奥数:火车过桥(答案版)

合集下载

四年级奥数题(行程问题)及答案 火车过桥

四年级奥数题(行程问题)及答案 火车过桥

四年级奥数题(行程问题)及答案:火车过桥导语:行程问题在奥数学习中是一个很重要的环节.今天小编就为同学们带来一道练习题,希望同学们认真解答哦!一列火车长200米,全车通过一座桥需要30秒钟,这列火车每秒行17米,求这座桥的长度.分析:全车通过桥是指从火车车头上桥直到火车车尾离桥,即火车行驶的路程是桥的长度与火车的长度之和,已知火车的速度以及过桥时间,所以这列车30秒钟走过: 30×17=510(米),桥的长度为:510-200=310 (米).解:30×17=510(米)510-200=310 (米)四年级奥数题(行程问题)及答案:大货车导语:行程问题在奥数学习中是一个很重要的环节。

在行程问题中,从所求结果逆推是常用而且有效的方法一辆货车从A地出发到300千米外的B地去,前120千米的平均速度为40千米/时,要想使这辆货车从甲地到乙地的平均速度为50千米/时,剩下的路程应以什么速度行驶?解答:求速度首先找相应的路程和时间,平均速度说明了总路程与总时间的关系,剩下的路程为:300-120=180 (千米),计划总时间为:300÷50=6(小时),前120千米已用去120÷40=3 (小时),所以剩下路程的速度为:(300-120)÷(6=-3)=60 (千米/时).四年级奥数题(盈亏问题)及答案:买书导语:四年级是拓展思维的好时机,进行试题训练有助于同学们奥数能力的提升。

为大家带来一道小学四年级奥数应用题:商店购书。

顾老师到新华书店去买书,若买5本则多3元;若买7本则少1.8元。

这本书的单价是多少?顾老师共带了多少元钱?分析与解:买5本多3元,买7本少1.8元。

盈亏总额为3+1.8=4.8(元),这4.8元刚好可以买7——5=2(本)书,因此每本书4.8÷2=2.4(元),顾老师共带钱2.4×5+3=15(元)。

四年级奥数题(盈亏问题)及答案:购物导语:四年级是拓展思维的好时机,进行试题训练有助于同学们奥数能力的提升。

四年级奥数培优《过桥问题》(含答案)

四年级奥数培优《过桥问题》(含答案)

过桥问题(例题精讲)“火车过桥”问题是行程问题中的一种情况,火车是运动的,火车通过大桥,是指车头上桥到车尾离桥,如图,假设某人站在火车头的A点处,当火车通过桥时A点时机运动的路程就是火车运动的总路程,即车长与桥长的和。

A A例1.一列火车长200米,每秒行20米,这列火车通过520米长的大桥,需要几秒钟?例2.小芳站在铁路一边,一列火车从她身边经过用了2分钟,已知这列火车长360米,以同样的速度通过一座大桥,用了6分钟。

(1)火车从小芳身边经过后在什么位置?(画图表示)火车每分钟行多少米?(2)这座桥长多少米?例3.一列火车通过一条长1260米的A桥(车头上桥直至车尾离开桥)用了60秒,火车穿越长2100米的B桥用了90秒,问:这列火车的车速和车身长?(1)火车每秒行多少米?A桥:B桥:(2)这列火车长多少米?例4.火车通过长为102米的铁桥用了24秒,如果火车的速度加快1倍,它通过长为222米的隧道用了18秒,求火车原来的速度和它的长度。

提示:例4与例3有什么相同点?有什么不同点?例5.少先队员346人排成两路纵队去参观画展,队伍行进的速度是23米/分,前后两人都相距1米。

(1)队伍有多长?(2)现在队伍要通过一座长702米的桥,整个队伍从上桥到离桥共需要几分钟?例6.一列火车车头及车身共41节,每节车身和车头长都是30米,节与节间隔1米,这列火车以每分1000米的速度穿过山洞,恰好用了2分钟,(1)火车长多少米?(2)这个山洞长多少米?7.长150米的火车以每秒18米的速度穿越一条300米的隧道,问:火车穿越隧道(进入隧道直至完全离开)要多少时间?8.小明站在铁路边准备穿过铁路上学,一列火车从他身边开过用了3秒钟,已知这列火车长360米,它以同样的速度通过一座铁桥用了10秒钟,那么铁桥长多少米?9.一列火车通过一座长456米的桥需要40秒,用同样的速度通过一条长399米的隧道用37秒,求这列火车的速度和长度。

奥数火车过桥行程问题例题解析答案

奥数火车过桥行程问题例题解析答案

奥数火车过桥行程问题例题解析答案奥数火车过桥行程问题例题解析答案数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

以下是店铺整理的奥数火车过桥行程问题例题解析答案,仅供参考,大家一起来看看吧。

【例题解析】例1、一列火车长150米,每秒钟行19米。

全车通过长800米的大桥,需要多少时间?分析、列车过桥,就是从车头上桥到车尾离桥止。

车尾经过的距离=车长+桥长,车尾行驶这段路程所用的时间用车长与桥长和除以车速。

解:(800+150)÷19=50(秒)答:全车通过长800米的大桥,需要50秒。

【边学边练】一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?例2、一列火车长200米,以每秒8米的'速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。

这条隧道长多少米?分析、先求出车长与隧道长的和,然后求出隧道长。

火车从车头进洞到车尾离洞,共走车长+隧道长。

这段路程是以每秒8米的速度行了40秒。

解:(1)火车40秒所行路程:8×40=320(米)(2)隧道长度:320—200=120(米)答:这条隧道长120米。

【边学边练】一支队伍1200米长,以每分钟80米的速度行进。

队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令。

问联络员每分钟行多少米?例3、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?分析、本题是求火车车头与小华相遇时到车尾与小华相遇时经过的时间。

依题意,必须要知道火车车头与小华相遇时,车尾与小华的距离、火车与小华的速度和。

解:(1)火车与小华的速度和:15+2=17(米/秒)(2)相距距离就是一个火车车长:119米(3)经过时间:119÷17=7(秒)答:经过7秒钟后火车从小华身边通过。

