏电站设计方案考虑了地理位置、光照条件、设备选择和布局等多个因素,以最大程度地提高电站的发电效率和利用率。
光伏电站项目方案设计实用模板
![光伏电站项目方案设计实用模板](https://img.taocdn.com/s3/m/19fc70c14afe04a1b071dedb.png)
实用文案文案大全XX光伏系统有限公司项目实施方案项目地址:设计单位:联系电话:江苏常州XXX分布式光伏电站项目2016年6月目录一、工程概况 (3)二、项目意义及主要内容 (3)1.项目意义 (3)2.主要内容 (3)三、技术方案 (3)1.组件排布 (3)2.结构设计 (4)3.发电系统设计 (5)四、设备参数 (6)1.光伏组件 (6)2.并网逆变器 (6)五、物料清单 (6)六、系统效率和发电量 (7)1.太阳能光电系统效率 (7)2.发电量 (7)3.节能计算 (7)七、投资收益 (7)1.财政补贴 (8)2.并网 (8)3.投资分析 (8)一、工程概况项目名称:山东莱州32.13kW分布式并网光伏电站项目项目建设所在地位于山东莱州居民屋顶。
项目所属屋顶初估安装102片315W 多晶硅光伏组件。
此分布式并网光伏电站项目暂时按1个32.13kWp光伏系统,采用380V低压并网,项目所发电量全部卖入电网。
二、项目意义及主要内容1. 项目意义屋顶分布式太阳能发电站为分布式光伏发电的一种形式,在本文中简称分布式光伏电站。
分布式太阳能是利用闲置屋面和建筑内部电网实现太阳能并网发电,不占用建筑额外可利用空间和额外的土地资源,达到增加建筑美感;增强建筑本身节能效果;提供绿色电力,进一步达到了节能和减排的综合效果,并具有较好的经济收益。
2. 主要内容本光伏并网电站总安装功率为32.13kWp,系统由102块315W光伏组件,1台33kW并网逆变器,1台并网计量箱和电缆等配件组成。
光伏电站的交流侧在电网侧380V一点低压并网,电站发出电力全部送到电网。
三、技术方案1. 组件排布太阳能组件以最佳倾角安装在楼顶及地面区域(共102块)。
注:地面西侧组件探出围墙约50cm。
2. 结构设计光伏板采用不打孔、不生根的支架安装方案,首先将混凝土预制块搁置在屋面,然后安装支架及光伏板,该安装方案对屋面几乎无影响。
安装效果图如下:步骤一:布置混凝土预制块步骤二:安装支架步骤三:安装光伏板屋顶光伏方阵安装方案3. 发电系统设计本项目太阳能光伏发电系统由光伏组件、并网逆变器、配电箱、电表构成。
10MW光伏电站设计方案
![10MW光伏电站设计方案](https://img.taocdn.com/s3/m/79c706aeed3a87c24028915f804d2b160b4e86a7.png)
<1>光伏阵列效率η 1:光伏阵列在1000W/㎡太阳辐射强度下,实际的直流输出功率与标称功率之比.光伏阵列在能量转换过程中的损失包括:组件的匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度影响、最大功率点跟踪精度、与直流路线损失等,取效率85%计算.<2>逆变器转换效率η2:逆变器输出的交流电功率与直流输入功率之比,取逆变器效率95%计算.<3>交流并网效率η3:从逆变器输出至高压电网的传输效率,其中主要是升压变压器的效率,取变压器效率95%计算.<4>系统总效率为:η总=η 1 ×η2×η3=85%×95%×95%=77%3、倾斜面光伏阵列表面的太阳能辐射量计算从气象站得到的资料,均为水平面上的太阳能辐射量,需要换算成光伏阵列倾斜面的辐射量才干进行发电量的计算.对于某一倾角固定安装的光伏阵列,所接受的太阳辐射能与倾角有关,较简便的辐射量计算经验公式为:Rβ=S×[sin<α+β>/sinα]+D式中:Rβ--倾斜光伏阵列面上的太阳能总辐射量S--水平面上太阳直接辐射量D--散射辐射量α-- 中午时分的太阳高度角β--光伏阵列倾角根据当地气象局提供的太阳能辐射数据,按上述公式计算不同倾斜面的太阳辐射量,具体数据见下表:不同倾斜面各月的太阳辐射量<KWH/m2>4、太阳能光伏组件串并联方案太阳能光伏组件串联的组件数量Ns=560/23.5±0.5=24<块>,这里考虑温度变化系数, 取太阳能电池组件18块串联,单列串联功率P=18×165Wp=2970Wp;单台250KW 逆变器需要配置太阳能电池组件串联的数量Np=250000÷2970≈85列,1 兆瓦太阳能光伏电伏阵列单元设计为340列支路并联,共计6120块太阳能电池组件,实际功率达到1009.8KWp.