2013--2014新人教版八年级数学上期末测试题带详细讲解(超经典)

合集下载

2013---2014年度第一学期八年级数学期末试卷

2013---2014年度第一学期八年级数学期末试卷
=4x -4x(y+3)+(y+3) ........4分
=4x -4xy-12x+y +6y+9 ........6分
20.解:原式=( ﹣ )÷
= ........2分
= ........4分
= - ........6分
21.解:去分母,得: ........2分
2x -4x+2x-4-x -2x=x -2 ........3分
在△OBD中
∴OB=OD........5分
∵AD=BC
∴OA=OC...பைடு நூலகம்....6分
24.解:∵DE垂直平分AB,
∴AD=BD........2分
∴∠A=∠DBA=30 ........3分
∵∠CDB是△CBD的外角
∴∠CDB=60 ........4分
在△CBD中。∠CBD=30 DC=2
∴DB=4........6分
2013---2014年度第一学期八年级数学期末试卷
评分标准及参考答案
一.单项选择题(本大题共10小题,每小题3分,共30分)
请把正确的选项填入下表:
题号
1
2
3
4
5
6
7
8
9
10
答案
C
A
D
A
D
A
B
B
B
D
二.填空题:(本大题共6小题,每小题3分,共18分)
11. 15 12. (-3, 4) 13. 25-4b 14. -2y(a-b) 15. 16. _
-4x=4-2 ........4分
-4x=2
解得: ........5分
经检验: 是原方程的解. ........6分

2013-2014学年上学期期末考试(含答案)八年级数学

2013-2014学年上学期期末考试(含答案)八年级数学

八年级(上)数学期末测试题第1卷(选择题)一、选择题(本题20小题,每小题3分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并把答题卡上对应题目的正确答案标号涂黑)1.下列各组数中不能作为直角三角形的三条边长的是( )A.6,8,10B.9,12, 15C.1.5,2,3D.7,24, 252.一三,27t,等,o,0.23 2233 2233 2233…中,有理数的个数是( ) A.l B.2 C.3 D.43.下列扑克牌中,绕着某一点旋转1800后可以与原来的完全重合的是( )4.点P(-5,6)关于原点对称的点的坐标是( )A.(-5, -6)B.(5,6)C.(6,.5)D.(5,.6)5.估算24的算术平方根在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间中,一次函数的有( )A.4个B.3个C.2个D.l个7.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( )A.平均数 B.力口权平均数 C.中位数 D.众数8.-次函数y= -x-l不经过的象限是( )A.t第一象限 B.第二象限 C.第三象限 D.第四象限A. 20 B.15 C.10 D.510.w边形ABCD中,AC、BD相交于点D,能判别这个四边形是正方形的条件是( )11.点彳的坐标为(6,3),D为原点,将OA绕点0按顺时针方向旋转90度得到OA1,则点A1的坐标为 ( )么.(3.-6) B.(-3,6) C.(一3,.6) D.(3,6)12.下列说法正确的有____个.( )①有两个底角相等的梯形是等腰梯形②有两边相等的梯形是等腰梯形③有两条对角线相等的梯形是等腰梯形④等腰梯形上下底中点连线把梯形分成面积相等的两部分A.l个 B.2个 C.3个 n 4个13.如果直线y=3x+6 y=2x-4交点坐标为(a,b),的解( )14.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输为 15,那么与实际平均数的差为( )A.3B..3C.j 0.5D.3.515.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是( )么.六边形 B.八边形 C.十二边形D.十六边形16.如图,在四边形ABCD中,动点P从点A开始沿A→_B→C→D的路径匀速前进到D为止。