五年级奥数火车过桥问题(B卷解答题)

五年级奥数火车过桥问题(B卷解答题)

火车过桥问题(B 卷:解答题)解答题1.一个人站在铁道旁,听见行近来的火车鸣汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360M 。

(轨道是笔直的)声速是每秒钟340M,求火车的速度?(得数保留整数)2.某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105M,每小时速度为28.8千M.求步行人每小时行多少千M?3.一人以每分钟60M 的速度沿铁路边步行,一列长144M 的客车对面而来,从他身边通过用了8秒钟,求列车的速度.4.一条单线铁路上有A ,B ,C ,D ,E 5个车站,它们之间的路程如图所示(单位:千M).两列火车同时从A ,E 两站相对开出,从A 站开出的每小时行60千M,从E 站开出的每小时行50千M.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟?答案1. 火车拉汽笛时离这个人1360M.因为声速每秒种340M,所以这个人听见汽笛声时,经过了(1360÷340=)4秒.可见火车行1360M 用了(57+4=)61秒,将距离除以时间可求出火车的速度.1360÷(57+1360÷340)=1360÷61≈22(M)2. 火车=28.8×1000÷3600=8(M/秒)人步行15秒的距离=车行15秒的距离-车身长.(8×15-105)÷15=1(M/秒)1×60×60=3600(M/小时)=3.6(千M/小时)答:人步行每小时3.6千M.B EC AD 225千M 25千M 15千M 230千M3. 人8秒走的距离=车身长-车8秒走的距离(144-60÷60×8)÷8=17(M/秒)答:列车速度是每秒17M.4. 两列火车同时从A,E 两站相对开出,假设途中都不停.可求出两车相遇的地点,从而知道应在哪一个车站停车等待时间最短.从图中可知,AE 的距离是:225+25+15+230=495(千M)两车相遇所用的时间是:495÷(60+50)=4.5(小时)相遇处距A 站的距离是:60×4.5=270(千M)而A,D 两站的距离为:225+25+15=265(千M)由于270千M>265千M,因此从A 站开出的火车应安排在D 站相遇,才能使停车等待的时间最短.因为相遇处离D 站距离为270-265=5(千M),那么,先到达D 站的火车至少需要等待:6011505605=÷+÷(小时) 6011小时=11分钟 此题还有别的解法,同学们自己去想一想.。

小学奥数,火车过桥问题的公式解题以及答案

小学奥数,火车过桥问题的公式解题以及答案

小学奥数,火车过桥问题的公式解题以及答案小学奥数,火车过桥问题的公式解题以及答案在解决火车过桥问题时,也应该涉及速度、时间和路程三种数量关系,同时还必须考虑到火车本身的长度。

在思考时,必须要在运动的火车上找准一个固定点,使它转化成一般行程问题。

有些问题由于运动情况比较复杂,不容易一下子找出其中的数量关系,可以利用作图或演示的方法来帮助解题。

解答火车行程问题可记住一下几点:(1)火车过桥(或隧道)所用的时间=[桥(隧道长)+火车车长]÷火车的速度;(2)两辆火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;(3)两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。

道火车过桥问题的答案解析:1. 解析:火车一共行驶了15×30=450米,火车经过的路程是桥的长度加上火车的长度,所以,火车的长度为450-300=150米。

2. 解析:火车一共行驶了15×10=150米,火车经过的路程是桥的长度减去火车的长度,所以,火车的长度为300-150=150米。

3. 解析:火车过人的问题:4×(100-10)/60=60米。

4. 解析:错车问题(18+12)×15-210=240米。

5. 解析:列车的速度是(342-234)/(23-17)=18米/秒;该列车的长度是18×23-342=72米;与另一火车相遇,即为错车问题,相当于行驶的总路程是两车的车长之和,所用时间为:(88+72)/(18+22)=4秒。

6. 解析:经过火车车身长需要时间为:15秒,所以火车头从上桥到离桥只用了:75-15=60秒,所以火车的速度是1200/60=20米/秒,即车身长为20×15=300米。

7. 解析:隧道长为:30×15-240=210米(车长+隧道长=车速*时间),火车连续通过隧道和桥一共走的路程为:80×15=1200米,而1200米包括隧道长度,大桥长度,车长,以及隧道和桥之间的距离,所以,隧道和乔之间的距离为:1200-240-150-210=600米。

奥数-火车过桥(规范标准答案版)

奥数-火车过桥(规范标准答案版)

火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;二、火车过桥四类问题图示长度速度火车车长车速队伍队伍长(间隔,植树问题)队速长度速度方向树无无无桥桥长无无人无人速同向反向车车长车速同向反向例题1【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【分析】 火车穿越隧道经过的路程为300150450+=(米),已知火车的速度,那么火车穿越隧道所需时间为4501825÷=(秒).【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】 火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所以火车车长为6603220÷=(米).例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为49149249352304⨯+⨯+⨯+⨯=(米),那么桥长为90430456⨯-=(米).【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?【分析】 由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少?车身长多少米?【分析】 火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:(846540)(5335)17-÷-=(米/秒),车身长是:173554055⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】 速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?【分析】 完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米?【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米?【分析】390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?【分析】8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒)例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇?【分析】 8点30分.火车每分行30100060500⨯÷=(米), 军人每分行115001106044⎛⎫⨯-÷= ⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷= ⎪⎝⎭(米). 8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【分析】 行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x 米/秒,那么火车的车身长度可表示为(x −1)×22或(x −3)×26,由此不难列出方程.法一:设这列火车的速度是x 米/秒,依题意列方程,得(x −1)×22=(x −3)×26.解得x =14.所以火车的车身长为:(14−1)×22=286(米).法二:直接设火车的车长是x ,那么等量关系就在于火车的速度上.可得:x /26+3=x /22+1,这样直接也可以x =286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V 车−1):(V 车−3)=13:11,可得V 车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米.【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?【分析】 由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后1.25分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度.【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x -分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x +=-+,解得630x =米【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍? (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11a b=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间?【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒).【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟?【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒).例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少?如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间?【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米); 如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒).【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米?【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米.【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟?【分析】8.75秒例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米);列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米).【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇?【分析】 车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒).【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【分析】 火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V 车−V 人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题火车长=(V 车+V 人)×7.可得8(V 车−V 人)=7(V 车+V 人),所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.练习1一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).2秒间隔距离甲乙练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5分钟.这座大桥长多少米?【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30×(1.5×60)−630=2070(米).练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米? ⑵ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少?【分析】 ⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A 的车身长B +的车身长)÷(A 的车速B - 的车速)=从车头追上到车尾离开的时间,在这里,B 的车身长车长(也就是小新)为0,所以车长为:100104360-⨯=()(米);⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间,车长为:100103330+⨯=()(米).练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间?【分析】 根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514÷+=()(秒).练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析】 通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()(米),车长:182334272⨯-=(米),两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224+÷+=()()(秒),所与两车错车而过,需要4秒钟.。