整个10兆瓦系统所需165Wp 电池组件的数量M1=10×6120=61200<块>,实际功率达到10.098兆瓦.该工程光伏并网发电系统需要165Wp 的多晶硅太阳能电池组件61200块,18块串联,3400列支路并联的阵列.5、太阳能光伏阵列的布置<1>光伏电池组件阵列间距设计为了避免阵列之间遮阴,光伏电池组件阵列间距应不小于D:D=0.707H/tan〔arcsin<0.648cosΦ-0.399sinΦ>〕式中Φ 为当地地理纬度<在北半球为正,南半球为负>,H 为阵列前排最高点与后排组件最低位置的高度差>.根据上式计算,求得:D=5025㎜.取光伏电池组件先后排阵列间距5.5米.<2>太阳能光伏组件阵列单列罗列面布置见下图:<三>直流配电柜设计每台直流配电柜按照250KWp 的直流配电单元进行设计,1兆瓦光伏并网单元需要4台直流配电柜.每一个直流配电单元可接入10路光伏方阵防雷汇流箱,10兆瓦光伏并网系统共需配置40台直流配电柜.每台直流配电柜分别接入1台250KW 逆变器,如下图所示:直流配电柜每一个1MW 并网单元可另配备一套群控器<选配件>,其功能如下:<1>群控功能的解释:这种网络拓朴结构和控制方式适合大功率光伏阵列在多台逆变器公用可分断直流母线时使用,可以有效增加系统的总发电效率.<2>当太阳升起时,群控器控制所有的群控用直流接触器KM1~KM3闭合,并指定一台逆变器INV1首先工作,而其他逆变器处于待机状态.随着光伏阵列输出能量的不断增大,当INV1的功率达到80%以上时,控制直流接触器KM2断开, 同时控制INV3进行工作.随着日照继续增大,将按上述顺序挨次投入逆变器运行;太阳落山时,则按相反顺序挨次断开逆变器.从而最大限度地减少每台逆变器在低负载、低效率状态下的运行时间,提高系统的整体发电效率.<3>群控器可以通过RS485总线获取各个逆变器的运行参数、故障状态和发电参数, 以作出运行方式判断.<4>群控器同时提供友好的人机界面.用户可以直接通过LCD和按键实现运行参数察看、运行模式设定等功能.<5>用户可以通过手动方式解除群控运行模式.<6>群控器支持至少20台逆变器按照群控模式并联运行.<四>太阳能光伏并网逆变器的选择此太阳能光伏并网发电系统设计为10个1兆瓦的光伏并网发电单元,每一个并网发电单元需要4台功率为250KW 的逆变器,整个系统配置40台此种型号的光伏并网逆变器,组成10兆瓦并网发电系统.选用性能可靠、效率高、可进行多机并联的逆变设备,本方案选用额定容量为250KW 的逆变器,主要技术参数列于下表:表:250KW 并网逆变器性能参数表1、性能特点选用光伏并网逆变器采用32位专用DSP<LF2407A>控制芯片,主电路采用智能功率IPM 模块组装,运用电流控制型PWM 有源逆变技术和优质进口高效隔离变压器,可靠性高,保护功能齐全,且具有电网侧高功率因数正弦波电流、无谐波污染供电等特点.该并网逆变器的主要技术性能特点如下:<1>采用32位DSP 芯片进行控制;<2>采用智能功率模块<IPM>;<3>太阳电池组件最大功率跟踪技术<MPPT>;<4>50Hz 工频隔离变压器,实现光伏阵列和电网之间的相互隔离;系统中采用的负荷开关,通常为具有接通、隔断和接地功能的三工位负荷开关.变压器馈线间隔还增加高遮断容量后备式限流熔断器来提供保护.这是一种简单、可靠而又经济的配电方式.<2>高遮断容量后备式限流熔断器的选择由于光伏并网发电系统的造价昂贵,在发生路线故障时,要求路线切断时间短, 以保护设备.熔断器的特性要求具有精确的时间- 电流特性<可提供精确的始熔曲线和熔断曲线>;有良好的抗老化能力;达到熔断值时能够快速熔断;要有良好的切断故障电流能力,可有效切断故障电流.根据以上特性,可以把该熔断器作为路线保护,和并网逆变器以与整个光伏并网系统的保护使用,并通过选择合适的熔丝曲线和配合,实现上级熔断器与下级熔断器与熔断器与变电站保护之间的配合.对于35kV 路线保护,《3- 110kV 电网继电保护装置运行整定规程》要求:除极少数有稳定问题的路线外,路线保护动作时间以保护电力设备的安全和满足规程要求的选择性为主要依据,不必要求速动保护快速切除故障.