2017—2018学年下学期期末水平质量检测七年级数学试卷
2017-2018学年度下学期期末考试七年级数学试题
2017-2018学年度下学期期末考试七年级数学试题一、选择题:(本大题共10个小题,每小题3分,共30分) ( )1. 平面内三条直线的交点个数可能有:A.0,1,2,3个B.1,3个C.2,3个D.1,2,3个( )2. 下列计算正确的是:A.24±=B.3)3(2-=- C.5)5(2=-D.3)3(2-=-( )3. 平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标 相比:A. 横坐标不变,纵坐标加3B. 纵坐标不变,横坐标加3C. 横坐标不变,纵坐标乘以3D. 纵坐标不变,横坐标乘以3( )4. 下列各式是二元一次方程的是:A. y x 21+B.342=+-y yx C. 95-=yx D.02=-y x( )5. 若n m >,则下列各式一定成立的是:A. 33+<+n mB. 33-<-n mC.33n m > D. n m 33->-( )6. 以下调查中适合作抽样调查的有: ①了解全班同学期末考试的成绩情况; ②了解夏季冷饮市场上冰激凌的质量情况; ③了解“神七”飞船各部件的安全情况;④了解《长江作业本》在全省七年级学生中受欢迎的程度.A. 4个B. 3个C. 2个D. 1个 ( )7. 如图,点F,E 分别在线段AB 和CD 上,下列条件能判定AB ∥CD 的是:A. ∠1=∠2B. ∠3=∠4C. ∠2=∠4D. ∠1=∠4( )8. 若y x ,满足018)2(2=-++y x ,则y x +的平方根是:A. 4±B. 2±C. 4D. 2( )9. 日本某地突发地震,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的 帐篷恰好(即不多也不少)能容纳这60名灾民,则不同的搭建方案有:A. 4种B. 6种C. 9种D. 11种 ( )10. 若关于x 的不等式⎩⎨⎧≤-<-1250x m x 的整数解有且只有4个,则m 的取值范围是:A. 65≤≤mB. 65<<mC. 65<≤mD. 65≤<m二、填空题:(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的对应位置的横线上. 11. 已知无理数b a <+<51,并且b a ,是两个连续的整数,则ab 的值为___________. 12. 如图,已知AB ∥ED,∠ACB=90°,则图中与∠CBA 互余的角是___________.13. 课间操时,王超,邓祖男的位置如图所示,陈贝尔对邓祖男说,如果我的位置用)0,0(表示,王超的位置用 )1,2(表示,那么邓祖男的位置可以表示成________.14. 把三个能够重合的长方形如图排列在一个大长方形中,若大长方形的周长为888cm,则一个小长方形的 周长等于_________cm.15. 用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有 36张白铁皮.若用x 张制盒身,y 张制盒底可以使盒身与盒底配套,那么可列方程组为:______________. 16. 若不等式1)32(<-x a 的解集是321->a x ,则a 的取值范围是_____________. 三、解答题:(本大题共8个小题,共72分) 17.(本小题满分10分) 解下列方程组:(1)⎩⎨⎧=-=+33651643y x y x(2)⎪⎩⎪⎨⎧=-++=--+1624)(4)(3y x y x y x y x18.(本小题满分10分)解下列不等式(组),并把它们的解集在数轴上表示出来:(1)1213312≥---x x(2) ⎪⎩⎪⎨⎧≤-+<+321)1(352x x x x20.(本小题满分6分)如图,已知AD 平分∠CAB,DE ∥AC,∠1=30°.求∠2的度数.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱 的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘 制了如图所示的两幅不完整的统计图.(1) 从全体学生的调查表中随机抽取了_______名学生的调查表; (2) 将条形图补充完整;(3) 艺术类读物所在扇形的圆心角是________度. 21.(本小题满分8分)如图,在长方形ABCD 中,放置9个形状,大小都相同的小长方形,相关数据如图所示. 求图中阴影部分的面积.22.(本小题满分8分)先阅读理解下面的例题,再按要求解答:例题:解不等式0)3)(3(>-+x x解:由有理数的乘法法则“两数相乘,同号得正” 有①⎩⎨⎧>->+0303x x 或②⎩⎨⎧<-<+0303x x解不等式组①得3>x ,解不等式组②得3-<x 故原不等式的解集为:3>x 或3-<x 问题: 求不等式01523<-+x x 的解集.某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球 25个,共花费4500元.已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元. (1)求购买一个A 种品牌、一个B 种品牌的足球各需多少元?(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌的足球50个,正好赶上商场对商品价格进行调整,A 种品牌的足球售价比第一次购买时提高4元,B 种品牌的足球 按第一次购买时售价的九折出售,如果学校此次购买A 、B 两种品牌的足球的总费用不超过第一 次花费的70%,且保证这次购买的B 种品牌的足球不少于23个,则这次学校有哪几种购买方案?24.(本小题满分12分)如图,以直角△AOC 的直角顶点O 为原点,以OC,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A ),0(a ,C )0,(b 满足082=-++-b b a .(1) 点A 的坐标为______________;点C 的坐标为_____________.(2) 已知坐标轴上有两动点P,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速 度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点 整个运动随之结束.AC 的中点D 的坐标是)3,4(,设运动时间为t 秒.问:是否存在这样的t ,使得 △ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3) 在(2)的条件下,若∠DOC=∠DCO,点G 是第二象限中一点,并且y 轴平分∠GOD.点E 是线段 OA 上一动点,连接接CE 交OD 于点H,当点E 在线段OA 上运动的过程中,探究∠GOA,∠OHC, ∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180可以直接使用).七年级数学试题参考答案一.选择题题号 12345678910 答案A C ABC CD B BD二.填空题11. 12 12. ∠BAC 与∠ACE 13. )3,4( 14. 296 15. ⎩⎨⎧⨯==+xy y x 2524036 16.23<a(第12题只填一种且正确的给2分,填了两种但有一种错误的不给分;第15题第二个方程用比例式的也对)三.解答题17.(1)⎩⎨⎧=-=+33651643y x y x解:①3⨯,得 48129=+y x ③ ②2⨯,得 661210=-y x ④ ③+④,得 11419=x6=x把6=x 代入①,得 16463=+⨯y 24-=y 21-=y 所以这个方程组的解是⎪⎩⎪⎨⎧-==216y x(每小题3分,请按步骤给分)18.(1)解:去分母,得 6)13(3)12(2≥---x x 去括号,得 63924≥+--x x 移项,得 32694-+≥-x x 合并同类项,得 55≥-x系数化为1,得 1-≤x ………......................………………………2分 数轴表示如图……....…………3分(2)解:解不等式①,得2>x .....................................………………………4分 解不等式②,得3≤x .......................………………………………5分 把不等式①和②的解集在数轴上表示出来:① ② (2)⎪⎩⎪⎨⎧=-++=--+1624)(4)(3y x y x y x y x解:②6⨯,得 6)()(3=-++y x y x ③ ③-①,得 2)(5=-y x 52=-y x ④ 把④代入①,得 1528=+y x ⑤ ④+⑤,得 1517=x ④-⑤,得 1511=y 所以这个方程组的解是⎪⎪⎩⎪⎪⎨⎧==15111517y x①②所以不等式组的解集:32≤<x …….......................................……6分 19.解:(1)300;....................................………………………2分 (2)补全图如下;..................................………………4分 (3)72....................................……...…………………6分20.证明: ∵AB 平分∠CAB…………………….........................………………1分 ∴∠CAB=2∠1=︒=︒⨯60302……………………………………2分 又∵DE ∥AC…………………………................................…………3分 ∴∠2=∠CAB=60°…………………………….....................………5分 21.解:设小长方形的长和宽分别为y x ,则 ⎩⎨⎧=+-=+42394y y x y x …………….........................….............……………1分解得⎩⎨⎧==15y x …………….........................……........................…………2分 ∴AB=713434=⨯+=+y∴6397=⨯=⋅=CD AB S ABCD 长方形…………….......………..……3分 ∴18159639=⨯⨯-=-=小长方形长方形阴S S S ABCD ………..........…4分答:阴影部分的面积是18.……………...........................………………5分22.解:由有理数的乘法法则“两数相除,异号得负”……………………………………1分 有①⎩⎨⎧<->+015023x x 或②⎩⎨⎧>-<+015023x x …………………..............…………………2分解不等式组①,得5132<<-x ………………………....................……………3分 解不等式组②,得不等式组②无解………………………..............……………4分 故原不等式组的解集为:5132<<-x ……………………........………………5分23.解:(1)设购买一个A,B 品牌的足球分别要x 元与y 元,由题意可得:…….........……1分 ⎩⎨⎧+==+3045002550x y y x .........................................................………………………2分解得⎩⎨⎧==8050y x ...................................................................………………………………3分答: 一个A 种品牌和一个B 种品牌的足球分别需要50元与80元..........…………4分 (2)设再次购进A 品牌的足球m 个,购进B 品牌的足球)50(m -辆, 由题意可得: ⎩⎨⎧≥-⨯≤-⨯⨯++2350%704500)50(9.080)450(m m m ………....………6分解得2725≤≤m ………………………................................………7分 ∵m 取自然数∴27,26,25=m ………....................……….....……………………8分 ∴存在以下三种购买方案:①A 种品牌足球25个,B 种品牌足球25个; ②A 种品牌足球26个,B 种品牌足球24个;③A 种品牌足球27个,B 种品牌足球23个…………..……………9分24. (1) )0,8();6,0(….....…................................................…………………2分 (2) ∵t t x OQ S D ODQ 242121=⋅⋅=⋅=∆….....………….......…………3分 t t y OP S D ODP 3123)28(2121-=⋅-⋅=⋅=∆….....……………4分 由t t 3122-=时,4.2=t ….....……………….....................……5分∴存在4.2=t 时,使得△ODP 与△ODQ 的面积相等….........……6分 (3) ∠GOD+∠ACE=∠OHC,理由如下:…................……………………7分 ∵x 轴⊥y 轴∴∠AOC=∠DOC+∠AOD=90° ∴∠OAC+∠ACO=90° 又∵∠DOC=∠DCO ∴∠OAC=∠AOD ∵x 轴平分∠GOD ∴∠GOA=∠AOD ∴∠GOA=∠OAC∴OG ∥AC…................……………......................................………8分 过点H 作HF ∥OG ∴HF ∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD…................……....................………………9分 ∴∠GOD+∠ACE=∠FHC+∠FHO。