学而思奥数网奥数专题行程问题火车过桥c

学而思奥数网奥数专题行程问题火车过桥c

学而思奥数网奥数专题(行程问题)
1、四年级行程问题:火车过桥
难度:难度
某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟
答:
2、四年级行程问题:火车过桥
难度:难度
某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟
答:
3、四年级行程问题:火车过桥
难度:难度
长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间
答:
4、四年级行程问题:火车过桥
难度:中难度
甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米
答:
5、四年级行程问题:火车过桥
难度:中难度
答:
学而思奥数网奥数专题(行程问题详解)
1、四年级火车过桥答案:
2、四年级火车过桥答案:
3、四年级火车过桥答案:
4、四年级火车过桥答案:
5、四年级火车过桥答案:
快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当两车车尾齐时,快车几秒可越过慢车。

小学生奥数火车过桥练习题及答案

小学生奥数火车过桥练习题及答案

【导语】⽕车⾏程问题是⾏程问题中⼜⼀种较典型的专题。

由于⽕车有⼀定的长度,在考虑速度时间和路程时,还要考虑⽕车的长度。

重点:理解⽕车、桥、隧道等长度。

以下是整理的《⼩学⽣奥数⽕车过桥练习题及答案》相关资料,希望帮助到您。

1.⼩学⽣奥数⽕车过桥练习题及答案 少先队员346⼈排成两路纵队去参观画展。

队伍⾏进的速度是23⽶/分,前⾯两⼈都相距1⽶。

现在队伍要通过⼀座长702⽶的桥,整个队伍从上桥到离桥共需要⼏分钟? 【答案】 分析:把整个队伍的长度看成是“车长”,先求出“车长”。

因为每路纵队有346÷2=173⼈,前后两⼈都相距1⽶,所以,整个队伍的长度是1×(173-1)=172⽶。

车长求出后,就可以求出过桥的时间了。

解答:解:队伍长: 1×(346÷2-1), =1×(173-1), =172(⽶); 过桥的时间: (702+172)÷23, =874÷23, =38(分钟)。

答:整个队伍从上桥到离桥共需要38分钟。

 2.⼩学⽣奥数⽕车过桥练习题及答案 1、例⼀列⽕车长150⽶,每秒钟⾏19⽶。

全车通过长800⽶的⼤桥,需要多少时间? 分析列车过桥,就是从车头上桥到车尾离桥⽌。

车尾经过的距离=车长+桥长,车尾⾏驶这段路程所⽤的时间⽤车长与桥长和除以车速。

解:(800+150)÷19=50(秒) 答:全车通过长800⽶的⼤桥,需要50秒。

2、⼀列⽕车长200⽶,以每秒8⽶的速度通过⼀条隧道,从车头进洞到车尾离洞,⼀共⽤了40秒。

这条隧道长多少⽶? 分析先求出车长与隧道长的和,然后求出隧道长。

⽕车从车头进洞到车尾离洞,共⾛车长+隧道长。

这段路程是以每秒8⽶的速度⾏了40秒。

解:(1)⽕车40秒所⾏路程:8×40=320(⽶) (2)隧道长度:320-200=120(⽶) 答:这条隧道长120⽶。

3.⼩学⽣奥数⽕车过桥练习题及答案 1、甲⽕车从后⾯追上到完全超过⼄⽕车⽤了110秒,甲⽕车⾝长120⽶,车速是每秒20⽶,⼄⽕车车速是每秒18⽶,⼄⽕车⾝长多少⽶? (20-18)×110-120=100(⽶) 2、甲⽕车从后⾯追上到完全超过⼄⽕车⽤了31秒,甲⽕车⾝长150⽶,车速是每秒25⽶,⼄⽕车⾝长160⽶,⼄⽕车车速是每秒多少⽶? 25-(150+160)÷31=15(⽶) 3、从北京开往⼴州的列车长350⽶,每秒钟⾏驶22⽶,从⼴州开往北京的列车长280⽶,每秒钟⾏驶20⽶,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟? 解:从两车车头相遇到车尾离开时,两车⾏驶的全路程就是这两列⽕车车⾝长度之和。

奥数思维拓展列车过桥问题(试题)小学数学五年级上册人教版(含答案)

奥数思维拓展列车过桥问题(试题)小学数学五年级上册人教版(含答案)

奥数思维拓展列车过桥问题-小学数学五年级上册人教版一.选择题(共7小题)1.一列火车长160米,每秒行20米,全车通过440米的大桥,需要()秒。

A.8B.22C.30D.无法确定2.一座桥长2000米,一列火车以每秒20米的速度通过这座桥,火车车身长200米、则火车从上桥到离开桥需要()秒.A.110B.100C.90D.853.一列火车长360米,每秒行15米,火车全部通过长1560米的隧道要用()秒.A.200B.128C.1294.一列火车长200米,以每分钟1200米的速度经过一座大桥,从车头进到车尾出一共用了2分钟.求桥的长度是多少米?正确的算式是()A.1200×2+200B.1200×2﹣200C.(1200+200)×2D.(1200﹣200)×25.两列火车长度分别为200米和180米,相向而行,它们在双轨铁路上从车头相遇到车尾离开的时间为10秒,已知一列火车的速度为16米/秒,则另一列火车的速度是()米/秒.A.16B.18C.20D.226.育才小学有1828人,排成4路纵队,每横排之间相距0.5米,队伍每分钟走60米,走过一座桥,从队头上桥到队尾离开桥共8分钟。