人教课标版2013--2014学年度八年级数学上期末测试题及答案

人教课标版2013--2014学年度八年级数学上期末测试题及答案

2013--2014学年度八年级数学上册期末测试题一.选择题(共12小题,满分36分,每小题3分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.B. C. D.C. D.D.2.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A. 0根 B. 1根 C. 2根 D. 3根A. 0根 B. 1根 C. 2根 D. 3根0根 B. 1根 C. 2根 D. 3根B. 1根 C. 2根 D. 3根1根 C. 2根 D. 3根C. 2根 D. 3根2根 D. 3根D. 3根3根3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A. AB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEA. AB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEAB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEB. ∠BAE=∠CAD C. BE=DC D. AD=DE∠BAE=∠CAD C. BE=DC D. AD=DEC. BE=DC D. AD=DEBE=DC D. AD=DED. AD=DEAD=DE4.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. 180° B. 220° C. 240° D. 300°A. 180° B. 220° C. 240° D. 300°180° B. 220° C. 240° D. 300°B. 220° C. 240° D. 300°220° C. 240° D. 300°C. 240° D. 300°240° D. 300°D. 300°300°5.下列计算正确的是()A. 2a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1A. 2a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=12a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1(x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1C. (ab3)2=ab6 D. (﹣1)0=1(ab3)2=ab6 D. (﹣1)0=1D. (﹣1)0=1(﹣1)0=16..黄帅拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()A. B. C. D. 7.下列式子变形是因式分解的是()B. C. D. 7.下列式子变形是因式分解的是()C. D. 7.下列式子变形是因式分解的是()D. 7.下列式子变形是因式分解的是()7.下列式子变形是因式分解的是()7.下列式子变形是因式分解的是()A. x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3)A. x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3)x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3)B. x2﹣5x+6=(x﹣2)(x﹣3)x2﹣5x+6=(x﹣2)(x﹣3)C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)(x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)D. x2﹣5x+6=(x+2)(x+3)x2﹣5x+6=(x+2)(x+3)有意义,则a的取值范围是()8.若分式A. a=0 B. a=1 C. a≠﹣1 D. a≠0 9、下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A . a=0B . a=1C . a ≠﹣1D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( ) a=0 B . a=1 C . a ≠﹣1 D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )B . a=1C . a ≠﹣1D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )a=1 C . a ≠﹣1 D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )C . a ≠﹣1D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )a ≠﹣1 D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )A . ①②③B . ①③⑤C . ②③④D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )A . ①②③B . ①③⑤C . ②③④D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )①②③ B . ①③⑤ C . ②③④ D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )B . ①③⑤C . ②③④D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )①③⑤ C . ②③④ D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )C . ②③④D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )②③④ D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( ) 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( ) 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值 C .当∠β为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A . B . C . D .A .B .C .D .B .C .D . B . C . D .C .D . C . D .D . D .12.如图,A 、C 、B 三点在同一条直线上,△DAC 和△EBC 是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N 结论:①△ACE ≌△DCB ;②CM=CN ;③AC=DN .其中,正确结论的个数是( A .3个 B .2个 C .1个 D .0二.填空题(共5小题,满分20分,每小题4分)13.分解因式:x 3﹣4x 2﹣12x= _________ .14.若分式方程:有增根,则k= _________ .15.如图所示,已知点A 、D 、B 、F 在一条直线上,AC=EF ,AD=FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是 _________ .(只需填一个即可)三.解答题(共7小题,满分64分)18.(5分)先化简,再求值:5(3a 2b ﹣ab 2)﹣3(ab 2+5a 2b ),其中a= ,b=﹣.19.(5分)给出三个多项式: x 2+2x ﹣1, x 2+4x+1,x 2﹣2x .请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解. 20.(5分)解方程:.21.(5分)作图.(1)已知△ABC ,在△ABC 内求作一点P ,使点P 到△ABC 三条边的距离相等.(2)要在高速公路旁边修建一个飞机场,使飞机场到A 、B 两个城市的距离之和最小,请作出飞机场的位置.22、(7分)△ABC 为正三角形,点M 是射线BC 上任意一点,点N 是射线CA 上任意一点,且BM=CN ,BN 与AM 相交于Q 点,∠AQN 等于多少度?23、(7分)如图,①AB=DE 、②CB=CE 、③∠1=∠2、④CA=CD 结论,写出所有成立的命题,并选择其中一个加以证明.24、(8分)已知:如图,△ABC中,∠A的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F.求证:AB-AC=2CF.25.(10分)(2012•百色)某县为了落实中央的“需天数是规定天数的1.55天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?26、(12分)如图1,小明将一张矩形纸片沿对角线剪开,得到两张全等直角三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、F、D在同一条直线上,F为公共直角顶点.(1)将图3中的△ABF绕点F顺时针方向旋转30°到图4的位置,A1F交DE于点G,请你求出线段FG的长度;.(2)将图附加题;1、(1)在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:①DC=BC;②AD+AB=AC.请你证明结论②;(2)在图2中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.2、将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.3、如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)如图1,请你写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点O,连接AP,BO.猜想并写出BO与AP 所满足的数量关系和位置关系,并说明理由;(3)将△EFP沿直线l继续向左平移到图3的位置时,EP的延长线交AC的延长线于点O,连接AP,BO.此时,BO与AP还具有(2)中的数量关系和位置关系吗?请说明理由.2013--2014新人教版八年级数学上期末测试题带详细讲解(超经典)参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)(2012•湛江)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D. 考点: HYPERLINK"/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .B. C. D. 考点: HYPERLINK"/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .C. D. 考点: HYPERLINK"/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .D. 考点: HYPERLINK"/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .考点: HYPERLINK "/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .考点: HYPERLINK "/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)(2011•绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A. 0根 B. 1根 C. 2根 D. 3根A. 0根 B. 1根 C. 2根 D. 3根0根 B. 1根 C. 2根 D. 3根B. 1根 C. 2根 D. 3根1根 C. 2根 D. 3根C. 2根 D. 3根2根 D. 3根D. 3根3根考点: 三角形的稳定性. 专题: 存在型. 分析: 根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,三角形的稳定性. 专题: 存在型. 分析: 根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,专题:存在型.分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,专题: 存在型. 分析: 根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,存在型. 分析: 根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD 中具有了稳定的△ACD及△ABC,分析: 根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.点评: 本题考查的是三角形的稳定性在实际生活中的应用,比较简单.点评:本题考查的是三角形的稳定性在实际生活中的应用,比较简单.点评: 本题考查的是三角形的稳定性在实际生活中的应用,比较简单.本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A. AB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEA. AB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEAB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEB. ∠BAE=∠CAD C. BE=DC D. AD=DE∠BAE=∠CAD C. BE=DC D. AD=DEC. BE=DC D. AD=DEBE=DC D. AD=DED. AD=DEAD=DE考点: 全等三角形的性质. 分析: 根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,全等三角形的性质. 分析: 根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,分析:根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,分析: 根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D. 点评: 本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.点评:本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.点评: 本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键. 4.(3分)(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. 180° B. 220° C. 240° D. 300°A. 180° B. 220° C. 240° D. 300°180° B. 220° C. 240° D. 300°B. 220° C. 240° D. 300°220° C. 240° D. 300°C. 240° D. 300°240° D. 300°D. 300°300°考点: 等边三角形的性质;多边形内角与外角. 专题: 探究型. 分析: 本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,等边三角形的性质;多边形内角与外角. 专题: 探究型. 分析: 本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,专题:探究型.分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,专题: 探究型. 分析: 本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,探究型. 分析: 本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,分析: 本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,解答:解:∵等边三角形的顶角为60°,解答: 解:∵等边三角形的顶角为60°,解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C. 点评: 本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题点评:本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题点评: 本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题5.(3分)(2012•益阳)下列计算正确的是()A. 2a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1A. 2a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=12a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1(x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1C. (ab3)2=ab6 D. (﹣1)0=1(ab3)2=ab6 D. (﹣1)0=1D. (﹣1)0=1(﹣1)0=1考点: 完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂. 分析: A、不是同类项,不能合并;完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂. 分析: A、不是同类项,不能合并;分析:A、不是同类项,不能合并;分析: A、不是同类项,不能合并;A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1. 解答: 解:A、不是同类项,不能合并.故错误;解答:解:A、不是同类项,不能合并.故错误;解答: 解:A、不是同类项,不能合并.故错误;解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选D. 点评: 此题考查了整式的有关运算公式和性质,属基础题.点评:此题考查了整式的有关运算公式和性质,属基础题.点评: 此题考查了整式的有关运算公式和性质,属基础题.此题考查了整式的有关运算公式和性质,属基础题.6.(3分)黄帅拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()A. B. C. D. 考点: HYPERLINK"/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .B. C. D. 考点: HYPERLINK"/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .C. D. 考点: HYPERLINK"/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .D. 考点: HYPERLINK"/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .考点: HYPERLINK "/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .考点: HYPERLINK "/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .分析:本题主要考查学生的动手能力及空间想象能力.解答:解:严格按照图中的顺序向右下对折,向左下对折,从直角顶点处剪去一个直角三角形,展开得到结论.故选C.点评:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.7.(3分)(2012•济宁)下列式子变形是因式分解的是()A. x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3) C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)A. x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3) C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3) C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)B. x2﹣5x+6=(x﹣2)(x﹣3) C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)x2﹣5x+6=(x﹣2)(x﹣3) C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)(x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)D. x2﹣5x+6=(x+2)(x+3)x2﹣5x+6=(x+2)(x+3)考点: 因式分解的意义. 分析: 根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断. 解答: 解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;因式分解的意义. 分析: 根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断. 解答: 解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;分析:根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答:分析: 根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断. 解答: 解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断. 解答: 解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;解答:解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;解答: 解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B. 点评: 本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.点评:本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.点评: 本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.有意义,则a的取值范围是()8.(3分)(2012•宜昌)若分式A. a=0 B. a=1 C. a≠﹣1 D. a≠0A. a=0 B. a=1 C. a≠﹣1 D. a≠0a=0 B. a=1 C. a≠﹣1 D. a≠0B. a=1 C. a≠﹣1 D. a≠0a=1 C. a≠﹣1 D. a≠0C. a≠﹣1 D. a≠0a≠﹣1 D. a≠0D. a≠0a≠0考点: 分式有意义的条件. 专题: 计算题. 分析: 根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,分式有意义的条件. 专题: 计算题. 分析: 根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,专题: 计算题. 分析: 根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,计算题. 分析: 根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,分析: 根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,解答:解:∵分式有意义,解答: 解:∵分式有意义,解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C. 点评: 本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:点评: 本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;9.(3分)(2011•鸡西)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A. ①②③ B. ①③⑤ C. ②③④ D. ②④⑤A. ①②③ B. ①③⑤ C. ②③④ D. ②④⑤①②③ B. ①③⑤ C. ②③④ D. ②④⑤B. ①③⑤ C. ②③④ D. ②④⑤①③⑤ C. ②③④ D. ②④⑤C. ②③④ D. ②④⑤②③④ D. ②④⑤D. ②④⑤②④⑤考点: 负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂. 专题: 计算题. 分析: 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误;负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂. 专题: 计算题. 分析: 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误;专题:计算题.分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误;专题: 计算题. 分析: 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误;计算题. 分析: 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误;分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误; 分析: 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误; 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误; 解答:解:①当a=0时不成立,故本小题错误;解答: 解:①当a=0时不成立,故本小题错误;解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2= ,根据负整数指数幂的定义a ﹣p = (a ≠0,p 为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确; ⑤x 2+x 2=2x 2,符合合并同类项的法则,本小题正确.故选D . 点评: 本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键. 10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )点评:本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键. 10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )点评: 本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键. 10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键. 10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( ) 10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK "/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 . B .当∠α为定值时,∠CDE 为定值 C .当∠β为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 .B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 .C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 . C .当∠β为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 . D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 .D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 . 考点: HYPERLINK "/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 .考点: HYPERLINK "/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 .专题: HYPERLINK "/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 压轴题 .分析:问题即是判断∠CDE 与∠α、∠β、∠γ有无确定关系,通过等边对等角及外角与内角的关系探索求解. 解答: 解:由AB=AC 得∠B=∠C ,由AD=AE 得∠ADE=∠AED=γ,根据三角形的外角等于不相邻的两个内角的和可知,∠AED=∠C+∠CDE ,∠ADC=∠B+∠BAD ,即γ=∠C+∠CDE ,γ+∠CDE=∠B+α,代换得2∠CDE=α.故选B .点评:本题充分运用等腰三角形的性质,三角形的外角的性质,列等式代换,得出结论.11.(3分)(2012•本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A . B . C . D .A .B .C .D .B .C .D .B .C .D .C .D .C .D .D .。

2013-2014学年度第一学期期末测试(含答案)初二数学

2013-2014学年度第一学期期末测试(含答案)初二数学

2013-2014学年度第一学期阶段性测试八年级数学寄语:数学使人严谨,数学使人聪明,数学充满趣昧.同学们,准备好了吗?让我们一起对学过的课程做一次小结回顾吧!本试卷采用长卷出题,请你根据自己的学习情况,自主选择题目解答,考出水平,考出风采!本试题分第1卷(选择题)和第II卷(非选择题)两部分,第1卷共3页,第1I 卷共7页,本试题共10页,考试时间为120分钟,答卷前,请考生务必将直己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器,第1卷(选择题)注意事项:。