2017-2018学年陕西省西安市新城区七年级(下)期末数学试卷(解析版)
2017-2018学年陕西省西安市新城区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列运算正确的是()A. B.C. D.2.西安市2017年生产总值(GDP)约为7700亿元人民币,用科学记数法表示7700亿为()A. B. C. D.3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD()A. B.C. D.4.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带去B. 带去C. 带去D. 带和去5.如图所示:AB∥CD,MN交CD于点E,交AB于F,BE⊥MN于点E,若∠DEM=55°,则∠ABE=()A.B.C.D.6.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A. B. C. D.7.如图所示,货车匀速通过隧道(隧道长大于货车长)时,货车从进入隧道至离开隧道的时间x与货车在隧道内的长度y之间的关系用图象描述大致是()A. B.C. D.8.下列图形中,不一定是轴对称图形的是()A. 等腰三角形B. 线段C. 钝角D. 直角三角形9.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A. A、C两点之间B. E、G两点之间C. B、F两点之间D. G、H两点之间10.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A. B. C. D.二、填空题(本大题共4小题,共12.0分)11.“早上的太阳从东方升起”是______事件.(填“确定”或“不确定”)12.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据为8时,输出的数据为______.13.则∠BAC的度数=______.14.如图所示,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为______.三、计算题(本大题共1小题,共8.0分)15.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示:根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟19升,求排水时y与x之间的关系式.如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.四、解答题(本大题共9小题,共70.0分)16.计算(1)-32+()-2+(π-2018)0(2)[(a-2b)2-b(a+4b)]÷(-3a)17.先化简再求值:(x+2y)(x-2y)-2y(x-2y),其中x=-1,y=.18.尺规作图,已知线段a、线段c和∠α,用直尺和圆规作△ABC,使BC=a,AB=c,∠ABC=∠α.(要求:作图时,保留作图痕迹,不写作法)19.如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE(1)如果AC=6cm,BC=8cm,试求△ACD的周长;(2)如果∠CAD:∠BAD=1:2,求∠B的度数.20.某种产品的商标如图所示,O是线段AC、BD的交点,并且AO=DO.请你在不作辅助线的情况下添加一个条件,证明△ABO和△DCO全等.添加条件______.证明:21.如图,把矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是______;(2)若∠BFE=65°,求∠EBF的度数.22.某校在汉字听写大赛活动中需要一名主持人小丽和小芳都想当主持人,小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?23.如图,E,F分别是等边△ABC边AB,AC上的点,且AE=CF,CE,BF交于点P.(1)证明:CE=BF;(2)求∠BPC的度数.24.如果一个三角形有两个角相等,那么这个三角形是等腰三角形,这个结论可以简称为“等角对等边”.(1)如图1,在△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F点,则图中共有______个等腰三角形;(2)如图2,若AB≠AC,在其他条件不变的情况下,边EF与BE、CF间的数量关系为______;(3)如图3,若在△ABC中,∠B的平分线BO与三角形外角平分线CO交于O点,过O点作OE∥BC交AB于E点,交AC于F点,则EF与BE、CF之间有怎样的数量关系?并说明理由.答案和解析1.【答案】C【解析】解:A、a2、a3不是同类项,不能合并,此选项错误;B、(a-2)2=a2-4a+4,此选项错误;C、2a2-3a2=-a2,此选项正确;D、(a+2)(a-2)=a2-4,此选项错误;故选:C.根据合并同类项法则、完全平方公式、平方差公式逐一计算即可判断.此题考查了整式的混合运算,熟练掌握合并同类项法则、完全平方公式、平方差公式是解本题的关键.2.【答案】B【解析】解:7700亿=7700 00000000=7.7×1011,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】A【解析】解:A、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;B、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:A.根据平行线的判定分别进行分析可得答案.此题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.4.【答案】C【解析】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA 判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.5.【答案】B【解析】解:如图,∵BE⊥MN,∴∠MEB=90°.∵∠DEM=55°,∴∠DEB=90°-55°=35°.∵AB∥CD,∴∠ABE=∠DEB=35°.故选:B.由平行线的性质和余角的定义解答.本题考查了平行线的性质和垂线,正确观察图形,熟练掌握平行线的性质和垂直的定义.6.【答案】C【解析】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;C、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:C.根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证即可.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.7.【答案】A【解析】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,∴反映到图象上应选A.故选:A.先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.本题主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系,难度适中.8.【答案】D【解析】解:A、是轴对称图形,故选项错误;B、是轴对称图形,故选项错误;C、是轴对称图形,故选项错误;D、不一定是轴对称图形如不是等腰直角三角形,故选项正确.故选:D.根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.【答案】B【解析】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.10.【答案】B【解析】解:所有的情况有:2,4,6;2,4,8;2,4,10;2,6,8;2,6,10;2,8,10;4,6,8;4,6,10;4,8,10;6,8,10,共10种,其中能构成三角形的有:4,6,8;6,8,10;4,8,10,共3种,则P=.故选:B.找出五条线段任取三条的所有等可能的情况数,找出能构成三角形的情况,即可求出所求的概率.此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.11.【答案】确定【解析】解:“早上的太阳从东方升起”是必然事件,属于确定事件,故答案为:确定.根据事件的可能性得到相应事件的类型即可.本题主要考查随机事件,用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.【答案】【解析】解:输出数据的规律为,当输入数据为8时,输出的数据为=.根据图表找出输出数字的规律,直接将输入数据代入即可求解.此题主要考查根据已有输入输出数据找出它们的规律,进而求解.13.【答案】110°【解析】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,则2(∠B+∠C)=140°,解得,∠B+∠C=70°,∴∠BAC=110°,故答案为:110°.根据线段的垂直平分线的性质得到DA=DB,EA=EC,根据等腰三角形的性质得到∠DAB=∠B,∠EAC=∠C,根据三角形内角和定理计算即可.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.【答案】70°【解析】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为:70°.此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.15.【答案】解:(1)依题意得洗衣机的进水时间是4分钟,清洗时洗衣机中的水量是40升;(2)∵洗衣机的排水速度为每分钟19升,从第15分钟开始排水,排水量为40升,∴y=40-19(x-15)=-19x+325,∵排水时间为2分钟,∴y=-19×(15+2)+325=2升.∴排水结束时洗衣机中剩下的水量2升.【解析】(1)根据函数图象可以确定洗衣机的进水时间,清洗时洗衣机中的水量;(2)①由于洗衣机的排水速度为每分钟19升,并且从第15分钟开始排水,排水量为40升,由此即可确定排水时y与x之间的关系式;②根据①中的结论代入已知数值即可求解.此题主要考查了一次函数应用,解题的关键首先正确理解题意,然后利用数形结合的思想和待定系数法即可求解.16.【答案】解:(1)原式=-9+4+1=-4;(2)[(a-2b)2-b(a+4b)]÷(-3a)=[(a2-4ab+4b2)-ab-4b2]÷(-3a)=(a2-5ab)÷(-3a)=-a+b.【解析】(1)直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算,进而得出答案.此题主要考查了整式的混合运算以及实数运算,正确掌握相关运算法则是解题关键.17.【答案】解:(x+2y)(x-2y)-2y(x-2y)=x2-4y2-2xy+4y2=x2-2xy,当x=-1,y=时,原式=(-1)2-2×(-1)×=2.【解析】先算乘法,再合并同类项,最后代入求出即可.本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.【答案】解:如图,作∠MAN=α,在射线BN上截取BC=a,在射线BM上截取BA=c,连接AC,△ABC即为所求.【解析】如图,作∠MAN=α,在射线BN上截取BC=a,在射线BM上截取BA=c,连接AC,△ABC即为所求.