这座桥长()米。

A.250.5B.251.5C.251D.2527.一列火车全长215米,以每秒15.5米的速度通过长544.5米的大桥,求从车头上桥到车尾离开大桥共需时多少秒?算式是()A.215+544.5÷15.5B.215÷15.5+544.5C.(215+544.5)÷15.5二.填空题(共6小题)8.2021年底将建成的杭绍台高铁,全线最长的隧道——东茗隧道长达18226米,是我国华东地区最长的高铁隧道。

如果一列动车以5270米/分的速度通过隧道,从车头开进隧道到车尾离开隧道共需3.5分钟,这列动车的长度是米。

(提示:如果你觉得有困难,可以画图试试)9.一列火车通过196米的桥需要80秒,用同样的速度通过172米的隧道需要76秒,这列火车的车长是米。

2022-2023学年小学五年级奥数(全国通用)测评卷16《火车过桥问题》(解析版)

2022-2023学年小学五年级奥数(全国通用)测评卷16《火车过桥问题》(解析版)

【五年级奥数举一反三—全国通用】测评卷16《火车过桥问题》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共4小题,满分12分,每小题3分)1.一列长为150米的火车以每秒30米的速度经过一座长为900米的铁路桥,那么火车从车头上桥开始到车尾下桥结束所经历的总时间,比火车完全位于桥上的时间长()秒.A.35 B.30 C.25 D.10【解答】解:火车从车头上桥开始到车尾下桥的路程是桥长与火车长度之和:1509001050+=(米),火车完全位于桥上的路程:900150750-=(米),时间差为:(1050750)3010-÷=(秒).答:从车头进入大桥到车尾离开大桥需要10秒.故选:D。

2.一辆长度为10米的车穿过一个隧道时的速度为v,用时14秒;另一辆长度为15米的车也以速度v穿过该隧道,用时18秒,则隧道长度、车的速度v分别为()A.7.5米,4.5千米/小时B.7米,1.25千米/小时C.6.5米,3千米/小时 D.6米,2千米/小时【解答】解:(1510)(1814)-÷-=÷54=(米/秒)1.251.25米/秒 4.5=千米/小时⨯-1.251410=-17.510=(米)7.5隧道长为7.5米,车速为4.5千米/小时.故选:A。

3.一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米,那么这个车队共有车()A.39辆B.40辆C.41辆D.42辆【解答】解:①车队走的路程1455725⨯=米②车队的长度725200525-=米③由“车队长=车辆数5⨯+(车辆数1)85-⨯=+(车辆数1)(58)-⨯+”得(5255)(58)40-÷+=(辆)40141+=(辆)故选:C 。

4.一列火车通过一座1000米的大桥要65秒,如果用同样的速度通过一座730米的隧道则要50秒,若该列车与另一列车长130米,速度为12米/秒的列车相遇,错车而过需要( )秒钟?A .4.33B .10C .21.66D .25【解答】解:(1000730)(6550)18-÷-=(米/秒)186********⨯-=(米)(130170)(1218)10+÷+=(秒)故选:B 。

(完整版)奥数:火车过桥(标准答案版)

(完整版)奥数:火车过桥(标准答案版)

火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;长度速度方向二、火车过桥四类问题图示例题1【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【分析】 火车穿越隧道经过的路程为300150450+=(米),已知火车的速度,那么火车穿越隧道所需时间为4501825÷=(秒).【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】 火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所以火车车长为6603220÷=(米).例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为49149249352304⨯+⨯+⨯+⨯=(米),那么桥长为90430456⨯-=(米).【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?【分析】 由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少?车身长多少米?【分析】 火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:(846540)(5335)17-÷-=(米/秒),车身长是:173554055⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】 速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?【分析】 完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米?【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米?【分析】390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?【分析】8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒)例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇?【分析】8点30分.火车每分行30100060500⨯÷=(米),军人每分行115001106044⎛⎫⨯-÷=⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷=⎪⎝⎭(米).8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【分析】行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x米/秒,那么火车的车身长度可表示为(x−1)×22或(x−3)×26,由此不难列出方程.法一:设这列火车的速度是x米/秒,依题意列方程,得(x−1)×22=(x−3)×26.解得x=14.所以火车的车身长为:(14−1)×22=286(米).法二:直接设火车的车长是x,那么等量关系就在于火车的速度上.可得:x/26+3=x/22+1,这样直接也可以x=286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V车−1):(V车−3)=13:11,可得V车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米.【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?【分析】由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后1.25分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度.【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x -分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x +=-+,解得630x =米 【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍? (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11a b=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间?【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒). 【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟?【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒).例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少?如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间?【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米); 如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒). 【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米?【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米.【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟?【分析】8.75秒 例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米);列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米).【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇?【分析】 车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒). 【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【分析】 火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V 车−V 人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题2秒间隔距离甲乙火车长=(V 车+V 人)×7.可得8(V 车−V 人)=7(V 车+V 人),所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.练习1 一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5分钟.这座大桥长多少米?【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30×(1.5×60)−630=2070(米).练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米? ⑵ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少?【分析】 ⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A 的车身长B +的车身长)÷(A 的车速B - 的车速)=从车头追上到车尾离开的时间,在这里,B 的车身长车长(也就是小新)为0,所以车长为:100104360-⨯=()(米);⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间,车长为:100103330+⨯=()(米). 练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间?【分析】 根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514÷+=()(秒). 练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析】 通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()(米),车长:182334272⨯-=(米),两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224+÷+=()()(秒),所与两车错车而过,需要4秒钟.。