通过选用性能优良的熔断器,能够大大提高路线在故障时的反应速度, 降低事故跳闸率, 更好地保护整个光伏并网发电系统.<3>中压防雷保护单元该中压防雷保护单元选用复合式过电压保护器,可有效限制大气过电压与各种真空断路器引起的操作过电压,对相间和相对地的过电压均能起到可靠的限制作用..该复合式过电压保护器非但能保护截流过电压、多次重燃过电压与三相同时开断过电压, 而且能保护雷电过电压.过电压保护器采用硅橡胶复合外套整体模压一次成形,外形美观, 引出线采用硅橡胶高压电缆,除四个线鼻子为裸导体外,其他部份被绝缘体封闭,故用户在安装时,无需考虑它的相间距离和对地距离.该产品可直接安装在高压开关柜的底盘或者互感器室内.安装时,只需将标有接地符号单元的电缆接地外,其余分别接A 、B、C 三相即可.设置自控接入装置对消除谐振过电压也具有一定作用.当谐振过电压幅值高至危害电气设备时,该防雷模块接入电网, 电容器增大主回路电容,有利于破坏谐振条件, 电阻阻尼震荡,有利于降低谐振过电压幅值.所以可以在高次谐波含量较高的电网中工作,适应的电网运行环境更广.此外,该防雷单元可增设自动控制设备,如放电记录器,清晰掌控工作动作状况.可以配置自动脱离装置,当设备过压或者处于故障时,脱离开电网,确保正常运行.<4>中压电能计量表中压电能计量表是真正反应整个光伏并网发电系统发电量的计量装置,其准确度和稳定性十分重要.采用性能优良的高精度电能计量表至关重要.为保证发电数据的安全,建议在高压计量回路同时装一块机械式计量表,作为IC 式电能表的备用或者参考.该电表不仅要有优越的测量技术,还要有非常高的抗干扰能力和可靠性. 同时,该电表还可以提供灵便的功能:显示电表数据、显示费率、显示损耗<ZV>、状态信息、警报、参数等.此外,显示的内容、功能和参数可通过光电通讯口用维护软件来修改.通过光电通讯口,还.可以处理报警信号,读取电表数据和参数.3、监控装置系统采用高性能工业控制PC 机作为系统的监控主机,可以每天24小时不间断对所有的并网逆变器进行运行数据的监测.光伏并网系统的监测软件使用本公司开辟的大型光伏并网系统专用网络版监测软件SPS-PVNET<Ver2.0>.该软件可连续记录运行数据和故障数据:<1>要求提供多机通讯软件,采用RS485或者Ethernet<以太网>远程通讯方式,实时采集电站设备运行状态与工作参数并上传到监控主机.<2>要求监控主机至少可以显示下列信息:①可实时显示电站的当前发电总功率、日总发电量、累计总发电量、累计CO2总减排量以与每天发电功率曲线图.②可查看每台逆变器的运行参数,主要包括:A、直流电压B、直流电流C、直流功率D、交流电压E、交流电流F、逆变器机内温度G、时钟.H、频率I、功率因数J、当前发电功率K、日发电量L、累计发电量M、累计CO2减排量N、每天发电功率曲线图③监控所有逆变器的运行状态,采用声光报警方式提示设备浮现故障,可查看故障原因与故障时间,监控的故障信息至少因包括以下内容:A、电网电压过高;B、电网电压过低;C、电网频率过高;D、电网频率过低;E、直流电压过高;F、直流电压过低;G、逆变器过载;H、逆变器过热;I、逆变器短路;J、散热器过热;K、逆变器孤岛;L 、DSP 故障;M、通讯失败;<3>要求监控软件集成环境监测功能,主要包括日照强度、风速、风向、室外温度、室内温度和电池板温度等参量.<4>要求最短每隔5分钟存储一次电站所有运行数据,包括环境数据.故障数据需要实时存储.<5>要求至少可以连续存储20年以上的电站所有的运行数据和所有的故障纪录.<6>要求至少提供中文和英文两种语言版本.<7>要求可以长期24小时不间断运行在中文WINDOWS2000,XP 操作系统<8>要求使用高可靠性工业PC 作为监控主机<9>要求提供多种远端故障报警方式,至少包括:SMS<短信>方式,E_MAIL 方式,FAX 方式.<10>监控器在电网需要停电的时候应能接收电网的调度指令.4、环境监测装置在太阳能光伏发电场内配置1套环境监测仪,实时监测日照强度、风速、风向、温度等参.数该装置由风速传感器、风向传感器、日照辐射表、测温探头、控制盒与支架组成.可测量环境温度、风速、风向和辐射强度等参量,其通讯接口可接入并网监控装置的监测系统,实时记录环境数据.5、系统防雷接地装置为了保证本工程光伏并网发电系统安全可靠,防止因雷击、浪涌等外在因素导致系统器件的损坏等情况发生,系统的防雷接地装置必不可少.