本题考查作图-复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.19.【答案】解:(1)由折叠的性质可知,DE垂直平分线段AB,根据垂直平分线的性质可得:DA=DB,∴△ACD的周长=DA+DC+AC=DB+DC+AC=BC+AC=14cm;(2)设∠CAD=x,则∠BAD=2x,∵DA=DB,∴∠B=∠BAD=2x,在Rt△ABC中,∠B+∠BAC=90°,即:2x+2x+x=90°,x=18°,∠B=2x=36°.【解析】(1)折叠时,对称轴为折痕DE,DE垂直平分线段AB,由垂直平分线的性质得DA=DB,再把△ACD的周长进行线段的转化即可;(2)设∠CAD=x,则∠BAD=2x,根据(1)DA=DB,可证∠B=∠BAD=2x,在Rt△ABC中,利用互余关系求x,再求∠B.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.20.【答案】BO=CO【解析】解:添加条件为BO=CO,证明:在△ABO和△DCO中,∵,∴△ABO≌△DCO.故答案为:BO=CO.由AO=DO,结合隐含的条件∠AOB=∠DOC,依据全等三角形的判定添加合适的条件即可得.本题主要考查全等三角形的判定,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题注意:不是所有的条件都可以当作全等的条件.21.【答案】BC'【解析】解:(1)矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上,∴DC的对应线段是BC',故答案为:BC';(2)由翻折的性质得:∠DEF=∠BEF,∵四边形ABCD为矩形,∴AD∥BC.∴∠DEF=∠BFE.∴∠BEF=∠BFE=65°.∴△BEF中,∠EBF=180°-2×65°=50°.(1)依据折叠的性质即可得到DC的对应线段;(2)由翻折的性质得∠DEF=∠BEF,由长方形纸片的上下两边平行,可得∠DEF=∠BFE,所以∠BEF=∠BFE,根据“三角形内角和定理”可知∠EBF的度数.本题主要考查的是翻折的性质、矩形的性质、等腰三角形的判定,解题时注意运用:两直线平行,内错角相等.22.【答案】解:不会同意.因为转盘中有两个3,一个2,这说明小丽去的可能性是=,而小丽去的可能性是,所以游戏不公平.【解析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中只要计算出指针指到2和指针指到3概率是否相等,求出概率比较,即可得出结论.本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.【答案】证明:(1)∵△ABC是等边三角形,∴BC=AB,∠A=∠EBC=60°,∴在△BCE与△ABF中,,∴△BCE≌△ABF(SAS),∴CE=BF;(2)∵由(1)知△BCE≌△ABF,∴∠BCE=∠ABF,∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,∴∠BPC=180°-60°=120°.即:∠BPC=120°【解析】(1)欲证明CE=BF,只需证得△BCE≌△ABF;(2)利用(1)中的全等三角形的性质得到∠BCE=∠ABF,则由图示知∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,所以根据三角形内角和定理求得∠BPC=120°.本题考查了全等三角形的判定与性质、等边三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.【答案】5 EF=BE+CF【解析】解:(1)如图1,图中共有5个等腰三角形,分别是△AEF、△OEB、△OFC、△OBC、△ABC;(1分)理由是:∵AB=AC,∴∠ACB=∠ABC,△ABC是等腰三角形;∵BO、CO分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=,∠OCB=∠ACO=∠ACB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠ABO=∠OBC=∠EOB=∠OCB=∠FOC=∠FCO,∴△EOB、△OBC、△FOC都是等腰三角形,∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∴∠AEF=∠AFE,∴△AEF是等腰三角形,故答案为:5;(2)如图2,EF=BE+FC.(2分)理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB;(5分)∵EF∥BC,∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;即EO=EB,FO=FC;∴EF=EO+OF=BE+CF;(7分)故答案为:EF=BE+FC(3)如图3,EF=BE-CF,(8分)理由是:∵OE∥BC,BO平分∠ABC,∴∠EBO=∠EOB=∠OBC,∴EB=OE,(10分)同理得:OF=CF,∴EF=OE-OF=BE-CF.(11分)(1)根据等腰三角形的判定、平分线的性质及角平分线可得有5个等腰三角形;(2)由△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,则EF=BE+FC.(3)同理得△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,根据图3可得结论.此题主要考查了等腰三角形的判定和性质,平行线、角平分线的性质等知识.运用等角对等边这一性质并进行线段的等量代换是正确解答本题的关键.。
17-18第二学期期末测试七年级数学答案
2017~2018学年度第二学期期末学业水平调研测试七年级数学及答案说明:1、本试卷共4页,共25小题,考试时间为100分钟,满分120分.2、考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的考生号,并用2B 铅笔把对应号码的标号涂黑,在指定位置填写学校,姓名,试室号和座位号.3、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.4、非选择题必须在指定区域内,用黑色字迹的签字笔或钢笔作答,如需改动,先划掉原来答案,然后再写上新答案;不准使用铅笔或涂改液,不按以上要求作答的答案无效.5、考生务必保持答题卡的整洁,不折叠答题卡,考试结束后,只交回答题卡.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑.1、如图,直线a ,b 与直线l 相交,则下列说法错误的是( ) A 、1∠与2∠互为对顶角 B 、1∠与3∠互为邻补角 C 、1∠与4∠是一对同旁内角 D 、2∠与4∠是一对内错角2、计算 4的值,结果是( )A 、2B 、-2C 、±2D 、2±3、在平面直角坐标系中,第二象限的点P 到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标是( )A 、(3,4)B 、(-3,4)C 、(4,3)D 、(-4,3) 4、如图,点O 是直线AB 外的点,点C ,D 在AB 上,且AB OC ⊥,若5=OA ,4=OB ,2=OC ,3=OD ,则点O 到直线AB 的距离是( )A 、5B 、4C 、2D 、35、已知关于x ,y 的二元一次方程53=+y kx 有一组解为⎩⎨⎧==12y x ,则k 的值为( )A 、1B 、2C 、3D 、4lba 3 12 4第1题图OA第4题图BEAD第10题图OBEA CD 第14题图6、已知1-<a ,则下列不等式中,错误的是( ) A 、33-<a B 、33<-a C 、12<+a D 、32>-a7、经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据,则公交车对应的扇形的圆心角的度数是( )A 、︒216B 、︒120C 、︒108D 、︒60 8、下列说法正确的是( )A 、无限小数都是无理数B 、无理数都是无限小数C 、带根号的数都是无理数D 、无理数能写成分数形式 9、下列说法错误的是( )A 、在同一平面内,过一点有且只有一条直线与已知直线垂直B 、连接直线外一点与直线上各点的所有线段中,垂线段最短C 、在同一平面内,不重合的两条直线互相平行D 、经过直线外一点,有且只有一条直线与这条直线平行10、如图,在三角形ABC 中,点D 是AB 上的点,由条件AC DE ⊥于点E ,DE ∥BC 得出的下列结论中,不正确的是( )A 、CDE BCD ∠=∠B 、︒=∠90ACBC 、B ADE ∠=∠D 、DCE BDC ∠=∠二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11、7-的相反数是 . 12、计算:=-+3)32( . 13、不等式1152<+x 的解集是 .14、如图,直线AB 与CD 相交于点O ,OA 平分COE ∠,若︒=∠30AOE ,则DOE ∠的度数是 .15、在直角坐标系中,线段CD 是由线段AB 平移得到,点A (-3,-2)的对应点为C (2,1),则点B (-1,2)的对应点D 的坐标是 .第18题图1PBAB A CD第18题图216、如图,8块相同的长方形地砖拼成一个长方形,则每块长方形地砖的面积是 2cm .答案:一、选择题 C A D C A B C B C D二、填空题 11、7 12、2 13、3<x 14、︒120 15、(4,5) 16、675 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、计算:53325161643-+-+.34533534+=-++=(评分说明:计算364占1分,计算25161-,533-各占2分,答案正确占1分)18、画图题:(1)如图1,已知点P 是直线AB 外一点,用三角尺画图:过点P 作AB PM ⊥,垂足为M ; (2)如图2,已知直线AB 与CD ,请画出直线EF ,使EF 与直线AB 、CD 都相交,在所构成的八个角中,用数字表示其中的一对同位角.解:(1)评分说明:准确画出图形给3分,其中会过点P 作直线、用直角画出垂直线、标注垂足各占1分;(2)共3分.其中画出EF ,用数字表示同位角,写出结果各占1分.19、已知四个点的坐标,A (-3,-2),B (2,-2),C (3,1),D (-2,1). (1)在直角坐标系中描出A ,B ,C ,D 四个点;(2)连结AB 、CD ,写出线段AB ,CD 的位置关系和数量关系.解:(1)略 4分(准确描出一个点1分)(2)AB ∥CD,CD AB =; 6分(每个结论占1分)第16题图四、解答题(二)(本大题3小题,每小题7分,共21分) 20、解方程组:⎩⎨⎧=-=+112312y x y x .解:①+②得,124=x , 2分3=x , 3分把3=x 代入①得,123=+y ,1-=y , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分或由①得,y x 21-=③, 1分 代入②得,112)21(3=--y y , 3分 解得1-=y , 4分 把1-=y 代入③得,3)1(21=-⨯-=x , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分21、解不等式组:⎪⎩⎪⎨⎧-<--≥+-x x x x 6)1(31324,并求该不等式组的正整数解.解:不等式x x ≥+-324的解是2≤x , 2分 不等式x x -<--6)1(31的解是1->x , 4分 ∴不等式组的解是21≤<-x , 6分 ∴不等式组的正整数解是1,2. 7分22、某校为了解该校七年级同学对排球、篮球和足球三种球类运动项目的喜爱情况(每位同学必须且只须选择最喜爱的一种运动项目),进行了随机抽样调查,并将调查结果统计后,绘制成如下表和不完整的统计图表.(1)填空:=m ,=n ,=p ; (2)补全条形统计图;(3)若七年级学生总人数为900人,请你估计七年级学生喜爱足球运动项目的人数.解:(1)50=m ,14=n ,%20=p ; 3分 (2)略 5分 (3)900×20%=180(人) 7分五、解答题(三)(本大题3小题,每小题9分,共27分)23、某养牛场每天可用的饲料不超过1000kg ,原有30头大牛和15头小牛,1天要用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天要用饲料940kg .(1)求每头大牛和每头小牛1天各用饲料多少kg ?(2)一段时间后,大牛已全部上市出售,原来的小牛也长成大牛,需要再购进大牛和小牛若干头继续饲养.