五年级奥数-火车过桥问题练习题含答案

五年级奥数-火车过桥问题练习题含答案

火车过桥问题(A卷:填空题)填空题1. 一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要时间. 车长200米八隧道长200米2. ______________________________________________________ 某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒,客车长105米,每小时速度为28.8千米,求步行人每小时走____________________________ 米?车15秒钟行的距离A■' 人15秒钟走的距离;3. 一人以每分钟60米的速度沿铁路步行,一列长144米的客车对面开来,从他身边通过用了8秒钟,列车的速度是_________ 米/秒.车8秒钟行的距离■■人8秒钟走的距离i4. 马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上甲,6秒钟后汽车离开了甲;半分钟之后汽车遇到迎面跑来的乙;又过了2秒钟,汽车离开了乙.问再过_________ 后,甲、乙两人相遇.5. 一列火车长700米,以每分钟400米的速度通过一座长900米的大桥.从车头上桥到车尾离桥要______ 钟.6. 一支队伍1200米长,以每分钟80米的速度行进.队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令.问联络员每分钟行 _______ 米.7. 一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟.求这列火车的速度是______ 米/秒,全长是_______ 米.8. 已知快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是秒.9. 一座铁路桥全长1200米,一列火车开过大桥需花费75秒;火车开过路旁电杆,只要花费15秒,那么火车全长是_________ 米.10. 铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行_________ 米.答案1. 火车过隧道,就是从车头进隧道到车尾离开隧道止. 如图所示, 火车通过隧道时所行的总距离为:隧道长+车长.(200+200) - 10=40(秒)答:从车头进入隧道到车尾离开共需40秒.2. 根据题意, 火车和人在同向前进, 这是一个火车追人的“追及问题” . 由图示可知:人步行15 秒钟走的距离=车15 秒钟走的距离-车身长.所以,步行人速度X 15=28.8 X 1000- (60 X 60) X 15-105 步行人速度=[28.8 X 1000- (60 X 60)-105] - 5=1(米/ 秒)=3.6( 千米/ 小时) 答: 步行人每小时行3.6 千米.3. 客车与人是相向行程问题, 可以把人看作是有速度而无长度的火车, 利用火车相遇问题:两车身长十两车速之和=时间,可知,两车速之和=两车身长十时间=(144+0) - 8=18.人的速度=60米/ 分=1 米/ 秒.车的速度=18-1=17( 米/ 秒).答:客车速度是每秒17 米.4. (1) 先把车速换算成每秒钟行多少米?18 X 1000- 3600=5(米).(2) 求甲的速度.汽车与甲同向而行,是追及问题.甲行6秒钟的距离=车行6 秒钟的距离- 车身长.所以,甲速X 6=5X 6-15,甲速=(5 X 6-15) - 6=2.5(米/ 每秒).(3) 求乙的速度. 汽车与乙相向而行,是相向行程问题. 乙行2秒的距离=车身长-车行2秒钟的距离.乙速X 2=15-5 X 2,乙速=(15-5 X 2) - 2=2.5(米/ 每秒).(4) 汽车从离开甲到离开乙之间的时间是多少?0.5 X 60+2=32秒.(5) 汽车离开乙时, 甲、乙两人之间的距离是多少?(5-2.5) X(0.5 X 60+2)=80(米).(6) 甲、乙两人相遇时间是多少?80 - (2.5+2.5)=16(秒). 答:再过16秒钟以后,甲、乙两人相遇.5. 从车头上桥到车尾离桥要4 分钟.6. 队伍6分钟向前进80X 6=480米,队伍长1200米,6分钟前进了480米,所以联络员 6 分钟走的路程是:1200-480=720(米)720-6=120(米/ 分)答:联络员每分钟行120米.7. 火车的速度是每秒15米,车长70米.8. 1034 - (20-18)=517(秒)9. 火车速度是:1200 - 60=20(米/秒)火车全长是:20 X 15=300(米)10. 40 X (51-1)-2X 60- 1000=60(千米/ 小时)火车过桥问题(B卷:解答题)解答题1. 一个人站在铁道旁,听见行近来的火车鸣汽笛声后,再过57秒钟火车经过他面前•已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?(得数保留整数)2. 某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米?3. 一人以每分钟60米的速度沿铁路边步行,一列长144米的客车对面而来, 从他身边通过用了8秒钟,求列车的速度.4. 一条单线铁路上有A, B, C, D, E 5个车站,它们之间的路程如图所示(单位: 千米).两列火车同时从A, E两站相对开出,从A站开出的每小时行60千米,从E 站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟?225千米25千米15千米230千米A B C D E答案1. 火车拉汽笛时离这个人1360米.因为声速每秒种340米,所以这个人听见汽笛声时,经过了(1360 - 340=)4秒.可见火车行1360米用了(57+4=)61秒,将距离除以时间可求出火车的速度.1360 - (57+1360 - 340)=1360 - 61" 22(米)2. 火车=28.8 X 1000- 3600=8(米/ 秒)人步行15秒的距离=车行15秒的距离-车身长.(8 X 15-105)- 15=1(米/ 秒)1 X 60X 60=3600(米/ 小时)=3.6(千米/ 小时)答:人步行每小时3.6千米.3. 人8秒走的距离=车身长-车8秒走的距离(144-60 - 60 X 8)- 8=17(米/ 秒)答:列车速度是每秒17米.4. 两列火车同时从A,E两站相对开出,假设途中都不停.可求出两车相遇的地点,从而知道应在哪一个车站停车等待时间最短.从图中可知,AE的距离是:225+25+15+230=495(千米)两车相遇所用的时间是:495 - (60+50)=4.5(小时)相遇处距A站的距离是:60 X 4.5=270(千米)而A,D两站的距离为:225+25+15=265(千米)由于270千米>265千米,因此从A站开出的火车应安排在D站相遇,才能使停车等待的时间最短.因为相遇处离D站距离为270-265=5(千米),那么,先到达D站的火车至少11需要等待:5 60 5 - 50二(小时)60小时=11分钟60此题还有别的解法,同学们自己去想一想.。

小学数学奥数火车过桥问题(含答案)

小学数学奥数火车过桥问题(含答案)