<1>地线是避雷、防雷的关键,在进行配电室基础建设和太阳电池方阵基础建设的同时, 选择电厂附近土层较厚、潮湿的地点,挖1~2米深地线坑,采用40扁钢,添加降阻剂并引出地线,引出线采用35mm2铜芯电缆,接地电阻应小于4欧姆.<2>直流侧防雷措施:电池支架应保证良好的接地,太阳能电池阵列连接电缆接入光伏阵列防雷汇流箱,汇流箱内含高压防雷器保护装置, 电池阵列汇流后再接入直流防雷配电柜,经过多级防雷装置可有效地避免雷击导致设备的损坏.<3>交流侧防雷措施:每台逆变器的交流输出经交流防雷柜<内含防雷保护装置>接入电网,可有效地避免雷击和电网浪涌导致设备的损坏,所有的机柜要有良好的接地.。
光伏农业电站典型设计方案推荐
![光伏农业电站典型设计方案推荐](https://img.taocdn.com/s3/m/77c67d7a905f804d2b160b4e767f5acfa1c78306.png)
一、项目主体定位在规划区域建设光伏农业产业化示范基地,占地约2000亩。
是在整合并利用县内的资源、产业和区位等优势的在规划范围内范围借助光伏产业发展,优先发展现代农业,由政府引导、企业运作,用工业园区的理念来建设和管理,以推进农业现代化进程、增加农民收入为目标,以现代科技和物质装备为基础,实施集约化生产和企业化经管,集农业生产、科技、生态、观光等多种功能为一体的综合性示范园区。
项目建成后将成为省级设施先进、农业功能系统设计合理,具有代表性和示范性的现代化光伏农业产业示范基地。
本项目拟引用以色列先进的温室技术,结合当地气候特点,产品定位上作为当地高端农产品的出产基地,带动当地并辐射到三百公里范围周边的高端农产品(包括高端有机果蔬、菌类、药材)的生产,乃至成为高端、跨地域经济作物的生产基地。
二、总体方案设计方案布置:建设联栋温室大棚90座,多功能大棚75座,总体定位为生产有机、高端、高附加值的果蔬、菌类等经济作物。
总容量:50MW。
联栋温室大棚:每座大棚占地面积6000m2(不包括前后道路面积5110m2),安装容量492.8kW;大棚棚顶呈南北向布置,南侧棚顶布置光伏组件,组件推荐选用单晶硅280W高效组件;联栋温室大棚主要是用于在不同季节对温度要求的不同作物间作或混作。
根据不同作物的生育期长短,合理衔接套种。
需光特性不同蔬菜的立体栽培,充分利用棚内空间和光照特点,发挥有限地面的生产潜力。
多功能棚:每座大棚占地面积3000m2(不包括前后道路面积1425m2),安装容量73.92kW;在多功能棚中,组件布置在菌房的棚顶,组件推荐选用单晶硅280W高效组件。
多功能棚属于智能光伏农业。
棚前做冬暖大棚种植植物,棚后做工厂化食用菌养殖,棚顶发电。
一棚三用,能量循环、节水、节地、节能。
光伏电站设计方案实例
![光伏电站设计方案实例](https://img.taocdn.com/s3/m/e1ed81fa0722192e4436f6dd.png)
光伏电站设计方案实例(总7页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March甘肃某建筑屋顶光伏发电系统初步设计方案一、项目背景1、项目意义(略)2、项目建设地基本信息:、建设地:甘肃某地、当地地理纬度: 36°左右,、年平均太阳能辐射资源:㎡·day、当地气温:最高气温:38°C,最低气温:-20°C、光伏电站建设布局及占地面积屋顶面积:58x35=2030平方米,朝向:正南设计阵列朝向:正南三、项目规模预计最大装机容量:2030m²x130W/m²=264kW四、方案设计1、逆变器初选:根据初步预算容量选用5台50千瓦串接式逆变器。
MPPT范围:350-800V最大输入电压:1000V2、组件选择:选用300Wp光伏组件。
3、支架倾角设计:鉴于该建筑朝向东南45度,为了综合考虑朝向非正南对发电的影响,设计光伏支架倾角为30°。
支架结构设计(略)支架基础设计(略)4、平面设计及阵列排布(1)采用光伏组件横向排布,上下2层支架设计,18块一串,阵列总长18米。
每个阵列有18x2=36块组件封2串组成,合计10800Wp。
(2)计算阵列占地投影宽度米,遮阴间距米,取值米。
错误:上面说,横向排布,上下2层支架设计,18块一串,阵列总长18米。
L 阵列斜长应为4米。