经测算,养牛场养牛数刚好80头,且尽量多养大牛将获得最大效益,问养牛场应购进多少头大牛和小牛才获得最大效益?解:(1)设每头大牛1天用饲料x kg ,每头小牛1天用饲料y kg , 1分依题意得,⎩⎨⎧=+=+94020426751530y x y x , 3分解得,⎩⎨⎧==520y x , 5分 答:每头大牛1天用饲料20kg ,每头小牛1天用饲料5kg ; 6分 (2)设最多购进m 头大牛,第24题图BA CD123依题意得,1000)60(5)20(20≤-++m m , 7分 解得,20≤m , 8分答:最多购进20头大牛,此时需购进40头小牛,使养牛数刚好80头牛并获得最大效益, 9分24、(1)在下面括号内,填上推理的根据,并完成下面的证明:如图,在四边形ABCD 中,BD 平分ABC ∠,31∠=∠.求证:AD ∥BC . 证明:∵BD 平分ABC ∠,∴21∠=∠( ), 又∵31∠=∠(已知),∴∠ ∠= ( ), ∴AD ∥BC ( );(2)请根据本题给出的图形举出反例,判定命题“相等的角是对顶角”是假命题;(3)命题“在四边形ABCD 中,AB ∥CD ,AD ∥BC ,那么C A ∠=∠”是真命题吗?如果是,写出推理过程(要求写出每一步的推理依据),如果不是,请举出反例.解:(1)分别填写:角平分线的定义、32∠=∠、等量代换、内错角相等,两直线平行 每个1分,共4分(2)BD 平分ABC ∠,21∠=∠,但它们不是对顶角, 5分 ∴命题“相等的角是对顶角”是假命题; 6分 (3)命题是真命题,证明如下: ∵AB ∥CD ,∴︒=∠+∠180C ABC (两直线平行,同旁内角互补), 7分 ∵AD ∥BC ,∴︒=∠+∠180A ABC (两直线平行,同旁内角互补), 8分 ∴C A ∠=∠(等角的补角相等). 9分 若证明过程正确给2分,但推理根据没有写或有写错的,全部扣1分25、如图,在直角坐标系中,点O 为坐标原点,直线AB 与两条坐标轴交于点A 、B ,OB OA <,过OB 的中点C 作直线CD 交AB 于点D ,使1∠=∠CDB ,过点D 作AB DE ⊥交x 轴于点E ,交y 轴于点F .已知直线AB 上的点的坐标是二元一次方程2443=+y x 的解.(1)写出点A 、B 、C 的坐标;(2)证明:OB CD ⊥(要求写出每一步的推理依据);(3)若点D 、E 的坐标都是方程734=-y x 的解,求四边形OADE 的面积. 解:(1)A (0,6),B (8,0),C (4,0); 3分 (2)∵OAB ∠=∠1(对顶角相等), 4分 又1∠=∠CDB (已知),∴CDB OAB ∠=∠(等量代换), ∴CD ∥y 轴(同位角相等,两直线平行), 5分 ∴︒=∠=∠90AOB DCB (两直线平行,同位角相等), ∴OB DC ⊥(垂直的定义); 6分 (3)由OB DC ⊥,得点D 的横坐标为4, 7分 ∴D (4,3),E (47,0), ∴425478=-=EB , 8分 ∴四边形OADE 的面积81173425216821=⨯⨯-⨯⨯=S . 9分。
人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案
2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。
2017-2018学年浙教版数学七年级(下册)期末考试试题及答案
2017-2018学年七年级(下)期末数学试卷一、选择题(每小题2分,共20分)1 •如图的图案是由下列四个选项中的哪个图案平移得到的( )2•已知:如图,直线a , b 被直线c 所截,且a // b ,若/仁70°则/2的度数 是()D.D. 调查一架隐形战机的各零部件的质量情况8. 甲、乙两班学生植树造林,已知甲班每天比乙班多植所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树 x 棵,则根据题意列出方程是() A 孔叫 B _ 'C 詆 ⑴D 山:U I5 9.已知x - =2,则代数式5X 2+ - 3的值为( ) 宣 xA . 27 B. 7C. 17 D . 2 10 .用如图①中的长方形和正方形纸板作侧面和底面, 做成如图②的竖式和横式 的两种无盖纸盒.现在仓库里有 m 张正方形纸板和n 张长方形纸板,如果做两 种纸盒若干个,恰好使库存的纸板用完,则m+n 的值可能是()A . 2013B . 2014 C. 2015 D . 2016二、填空题(每小题3分,共30分)11 .用科学记数法表示:0.00000706=—.12 .当x=—时,分式的值为0 .13 .如图所示,在不添加辅助线及字母的前提下,请写出一个能判定AD// BC 的条件:—(一个即可). 7. A . 一儿一[i=2 1次方程组:「的解是() 5棵树,甲班植80棵树B .C - •&314 .某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5〜95.5这一分数段的频率是16•若多项式x2- kx+9是一个完全平方式,则常数k的值是_ .r“3&+2b a17 •计算: _ _ - -r~二=_____ •a a -b18. 若多项式x2- mx+n (m、n是常数)分解因式后,有一个因式是x- 2,则2m - n的值为___ •19. 已知:如图放置的长方形ABCD和等腰直角三角形EFG中,/ F=90°FE=FG=4cm AB=2cm, AD=4cm,且点F、G、D、C 在同一直线上,点G 和点D重合,现将△ EFG沿射线FC向右平移,当点F和点D重合时停止移动,若△ EFG与长方形重叠部分的面积是4cm2,则△ EFG向右平移了②若a=3,则b+c=9;③若C M0,则(1 - a) (1 - b) = +—a④若c=5,则a2+b2=15.其中正确的是____ (把所有正确结论的序号都填上)___ cm.,c满足a+b=ab=c,有下列结论:a^3ab+b =①若、解答题(共50 分)21 •计算下列各题(1)(-3) 1 2+ ( n+ 了)—2(2)(2x- 1) 2-(x- 1) (4x+3)(1)22 •解方程(组)3x+y=-2(2) ^― - : =2.' 72x-l l-2x23. 分解因式(1)2X2- 8(2)3灼-6xy2+3y3.24. 如图,已知/ A=Z C, AD丄BE, BC丄BE,点E, D, C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若/ ABC=120,求/ BEC的度数.1 本次接收随机抽样调查的男生人数为人,扇形统计图中良好”所对应的圆心角的度数为____________ ;2 补全条形统计图中优秀”的空缺部分;25. 某学校为了解七年级男生体质健康情况, 随机抽取若干名男生进行测试,测 试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图 1、图2两幅不完整的统计图,请根据图中信息回答下列问题:合格 20% 不合格优秀30%(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到良好的人数.26. 为了创建国家卫生城市,需要购买甲、乙(如图)两种类型的分类垃圾桶替换原来的垃圾桶,A, B, C三个小区所购买的数量和总价如表所示.甲型垃圾桶数量(套) 乙型垃圾桶数量(套)总价(元)A1083320B592860C a b2580(1) 问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元?(2) 求a, b的值.四、附加题(每小题10分,共20分)27. 已知:直线a// b,点A, B分别是a, b上的点,APB是a, b之间的一条折备用图备用图(1) ______________________________ 若/ 仁33°, / APB=74,则/2= 度.(2)若/ Q的一边与PA平行,另一边与PB平行,请探究/ Q,Z 1, 2间满足的数量关系并说明理由.(3)若/ Q的一边与PA垂直,另一边与PB平行,请直接写出/ Q,Z 1 , 2之间满足的数量关系.28•教科书中这样写道:我们把多项式a2+2ab+b2及a2- 2ab+b2叫做完全平方式”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式X2+2X— 3= (X2+2X+1)— 4= (x+1) 2- 4= (x+1+2) (x+1 - 2)= (X+3) (X- 1);例如求代数式2X2+4X- 6 的最小值.2X2+4X- 6=2 (X2+2X- 3) =2 (X+1) 2 - 8.可知当X=- 1时,2X2+4X- 6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2- 4m - 5= ___ .(2)当a,b为何值时,多项式a2+b2- 4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2- 2ab+2b2- 2a- 4b+27有最小值,并求出这个最小值.参考答案与试题解析一、选择题(每小题2分,共20分)1 •如图的图案是由下列四个选项中的哪个图案平移得到的()【考点】利用平移设计图案.【分析】根据平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等可得答案.【解答】解:根据平移可得B是平移可得到图形中的图案,故选:B.2•已知:如图,直线a,b被直线c所截,且a// b,若/仁70°则/2的度数是()A. 130°B. 110°C. 80°D. 70°【考点】平行线的性质.【分析】由a/b,根据两直线平行,同位角相等,即可求得/ 3的度数,又由邻补角的定义即可求得/ 2的度数.【解答】解:I a/ b,.•./ 3=Z 仁70°,vZ 2+Z 3=180°,•••/ 2=110°.3•分式打一有意义,则x的取值范围是()A. X M 1B. X M- 1C. x=1D. x=- 1【考点】分式有意义的条件.【分析】分母不为零,分式有意义,依此求解.【解答】解:由题意得X-1M0,解得X M 1.故选A.4. 下列计算结果正确的是()3 4 12 5.5 2 6 3 2 6A. a x a =aB. a —a=aC. (ab )=abD. (a )=a【考点】同底数幕的除法;同底数幕的乘法;幕的乘方与积的乘方.【分析】根据同底数幕的乘法、除法,积的乘方,幕的乘方,即可解答.【解答】解:A、a3x a4=a7,故本选项错误;B、a5* a=a\故本选项错误;C (ab2)3=a3b6,故本选项错误;D、正确;故选:D.5. 下列各式由左到右的变形中,属于因式分解的是()2 2A. a (x+y) =ax+ayB. x - 4x+4= (x- 2)C. 2a- 4b+2=2 (a-2b)D. x2- 16+3x= (x-4) (x+4) +3x【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据定义即可判断.【解答】解:A、结果不是整式的乘积的形式,不是因式分解,选项错误;B、是因式分解,选项正确;C 2a-4b+2=2 (a-2b+1),选项错误;D、结果不是整式的乘积的形式,不是因式分解,选项错误.故选B.6. 下列调查中,适合采用全面调查方式的是()A. 了解一批炮弹的杀伤半径B. 了解全国中学生的身高情况C. 对市场上某种饮料质量情况的调查D. 调查一架隐形战机的各零部件的质量情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批炮弹的杀伤半径,适合抽查,选项错误;B、了解全国中学生的身高情况,适合抽查,选项错误;C、对市场上某种饮料质量情况的调查,适合抽查,选项错误;D、调查一架隐形战机的各零部件的质量情况,适合全面调查,选项正确. 故选D.【考点】解二元一次方程组.【分析】方程组利用代入消元法求出解即可.7.A .fx+2y=10,尸2葢的解是(D. *y=2['、尸2\ 7=4 C.把②代入①得:x+4x=10,即x=2, 把x=2代入②得:y=4, 则方程组的解为: 故选A .8.甲、乙两班学生植树造林,已知甲班每天比乙班多植 5棵树,甲班植80棵树 所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树 x 棵,则根据 题意列出方程是( )A 80B 80 _ 70C 80 JOD 80^ 70.乂:.二 二 1 .工 ” £ 工.工 乙 1【考点】由实际问题抽象出分式方程.【分析】设甲班每天植树x 棵,则乙班每天植树(x -5)棵,根据甲班植80棵 树所用的天数与乙班植70棵树所用的天数相等,列方程即可.【解答】解:设甲班每天植树x 棵,则乙班每天植树(x - 5)棵, +日石亠何 80 70由题意得, = .x 故选D .1 o 59.已知x - =2,则代数式5x 2+ - 3的值为( )A . 