过车过桥问题基本公式:速度×时间=车长+桥长过桥时间=(桥长+列车长)÷速度;速度=(桥长+列车长)÷过桥时间;错车公式:错车时间=两辆车长之和÷两辆车车速之和基础例题:例题1:一列火车长150米,每秒钟行19米。

全车通过长800米的大桥,需要多少时间?分析列车过桥,就是从车头上桥到车尾离桥止。

车尾经过的距离=车长+桥长,车尾行驶这段路程所用的时间用车长与桥长和除以车速。

练习:1.一列火车长240米,每秒行15米,这列火车从车头进入山洞到车尾离开山洞共用20秒,山洞长多少米?2.一列火车长200米,通过一条长430米的隧道用了42秒,这列火车通过一个站台的时候用了25秒,求这个站台有多长?3.一列火车通过长530米的桥需40秒,以同样的速度穿过某山洞需30秒。

已知这列火车全长70米,求这个山洞长多少米?例题二:1.一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?思考创新:1. 301次列车通过450米长的铁桥用了23秒,经过一位站在铁路边的扳道工人用了8秒。

列车的速度和长度各是多少?2.某铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分,整列火车完全在桥上的时间为40秒。

求火车的长度和速度。

错车类型:1.甲火车长290米,每秒行20米;乙火车车长250米,每秒行25米,两火车的车头刚好同时在长900米铁桥的两端相对开出,几秒后两车的车尾相错而过?2.甲火车长500米,每秒行20米;乙火车车长400米,每秒行25米,当两火车首相遇尾相离时,需要多少秒?巩固练习:1.已知甲车长106米,慢车长74米,辆车同向行驶,快车追上慢车时,又过了一分钟才超过慢车,如果相向而行的话,车头相接后经过12秒辆车才完全离开,求两辆列车的速度。

答案:例题1:分析列车过桥,就是从车头上桥到车尾离桥止。

最新奥数:火车过桥(答案版)

最新奥数:火车过桥(答案版)

火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度, (1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间; (2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;二、火车过桥四类问题图示例题1【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【分析】 火车穿越隧道经过的路程为300150450+=(米),已知火车的速度,那么火车穿越隧道所需时间为4501825÷=(秒).【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所以÷=(米).火车车长为6603220例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为⨯-=(米).⨯+⨯+⨯+⨯=(米),那么桥长为9043045649149249352304【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?【分析】由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少?车身长多少米?【分析】火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:-÷-=(米/秒),车身长是:173554055(846540)(5335)17⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?【分析】 完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米? 【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米?【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米? 【分析】 390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?【分析】8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒)例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇?【分析】 8点30分.火车每分行30100060500⨯÷=(米),军人每分行115001106044⎛⎫⨯-÷= ⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷= ⎪⎝⎭(米).8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【分析】 行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x 米/秒,那么火车的车身长度可表示为(x −1)×22或(x −3)×26,由此不难列出方程.法一:设这列火车的速度是x 米/秒,依题意列方程,得(x −1)×22=(x −3)×26.解得x =14.所以火车的车身长为:(14−1)×22=286(米). 法二:直接设火车的车长是x ,那么等量关系就在于火车的速度上.可得:x /26+3=x /22+1,这样直接也可以x =286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V 车−1):(V 车−3)=13:11,可得V 车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米.【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?【分析】 由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后1.25分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度. 【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x-分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x+=-+,解得630x =米【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍? (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11ab=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间?【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒).【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟?【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒).例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少?如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间?【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米); 如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒).【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米?【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米.【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟? 【分析】 8.75秒例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟? 【分析】【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米? 【分析】【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米); 列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米).【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇?【分析】 车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可2秒间隔距离甲乙知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒).【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【分析】 火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V 车−V 人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题火车长=(V 车+V 人)×7.可得8(V 车−V 人)=7(V 车+V 人),所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.练习1一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米? 【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5分钟.这座大桥长多少米?【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30×(1.5×60)−630=2070(米).练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米? ⑵ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少?【分析】 ⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A 的车身长B +的车身长)÷(A 的车速B - 的车速)=从车头追上到车尾离开的时间,在这里,B 的车身长车长(也就是小新)为0,所以车长为:100104360-⨯=()(米);⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间,车长为:100103330+⨯=()(米).练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间?【分析】 根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514÷+=()(秒).练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析】 通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()(米),车长:182334272⨯-=(米),两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224+÷+=()()(秒),所与两车错车而过,需要4秒钟.。

奥数:火车过桥(标准答案版)

奥数:火车过桥(标准答案版)

火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;长度速度方向二、火车过桥四类问题图示长度 速度 火车 车长车速 队伍队伍长(间隔,植树问题) 队速例题1【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【分析】 火车穿越隧道经过的路程为300150450+=(米),已知火车的速度,那么火车穿越隧道所需时间为4501825÷=(秒).【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】 火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所以火车车长为6603220÷=(米).例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为49149249352304⨯+⨯+⨯+⨯=(米),那么桥长为90430456⨯-=(米).【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?树 无 无 无 桥 桥长 无 无 人 无 人速 同向 反向 车 车长 车速同向反向【分析】 由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少?车身长多少米?【分析】 火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:(846540)(5335)17-÷-=(米/秒),车身长是:173554055⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】 速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?【分析】 完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米?【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米?【分析】390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?【分析】8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒)例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇?【分析】8点30分.火车每分行30100060500⨯÷=(米),军人每分行115001106044⎛⎫⨯-÷=⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷=⎪⎝⎭(米).8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【分析】行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x米/秒,那么火车的车身长度可表示为(x−1)×22或(x−3)×26,由此不难列出方程.法一:设这列火车的速度是x米/秒,依题意列方程,得(x−1)×22=(x−3)×26.解得x=14.所以火车的车身长为:(14−1)×22=286(米).法二:直接设火车的车长是x,那么等量关系就在于火车的速度上.可得:x/26+3=x/22+1,这样直接也可以x=286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V车−1):(V车−3)=13:11,可得V车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米.【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?【分析】由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后1.25分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度.【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x -分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x +=-+,解得630x =米 【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍? (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11a b=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间?【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒). 【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟?【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒). 例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少?如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间?【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米); 如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒). 【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米?【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米. 【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟?【分析】8.75秒 例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),快车慢车慢车快车快车慢车慢车快车两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米);列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米). 【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇?【分析】 车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒). 【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【分析】 火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V 车−V 人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题乙走2秒甲走32秒车走6秒车走30秒甲走6秒甲乙二人的间隔距离甲乙火车长=(V 车+V 人)×7.可得8(V 车−V 人)=7(V 车+V 人),所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.练习1 一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5分钟.这座大桥长多少米?【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30×(1.5×60)−630=2070(米). 练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米? ⑵ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少?【分析】 ⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A 的车身长B +的车身长)÷(A 的车速B - 的车速)=从车头追上到车尾离开的时间,在这里,B 的车身长车长(也就是小新)为0,所以车长为:100104360-⨯=()(米);⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间,车长为:100103330+⨯=()(米). 练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间?【分析】 根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514÷+=()(秒). 练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析】 通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()(米),车长:182334272⨯-=(米),两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224+÷+=()()(秒),所与两车错车而过,需要4秒钟.。