投影宽度米,遮阴间距米.(3)设计布局8排,共计24个阵列,总设计安装容量(如果设计布局7排,共计21个阵列,总设计安装容量,前后空间比较大)5、总平面布置图:6、电路设计(略)五、投资预算:1、静态投资:序号项目单价(元)合计(万元)1电站单晶硅光伏组件Wp25台50kVA逆变器等并网配件Wp25 3C型钢支架Wp13屋面混凝土基础Wp4电缆Wp接入系统Wp5其他配件Wp6安装劳务费等W7其他Wp8盈利、税、25%总投资约万元人民币,折合每峰瓦元人民币注:该预算不含土地或场地、特别地区的运输等费用,劳务费支出仅供参考,实际支出应根据当地实际情况和管理水平计算。
光伏电站设计方案实例
![光伏电站设计方案实例](https://img.taocdn.com/s3/m/0389c948854769eae009581b6bd97f192279bfce.png)
光伏电站设计方案实例光伏电站是一种利用太阳能光伏效应直接转换为电能的设施。
它由光伏电池阵列、逆变器、连接设备和配电网络等组成。
光伏电站的设计方案需要考虑太阳能资源、电站规模、场地选择、模块布局、电网连接等多个因素。
下面是一个光伏电站设计方案实例。
该光伏电站位于地区,该地区具有充足的太阳能资源,适宜建设光伏电站。
电站规模为1万千瓦,占地面积约为60亩。
1.场地选择首先,选择电站建设的场地。
该场地需满足以下要求:与光伏电站属地区高压输电线路及变电站近距离,避免输电损耗;地势平坦,无遮挡物;土地性质符合国家政策法规;场地使用权明确且容易办理。
2.光伏电池阵列布局根据场地的形状和面积,将光伏电池阵列布置在最佳的方向上。
考虑到该地区的纬度和经度,确定光污染较小的南向朝向为主要布置方向。
在阵列布局中需考虑模块的间距、角度、并网方式和遮挡率等因素,以最大程度地利用太阳能资源。
3.逆变器和配电网络设计根据光伏电池阵列的输出特性和电站规模,选择合适的逆变器。
逆变器具有MPPT(最大功率点跟踪)功能,通过调整电压和电流的比例,使得电池阵列能够输出最大的功率。
同时,设计合理的配电网络,以保证电能的高效输送和分配。
4.电网连接光伏电站与电网的连接方式有并网式和离网式两种。
由于该电站规模较大且属于商业运营型电站,选择采用并网式连接方式。
与电网接入需符合国家电力部门的规范和要求,确保电站的运营安全和稳定。
5.监控系统设计针对光伏电站的实时监测和管理,设计合理的监控系统。
监控系统可以实时获取光伏电池阵列的工作状态、发电功率、温度等信息,并能进行故障检测和报警。
通过监控系统,可以实现对电站的远程控制和运维管理。
6.项目经济效益评估最后,对光伏电站的经济效益进行评估。
根据电站的发电量和并网价格,计算电站的年发电收入。
同时,考虑建设成本、运维成本、收益年限等因素,进行投资回报期和净现值分析,评估项目的经济可行性。
综合考虑以上因素,设计出的光伏电站方案可以提供清洁且可持续的能源供应,为当地提供更多的电力资源,并减少对传统能源的依赖。
1MW容量屋顶分布式光伏电站方案设计
![1MW容量屋顶分布式光伏电站方案设计](https://img.taocdn.com/s3/m/33afb5c9770bf78a652954bb.png)
1MW容量屋顶分布式光伏电站方案一、区域概况陕西省位于中国内陆腹地,黄河中游,地处N 31°42′~39°35′,E 105°35′~111°35′之间。
东邻山西、河南,西连宁夏、甘肃,南抵四川、湖北,北接内蒙,居于连接中国东、中部地区和西北、西南的重要位置。
全省地域南北长、东西窄,南北长约870km,东西宽200km~500km。
境内气候差异很大,由北向南渐次过度为温带、暖温带和北亚热带。
年平均降水量576.9mm,年平均气温13.0℃,无霜期218天左右。
陕西地势的总特点是南北高,中部低;同时,地势由西向东倾斜的特点也很明显;北部是陕北高原,中部是关中平原,南部是秦巴山地。
图2.1 陕西省太阳能资源空间变化分布图(单位:kWh/m2·a) 陕西全省年平均太阳总辐射量为4410MJ/m2~5800MJ/m2,年平均日照时数在1270h~2900h之间。
从图2.1中可看出,太阳总辐射量的空间分布特征是北部多于南部,南北相差约1300MJ/m2,高值区位于陕北长城沿线一带及渭北东部区域,年太阳总辐射量为5000MJ/m2~5800MJ/m2,低值区主要分布于关中西部,年太阳总辐射量为4400MJ/m2~4800MJ/m2。