27 B. 7C. 17 D . 2【考点】完全平方公式.【分析】原式前两项提取5,利用完全平方公式变形,将已知等式代入计算即可 求出值.【解答】解:I x-—=2,•••原式=5 (只+丁)- 3=5[ (x - ) 2+2] - 3=30-3=27,故选A【解答】解:{囂笄10 .用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒•现在仓库里有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m+n的值可能是()A. 2013B. 2014C. 2015D. 2016【考点】二元一次方程组的应用.【分析】设做竖式和横式的两种无盖纸盒分别为x个、y个,然后根据所需长方形纸板和正方形纸板的张数列出方程组,再根据x、y的系数表示出m+n并判断m+n为5的倍数,然后选择答案即可.【解答】解:设做竖式和横式的两种无盖纸盒分别为x个、y个,根据题意得丄+〉:一I x+2y=in,两式相加得,m+n=5 (x+y),••• x、y都是正整数,••• m+n是5的倍数,••• 2013、2014、2015、2016四个数中只有2015是5的倍数,• m+n的值可能是2015.故选C.、填空题(每小题3分,共30 分)11.用科学记数法表示:0.00000706= 7.06X 10「6【考点】科学记数法一表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a x 10「n,与较大数的科学记数法不同的是其所使用的是负指数幕,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000706=7.06X 10「6,故答案为:7.06X 10「6.12•当x=】时,分式1的值为0.—3—x+2【考点】分式的值为零的条件.【分析】根据分式值为零的条件是分子等于零且分母不等于零进行判断.【解答】解:•••分式」一的值为0,x+z••• 3x-仁0,且x+2工0,解得 , X M- 2,即x=.故答案为:—13. 如图所示,在不添加辅助线及字母的前提下,请写出一个能判定AD// BC的【考点】平行线的判定.【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【解答】解:T AD和BC被BE所截,•当/ EADN B 时,AD / BC.故答案为:/ EADN B.14. 某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5〜95.5这一分数段的频率是0.4 .【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率二频数宁数据总和计算出成绩在90.5〜95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20) =50人,其中在90.5〜95.5这一分数段有20人,则成绩在90.5〜95.5这一分数段的频率是.=0.4.50故本题答案为:0.4.15. 计算:(6a2- 10ab+4a)*( 2a) = 3a-5b+2 .【考点】整式的除法.【分析】根据多项式除以单项式的运算方法求解即可.【解答】解:(6a2- 10ab+4a)-( 2a)=(6a2)*( 2a)-( 10ab)*( 2a) + (4a)*( 2a)=3a- 5b+2故答案为:3a- 5b+2.16. 若多项式x2- kx+9是一个完全平方式,则常数k的值是土6 .【考点】完全平方式.【分析】先根据两平方项项确定出这两个数是x和3,再根据完全平方公式求解即可. 【解答】解:••• x2- kx+9=W- kx+32,解得k=± 6. 故答案为:土 6.17.计算:3a+2b a 2【考点】分式的加减法.【分析】根据同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减,求解即可.2(a+b) (a+b) (a-b) =2 a-b .故答案为:18. 若多项式x 2- mx+n (m 、n 是常数)分解因式后,有一个因式是 x - 2,则 2m - n 的值为 4.【考点】因式分解的意义.【分析】设另一个因式为x -a ,因为整式乘法是因式分解的逆运算,所以将两 个因式相乘后结果得x 2- mx+ n ,根据各项系数相等列式,计算可得 2m - n=4 .【解答】解:设另一个因式为x -a ,由①得:a=m - 2③,把③代入②得:n=2 ( m - 2), 2m - n=4, 故答案为:4 .19.已知:如图放置的长方形 A BCD 和等腰直角三角形EFG 中,/ F=90°FE=FG=4cm AB=2cm, AD=4cm,且点 F 、G 、D 、C 在同一直线上,点 G 和点 D【解答】 解:贝卩 x 2- mx+n= (x - 2) (x - a )=« - ax - 2x+2a=x^ -(a+2) x+2a , 了且+21>-且重合,现将△ EFG 沿射线FC 向右平移,当点F 和点D 重合时停止移动,若△ EFG 与长方形重叠部分的面积是4cm 2,则厶EFG 向右平移了 3 cm .【分析】首先判断出平移厶EFG 经过长方形ABCD 对角线的交点时,重叠面积是 长方形的面积的一半即面积为 4cm 2,然后求出平移的距离. 【解答】解:•••长方形AB=2cm, AD=4cm, •••长方形的面积为8cm 2,•••△ EFG 与长方形重叠部分的面积是 4cm 2,• △ EFG 边DE 经过长方形ABCD 对角线的交点, ••• FG=4 CD=2 •;( FG+CD ) =3,• △ EFG 向右平移了 3cm , 故答案为3.20. 已知实数a ,b ,c 满足a+b=ab=c,有下列结论:② 若 a=3,则 b+c=9;③ 若 C M 0,贝U( 1-a ) (1 - b ) = + ; ④ 若 c=5,则 a 2+b 2=15. 其中正确的是 ①③④(把所有正确结论的序号都填上).【考点】分式的混合运算;实数的运算.【分析】①由题意可知:a+b=ab=cM 0,将原式变形后将a+b 整体代入即可求出 答案.②由题意可知:a+b=ab=3,联立方程后,可得出一个一元二次方程,由于△< 0,所以a 、b 无解,①若0,2a+7 ab+2b 2; ■; 等腰直角三角形.③分别计算(1 - a)(1 - b)和一+a E>④由于a+b=ab=5,联立方程可知△> 0,所以由完全平方公式即可求出a2+b2的值.【解答】解:①T甘0,--ab M 0•'a+b_3比 _此£ 乩__2rb 2a+b=ab,•原式=—円性—= 士?5!= 三巳匕=—上朋2(a+b)+7ab 2ab+7ab 9ab 9 故①正确;②••• c=3,二ab=3,••• a+b=3,化简可得:b2- 3b+3=0,•/△< 0,•该方程无解,c=3时,a、b无解,故②错误;③••• C M 0,--ab M 0,a+b=ab•( 1 - a) (1 - b) =1 - b- a+ab=1,一==1二卜吕. ,•( 1 - a) (1 - b) = +| ,故③正确;④••• c=5,• a+b=ab=5,化简可得:b2- 5b+5=0,a2+b2= (a+b) 2- 2ab=15,故④正确故答案为:①③④三、解答题(共50分)21 •计算下列各题(1)(—3) 2+ ( n+ 匚)°—(—=) 2(2)(2x—1) 2—(X—1) (4x+3)【考点】多项式乘多项式;实数的运算;完全平方公式;零指数幕;负整数指数幕. 【分析】(1)原式利用乘方的意义,零指数幕、负整数指数幕法则计算即可得到结果;(2)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=9+1 —4=6;(2)原式=4x2—4x+1 —4x2—3x+4x+3= —3x+4.22 •解方程(组)f2x+7y=5(1)I -(2)" —「严・【考点】解分式方程;解二兀一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1) ②X 7 —①得:19x=— 19, 即卩x=- 1,把x=—1代入①得:y=1,则方程组的解为;y=l(2)去分母得:x+2=4x—2,解得:x=.,经检验X=f是分式方程的解.23•分解因式(1)2X2- 8(2)3灼-6xy2+3y3.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式2,进而利用平方差公式分解因式得出答案;(2)首先提取公因式3y,进而利用完全平方公式分解因式得出答案.【解答】解:(1) 2x2- 8=2 (x2- 4)=2 (x+2) (x- 2);(2) 3灼-6xy2+3y3=3y (x2- 2xy+y2)=3y (x-y) 2.24. 如图,已知/ A=Z C, AD丄BE, BC丄BE,点E, D, C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若/ ABC=120,求/ BEC的度数.【考点】平行线的判定与性质;垂线.【分析】(1)先根据AD丄BE, BC丄BE得出AD// BC,故可得出/ ADE=Z C,再由/ A=Z C得出/ADE=Z A,故可得出结论;(2)由AB//CD得出/C的度数,再由直角三角形的性质可得出结论.【解答】解:(1) AB// CD.理由:••• AD丄BE, BC丄BE,••• AD// BC,•••/ ADEN C.vZ A=Z C,•••/ ADE=Z A ,••• AB// CD;(2)v AB// CD,Z ABC=120,•••Z C=180 - 120°60°,•••Z BEC=90- 60°=30o .25. 某学校为了解七年级男生体质健康情况, 随机抽取若干名男生进行测试,测 试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图 1、图 2两幅不完整的统计图,请根据图中信息回答下列问题: (1) 本次接收随机抽样调查的男生人数为 40人,扇形统计图中 良好”所对 应的圆心角的度数为 162° ;(2) 补全条形统计图中 优秀”的空缺部分;(3) 若该校七年级共有男生480人,请估计全年级男生体质健康状况达到 良好” 的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)合格人数除以所占的百分比即可得出所调查的男生总人数, 用良好 的人数除以总人数再乘以360°即可得出 良好”所对应的圆心角的度数;合格 20% 不吕格优秀 30%(2)用40 - 2 -8 - 18 即可;(3)用480乘以良好所占的百分比即可.【解答】解:(1)8- 20%=40(人),18-40X 360°=162°(2)优秀”的人数=40- 2-8 - 18=12, 如图,(3)良好”的男生人数:話X480=216 (人),答:全年级男生体质健康状况达到良好”的人数为216人.26.为了创建国家卫生城市,需要购买甲、乙(如图)两种类型的分类垃圾桶替换原来的垃圾桶,A,B,C三个小区所购买的数量和总价如表所示.甲型垃圾桶数量(套)乙型垃圾桶数量(套)总价(元)A1083320B592860C a b2580(1)问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元? (2)求a,b的值.【考点】二元一次方程组的应用.【分析】(1 )设甲型垃圾桶的单价是x元/套,乙型垃圾桶的单价是y元/套.根据图表中的甲型、乙型垃圾桶的数量和它们的总价列出方程组并解答.(2)根据图表中的数据列出关于 a b 的二元一次方程,结合 a b 的取值范围 来求它们的值即可.【解答】解:(1 )设甲型垃圾桶的单价是x 元/套,乙型垃圾桶的单价是y 元/套. |y=240 答:甲型垃圾桶的单价是140元/套,乙型垃圾桶的单价是240元/套. (2)由题意得:140a+240b=2580, 整理,得 7a+12b=129, 因为a 、b 都是正整数, 所以或(a=15 . b=9 b~2 四、附加题(每小题10分,共20分) 27.已知:直线a // b ,点A ,B 分别是a ,b 上的点,APB 是a ,b 之间的一条折 弦,且/ APN<90° Q 是a ,b 之间且在折线APB 左侧的一点,如图.(1) 若/ 仁33°, / APB=74,则/2= 41 度.(2) 若/ Q 的一边与PA 平行,另一边与PB 平行,请探究/ Q ,Z 1, 2间满足 的数量关系并说明理由.(3) 若/ Q 的一边与PA 垂直,另一边与PB 平行,请直接写出/ Q ,Z 1 , 2之 间满足的数量关系.【考点】平行线的性质.