四年级奥数题:火车过桥问题习题及答案B

四年级奥数题:火车过桥问题习题及答案B

四年级奥数题:火车过桥问题习题及答案(B)十三、火车过桥问题(B卷)一、填空题1.有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要秒?是 .3.现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,两列火车的车身长分别为和 .4.一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是、 ?6.一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒.这列火车的速度与车身长各是米和米.7.两人沿着铁路线边的小道,从两地出发,以相同的速度相对而行.一列火车开来,全列车从甲身边开过用了10秒.3分后,乙遇到火车,全列火车从乙身边开过只用了9秒.火车离开乙后两人相遇?8. 两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要秒钟?是 .10.甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,从乙与火车相遇开始再过分钟甲乙二人相遇。

二、解答题11.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当快车车尾接慢车车尾时,求快车穿过慢车的时间?12.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当两车车头齐时,快车几秒可越过慢车?14.一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少时间?———————————————答 案——————————————————————一、填空题1. 这题是“两列车”的追及问题.在这里,“追及”就是第一列车的车头追及第二列车的车尾,“离开”就是第一列车的车尾离开第二列车的车头.画线段图如下:设从第一列车追及第二列车到两列车离开需要x 秒,列方程得:102+120+17 x =20 xx =74.2. 画段图如下:设列车的速度是每秒x 米,列方程得 10 x =90+2×10x =11.3. (1)车头相齐,同时同方向行进,画线段图如下:则快车长:18×12-10×12=96(米) (2)车尾相齐,同时同方向行进,画线段图如下:12010217x 20x 尾 尾 头 头 90尾 1头尾 快头 尾 慢头 尾 快头 尾 慢头尾 快头 尾 慢头 尾 快头尾 慢则慢车长:18×9-10×9=72(米)4. (1)火车的速度是:(440-310)÷(40-30)=13(米/秒)(2)车身长是:13×30-310=80(米)5. (1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)(2)车身长是:20×15=300(米)6. 设火车车身长x 米,车身长y 米.根据题意,得⎩⎨⎧+=+=.38030,53040y x y x解得⎩⎨⎧==.70,15y x7. 设火车车身长x 米,甲、乙两人每秒各走y 米,火车每秒行z 米.根据题意,列方程组,得⎩⎨⎧+=-=.99,1010y z x y z x ①-②,得:019=-y zy z 19=火车离开乙后两人相遇时间为:1701)()]9360()9396019[=+÷+⨯-+⨯⨯y y y y (秒)20728=(分).8. 解:从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+60)÷(15+20)=8(秒).9. 这样想:列车越过人时,它们的路程差就是列车长.将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差.这速度差加上人的步行速度就是列车的速度.90÷10+2=9+2=11(米)答:列车的速度是每秒种11米.10. 要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下: ①求出火车速度车V 与甲、乙二人速度人V 的关系,设火车车长为l ,则:①①(i )火车开过甲身边用8秒钟,这个过程为追及问题:故 ()8⨯-=人车V V l ; (1)(i i )火车开过乙身边用7秒钟,这个过程为相遇问题:故 ()7⨯+=人车V V l . (2)由(1)、(2)可得: ()()人车人车V V V V +=-78,所以,人车V V 15=.②火车头遇到甲处与火车遇到乙处之间的距离是:人人车车V V V V 462015308380)6058(=⨯==⨯⨯+.③求火车头遇到乙时甲、乙二人之间的距离.火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:人人人V V V 4404)6058(24620=⨯+-④求甲、乙二人过几分钟相遇?200224004=÷人人V V (秒)301133=(分钟) 答:再过301133分钟甲乙二人相遇. 二、解答题11. 1034÷(20-18)=91(秒)12. 182÷(20-18)=91(秒)13. 288÷8-120÷60=36-2=34(米/秒)答:列车的速度是每秒34米.14. (600+200)÷10=80(秒)答:从车头进入隧道到车尾离开隧道共需80秒.。

三年级奥数小学奥数过桥问题(1)(含答案)-

三年级奥数小学奥数过桥问题(1)(含答案)-

三年级奥数小学奥数过桥问题(1)(含答案)- 过桥问题(1)过桥问题是行程问题的一种情况。

我们所说的列车通过一座桥,是指从车头上桥到车尾离桥的这个过程。

这时,列车行驶的总路程是桥长加上车长,这是解决过桥问题的关键。

过桥问题也是在研究路程、速度、时间这三量之间的关系。

过桥问题的一般数量关系是:路程=桥长+车长车速=(桥长+车长)?通过时间通过时间=(桥长+车长)?车速桥长=车速×通过时间,车长车长=车速×通过时间,桥长通过隧道的问题和过桥问题的道理是一样的,也要通过上面的数量关系来解决。

【典型例题】例1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟,分析:这道题求的是通过时间。

根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。

路程是用桥长加上车长。

火车的速度是已知条件。

总路程:(米) 67001406840,,通过时间:(分钟) 6840400171,,.答:这列火车通过长江大桥需要17.1分钟。

例2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米,分析与解答:这是一道求车速的过桥问题。

我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。

可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。

总路程:(米) 200700900,,火车速度:(米) 9003030,,答:这列火车每秒行30米。

例3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米,分析与解答:火车过山洞和火车过桥的思路是一样的。