第1卷为选择题,每小题选出答案盾,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.一、选择题(本大题共20个小题,每小题3分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的平方根是A.2 B.-2 C.士2 D.42.下列几组数据能作为直角三角形的三边长的是A. 2,3,4B. 3,4,6C.4,6,9D.5,12, 133.不等式的解集在数轴上表示为4.下列调查,适合用普查方式的是A.了解济南市居民的年人均消费B.了解某班学生对“创建全国卫生城市”的知晓率C.了解济南电视台《有一说一》栏目的收视率D.了解某一天离开济南市的人口流量5.如图所示,△DEF经过平移可以得到△ABC,那么ED的对应边是A,ACB. BAC. BDD. BC6.甲、乙、丙、丁四位射击选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是A.甲 B.乙 C.丙 D.丁7.不等式绢的解集是8.要使分式有意义,则x应满足的条件是9.计算的结果为10.下列各式中从左到右的变形,是因式分解的是11.如图,点4、曰、C、D、D都在方格纸的格点上,若△COD是由△AOB绕点D按逆时针方向旋转而得,则旋转的最小角度为12.下列各式能用平方差公式闵式分解的是13.已知若a+b=14cm, c=10cm,则Rt△ABC的面积为A.24cm2B.36cm2 .C.48cm2D.60cm214.狗平方根是15.关于实数集的下列判断中,正确的是A.没有最大的数,有最小的数B.没有绝对值最大的数,有绝对值最小的数C.没有最小的数,有最大的数D.没有最小的数,也没有绝埘值最小的数16.等腰三角形底边上的高为8,局长为32,则三角形的面积为A. 56 B. 48 C.40 D. 3217.已知多项武分解冈式为(x +3)(ix -2),则6,c的值为A.b = l,c = -6B.b = -6,c = IC.b = -l,c = 6D.b = 6,c = -118.不等式组佝解集是x>7,则厅的取值范围是19.若整式4x2+1与口的和是完全平方式,则口可以是A.4x B.-4xG.士4x D. 4X4或土4x20.如图,在AB的垂直平分线ED交BC的延长线于p点,垂足为£,则第1I卷(非选择题)注意事项:1.第II卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共10个小题,每小题3分.把答案填在题中横线上.)21.分解因式:22.三条线段m、n、p满足以这三条线段为边组成的三角形为____.23.如图所示,△DEF是△ABC沿水玉方向向右平移后的对应图形,若则∠D的度数是____ 度.24.当x= 时,分式的值为零.25.26.有一组数据如下:3,a,,4,6,7,它们的平均数是a,那么这组数据的方差为.27.已知关于x的方程的解是正数,则m的取值范围为.28.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG= CD,DF=DE,则∠E= 度,,29.如图,Rt△ABC中,么B=900,AB = 3cm,AC=5cm,将△ABC折叠,使点C与4重合,得折痕DE,则△ABE的周长等于 cm.30.如图,在△ABC中,AD平分∠BAC,AB= AC - BD,则∠B:∠C的值是.三、解答题(本大题共12个小题,解答应写出文字说明,证明过程或演算步骤.)31.(本小题满分8分)32.(本小题满分8分)(1)分解因式:(2)解不等式组并将解集表示在数轴上:33.(本小题满分6分)先化简,再求值:其中x=l.34.(本小题满分6分)《中华人民共和国道路交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时,一辆",J、汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪”正前方30米C处,过了2秒后,测得“小汽车”与“车速检测仪”间的距离变为50米,这辆“小汽车”超速了吗?为什么?35.(本小题满分7分)如图,已知AB=AC,AD=AE.求证;BD=CE.36.(本小题满分6分)为帮助灾区人民重建家同,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,谢次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数,37.(奉小题满分6分)在某市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:请根据上面的统计图表,解答下列问题:(1)该班参加这次公益活动腑学生共有__ __ 名;(2)请补全频数、频率统计表和频数分布赢方图;(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.38.(本小题满分8分)为迎接新年,美化济南,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配4、曰两种园艺造型共50个摆放在泉城广场两侧,已知搭配一个爿种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个爿种造型的成本是800元,搭配一个召种造型的成本是960元试说明(1) 中哪种方案成本最低?最低成本是多少元?39.(本小题满分8分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程,已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量的方案有几种?请你帮助设计出来.40.(本小题满分9分)如图,点E、F在BC上,BE= CF,∠A=∠D,∠B =∠C, AF与DE交于点D.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由..ll.(本小题满分9分)如图,正方形ABCD的边长为4,边AD的中点为E,F是DE的中点.∠CBF的角平分线BG交AD延长线与点G求证:(1)BF=FG; (2)∠ABE=∠G.42.(本小题满分9分)如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连结BE.(1)求证:△ACD≌△BCE:(2)延长BE至Q,P为BQ上一点且使CP =CQ=5,若BC=8时,求PQ的长.八年级数学试题参考答案与评分标准,:一、选择题二、填空题21.( x+4)(x-4)22.直角二角形23. 7024.326.228. 1529.730.2:1(或2)三:解答题31.解:两边都乘以(x -3)得x-2=2(x一3)...... (1)x=4……… ……………………3分’经检验,x=4是原方程的根.…… ……..4分32.解:(其它解法可酌情给分)36.解:改第二次捐款人数为.人,则第一次捐款人数为(x-50)人........ (1)解这个方程,得x= 200. (4)经检验,x= 200是所列方程的根.……… …….5分 答:该校第二次捐款人数为200人.……… ……..6分. 37.解:(1)50......... .........1分 (2)补全百方图 ........4分 (3)180人............ (6)38解:(1)设搭配A 种造型r 个,则B 种造型为(50一x)个,......... (1)。

【精品】2013—2014学年新版人教版八年级上数学期末试卷(附答案)[1]

【精品】2013—2014学年新版人教版八年级上数学期末试卷(附答案)[1]

80
1
140
9、在平面直角坐标系中.点 P(-2 , 3)关于 x 轴的对称点的坐标为
10、一个等腰三角形有两边分别为 4 和 8,则它的周长是 ______ 二、选择题(每小题 3 分,共 30 分) 11 、下列四个图案中,是轴对称图形的是 ( )
___ 。
12、等腰三角形的一个内角是 50°,则另外两个角的度数分别是(
14、先化简再求值: 4(m 1)2 (2m 5)(2m 5) ,其中 m 3 .(8 分)
2 15、已知 y x 2 5,且 y 的算术平方根是 2,求 x 的值。(8 分)
A
16、已知:如图点 D 是 AB 上一点, DF 交 AC 于点 E,DE=EF,AE=CE ,求 D 证: A B∥ CF。(8 分)
M C
D
A
B
图 25
C
请给出证明 ;若不成立,请说明理由.
D A
B
N
图 25
21 题
N

ቤተ መጻሕፍቲ ባይዱ
B
4、写出三个具有轴对称性质的汉字: ______
5、如图,△ ABC中,∠ C=90°,∠ A=30°, AB的垂
A
直平分线交 AC于 D,交 AB于 E,CD=2,则 AC=

CC 3 D题
E
B
5题
6、分解因式: 4x2 9y 2 =
.
7、
7 xy
2
=
7
5x y
8、如图所示 , ∠1=_______.

A 65 °、 65° B 50 °、 80° C 65 °、 65°或 50°、 80°D 50 °、 50°
三、解答题

2013_2014学年八年级(上册)数学期末考试卷与答案(实用)

2013_2014学年八年级(上册)数学期末考试卷与答案(实用)

八年级数学期末复习试题一、选择题1.若正比例函数的图像经过点(-1,2),则这个图像必经过点A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)2.下列图形是轴对称图形的是A .B .C .D .3.一次函数y =2x -2的图象不经过...的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限4.从实数 2-,31-,0,π,4 中,挑选出的两个数都是无理数的为 A .31-,0 B .π,4 C .2-,4 D .2-,π 5.下列各式中是最简二次根式的是( )A .3aB .12a C .8a D .2a 6、式子77-+-a a 有意义,则字母a 的取值范围是( )A 5a ≥B 7a ≤C 5a ≥或B 7a ≤D 57a ≤≤7、使等式312332--=--m m m m 成立的实数m 的取值范围是( ) A m >3或m <21 B 0<m <3 C m ≥21D m >3 8.如图,菱形ABCD 由6个腰长为2,且全等的等腰梯形镶嵌而成,则线段AC 的长为( )A .3B .6C .33D .369.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是( )A. 3 :4B. 5 :8C. 9 :16D. 1 :2A B CDA BCD10.平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB的长为 ( )A .3 cmB .6 cmC .9 cmD .12 cm11.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:80==乙甲x x ,2402=甲s ,1802=乙s ,则成绩较为稳定的班级是( ) A .甲班 B .乙班 C .两班成绩一样稳定 D .无法确定 二、填空题:(每题2分,共16分)12.如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 . 13 如图一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分....a 的长度范围是( )A.1213a ≤≤B.1215a ≤≤C.512a ≤≤D.513a ≤≤14. 如图,已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2;以此下去…,则正方形A 4B 4C 4D 4的面积为__________.15. 如图:已知,梯形ABCD 中,AD∥BC,E 是AB 中点,EF⊥CD 于F ,CD =5,EF =6,则梯形ABCD 的面积是 .16.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是__________。