西安市位于东经107.40°~109.49°和北纬33.42°~34.45°之间,地处渭河流域中部关中盆地,北临渭河和黄土高原,南邻秦岭。
西安市平原地区属暖温带半湿润大陆性季风气候,冷暖干湿四季分明。
冬季寒冷、风小、多雾、少雨雪;春季温暖、干燥、多风、气候多变;夏季炎热多雨,伏旱突出,多雷雨大风;秋季凉爽,气温速降,秋淋明显。
年平均气温13.0~13.7℃,最冷1月份平均气温-1.2~0℃,最热7月份平均气温26.3~26.6℃,年极端最低气温-21.2℃,年极端最高气温43.4℃。
年降水量522.4~719.5mm,由北向南递增。
2MW光伏电站设计方案
![2MW光伏电站设计方案](https://img.taocdn.com/s3/m/fd6bec6c7275a417866fb84ae45c3b3567ecddcf.png)
2MW光伏电站设计方案一、项目概述光伏电站是一种以太阳能光伏发电技术为基础,将太阳能转化为电能供给电力系统使用的设施。
本设计方案旨在建设一个2MW的光伏电站,为当地提供可持续的清洁能源,并促进环境保护。
二、项目选址在选址方面,应优先选择日照充足、地形平整、无遮挡物、地势较高且不易被洪水淹没的地区。
同时,还需考虑到电站与电网之间传输线路的便捷性,并确保光伏电站与人口聚集区、生态环境、农田和水源地的距离合理。
三、光伏组件及布局在光伏组件的选择上,应采用高效率的多晶硅太阳能电池组件或单晶硅太阳能电池组件。
将电池组件布置在宽敞开阔的场地上,并按照一定的方向和倾斜角度安装,以获取尽可能多的太阳辐射,并提高光伏发电效率。
四、逆变器和电网连接逆变器是将直流电能转化为交流电能的关键设备,应选择高效率、可靠性好的逆变器,并合理布置在电站中。
通过与电网的连接,将光伏发电的交流电能纳入电力系统,为当地供电。
五、电站运维和安全电站的运维管理是确保正常发电和运行的重要环节。
需要建立专业的电站管理团队,定期检查维护光伏组件、逆变器等设备,并进行清洁和防尘工作,以保持较高的发电效率。
同时,还要制定完善的安全管理制度,确保工作人员的人身安全,并有效应对自然灾害和事故风险。
六、环保措施为减少对环境的影响,光伏电站应采取一系列环保措施。
首先,要建立完善的噪声控制设施,减少电站运行时产生的噪音。
其次,要合理规划电站区域内的植被和排水系统,防止土壤侵蚀和水污染,并促进生态恢复。
此外,还应推广使用无公害和环境友好的清洁能源设备和材料,减少对环境的污染。
七、经济效益和社会效益光伏电站建设不仅可以提供可持续的清洁能源,还可以创造就业机会,促进经济发展。
在经济效益方面,光伏电站可以通过发电销售获得收入,并享受政府给予的太阳能发电补贴和税收优惠政策。
在社会效益方面,光伏电站的建设可以减少对传统能源的依赖,降低二氧化碳等温室气体的排放,改善当地的空气质量和生态环境。
光伏电站典型工程案例
![光伏电站典型工程案例](https://img.taocdn.com/s3/m/9b4dd574f08583d049649b6648d7c1c708a10b8e.png)
光伏电站典型工程案例一、青海塔拉滩光伏电站。
这个光伏电站可不得了啊!你想啊,在青海那片广袤的土地上,塔拉滩就像一块巨大的“太阳电池板试验田”。
1. 选址的智慧。
当初选这儿啊,那可是经过深思熟虑的。
塔拉滩日照时间超长,一年到头大部分时间都是阳光明媚的。
就像老天爷专门为光伏电站留了个绝佳的位置一样。
而且啊,那里地势比较平坦开阔,这就给大规模铺设光伏板提供了超级便利的条件。
就好比给你一块平坦的大画布,你可以尽情地在上面画画一样,工程师们可以毫无阻碍地在这片土地上布局光伏阵列。
2. 面临的挑战与解决办法。
不过呢,也不是一帆风顺的。
比如说那里的风沙特别大,这对光伏板来说可是个大麻烦。
沙子要是盖住了光伏板,那它还怎么好好地吸收阳光发电呢?于是啊,聪明的工程师们就想出了一个绝妙的主意。
他们在光伏板下面养起了羊!对,你没听错,这可不是开玩笑。
羊儿们可以吃掉光伏板周围的杂草,这样一来,不仅减少了杂草对光伏板的遮挡,而且羊儿们在吃草的过程中,还顺便把光伏板下的沙子给“清理”了,毕竟它们走来走去的嘛。
这可真是一举多得啊,既解决了光伏电站的维护问题,又发展了当地的畜牧业,羊儿们就像一群小小的“光伏电站守护者”。