【分析】(1)图1,过P 作PC//直线a ,根据平行线的性质得到/ 仁/APC, / 2=Z BPC 于是得到结论;依题意得:10x+8y=33205x+9y=2860 x=140 解得* 备用图 葺■甲图(2)如图2,由已知条件得到四边形MQNP是平行四边形,根据平行四边形的性质得到/ MQN=Z P=Z 1 + Z2,根据平角的定义即可得到结论;(3)由垂直的定义得到/ QEP=90,由平行线的性质得到/ QFE=/ P,根据平角的定义得到结论.【解答】解:(1)图1,过P作PC//直线a,••• PC// b,•••/ 1=/ APC / 2=/BPC•••/ 2=/ APB- / 1=41°故答案为:41;(2)如图2,v QM // PB, QN// PA•••四边形MQNP是平行四边形,•••/ MQN=/ P=/ 1 + /2,•••/ EQN=180-/ MQM=180 -/ 1 -/ 2;即/ Q=/ 1 + / 2=180°-/ 1 -/ 2;(3):QE丄AP,•••/ QEP=90,••• QF// PB,•••/ QFE=/ P,•••/ EQF=90-/ QFE=90-/ 1 -/ 2,•••/ EQG=18°—/ EQF=90+/ 1+/2 .A7 a28 .教科书中这样写道:我们把多项式a2+2ab+b2及a2- 2ab+b2叫做完全平方式”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式X2+2X— 3= (X2+2X+1)— 4= (x+1) 2- 4= (x+1+2) (x+1 - 2)= (X+3) (X- 1);例如求代数式2X2+4X- 6 的最小值.2X2+4X- 6=2 (X2+2X- 3) =2 (X+1) 2 - 8.可知当X=- 1时,2X2+4X- 6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2- 4m - 5= (m+1) (m - 5) .(2)当a,b为何值时,多项式a2+b2- 4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2- 2ab+2b2- 2a- 4b+27有最小值,并求出这个最小值.【考点】因式分解的应用;非负数的性质:偶次方.【分析】(1)根据阅读材料,先将m2- 4m-5变形为m2- 4m+4- 9,再根据完全平方公式写成(m- 2) 2-9,然后利用平方差公式分解即可;(2)利用配方法将多项式a2+b2- 4a+6b+18转化为(a- 2) 2+ (b+3) 2+5,然后利用非负数的性质进行解答;(3)利用配方法将多项式a2- 2ab+2b2- 2a-4b+27转化为(a- b- 1) 2+(b-3)2+17,然后利用非负数的性质进行解答.【解答】解:(1)m2- 4m - 52=m - 4m+4- 9=(m- 2)2- 9=(m- 2+3)(m- 2- 3)=(m+1)(m- 5).故答案为(m+1)(m- 5);(2)v a F+b2- 4a+6b+18= (a-2) 2+ (b+3) 2+5,•••当a=2, b=- 3 时,多项式a2+b2- 4a+6b+18 有最小值5;(3)v a2- 2ab+2b2-2a- 4b+27=a2- 2a(b+1) +(b+1) 2+(b- 3) 2+17=( a- b- 1 ) 2+( b- 3) 2+17,•••当a=4, b=3 时,多项式a2- 2ab+2b2- 2a- 4b+27 有最小值17.2017年4月18日A. 130°B. 110°C. 80°D. 70°33. 分式——有意义,则x的取值范围是()A. X M 1B. X M- 1C. x=1D. x=- 14. 下列计算结果正确的是()3 4 12 5.5 2 6 3 2 6A. a x a =aB. a —a=aC. (ab )=abD. (a )=a5. 下列各式由左到右的变形中,属于因式分解的是()2 2A. a (x+y)=ax+ayB. X - 4X+4=(x- 2)C. 2a- 4b+2=2 (a- 2b)D. X*2-16+3X=(X- 4)(X+4)+3X6. 下列调查中,适合采用全面调查方式的是()A. 了解一批炮弹的杀伤半径B. 了解全国中学生的身高情况C. 对市场上某种饮料质量情况的调查。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案
2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
2017-2018学年度人教版七年级下数学期末测评试卷有答案
期末测评( 时间120分钟满分120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 ),0,其中是无理数的为( )4.下列各数1.414,√2,-13A.1.414B.√2D.0C.-135.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论甲ax>ay;乙a2-x>a2-y;丙a2+x≤a2+y;丁a2x≥a2y.其中正确的是( )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49. ( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11. ( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作.13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有人.14.若实数x满足等式( x+4 )3=-27,则x= .15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为.三、解答题( 共66分 )17. ( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组{0.3x -1.5x 0.3+3x -2x4=6,x 2+x -13=24.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x -5≤32( 3x -2 )②的整数解.20. ( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表学生最喜爱的节目人数统计表根据以上提供的信息,解答下列问题( 1 )a= ,b= ;( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图22. ( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B 的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求( 1 )O1,B1的坐标.( 2 )三角形AOB的面积.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?24. ( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A,B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7 800万元,改扩建3所A类学校和1所B类学校共需资金5 400万元.( 1 )改扩建1所A类学校和1所B类学校所需资金分别是多少万元?( 2 )该县计划改扩建A,B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A,B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?期末测评答案解析( 时间120分钟满分120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( A )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( D )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( D )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 ),0,其中是无理数的为( B )4.导学号14154138下列各数1.414,√2,-13A.1.414B.√2C.-1D.035.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( C )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( A )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论甲ax>ay;乙a2-x>a2-y;丙a2+x≤a2+y;丁a2x≥a2y.其中正确的是( D )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( D ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49.导学号14154139( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( A )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( B )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11.导学号14154140( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为150°.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作( 21,-3 ).13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有400人.14.若实数x满足等式( x+4 )3=-27,则x=-7.15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是14.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为( 505,-504 ).三、解答题( 共66分 )17.导学号14154141( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.2a+1的平方根是±3,3a+2b-4的立方根是-2,∴2a+1=9,3a+2b-4=-8,解得a=4,b=-8,∴4a-5b+8=4×4-5×( -8 )+8=64,∴4a-5b+8的立方根是4.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组{0.3x-1.5x0.3+3x-2x4=6, x2+x-13=24.{2x-17x=24,①3x+2x=146,②②×2-①×3,得55y=220,解得y=4.把y=4代入①,得2x-68=24,解得x=46,原方程组的解为{x =46,x =4.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x -5≤32( 3x -2 )②的整数解.①,得x ≤135,解不等式②,得x ≥-47,∴不等式组的解集为-47≤x ≤135. ∴不等式组的整数解是0,1,2.20.导学号14154142( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.AB ∥DF ,∴∠D+∠BHD=180°, ∵∠D+∠B=180°, ∴∠B=∠DHB , ∴DE ∥BC.DE ∥BC ,∠AMD=75°,∴∠AGB=∠AMD=75°, ∴∠AGC=180°-∠AGB =180°-75° =105°.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表学生最喜爱的节目人数统计表节目人数百分根据以上提供的信息,解答下列问题( 1 )a= ,b= ;( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图解( 1 )2030( 2 )中国诗词大会的人数为20,补全条形统计图,如图所示学生最喜欢的节目人数条形统计图( 3 )根据题意,得1000×40%=400( 名 ),则估计该校最喜爱《中国诗词大会》节目的学生有400名.22.导学号14154143( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求( 1 )O 1,B 1的坐标.( 2 )三角形AOB 的面积.