2013-2014学年八年级上数学期末试题及答案

2013-2014学年八年级上数学期末试题及答案

2013-2014学年(上)期末教学质量测评试题八年级数学注意事项:1.全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟. 2.在作答前,考生务必将自己的姓名,准考证号及座位号涂写在答题卡规定的地方.3.选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求. 1.下列语句中,是命题的是A .延长线段AB 到C B .垂线段最短 C .过点O 作直线a ∥bD .锐角都相等吗2.下列关于5的说法中,错误..的是 A .5是无理数 B .2<5<3 C .5的平方根是5 D .2552-=-3.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这A .25.6,26B .26,25.5C .26,26D .25.5,25.54.如图所示,AB ⊥EF 于B ,CD ⊥EF 于D ,∠1=∠F =30°,则与∠FCD 相等的角有A .1个B .2个C .3个D .4个5.将平面直角坐标系内某图形上各个点的横坐标都乘以1-,纵坐标不变,所得图形与原图形的关系是 A. 关于x 轴对称 B. 关于y 轴对称C. 关于原点对称D. 沿x 轴向下平移1个单位长度6.若正整数a ,b ,c 是直角三角形三边,则下列各组数一定还是直角三角形三边的是 A .a+1,b+1,c+1 B .a 2,b 2,c 2 C .2a ,2b ,2cD .a -1,b -1,c -17.一次函数y =-2x +2的图象是A .BC .D .8.已知点A (-3,y 1)和B (-2,y 2)都在直线y = 121--x 上,则y 1,y 2的大小关系是 A .y 1>y 2 B .y 1<y 2 C .y 1=y 2 D .大小不确定9.已知一个两位数,它的十位上的数字x 比个位上的数字y 大1.若颠倒个位与十位数字 的位置,得到的新数比原数小9,求这两个数所列的方程组正确的是A.1()()9x y x y y x -=⎧⎨+++=⎩, B.1109x y x y y x =+⎧⎨+=++⎩,C.110109x y x y y x =+⎧⎨+=+-⎩, D.110109x y x y y x =+⎧⎨+=++⎩10.一名考生步行前往考场,10分钟走了总路程的41,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了A. 20分钟 B . 22分钟 C . 24分钟 D . 26分钟二、填空题(每小题3分,共l 5分) 11.已知32=x ,则x =_______.12.如图,数轴上的点A 所表示的数为x ,则x 2—10的立方根为______.13.如图,点O 是三角形两条角平分线的交点,若∠BOC =110°,则∠A = . 14.直线13+=x y 向左平移2个单位长度后所得到的直线的解析式是 .15.已知24x y =⎧⎨=⎩是方程组73228x y x y -=⎧⎨+=⎩的解,那么由这两个方程得到的一次函数y =_________和y =_________的图象的交点坐标是 .三、解答题(本大题共5个小题,共55分) 16.(每小题5分,共20分) (1)计算: 32-512+618(2))21(3)解方程组:⎩⎨⎧=-=+421y x y x ②① (4)解方程组:132(1)6x y x y ⎧+=⎪⎨⎪+-=⎩17.(本小题满分8分)如图所示,已知∠AED=∠C ,∠3=∠B ,请写出∠1与∠2的数量关系,并A对结论进行证明.18.(本小题满分8分)如图所示,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1),B (2,4),△OAB 是直角三角形吗?借助于网格进行计算,证明你的结论.19.(本小题满分8分) 下表是某地2012年2月与2013年2月8天同期的每日最高气温,根据表(1)2012年2月气温的极差是 ,2013年2月气温的极差是 .由此可见, 年2月同期气温变化较大.(2)2012年2月的平均气温是,2013年2月的平均气温是. (3)2012年2月的气温方差是 , 2013年2月的气温方差是 ,由此可见, 年2月气温较稳. 20.(本小题满分11分)如图,在平面直角坐标系xOy 中,直线l 经过(0,4)A 和(2,0)B 两点. (1)求直线l 的解析式及原点到直线l 的距离; (2)C 、D 两点的坐标分别为(4,2)C 、(,0)D m ,且⊿ABO ≌⊿OCD 则m 的值为 ;(直接写出结论) (3)若直线l 向下平移n 个单位后经过(2)中的点D ,求n 的值.B 卷(共50分)一、填空题(每小题4分,共20分) 21.若32-=x ,则122+-x x = .22.三元一次方程组⎪⎩⎪⎨⎧===++4:5:2:3:111z y x y z y x 的解是 .23.在锐角三角形ABC 中,BC =23,∠ABC =45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM +MN 最小值是 . 24.一个一次函数图象与直线y=54x+954平行,•与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-20),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有 个. 25.如图,已知直线l :x y 3=,过点M (2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,…;按此作法继续下去,则点M 6的坐标为__________. 二、解答题(本大题共有3个小题,共30分)26.(本小题满分8分)为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x 小时,该月可得(即下月他可获得)的总费用为y 元,则y (元)和x (小时)之间的函数图象如图所示.(1)根据图象,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的? (2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?27.(本小题满分10分)如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 绕点B 逆时针旋转60°得到线段BO ′.(1)求点O 与O ′的距离; (2)证明:∠AOB =150°;(3)求四边形AOBO ′的面积. (4)直接写出△AOC 与△AOB 的面积和为________.28.(本小题满分12分)如图1所示,直线AB 交x 轴于点A (4,0),交y 轴于点B (0,-4),(1)如图,若C 的坐标为(-1,0),且AH ⊥BC 于点H ,AH 交OB 于点P ,试求点P 的坐标; (2)在(1)的条件下,如图2,连接OH ,求证:∠OHP =45°;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连结MD ,过点D 作DN ⊥DM交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子S △BDM -S △ADN 的值是否发生改变,如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.2013-2014学年(上)期末教学质量测评试题八年级数学参考答案及评分标准一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求。

人教版初中数学八年级上册期末试卷及答案

人教版初中数学八年级上册期末试卷及答案

人教版初中数学八年级上册期末试卷及答案2013-2014学年度第一学期期末质量检查八年级数学科试卷说明】本卷满分120分,考试时间100分钟。

一、选择题(本大题共10小题,每小题3分,共30分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A。

1,2,6B。

2,2,4C。

1,2,3D。

2,3,42.若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是()A。

直角三角形B。

锐角三角形C。

钝角三角形D。

等边三角形3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A。

60°B。

70°C。

80°D。

90°4.观察下列图标,从图案看是轴对称图形的有()A。

1个B。

2个C。

3个D。

4个5.若分式的值为x=-2,则()x+2A。

x=-2B。

x=±2C。

x=2D。

x=06.计算2x/(x-2)的结果是()A。

B。

1C。

-1D。

x7.下列各运算中,正确的是()A。

3a+2a=5aB。

(-3a)²=9a²C。

a÷a=1D。

(a+2)²=a²+4a+48.如图,△ABC中,AB=AC,∠A=40°,则∠B的度数是()A。

70°B。

55°C。

50°D。

40°9.如图,在四边形ABCD中,AB=AD,CB=CD,若连结AC、BD相交于点O,则图中全等三角形共有()A。

1对B。

2对C。

3对D。

4对10.已知(m-n)=8,(m+n)=2,则m+n的值为()A。

10B。

6C。

5D。

3二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a-4b=(a+2b)()。

12.正十边形的每个内角的度数为()。

13.若m+n=1,mn=2,则(2/m+1/n)的值为()。

14.已知实数x,y满足|x-4|+(y-8)²=(),则以x,y的值为两边长的等腰三角形的周长是()。

最新人教版2013-2014学期八年级数学上期末试卷(经典四套)

最新人教版2013-2014学期八年级数学上期末试卷(经典四套)

ABCD21DECBA2013-2014学年第一学期八年级数学期末模拟测试卷班级姓名 分数第Ⅰ卷(共100分)一、选择题(每题3分,共30分)1.下列平面图形中,不是轴对称图形的是 ( )2.一个三角形任意一边上的高都是这边上的中线,则对这个三角形的形状最准确的判断是( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形3.如右图,△ABC 与△DEF 是全等三角形,则图中相等的线段的组数是 ( )A .3B . 4C .5D .64、如右图:在△ABC 中,DE 垂直平分AB,AE 平分∠BAC,若∠C=90°, 则∠B 的度数为( ) A.30° B.20° C.40° D.25° 4. 已知m6x =,3n x =,则2m nx-的值为( )A 、9B 、43 C 、12 D 、345. 下列各式由左边到右边的变形中,是分解因式的为( )。