3. 对当地的影响。
这个电站建成后啊,对当地的影响可太大了。
它给当地带来了大量的就业机会,以前那些只能靠传统农牧业为生的老百姓,现在很多都可以到光伏电站工作啦。
而且啊,电站发的电还能输送到其他地方,为更多的人提供清洁能源,这就像是塔拉滩把自己的阳光宝藏分享给了全中国呢。
二、内蒙古库布齐沙漠光伏电站。
内蒙古的库布齐沙漠,以前那就是一片黄沙漫天的地方,但是现在啊,它可是因光伏电站而变得超级酷。
1. 变沙漠为“能源绿洲”库布齐沙漠光伏电站就像是在沙漠里种下的一片“电之森林”。
这里日照充足那是不用说了,关键是把沙漠利用起来建电站,那简直就是一举两得。
一方面是在治理沙漠,你想啊,在建设光伏电站的过程中,要平整土地、安装支架什么的,这些工程在一定程度上就固定了沙丘,减少了风沙的流动。
光伏建设典型案例做法
![光伏建设典型案例做法](https://img.taocdn.com/s3/m/02f4b261580102020740be1e650e52ea5518ce2a.png)
光伏建设典型案例做法光伏建设典型案例是指在特定地区或项目中,利用光伏技术建设光伏发电站的实际案例。
下面是一些典型的光伏建设案例:1. 甘肃民乐光伏电站:位于甘肃省民乐县,总装机容量达到2.2万千瓦。
该电站采用的是地面安装光伏板,利用光伏发电技术将太阳能转化为电能,为当地供电,减少了对传统煤炭能源的依赖。
2. 青海某光伏示范项目:该项目位于青海省某地区,总装机容量为5万千瓦。
该项目采用的是屋顶安装光伏板,利用太阳能发电,为当地提供清洁能源。
3. 江苏连云港光伏农业园:该项目位于江苏省连云港市,总装机容量达到1万千瓦。
光伏板安装在农田上方,不仅可以发电,还能提供农田的遮阳作用,为农作物提供更好的生长环境。
4. 浙江某光伏扶贫项目:该项目位于浙江省某地区,旨在帮助贫困地区脱贫致富。
通过光伏发电技术,为当地提供电力,改善了贫困地区的能源状况,促进了当地经济的发展。
5. 新疆光伏电站:新疆是我国光伏发电的重要基地之一,拥有丰富的太阳能资源。
在新疆建设了多个光伏电站,利用太阳能发电,为当地提供清洁能源。
6. 内蒙古光伏项目:内蒙古地广人稀,太阳能资源丰富。
在内蒙古建设了多个光伏项目,利用太阳能发电,为当地提供电力,并减少了对传统能源的依赖。
7. 陕西某光伏示范园区:该示范园区位于陕西省某地,总装机容量达到3万千瓦。
该园区采用的是水面浮体安装光伏板,利用水面上的太阳能发电,为当地提供可再生能源。
8. 广东某光伏农业园:该光伏农业园位于广东省某地,总装机容量为 1.5万千瓦。
光伏板安装在农田上方,不仅可以为当地提供电力,还能为农作物提供遮阳作用,提高农作物产量。
9. 湖南某光伏扶贫项目:该项目位于湖南省某地,旨在帮助贫困地区发展经济。
通过光伏发电技术,为当地提供电力,改善了贫困地区的能源状况,促进了当地经济的发展。
10. 四川某山区光伏电站:该光伏电站位于四川某山区,总装机容量为2万千瓦。
该电站利用太阳能发电,为山区提供清洁能源,改善了电力供应不足的问题,促进了山区的发展。
水面光伏电站的设计方案与成本
![水面光伏电站的设计方案与成本](https://img.taocdn.com/s3/m/66204778d0d233d4b04e69a1.png)
水面光伏电站的设计方案与成本Revised by BLUE on the afternoon of December 12,2020.一、某地区大型水库项目概况(参考)木项目选址.水域开阔,面积约为3000亩,项目现场照片情况如下:水库的深度约3〜4米.采用漂浮式光伏水面电站形式。
组件和汇流箱漂浮在水而上,逆变器及后端设备设置在岸基上。
二、水面瀝浮式光伏电站解决方案第一方案:传统浮筒+光伏支架方案1)结构方案传统浮筒尺寸为500*500*400mm.方阵主要采用单排浮筒•即可提供足够支擦。
另外一方面・考农到系统维护通道的情况,需婆每个浮筒阵列何隔使用双排浮筒。
组件子阵为2*11,采用255骨组件.大方阵为6*16个子阵。
大方阵爪排浮筒和双排浮筒何隔使用。
目的是综合考虑成木及电站维护通道的要求。
阵列面积一6327. 75 m2光伏组件——2112块,538. 56KW浮简——4191个锚一一倾估60组支架----- 96组2)方阵抛锚固定方案锚固系统采用水下拋锚方式。