点O 1的横坐标为0+( 3-2 )=1;纵坐标为0+[-1-( -2 )]=1;点B 1的横坐标为-4+( 3-2 )=-3;纵坐标为2+[-1-( -2 )]=3;所以点O 1的坐标为( 1,1 ),点B 1的坐标为( -3,3 );( 1 )三角形AOB 的面积为12×1×2+12×1×2=2.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x 米,乙队每天铺设y 米. ( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?根据题意,得{x -x =100,5x =6x .( 2 ){x -x =100,5x =6x ,解得{x =600,x =500.答甲队每天铺设600米,乙队每天铺设500米.24.导学号14154144( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A ,B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7 800万元,改扩建3所A 类学校和1所B 类学校共需资金5 400万元. ( 1 )改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?( 2 )该县计划改扩建A ,B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A ,B 两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?设改扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意,得{2x +3x =7800,3x +x =5400,解得{x =1200,x =1800.答改扩建一所A 类学校和一所B 类学校所需资金分别为1200万元和1800万元.( 2 )设今年改扩建A 类学校a 所,则改扩建B 类学校( 10-a )所,由题意,得{( 1200-300 )x +( 1800−500 )( 10−x )≤11800,300x +500( 10−x )≥4000,解得3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案方案一改扩建A类学校3所,B类学校7所;方案二改扩建A类学校4所,B类学校6所;方案三改扩建A类学校5所,B类学校5所.。
人教版2017-2018学年七年级下册期末数学质量检测卷及答案
2017—2018学年度第二学期期末调研测试七年级数学试题(全卷共五个大题满分150分考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.方程20x=的解是A.2x=-B.0x=C.12x=-D.12x=2.以下四个标志中,是轴对称图形的是A.B.C.D.3.解方程组⎩⎨⎧=+=-②①,.102232yxyx时,由②-①得A.28y=B.48y=C.28y-=D.48y-=4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为A.2B.3C.7D.165.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是A.x>3 B.x≥3 C.x>1 D.x≥6.将方程31221+=--xx去分母,得到的整式方程是A.()()12231+=--xx B.()()13226+=--xxC.()()12236+=--xx D.22636+=--xx7.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC的形状是A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形8.已知x m=是关于x的方程26x m+=的解,则m的值是A.-3 B.3 C.-2 D.29.下列四组数中,是方程组20,21,32x y zx y zx y z++=⎧⎪--=⎨⎪--=⎩的解是5题图432-1 118题图P A .1,2,3.x y z =⎧⎪=-⎨⎪=⎩ B .1,0,1.x y z =⎧⎪=⎨⎪=⎩ C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩ D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的度数为A .30°B .50°C .80°D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.在方程21x y -=中,当1x =-时,y = . 14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 . 17.若不等式组0,x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点P以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.解方程组:,.202321x y x y -=⎧⎨+=⎩20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩…ABECDF10题图12题图C′15题图DEABC四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数. ADBCE23题图21题图24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±. 例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.(1)方程|x +3|=4的解为 ; -21-1342-20 1226.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB ∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.CABDMP26题图1BDMNAC PQ26题图2泉州市第八中学2017-2018学年度二学期期末调研测试七年级数学试题参考答案及评分意见一、选择题:13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩………………………………………………………7分 20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 (1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分 解得 6a ≥.答:该水果每千克售价至少为6元. ························································ 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ········································· 8分 (3)在数轴上找出|x -3|+|x +4|=9的解.A M PCM BMCP A ABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ··························· 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ····················································································· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ··················································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··········································· 10分由(2)知:A M ∠=∠21,又由轴对称性质知:∠M =∠N ,………………………………………8分………………………………………6分。
山东省济宁市邹城市2017-2018学年七年级(下)期末数学试卷(解析版)
山东省济宁市邹城市2017-2018学年七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求)1.(3分)4的算术平方根是()A.2B.﹣2C.±2D.2.(3分)若a>b,则下列不等式中正确的是()A.a﹣1<b﹣1B.a+2>b+2C.﹣3a>﹣3b D.<3.(3分)若点(m,m﹣1)在第四象限,则()A.m>0B.m>1C.0<m<1D.m<04.(3分)为了测算一块60亩樱桃园的樱桃的产量,随机对其中的2亩樱桃的产量进行了检测,在这个问题中2是()A.个体B.总体C.总体的样本D.样本容量5.(3分)若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣36.(3分)如图,点E在BC的延长线上,下列条件中能判断AD∥BC的是()A.∠1=∠3B.∠2=∠4C.∠B=∠DCE D.∠B+∠BCD=180°7.(3分)某商店一天售出各种商品的销售额的扇形统计图如图所示,如果知道这天家电的销售额为20万元,那么这天“其他”商品的销售额为()A.8万元B.4万元C.2万元D.1万元8.(3分)电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y条,则解此问题所列关系式正确的是()A.B.C.D.9.(3分)若x,y满足|x﹣3|+=0,则的值是()A.1B.C.D.10.(3分)已知关于x的不等式组恰好有两个整数解,则实数a的取值范围是()A.﹣4≤a<﹣3B.﹣4C.0≤a<1D.a≥﹣4二、填空题(本大题共8个小题,每小题3分,共24分)11.(3分)已知点A(3,﹣2),B(﹣1,m),直线AB与x轴平行,则m=.12.(3分)关于x的不等式ax>b的解集是x<.写出一组满足条件的a,b的值:a=,b=.13.(3分)如图,直线AB∥CD,AF平分∠CFE,GE平分∠BEF,如果∠A=62°,则∠EGD的度数为.14.(3分)不等式﹣≤1的解集为.15.(3分)一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,41.在列频数分布表时,如果取组距为3,那么应分成组.16.(3分)计算:+|﹣2|﹣(﹣)=.17.(3分)若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是.18.(3分)如图是一组密码的一部分,目前,已破译出“努力发挥”的真实意思是“今天考试”.小刚运用所学的“坐标”知识找到了破译的“钥匙”.他破译的“祝你成功”的真实意思是““.三、解答题(本大题共6个小题,共46分)19.(6分)解方程组:.20.(6分)在横线上完成下面的证明,并在括号内注明理由.已知:如图,∠ABC+∠BGD=180°,∠1=∠2.求证:EF∥DB.证明:∵∠ABC+∠BGD=180°,(已知)∴.()∴∠1=∠3.()又∵∠1=∠2,(已知)∴.()∴EF∥DB.()21.(7分)解不等式组,并把其解集在数轴上表示出来.22.(7分)某校组织了全校1500名学生参加传统文化知识网络竞赛.赛后随机抽取了其中200名学生的成绩作为样本进行整理,并制作了如下不完整的频数分布表和频数分布直方图.请根据图表提供的信息,解答下列各题:(1)表中m=,n=,请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段80≤x<90对应扇形的圆心角的度数是;(3)若成绩在80分以上(包括80分)为合格,则参加这次竞赛的1500名学生中成绩合格的大约有多少名?23.(10分)有大小两种货车,已知1辆大货车与3辆小货车一次可以运货14吨,2辆大货车与5辆小货车一次可以运货25吨.(1)1辆大货车与1辆小货车一次可以运货各多少吨?(2)1辆大货车一次费用为300元,1辆小货车一次费用为200元,要求两种货车共用10辆,两次完成80吨的运货任务,且总费用不超过5400元,有哪几种用车方案?请指出费用最低的一种方案,并求出相应的费用.24.(10分)【阅读材料】小明同学遇到下列问题:解方程组,他发现如果直接用代入消元法或加减消元法求解,运算量比较大,也容易出错.如果把方程组中的(2x+3y)看作一个数,把(2x﹣3y)看作一个数,通过换元,可以解决问题.以下是他的解题过程:令m=2x+3y,n=2x﹣3y,这时原方程组化为,解得,把代入m=2x+3y,n=2x﹣3y.得解得.