A 、a (x + y) =a x + a y B 、x 2-4x+4=x(x -4)+4C 、10x 2-5x=5x(2x -1)D 、x 2-16+3x=(x -4)(x+4)+3x 6.下列各式中计算正确的是 ( )A 、(2p+3q )(-2p+3q)=4p 2-9q 2B 、( 12a 2b -b)2=14a 4b 2-12a 2b 2+b 2C 、(2p -3q )(-2p -3q)=-4p 2+9q 2D 、 ( -12a 2b -b)2=-14a 4b 2-a 2b 2-b 27.分式方程2114339x x x +=-+-的解是( ) A .x=±2 B .x=2 C .x=-2 D .无解 8.若224x x +-=0,则 x 值为( ) A .2 B .-2 C .±2 D .不存在10.炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( ) A .66602x x =- B .66602x x =- C .66602x x =+ D .66602x x=+二、填空题(每题3分,共18分) 11、计算())43(82b a ab ⋅-=________12、已知(a+b)2=16,ab=6,则a 2+b 2的值是13、如右图,在△ABC 中,∠C=900,AD 平分∠CAB ,BC =8cm ,BD =5cm ,那么D 点到直线AB 的距离是 cm .14、当x 时,分式3912++x x 的值是负数15、若分式方程4142-=--x ax 有增根,则a= . 16、如右图,已知∠1=∠2,AC=AD ,增加一个条件能使△ABC ≌△AED三、解答题(共52分)17、因式分解(每题4分,共8分)(1)3x x - (2)3269a a a -+18、解下列分式方程(每题5分,共10分)(1)511x =+(2)0324256=++-++x x x xABECFD EBCAED19、(10分) 先化简再求值:[]y y x y x y x 4)4()2)(2(2÷+--+,其中x =5,y=220、(12分)已知:如图,∠1=∠2,,3=∠4,求证:△ABE ≌△ADE4321BAEDC21、(12分)A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?第Ⅱ卷(共50分)22、(12分)下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程.解:设x 2-4x =y原式=(y +2)(y +6)+4 (第一步) = y 2+8y +16 (第二步) =(y +4)2 (第三步) =(x 2-4x +4)2 (第四步) 回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式 (2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x +2)+1进行因式分解.23、(12分)观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯, 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)直接写出下列各式的计算结果:1111122334(1)n n ++++=⨯⨯⨯+ . (2)猜想并写出:)2(1+n n = .24、(12分)海珠区在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程. 已知甲工程队比乙工程队每天能多铺设20米. 甲工程队铺设350米所用的天数与乙工程队铺设250 米所用的天数相同.⑴甲、乙工程队每天各能铺设多少米?⑵如果要求完成该工程的工期不超过10天,且各队的工程量恰好为100的整数倍,那么应为两工程队分配工作量的方案有几种?请你帮忙设计出来.25、(14分)在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.2013-2014八年级数学上期末复习试卷一、选择题(本大题共有8题,每题3分,共24分)1、已知6x y+=,2xy=-,则2211x y+=.2、以下五家银行行标中,是轴对称图形的有()A、1个 B. 2个 C. 3个 D. 4个3、下列条件中,不能确定....△ABC≌△CBA'''的是()A、BC= B'C',AB=A'B',∠B=∠B'B、∠B=∠B'AC=A'C'AB= A'B'C、∠A=∠A',AB= A'B', ∠C=∠C'D、BC= B'C'4、若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11㎝B.7.5㎝C. 11㎝或7.5㎝D.以上都不对5、下列计算中正确的是()A、a2+a3=a5 B.a4÷a=a4 C.a2×a4=a8 D.(—a2)3=—a66、△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,最长边AB的长为()A.9cmB. 8 cmC. 7 cmD.6 cm7、在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b)B. (a+b)2=a+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-ab=a(a-b)8、.若关于x的分式方程233x mmx x-=--无解,则m的值为.二、填空题(本大题共6题,每题3分,共18分,请将正确答案直接写在题后的横线上。

2013—2014学年第一学期期末考试八年级数学试卷(含答案)

2013—2014学年第一学期期末考试八年级数学试卷(含答案)

111---a a a 11-+a a1--aa 2013—2014学年第一学期期末考试八年级数学试卷(时间:90分钟 卷面分100分)一、选择题(每小题3分,共24分)1、下列运算正确的是()A 、a+a=a 2B 、(3a) 2=6a 2C 、(a+1) 2=a 2+1D 、a·a=a 22、某三角形其中两边长分别为5cm 和8cm ,则此三角形的第三边长可能是( )A 、2cmB 、5cmC 、13cmD 、15cm 3、观察下列中国传统工艺品的花纹,其中轴对称图形是()4、计算的结果为( )A 、B 、C 、 -1D 、1-a 5、如图,某人将一块五边形玻璃打碎成四块,现要到玻璃店配一块完全一样的玻璃,那么最省事的方法是()A 、带①去B 、带①②去C 、带①②③去D 、带①②③④去6、如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是横板AB 的中点,AB 可以绕着点O 上下转动,当A 端落地时,∠OAC=20°,横板上下可转动的最大角度(即∠A′OA )是()A 、80°B 、60°C 、40°D 、20°7、的边长为a 的正方形中挖去一个边长为b 的小正方形(a>b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A 、(a+b) 2=a 2+2ab+b 2B 、(a-b) 2=a 2-2ab+b 2C 、a 2-b 2=(a+b)(a-b)D 、(a+2b)(a-b)()⎪⎭⎫⎝⎛∙-b a ab 243853-x 22322=--+x x x =a 2+ab-2b 28、如图,已知△AB C≌△CDA ,下列结论:(1)AB=CD,BC=DA ;(2)∠BAC=∠DCA,∠ACB=∠CAD ;(3)A B∥CD,BC∥DA。

其中正确的结论有( )个A 、0B 、1C 、2D 、3二、填空题(每小题3分,共24分)9、计算:=10、当x时,分式有意义11、分解因式:x 3-9x=12、点P (-3,a )和点Q (b ,-2)关于Y 轴对称,则a+b=13、如图,点P 在∠AOB 人平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是(只写一个即可,不添加辅助线)14、已知:在Rt △AB C 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=32cm ,且BD :DC=9:7,则D 到AB 边的距离为15、如图,△AB C 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E ,CD=2, 则AC=16、如图所示,△AB C 中,点A 的坐标为(0,1),点C 的坐标为(4,3),若要使使△AB C 和△AB D 全等,则点D 的坐标为三、解答题(共52分)17、(6分)解方程:2112211112+-÷⎪⎭⎫ ⎝⎛-++a a a a a 313118、(7分)先化简再求值:(a 2b-2ab 2-b 2)÷b-(a+b)(a-b),其中a=-3,b=19、(7分)先化简: ,再先一个你认为合适的数作为a 的值代入求值。

2013-2014学年度八年级上数学期末测试卷及答案

2013-2014学年度八年级上数学期末测试卷及答案

A BCD2013--2014学年度八年级 (上)数学期末测试一、选择题(每小题3分,共36分)1.下列平面图形中,不是轴对称图形的是 ( )2.下列运算中,正确的是( )A 、 (x 2)3=x 5B 、3x 2÷2x=x C 、 x 3·x 3=x 6D 、(x+y 2)2=x 2+y 43.已知:在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD :DC =9:7,则D 到AB 边的距离为 ( )A .18B .16C .14D .12 4.下列各式由左边到右边的变形中,是分解因式的为( )A 、a (x + y) =a x + a yB 、x 2-4x+4=x(x -4)+4 C 、10x 2-5x=5x(2x -1)D 、x 2-16+3x=(x -4)(x+4)+3x5.如图,C F B E ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添一个条件仍不能证明⊿ABC≌⊿DEF的是( ) A .AB=DEB ..DF ∥AC C .∠E=∠ABCD .AB ∥DE6.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )A .1、2、3B .2、3、4C .3、4、5D .4、5、67.已知m6x =,3nx =,则2m nx-的值为( ) A 、9B 、 12C 、43D 、34 8.已知:如图,△ABC 与△DEF 是全等三角形,则图中相等的线段的组数是 ( ) A .3 B . 4 C .5 D .6(第8题) (第9题) (第10题)9.如图,在∠AOB 的两边上截取AO=BO ,CO=DO ,连接AD ,BC 交于点P ,那么在结论①△AOD ≌△BOC ;②△APC ≌△BPD ;③点P 在∠AOB 的平分线上.其中正确的是 ( )ABECFD O D CABPABDCEαγβ ABFECDA .只有①B . 只有②C . 只有①②D . ①②③10.如图,D ,E 分别是△ABC 的边BC ,AC ,上的点,若AB=AC ,AD=AE ,则 ( ) A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值 C .当∠β为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值 11.已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为( )A 、14B 、18C 、24D 、18或24 12.若分式方程xa xa x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—2 二、填空题(每小题3分,共24分)13.用科学记数法表示—0.000 000 0314= . 14.如图,△ABC ≌△ADE ,∠EAC =25°,则∠BAD = °15.如图,D ,E 是边BC 上的两点,AD =AE ,请你再添加一个条件: 使△ABE ≌△ACD16.计算(-3a 3)·(-2a 2)=________________17.已知,2,522-=+=+b ab ab a 那么=-22b a .18.等腰三角形一腰上的高与另一腰的夹角为40°,则它的顶角的度数为 °. 19.如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm ,则△ABC 的周长为__________cm .20.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,CF 平分∠ACB ,CF ,BE 交于点P ,AC =4cm ,BC =3cm ,AB =5cm ,则△CPB 的面积为 2cm三、解答题(本大题共60分) 21.①(5分) 因式分解: 33abb a -ACBF EP(第20题)ADBECBDECA(第14题) (第15题)(第19题)② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a22.(5分)如图,A 、B 、C 三点表示3个村庄,为了解决村民子女就近入学问题,计划新建一所小学,要使学校到3个村庄的距离相等,请你在图中有尺规确定学校的位置.(保留作图痕迹,不写画法)23.(7分)一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 24.(8分)如图,BD 平分∠MBN ,A ,C 分别为BM ,BN 上的点,且BC >BA ,E 为BD 上 的一点,AE =CE ,求证 ∠BAE +∠BCE =180°C AB · · · BC ND E M AADBEFC25.(8分) 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数.26.(10分)如图,已知AC ⊥CB ,DB ⊥CB ,AB ⊥DE ,AB =DE ,E 是BC 的中点. (1)观察并猜想BD 和BC 有何数量关系?并证明你猜想的结论. (2)若BD =6cm ,求AC 的长.27.(12分)如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E ,AD=AC ,AF 平分∠CAB •交CE 于点F ,DF 的延长线交AC 于点G ,求证:(1)DF ∥BC ;(2)FG =FE .AD CB2013--2014学年度八年级 (上)数学期末测试3参考答案一、选择题(每小题3分,共36分) ACACACBBDACD二、填空题(每小题3分,共24分) 13.-3.14×610- 14.25° 15.∠B=∠C 16.65a 17.9 18.50 19.19cm 20.1.5三、解答题(本大题共60分)21.①(5分) 因式分解: 33ab b a -=ab(2a -2b )=ab(a+b)(a-b) ② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a解:原式=[]{})24(32522222b a ab ab b a b a ----=ab(5a-b)=138.522.答案略23.设江水的流速为x 千米/时,则可列方程xx -=+306030100 解得:x=7.5答:江水的流速为7.5千米/时.24.提示(过E 点分别BA 与BC 的垂线,即可证明) 25.∠A=36°,∠ABC=∠C=72° 26.解(1)BD 和BC 相等。