先将组装好的浮码头拖移到合适的位宜,与岸边通道对齐后.进行初步定位,待整个码头位宜基木就位后开始进行锚固作业。
3)系统容址木方案组件阵列面积6327. 75 m\功率容虽为538.56K肌木项目3000亩水域•水域利用率通常6朋-80伉保守悄况下按照60%水域利用率计算,可以放迓190个模块化组件阵列,约合102.3MW。
4)电气方案电气系统与结构方案配套.22块组件全部串联形成子阵。
每16个子阵并联入一个汇流箱。
阵列为6*16个子阵组成,即每个阵列有6个汇流箱。
第二方案:光伏专每2个阵列.即4224块组件(1077. 12KW )接入到一台1MW 的集中逆变站升压到35KV,送往站区再升压并网。
汇流箱放宜在光 伏支架背面.漂浮于水面上,逆变器及后端设备安迓于岸基上。
木项目共401280块255W 多晶硅组件.95组1MW 的集中光伏逆变站,1140个16路入口的汇流箱.合讣容虽102. 3MW.5)方案概乳表水面电站电气设备及并网部分成木与地血电站基木无异,在此不再闸述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甘肃某建筑屋顶光伏发电系统初步
设计方案
一、项目背景
1、项目意义
(略)
2、项目建设地基本信息:
2.1、建设地:甘肃某地
2.2、当地地理纬度:36°左右,
2.3、年平均太阳能辐射资源:5.5KWh/㎡·day
2.4、当地气温:最高气温:38°C,最低气温:-20°C
2.5、光伏电站建设布局及占地面积
屋顶面积:58x35=2030平方米,
朝向:正南
设计阵列朝向:正南
三、项目规模
预计最大装机容量:2030m²x130W/m²=264kW
四、方案设计
1、逆变器初选:根据初步预算容量选用5台50千瓦串接式逆变器。
MPPT范围:350-800V
最大输入电压:1000V
2、组件选择:选用300Wp光伏
组件。
3、支架倾角设计:鉴于该建筑
朝向东南45度,为了综合考虑朝向
非正南对发电的影响,设计光伏支架
倾角为30°。
3.1支架结构设计(略)
3.2支架基础设计(略)
4、平面设计及阵列排布
(1)采用光伏组件横向排布,上下2层支架设计,18块一串,阵列总长18米。
每个阵列有18x2=36块组件封2串组成,合计10800Wp。
(2)计算阵列占地投影宽度1.75米,遮阴间距2.34米,取值2.45米。
错误:上面说,横向排布,上下2层支架设计,18块一串,阵列总长18米。
L阵列斜长应为4米。
投影宽度3.46米,遮阴间距4.91米.
(3)设计布局8排,共计24个阵列,总设计安装容量259.2kWp (如果设计布局7排,共计21个阵列,总设计安装容量226.8kWp,前后空间比较大)
5、总平面布置图:
6、电路设计(略)
五、投资预算:
1、静态投资:
序
号
项目单价
(元)
合计(万
元)1259.2kWp电站单晶硅光伏
组件
3.20/
Wp
82.94
25台50kVA逆变器等并网
配件
1.00/
Wp
25
总投资约196.71万元人民币,折合每峰瓦7.58元人民币
注:该预算不含土地或场地、特别地区的运输等费用,劳务费支出仅供参考,实际支出应根据当地实际情况和管理水平计算。
六、经济效益分析
估算日发电量:259.2kWp×5.5KWh/㎡·day×80%=1140kWh/天年发电量:1140kWh/天×365天=416100kWh
年发电营业额:416100kWh*0.74元/kWh=30.79万元
如果按照上网电价每度电为0.32元加0.42的补贴电价,每度电实际收入为0.74元,电站寿命按25年计算:
1、该电站年发电营业额:416100kWh*0.74=30.79万元
2、扣除运行费用和上缴税收外,年净收入25.35万元。
3、投资回收周期=总投资/年收入
=196.71(万元)/25.35(万元/年)=7.8年。
预计该电站7.8年后回收投资,然后进入净收入期。
4、寿命周期内可实现总收入约:
25.35(万元/年)*25(年)*(1-1%/年(效率衰减)*25年/2 )
=538.69万元
5、净收入=总收入-总投资
=538.69-196.71=341.98万元人民币
七、风险评估(略)
八、环境影响评价分析(略)
九、组织管理(略)
十、施工保障措施(略)。