火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。

这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。

总路程: 1520300,,- 1 -山洞长:(米) 30024060,,答:这个山洞长60米。

(完整版)奥数:火车过桥(标准答案版)

(完整版)奥数:火车过桥(标准答案版)

(完整版)奥数:火车过桥(标准答案版) -CAL-FENGHAI.-(YICAI)-Company One1火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;二、火车过桥四类问题图示长度速度火车车长车速队伍队伍长(间隔,植树问题)队速例题1长度速度方向树无无无桥桥长无无人无人速同向反向车车长车速同向反向【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?+=(米),已知火车的速度,那么火车穿越隧道所需时间为【分析】火车穿越隧道经过的路程为300150450÷=(秒).4501825【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所÷=(米).以火车车长为6603220例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为⨯+⨯+⨯+⨯=(米),那么桥长为90430456⨯-=(米).49149249352304【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?【分析】由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少车身长多少米【分析】火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:-÷-=(米/秒),车身长是:173554055(846540)(5335)17⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?【分析】完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米?【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米?【分析】390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和. 【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?【分析】8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒) 例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇?【分析】8点30分.火车每分行30100060500⨯÷=(米),军人每分行115001106044⎛⎫⨯-÷= ⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷= ⎪⎝⎭(米). 8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【分析】 行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x 米/秒,那么火车的车身长度可表示为(x −1)×22或(x −3)×26,由此不难列出方程. 法一:设这列火车的速度是x 米/秒,依题意列方程,得(x −1)×22=(x −3)×26.解得x =14.所以火车的车身长为:(14−1)×22=286(米). 法二:直接设火车的车长是x ,那么等量关系就在于火车的速度上.可得:x /26+3=x /22+1,这样直接也可以x =286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V 车−1):(V 车−3)=13:11,可得V 车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米. 【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?【分析】 由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后1.25分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度.【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x -分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x +=-+,解得630x =米 【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍 (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11a b=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间?【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A 领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒). 【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟?【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒).例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间快车慢车慢车快车快车慢车慢车快车【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米);如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒). 【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米?【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米. 【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟?【分析】8.75秒 例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒). 【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米);列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米).【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇?乙走2秒甲走32秒车走6秒车走30秒甲走6秒甲乙二人的间隔距离甲乙【分析】车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒).【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【分析】火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V车−V人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题火车长=(V车+V人)×7.可得8(V车−V人)=7(V车+V人),所以V车=l5V人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.练习1一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5分钟.这座大桥长多少米?【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30×(1.5×60)−630=2070(米). 练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米?⑵⑶ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少?⑷【分析】⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A的车身长B+的车身长)÷(A的车速B-的车速)=从车头追上到车尾离开的时间,在这里,B的车身长车长(也就是小新)为0,所以车长为:100104360()(米);-⨯=⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A的车身长B+的+的车身长)÷(A的车速B 车速)=两车从车头相遇到车尾离开的时间,车长为:100103330()(米).+⨯=练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【分析】这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).3851135练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间?【分析】根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514()(秒).÷+=练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析】通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:⨯-=(米),两车错车是从车头相遇开始,直到()()(米),车长:182334272-÷-=342234231718两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224()()(秒),所与+÷+=两车错车而过,需要4秒钟.11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;二、火车过桥四类问题图示长度速度火车车长车速队伍队伍长(间隔,植树问题)队速长度速度方向树无无无桥桥长无无人无人速同向反向车车长车速同向反向例题1【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间+=(米),已知火车的速度,那么火车穿越隧道所需时间为【分析】火车穿越隧道经过的路程为300150450÷=(秒).4501825【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所以÷=(米).火车车长为6603220例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为⨯-=(米).49149249352304⨯+⨯+⨯+⨯=(米),那么桥长为90430456【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车【分析】由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少车身长多少米【分析】 火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:(846540)(5335)17-÷-=(米/秒),车身长是:173554055⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】 速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度【分析】 完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米【分析】 390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒【分析】 8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒)例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇【分析】 8点30分.火车每分行30100060500⨯÷=(米),军人每分行115001106044⎛⎫⨯-÷= ⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷= ⎪⎝⎭(米).8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为千米/时,骑车人速度为千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少【分析】行人的速度为千米/时=1米/秒,骑车人的速度为千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x米/秒,那么火车的车身长度可表示为(x−1)×22或(x−3)×26,由此不难列出方程.法一:设这列火车的速度是x米/秒,依题意列方程,得(x−1)×22=(x−3)×26.解得x=14.所以火车的车身长为:(14−1)×22=286(米).法二:直接设火车的车长是x,那么等量关系就在于火车的速度上.可得:x/26+3=x/22+1,这样直接也可以x=286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V车−1):(V车−3)=13:11,可得V车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米.【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇【分析】由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度.【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x -分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x +=-+,解得630x =米【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍 (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11a b=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A 领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒).【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒).例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间快车慢车慢车快车快车慢车慢车快车【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米); 如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒).【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米.【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟【分析】 秒例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米);列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米).【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇2秒间隔距离甲乙【分析】 车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒).【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇【分析】 火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V 车−V 人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题火车长=(V 车+V 人)×7.可得8(V 车−V 人)=7(V 车+V 人),所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.练习1一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了分钟.这座大桥长多少米【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30××60)−630=2070(米).练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米 ⑵ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少【分析】 ⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A 的车身长B +的车身长)÷(A 的车速B - 的车速)=从车头追上到车尾离开的时间,在这里,B 的车身长车长(也就是小新)为0,所以车长为:100104360-⨯=()(米);⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间,车长为:100103330+⨯=()(米).练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间【分析】 根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514÷+=()(秒).练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟【分析】 通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()(米),车长:182334272⨯-=(米),两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224+÷+=()()(秒),所与两车错车而过,需要4秒钟.。

相关文档
最新文档