2013-2014学年新人教版八年级(上)期末数学检测卷2

2013-2014学年新人教版八年级(上)期末数学检测卷2
2
16.(3 分)(2011•襄阳)关于 x 的分式方程
的解为正数,则 m 的取值范围是 _________ .
三、解答题(其中 17,18 题各 9 分,19,21,22,24,26 题各 10 分,20 题 12 分,23 题 8 分,25 题 14 分,共 102 分)
17.(9 分)已知 2x+y=4,求代数式[(x+y)2﹣(x﹣y)2﹣2y(x﹣ y)]÷4y 的值.
解: A、根据 AB=DE,BC=EF 和∠A=∠D 不能判定两三角形全等,故本选项错误; B、根据∠A=∠D,∠C=∠F,AC=DF 才能得出两三角形全等,故本选项错误; C、根据∠B=∠E,∠A=∠D,AC=DF 才能得出两三角形全等,故本选项错误; D、∵在△ABC 和△DEF 中

∴△ABC≌△DEF(ASA),故本选项正确; 故选 D. 点评: 本题考查了全等三角形的判定定理,注意:①全等三角形的判定定理有 SAS,ASA,AAS,SSS,②应对 应相等,符合条件才能得出两三角形全等.
13.(3 分)如果(a+b)2=19,a2+b2=14,则(a﹣b)2= _________ . 14.(3 分)如图,在△ABC 中,AB=a,AC=b,∠BAC=150°,则 S△ABC= _________ .
15.(3 分)(2013•海门市二模)如图,在△ABC 中,AD 为 BC 边上的中线.已知 AC=5,AD=4,则 AB 的取值范 围是 _________ .
4.(3 分)下列说法不正确的是( ) A 在锐角三角形中,最大的锐角 x 的取值范围是 60°≤x<90° . B 在△ABC 中,锐角的个数最多 . C 在△ABC 中三个内角α:β:γ=1:3:5,这个三角形是直角三角形 . D 一个三角形中至多有一个角是锐角 .

2013-2014最新人教版八年级(上)数学期末考试试卷(六)

2013-2014最新人教版八年级(上)数学期末考试试卷(六)
20.计算:(1) ;(2) .
21.分解因式: .
23.如图,OC是∠AOB的角平分线,P是OC上一点.PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF.求证:DF=EF.
24.已知 ,求 的值.
25、“百佳”商场用80000元从外地采购回一批应季“T恤衫”,由于销路好,商场又紧急调拨20万采购比上一次多一倍的“T恤衫”,但第二次比第一次进价贵10元,商场在出售时统一按每件60元的标价出售,为了缩短库存的时间,最后的200件按7.5折处理并很快售完,求商场在这笔生意上盈利多少元。
区的距离相等,则超市应建在()
A.在AC、BC两边高线的交点处B.在∠A、∠B两内角平分线的交点处
C.在AC、BC两边中线的交点处D.在AC、BC两边垂直平分线的交点处
13.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,下列说法错误的是()
A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等
6.分解因式: .
7.分解因式: .
8.如图,将△ABC顺时针旋35°到△AB’C’的位置,则
∠BAB’的度数为.
9.老师给出一个关于x的分式,甲、乙各正确指出了这个分式的一个性质:甲:分式的值不可能为0;乙:x的取值范围是全体实数;请你根据他们的叙述构造满足上述性质的一个分式:.
10、若a2-6a+9与︱b-1︱互为相反数,则式子(-)÷(a+b)的值为__________.
26.如图,已知AC⊥CB,DB⊥CB,AB⊥DE,AB=DE,E是BC的中点.
(1)观察并猜想BD和BC有何数量关系?并证明你猜想的结论.
(2)若BD=6cm,求AC的长.
27、附加题:不妨试一试(第1小题4分,第2小题6分,满分10分.如果解答正确,可将本题得分加入总分,但满分最多计100分)

人教版八年级上册数学期末试卷(附答案详析).docx

人教版八年级上册数学期末试卷(附答案详析).docx

2013-2014八年级(上)数学期末试题一.选择题:(共12个小题,每小题2分,共24分)在每个小题的四个备选答案中,只有一个是符 合题目要求的,请把所选答案前的字母填在题后的括号内.1. (2分)9的算术平方根是( )A. 3B. ±3C. 9D. ±92. (2分)(2008-烟台)下列交通标志屮,不是轴对称图形的是( )3. (2分)若分式启的值为。

,则x 的值曹)4. (2 分)如图 1,点 B 、E 、C 、F 在同一条直线上,AABC^ADEF, ZB=45°, ZF=65°,则ZCOE5.(2分)(2006-聊城)下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖 C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球 D. 掷一枚六个面分别标冇1, 2, 3, 4, 5, 6的均匀正方体骰子,骰了停止转动后奇数点 朝上 a-b _ 1 D.(一…)二 a 2-b 2_a -b (a +b) 2 ZC=90°, ZA=30°, AB - BC=2,则 AB 等于(C. 2VIA. Zk 區D.B. 3C. ±3D. 0C. 70°D. 100° 6. (2分)下列变形正确的是() A. a+1 aB - a-1 a-1 b+l b -bb B. 4在 RtAABC 'I 1, A. 39.(2分)(2001-昆明)若三角形的一个外角等于和它和邻的内角,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.都有可能10.(2分)实数2迈在数轴上表示的点A的人致位置是( )A ——I ---- 1 - 1 ---- 1--------B ——| ----- 1-------- 1 --- 1 ---C ——1 ---- 1 --- 1 - 1 ----D —«« -------- « ---012. O 1 01 2< O 111.(2分)京通高速东起通州区北苑,西至朝阳区大望桥,全长18.4 T米.京通公交快速通道开通后, 为通州区市民出行带來了很大的便利.某一时段乘坐快速公交的平均速度比自驾汽车的平均速度提高T40%,因此可以提前15分钟走完这段路,若设这一时段H驾汽车的平均速度为X千米/时,则根据题意,得()A. 18.4 18.4 _X 40% 一15B. 18. 4 _X18.4—二15X(1+40%)C. 18.4_18. 4_15D. 18. 4 _18.415(1+40%) x X「60X(1+40%)x~60二、填空题:(共8个小题,每小题4分,共32分)13.(4 分)若Vx=3,则x= _______ .14.(4分)若二次根式{3x-5有意义,则x的取值范围是_______________ ・15.(4分)在弓,吉,1.2)<6,畅这五个实数中,无理数是____________________ .16.(4分)若一个三角形两边长分别为2、5,贝眦三角形的周长c的取值范围为________________17.(4分)如图,已知AF=CD, ZB=ZE,那么要得到△ ABC^ADEF,可以添加一个条件是18.(4分)如图,点D、B、E在同一直线上,E为AC中点,若AB=BC, ZC=33°,则ZD+ZDAB=DE19. (4分)观察分析下列数据,按规律填空:1, 2, <7, V10, 第n (n 为正整数)个数可以表 示为 •三、解答题:(共8个小题,第21、22每小题各5分,第23・25每小题各6分,第26・28每小题各8 分,共52分)21. (5 分)计算:¥仏+ (H -3.14 ) 0- l 1_V2 I. 22. (5 分)(2012•海淀区二模)解•方程:——rd-~ 二25. (6分)(2013・沈阳一模)列方程或方程组解应用题:某市在道路改造过程中,需耍铺设一条污水管道,决定由甲、乙两个工程队来完成这一工程.已知甲 工程队比乙工程队每天多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的 天数相同.求甲、乙工程队每天各铺设多少米?26. (8分)已知:如图,某汽车探险队要从A 城穿越沙漠去B 城,途屮需要到河流1边为汽车加水, 汽车在河边哪一点加水,才能使行驶的总路程最短?(1)请你在图上曲出这一点.(保留作图痕迹)27. 已知:ZA=90°, AB=AC, BD 平分ZABC ,CE 丄BD,垂足为 E.求证:BD=2CE.23. (6分) 已知2m+n=0,其屮m#),求旦」|巴4-n ID _ inn m 2-n 2的值. ZB=ZD, BC 〃DE,求证:BC=DE.28.(8分)已知:如图,等边三角形ABD与等边三角形ACE具有公共顶点A,连接CD, BE,交于点P.(1)__________________________________ 观察度量,ZBPC的度数为.(直接写出结果)(2)若绕点A将AACE旋转,使得ZBAC=180°,请你画出变化后的图形.(示意图)(3)在(2)的条件下,求出ZBPC的度数.。

2013-2014学年初二上数学期末考试试卷及答案解析

2013-2014学年初二上数学期末考试试卷及答案解析

2013-2014学年八年级[上]数学期末考试试卷一.选择题(共10小题)1.(2013•铁岭)如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )2.(2011•恩施州)如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为( )3.(2013•贺州)如图,在△ABC 中,∠ABC=45°,AC=8cm ,F 是高AD 和BE 的交点,则BF 的长是( )4.(2010•海南)如图,a 、b 、c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( ). B C .D6.(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()223二.填空题(共10小题)11.(2013•资阳)如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD 翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是_________.12.(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=_________度.13.(2013•枣庄)若,,则a+b的值为_________.14.(2013•内江)若m2﹣n2=6,且m﹣n=2,则m+n=_________.15.(2013•菏泽)分解因式:3a2﹣12ab+12b2=_________.16.(2013•盐城)使分式的值为零的条件是x=_________.17.(2013•南京)使式子1+有意义的x的取值范围是_________.18.(2012•茂名)若分式的值为0,则a的值是_________.19.在下列几个均不为零的式子,x2﹣4,x2﹣2x,x2﹣4x+4,x2+2x,x2+4x+4中任选两个都可以组成分式,请你选择一个不是最简分式的分式进行化简:_________.20.不改变分式的值,把分式分子分母中的各项系数化为整数且为最简分式是_________.三.解答题(共8小题)21.(2013•遵义)已知实数a满足a2+2a﹣15=0,求﹣÷的值.22.(2013•重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.23.(2007•资阳)设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).(1)探究a n是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由).24.在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:①∠AED+∠AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)25.(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB 于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.26.(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.27.(2013•沙河口区一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.(1)当CM与AB垂直时,求点M运动的时间;(2)当点A′落在△ABC的一边上时,求点M运动的时间.28.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=_________;如图2,若∠ACD=90°,则∠AFB=_________;如图3,若∠ACD=120°,则∠AFB=_________;(2)如图4,若∠ACD=α,则∠AFB=_________(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.2013-2014学年八年级[上]数学期末考试试卷参考答案与试题解析一.选择题(共10小题)1.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()2.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()=3.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()4.(2010•海南)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是().B C . D6.(2013•十堰)如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合.已知AC=5cm ,△ADC 的周长为17cm ,则BC 的长为( )223二.填空题(共10小题)11.(2013•资阳)如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD 翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是1+.BE=BD=BC+BE=1++,12.(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.13.(2013•枣庄)若,,则a+b的值为.=b=.故答案为:14.(2013•内江)若m2﹣n2=6,且m﹣n=2,则m+n=3.15.(2013•菏泽)分解因式:3a2﹣12ab+12b2=3(a﹣2b)2.16.(2013•盐城)使分式的值为零的条件是x=﹣1.时,17.(2013•南京)使式子1+有意义的x的取值范围是x≠1.有意义.18.(2012•茂名)若分式的值为0,则a的值是3.解:∵分式19.在下列几个均不为零的式子,x2﹣4,x2﹣2x,x2﹣4x+4,x2+2x,x2+4x+4中任选两个都可以组成分式,请你选择一个不是最简分式的分式进行化简:.=,.20.不改变分式的值,把分式分子分母中的各项系数化为整数且为最简分式是.,约分得,三.解答题(共8小题)21.(2013•遵义)已知实数a满足a2+2a﹣15=0,求﹣÷的值.﹣÷﹣•=,=.22.(2013•重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.÷﹣×﹣﹣,﹣﹣23.(2007•资阳)设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).(1)探究a n是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由).24.在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:①∠AED+∠AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)25.(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB 于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.PC=x=ABPC=x=EFAB26.(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.27.(2013•沙河口区一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.(1)当CM与AB垂直时,求点M运动的时间;(2)当点A′落在△ABC的一边上时,求点M运动的时间.=5AM=,运动的时间为:;运动的时间为:;BC×MF+MF=AM=,或.28.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=120°;如图2,若∠ACD=90°,则∠AFB=90°;如图3,若∠ACD=120°,则∠AFB=60°;(2)如图4,若∠ACD=α,则∠AFB=180°﹣α(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.,京翰教育北京家教辅导-开设全国中小学一对一课外辅导班。

2013-2014学年新人教版八年级(上)期末数学检测卷3解析

2013-2014学年新人教版八年级(上)期末数学检测卷3解析

2013-2014学年新人教版八年级(上)期末数学检测卷3一、选择题(每小题3分,共24分).B C D3.(3分)下列各式中与分式相等的是().B C D﹣5.(3分)(2012•陕西)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=().B C D8.(3分)若关于x的方程=有正数根,则k的取值范围是()二、填空题(每小题3分,共24分)9.(3分)观察图形规律:(1)图①中一共有_________个三角形,图②中共有_________个三角形,图③中共有_________个三角形.(2)由以上规律进行猜想,第n个图形共有_________个三角形.10.(3分)计算:(﹣)﹣2÷(﹣2)2=_________.11.(3分)若(2x+3)0=1,则x满足条件_________.12.(3分)a2+b2=5,ab=2,则a﹣b=_________.13.(3分)如图,在△ABC中,AB=AC,D,E分别是AC,AB上的点,且BC=BD,AD=DE=EB,则∠A=_________度.14.(3分)若分式=0,则x=_________.15.(3分)在公式E=+Ir中,所有字母都不等于零,则用E、n、R、r表示I为_________.16.(3分)如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为_________.三、解答题(其中17、18题各9分,19,21,22,24,26题各l0分,20-N12分,23题8分,25题14分,共102分)17.(9分)先化简,再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.18.(9分)(1)计算:1﹣÷.(2)解方程:+=﹣1.19.(10分)如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(2,3),点C的坐标是(0,3).(1)作出四边形OABC关于y轴对称的图形,并标出点B对应点的坐标.(2)在y轴上找一点P,使PA+PB的值最小,并求出点P的坐标.(要求不写作法,保留作图痕迹)20.(12分)如图,将Rt△ABC的直角顶点C置于直线l上,AC=BC,过A、B两点分别作直线l的垂线,垂足分别是点D、E.若BE=3,DE=5,求AD的长.21.(10分)甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.(1)甲、乙所购饲料的平均单价各是多少?(2)谁的购货方式更合算?22.(10分)如图,在△ABC中,AB=AC,∠BAC=45°,AD和CE是△ABC的高,且AD和CE相交于点H,求证:AH=2BD.23.(8分)甲、乙两工程队分别承担一条2千米公路的维修工作,甲队有一半时间每天维修公路x千米,另一半时间每天维修公路y千米.乙队维修前1千米公路每天维修x千米;维修后1千米公路时,每天维修y千米(x≠y).(1)求甲、乙两队完成任务需要的时间(用含x、y的代数式表示);(2)问甲、乙两队哪队先完成任务?24.(10分)已知将边长分别为a和2b(a>b)的长方形分割成四个全等的直角三角形,如图1,再用这四个三角形拼成如图2所示的正方形,中间形成一个正方形的空洞.经测量得长方形的面积为24,正方形的边长为5.试通过你获取的信息,求a2+b2和a2﹣b2的值.25.(14分)数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE_________DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE_________DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).26.(10分)如图1,在△ABC中,AB=AC,D是AC延长线上一点,点E在射线DB上,且有∠BAC=∠CED=α,连接EA.求证:EA平分∠BEC.(说明:如果反复探索没有解题思路,可以从下列条件中选取一个加以解决:①如图2,α=60°;②如图3,α=90°.)2013-2014学年新人教版八年级(上)期末数学检测卷3参考答案与试题解析一、选择题(每小题3分,共24分).B C D3.(3分)下列各式中与分式相等的是().B C D﹣4.(3分)一个四边形,截一刀后得到新多边形的内角和将()5.(3分)(2012•陕西)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()DE=)=(αα=.B C D==﹣=;8.(3分)若关于x的方程=有正数根,则k的取值范围是()二、填空题(每小题3分,共24分)9.(3分)观察图形规律:(1)图①中一共有3个三角形,图②中共有6个三角形,图③中共有10个三角形.(2)由以上规律进行猜想,第n个图形共有个三角形.故答案为:10.(3分)计算:(﹣)﹣2÷(﹣2)2=1.11.(3分)若(2x+3)0=1,则x满足条件x≠﹣.﹣..12.(3分)a2+b2=5,ab=2,则a﹣b=±1.13.(3分)如图,在△ABC中,AB=AC,D,E分别是AC,AB上的点,且BC=BD,AD=DE=EB,则∠A=45度.A=A=∠14.(3分)若分式=0,则x=﹣3.15.(3分)在公式E=+Ir中,所有字母都不等于零,则用E、n、R、r表示I为.E=.故答案为:.16.(3分)如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为(1,﹣1),(5,3)或(5,﹣1).三、解答题(其中17、18题各9分,19,21,22,24,26题各l0分,20-N12分,23题8分,25题14分,共102分)17.(9分)先化简,再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.18.(9分)(1)计算:1﹣÷.(2)解方程:+=﹣1.﹣•﹣;x=x=19.(10分)如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(2,3),点C的坐标是(0,3).(1)作出四边形OABC关于y轴对称的图形,并标出点B对应点的坐标.(2)在y轴上找一点P,使PA+PB的值最小,并求出点P的坐标.(要求不写作法,保留作图痕迹)20.(12分)如图,将Rt△ABC的直角顶点C置于直线l上,AC=BC,过A、B两点分别作直线l的垂线,垂足分别是点D、E.若BE=3,DE=5,求AD的长.21.(10分)甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.(1)甲、乙所购饲料的平均单价各是多少?(2)谁的购货方式更合算?甲两次购买饲料的平均单价为=乙两次购买饲料的平均单价为(元﹣=﹣=,时,﹣>22.(10分)如图,在△ABC中,AB=AC,∠BAC=45°,AD和CE是△ABC的高,且AD和CE相交于点H,求证:AH=2BD.23.(8分)甲、乙两工程队分别承担一条2千米公路的维修工作,甲队有一半时间每天维修公路x千米,另一半时间每天维修公路y千米.乙队维修前1千米公路每天维修x千米;维修后1千米公路时,每天维修y千米(x≠y).(1)求甲、乙两队完成任务需要的时间(用含x、y的代数式表示);(2)问甲、乙两队哪队先完成任务?)甲队完成任务需要的时间为=,=,天,24.(10分)已知将边长分别为a和2b(a>b)的长方形分割成四个全等的直角三角形,如图1,再用这四个三角形拼成如图2所示的正方形,中间形成一个正方形的空洞.经测量得长方形的面积为24,正方形的边长为5.试通过你获取的信息,求a2+b2和a2﹣b2的值.25.(14分)数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE=DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD 的长(请你直接写出结果).,BC=,=,=,,=,BC=,=,=,=,26.(10分)如图1,在△ABC中,AB=AC,D是AC延长线上一点,点E在射线DB上,且有∠BAC=∠CED=α,连接EA.求证:EA平分∠BEC.(说明:如果反复探索没有解题思路,可以从下列条件中选取一个加以解决:①如图2,α=60°;②如图3,α=90°.),。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013--2014新人教版八年级数学上期末测试题带详细讲解(超经典)2013--2014新人教版八年级数学上期末测试题带详细讲解(超经典)一.选择题(共12小题,满分36分,每小题3分)1.(3分)(2012•宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.2.(3分)(2011•绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A .A B=AC B.∠BAE=∠CAD C.B E=DC D.A D=DE4.(3分)(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°5.(3分)(2012•益阳)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=16.(3分)(2012•柳州)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x7.(3分)(2012•济宁)下列式子变形是因式分解的是()D.x2﹣5x+6=(x+2)(x+3)A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+68.(3分)(2012•宜昌)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠09.(3分)(2012•安徽)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x10.(3分)(2011•鸡西)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤11.(3分)(2012•本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.12.(3分)(2011•西藏)如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.A B=AC B.D B=DC C.∠ADB=∠ADC D.∠B=∠C二.填空题(共5小题,满分20分,每小题4分)13.(4分)(2012•潍坊)分解因式:x3﹣4x2﹣12x=_________.14.(4分)(2012•攀枝花)若分式方程:有增根,则k=_________.15.(4分)(2011•昭通)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________.(只需填一个即可)16.(4分)(2012•白银)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=_________度.17.(4分)(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________.三.解答题(共7小题,满分64分)18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.19.(6分)(2009•漳州)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.20.(8分)(2012•咸宁)解方程:.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.22.(10分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.23.(12分)(2012•百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?24.(12分)(2012•凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:_________.2013--2014新人教版八年级数学上期末测试题带详细讲解(超经典)参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)(2012•宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.考点:轴对称图形.分析:据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)(2011•绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根考点:三角形的稳定性.专题:存在型.分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.点评:本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.A B=AC B.∠BAE=∠CAD C.B E=DC D.A D=DE考点:全等三角形的性质.分析:根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.点评:本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.4.(3分)(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°考点:等边三角形的性质;多边形内角与外角.专题:探究型.分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.点评:本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题5.(3分)(2012•益阳)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=1考点:完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂.分析:A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1.解答:解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选D.点评:此题考查了整式的有关运算公式和性质,属基础题.6.(3分)(2012•柳州)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x考点:整式的混合运算.分析:根据正方形的面积公式,以及分割法,可求正方形的面积,进而可排除错误的表达式.解答:解:根据图可知,S正方形=(x+a)2=x2+2ax+a2,故选C.点评:本题考查了整式的混合运算、正方形面积,解题的关键是注意完全平方公式的掌握.7.(3分)(2012•济宁)下列式子变形是因式分解的是()D.x2﹣5x+6=(x+2)(x+3)A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6考点:因式分解的意义.分析:根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答:解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.点评:本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8.(3分)(2012•宜昌)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;9.(3分)(2012•安徽)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x考点:分式的加减法.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,故选D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.(3分)(2011•鸡西)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤考点:负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂.专题:计算题.分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.解答:解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2=,根据负整数指数幂的定义a﹣p=(a≠0,p为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.点评:本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键.11.(3分)(2012•本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.考点:由实际问题抽象出分式方程.分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.解答:解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.点评:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.12.(3分)(2011•西藏)如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.A B=AC B.D B=DC C.∠ADB=∠ADC D.∠B=∠C考点:全等三角形的判定.分析:先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.解答:解:A、∵AB=AC,∴,∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴,∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴,∴△ABD≌△ACD(AAS);故此选项正确.故选:B.点评:本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.二.填空题(共5小题,满分20分,每小题4分)13.(4分)(2012•潍坊)分解因式:x3﹣4x2﹣12x=x(x+2)(x﹣6).考点:因式分解-十字相乘法等;因式分解-提公因式法.分析:首先提取公因式x,然后利用十字相乘法求解即可求得答案,注意分解要彻底.解答:解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).故答案为:x(x+2)(x﹣6).点评:此题考查了提公因式法、十字相乘法分解因式的知识.此题比较简单,注意因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底.14.(4分)(2012•攀枝花)若分式方程:有增根,则k=1或2.考点:分式方程的增根.专题:计算题.分析:把k当作已知数求出x=,根据分式方程有增根得出x﹣2=0,2﹣x=0,求出x=2,得出方程=2,求出k的值即可.解答:解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,当2﹣k=0时,此方程无解,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.点评:本题考查了对分式方程的增根的理解和运用,把分式方程变成整式方程后,求出整式方程的解,若代入分式方程的分母恰好等于0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.15.(4分)(2011•昭通)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一).(只需填一个即可)考点:全等三角形的判定.专题:开放型.分析:要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,利用SAS可证全等.(也可添加其它条件).解答:解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).点评:本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图形上的位置进行选取.16.(4分)(2012•白银)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=50度.考点:三角形的外角性质;等腰三角形的性质.分析:根据等角对等边的性质可得∠A=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.点评:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边对等角的性质,是基础题,熟记性质并准确识图是解题的关键.17.(4分)(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4.考点:平方差公式的几何背景.分析:根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答:解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.点评:本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.三.解答题(共7小题,满分64分)18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.考点:整式的加减—化简求值.分析:首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解答:解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣.点评:熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.19.(6分)(2009•漳州)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.考点:提公因式法与公式法的综合运用;整式的加减.专题:开放型.分析:本题考查整式的加法运算,找出同类项,然后只要合并同类项就可以了.解答:解:情况一:x2+2x﹣1+x2+4x+1=x2+6x=x(x+6).情况二:x2+2x﹣1+x2﹣2x=x2﹣1=(x+1)(x﹣1).情况三:x2+4x+1+x2﹣2x=x2+2x+1=(x+1)2.点评:本题考查了提公因式法,公式法分解因式,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.熟记公式结构是分解因式的关键.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2.20.(8分)(2012•咸宁)解方程:.考点:解分式方程.分析:观察可得最简公分母是(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程即:.(1分)方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.(4分)化简,得2x+4=8.解得:x=2.(7分)检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.(8分)点评:此题考查了分式方程的求解方法.此题比较简单,注意转化思想的应用,注意解分式方程一定要验根.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.考点:等腰直角三角形;全等三角形的性质;全等三角形的判定.分析:(1)要证AD=CE,只需证明△ABD≌△CBE,由于△ABC和△DBE均为等腰直角三角形,所以易证得结论.(2)延长AD,根据(1)的结论,易证∠AFC=∠ABC=90°,所以AD⊥CE.解答:解:(1)∵△ABC和△DBE均为等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=∠CBE,∴△ABD≌△CBE,∴AD=CE.(2)垂直.延长AD分别交BC和CE于G和F,∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∴∠AFC=∠ABC=90°,∴AD⊥CE.点评:利用等腰三角形的性质,可以证得线段和角相等,为证明全等和相似奠定基础,从而进行进一步的证明.22.(10分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.考点:全等三角形的判定与性质.专题:证明题.分析:求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.解答:证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.点评:本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.23.(12分)(2012•百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?考点:分式方程的应用.专题:应用题.分析:(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.解答:解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.点评:本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.24.(12分)(2012•凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:8.考点:轴对称-最短路线问题.分析:(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案.解答:解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线,∵BC=6,BC边上的高为4,∴DE=3,DD′=4,∴D′E===5,∴△PDE周长的最小值为:DE+D′E=3+5=8,故答案为:8.点评:此题主要考查了利用轴对称求最短路径以及三角形中位线的知识,根据已知得出要求△PDE周长的最小值,求出DP+PE的最小值即可是解题关键.。

相关文档
最新文档