所以,原方程组的解为【解决问题】请你参考小明同学的做法,解决下面的问题:(1)解方程组;(2)已知方程组的解是,求方程组的解.山东省济宁市邹城市2017-2018学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求)1.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.【分析】根据不等式的3个性质找到变形正确的选项即可.【解答】解:A、由a>b可得:a﹣1>b﹣1,错误;B、由a>b可得:a+2>b+2,正确;C、由a>b可得:﹣3a<﹣3b,错误;D、由a>b可得:,错误;故选:B.【点评】考查不等式性质的应用;用到的知识点为:不等式的两边加上或减去同一个数或式子,不等号的方向不变;乘以或除以同一个不为0的正数,不等号的方向不变;乘以或除以同一个不为0的负数,不等号的方向改变.3.【分析】根据点在第四象限列出不等式组,求出解集即可确定出m的范围.【解答】解:∵点(m,m﹣1)在第四象限,∴,解得:0<m<1,故选:C.【点评】此题考查了解一元一次不等式组,以及点的坐标,熟练掌握运算法则是解本题的关键.4.【分析】根据总体:我们把所要考察的对象的全体叫做总体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量可得答案.【解答】解:在这个问题中2是样本容量,故选:D.【点评】此题主要考查了总体、个体、样本、样本容量,关键是掌握定义.5.【分析】将方程的解代入方程得到关于a的方程,从而可求得a的值.【解答】解:将是代入方程ax+y=1得:a﹣2=1,解得:a=3.故选:A.【点评】本题主要考查的是二元一次方程的解,掌握方程的解得定义是解题的关键.6.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【解答】解:由∠2=∠4,可得AD∥CB;由∠1=∠3或∠B=∠DCE或∠B+∠BCD=180°,可得AB∥DC;故选:B.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.【分析】由家电销售额及其所占百分比求得销售总额,根据百分比之和为1求得“其他”销售额所占百分比,再用总销售额乘以对应百分比可得.【解答】解:∵各种商品的销售总额为20÷5%=40(万元)且“其他”商品销售额所占的百分比为1﹣(15%+25%+50%)=10%,∴这天“其他”商品的销售额为40×10%=4(万元),故选:B.【点评】本题考查的是扇形统计图的知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.8.【分析】根据一少三多四下分,不要双数要单数,列出不等式组解答即可.【解答】解:设“一少”的狗有x条,“三多”的狗有y条,可得:,故选:B.【点评】此题考查二元一次方程的应用,关键是根据一少三多四下分,不要双数要单数列出不等式组.9.【分析】根据非负数的性质,非负数之和等于0时,各项都等于0利用此性质列方程解决问题.【解答】解:∵|x﹣3|+=0,∴x﹣3=0,x+2y+1=0,解得:∴==1故选:A.【点评】此题考查了非负数的性质,熟练掌握运算法则是解本题的关键.10.【分析】首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到一个关于a的不等式组求得a的范围.【解答】解:解不等式5x+1>3(x﹣1),得:x>﹣2,解不等式x≤8﹣x+2a,得:x≤a+4,∵不等式组恰好有两个整数解,∴不等式组的整数解为﹣1、0,则0≤a+4<1,解得:﹣4≤a<﹣3,故选:A.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题(本大题共8个小题,每小题3分,共24分)11.【分析】依据直线AB与x轴平行,可得点A与点B的纵坐标相等.【解答】解:∵直线AB与x轴平行,∴点A(3,﹣2),B(﹣1,m)到x轴的距离相等,∴m=﹣2,故答案为:﹣2.【点评】本题主要考查了坐标与图形性质,解题时注意:与x轴平行的直线上的点的纵坐标相同.12.【分析】根据不等式的基本性质1即可得.【解答】解:由不等式ax>b的解集是x<知a<0,∴满足条件的a、b的值可以是a=﹣1,b=1,故答案为:﹣1、1【点评】本题主要考查解一元一次不等式的基本能力,掌握不等式两边都乘以或除以同一个负数不等号方向要改变是解题的关键.13.【分析】依据AB∥CD,∠A=62°,即可得到∠AFC=62°,∠CFE=∠BEF,再根据AF平分∠CFE,GE平分∠BEF,可得∠BEG=∠BEF=∠CFE=62°,进而得到∠EGD=180°﹣∠BEG=118°.【解答】解:∵AB∥CD,∠A=62°,∴∠AFC=62°,∠CFE=∠BEF,又∵AF平分∠CFE,GE平分∠BEF,∴∠BEG=∠BEF=∠CFE=62°,∴∠EGD=180°﹣∠BEG=118°,故答案为:118°.【点评】本题主要考查了平行线的性质,角平分线的定义的运用,熟练掌握性质并准确识图是解题的关键.14.【分析】依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:去分母得:3(3x﹣1)﹣2(2x﹣1)≤6,去括号得:9x﹣3﹣4x+2≤6,移项得:9x﹣4x≤6+3﹣2,合并同类项得:5x≤7,系数化为1得:x≤,故答案为:x.【点评】本题考查解一元一次不等式,掌握解不等式得步骤:去分母,去括号,移项,合并同类项,系数化为1是解决本题的关键.15.【分析】求得极差,除以组距即可求得组数.【解答】解:因为这组数据的极差为41﹣31=10,组距为3,所以可分组数为10÷3≈4,故答案为:4.【点评】此题考查了频数分布表,掌握组数的定义是本题的关键,即数据分成的组的个数称为组数.16.【分析】直接利用立方根的性质以及绝对值的性质分别化简得出答案.【解答】解:+|﹣2|﹣(﹣)=﹣2+2﹣+=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【解答】解:,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点评】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.18.【分析】首先利用已知点坐标得出变化得出祝你成功对应点坐标,进而得出真实意思.【解答】解:由题意可得:“努”的坐标为(4,4),对应“今”的坐标为:(3,2);“力”的坐标为(6,3),对应“天”的坐标为:(5,1);故“祝你成功”对应点坐标分别为:(5,4),(6,8),(8,4),(3,6),则对应真实坐标为:(4,2),(5,6),(7,2),(2,4),故真实意思是:正做数学.故答案为:正做数学.【点评】此题主要考查了坐标确定位置,正确得出坐标的变化规律是解题关键.三、解答题(本大题共6个小题,共46分)19.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,②﹣①得:5y=5,解得:y=1,把y=1代入②得:x=﹣1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【分析】由已知的一对同旁内角互补,利用同旁内角互补,两直线平行得出DG与AB平行,再由两直线平行内错角相等得到∠1=∠3,而∠1=∠2,等量代换得到一对同位角相等,利用同位角相等两直线平行即可得到EF与DB平行.【解答】证明:∵∠ABC+∠BGD=180°,(已知)∴DG∥AB(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),又∵∠1=∠2(已知),∴∠2=∠3(等量代换),∴EF∥DB(同位角相等,两直线平行).故答案为:DG∥AB;同旁内角互补,两直线平行;两直线平行,内错角相等;∠2=∠3;等量代换;同位角相等,两直线平行.【点评】此题考查了平行线的判定与性质,属于推理型填空题,熟练掌握平行线的判定与性质是解本题的关键.21.【分析】先求出不等式组的解集,再在数轴上表示出来即可.【解答】解:,∵解不等式①得:x≤﹣1,解不等式②得:x<3,∴不等式组的解集为x≤﹣1,在数轴上表示为:.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.22.【分析】(1)根据“频率=频数÷总数”求解可得;(2)用360°乘以分数段80≤x<90对应频率即可得;(3)总人数乘以样本中分数段80≤x<90、90≤x<100的频率和可得.【解答】解:(1)m=0.15×200=30、n=20÷200=0.1,补全图形如下:故答案为:30、0.1;(2)分数段80≤x<90对应扇形的圆心角的度数是360°×0.40=144°,故答案为:144°;(3)参加这次竞赛的1500名学生中成绩合格的大约有1500×(0.40+0.30)=1050人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【分析】(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据“1辆大货车与3辆小货车一次可以运货14吨,2辆大货车与5辆小货车一次可以运货25吨”列方程组求解可得;(2)因运输80吨且用10辆车两次运完,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可.【解答】解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货5吨和3吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.∵两次完成80吨的运货任务,且总费用不超过5400元,∴,解得:5≤m≤7,∴有三种不同方案.∵w=200m+4000中,200>0,∴w值随m值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大货车用5台、小货车用5台时,总费用最低,最低费用为5000元.【点评】本题以运货安排车辆为背景考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.24.【分析】(1)令m=,n=,将方程组整理后,仿照阅读材料中的解法求出解即可;(2)令e=x+1,f=﹣y,将方程组整理后,仿照阅读材料中的解法求出解即可.【解答】解:(1)令m=,n=,原方程组可化为,解得:,∴,解得∴原方程组的解为;(2)令e=x+1,f=﹣y,原方程组可化为,依题意,得,∴,解得.【点评】此题考查了二元一次方程组的解,认真阅读材料,学会利用换元法解二元一次方程组,可以简化计算过程.。
2017-2018学年江苏省苏州市市区学校七年级(下)期末数学试卷 ( 解析版)
2017-2018学年江苏省苏州市市区学校七年级(下)期末数学试卷一、选择题(每题2分,共16分)1.(2分)若三角形的两条边的长度是4cm和10cm,则第三条边的长度可能是()A.4 cm B.5 cm C.9 cm D.14 cm2.(2分)下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a63.(2分)下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣44.(2分)已知是二元一次方程2x+my=1的一个解,则m的值为()A.3B.﹣5C.﹣3D.55.(2分)如图,在△ABC和△DEF中,AB=DE,∠B=∠DEF,补充下哪一条件后,能应用“SAS”判定△ABC≌△DEF()A.AC=DF B.BE=CF C.∠A=∠D D.∠ACB=∠DFE6.(2分)如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°7.(2分)下列命题:①同旁内角互补;②若|a|=|b|,则a=b;③同角的余角相等;④三角形的一个外角等于两个内角的和.其中是真命题的个数是()A.4个B.3个C.2个D.1个8.(2分)在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“”.如记=1+2+3+…+(n﹣1)+n,(x+k)=(x+3)+(x+4)+…+(x+n);已知[(x+k)(x﹣k+1)]=2x2+2x+m,则m的值是()A.﹣40B.﹣8C.24D.8二、填空题:(每题2题,共16分)9.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为.10.(3分)若x n=4,y n=9,则(xy)n=.11.(3分)若关于x的多项式x2+ax+9是完全平方式,则a=.12.(3分)内角和等于外角和2倍的多边形是边形.13.(3分)若a+b=7,ab=12,则a2﹣3ab+b2=.14.(3分)如图,在△ABC中,∠A=50°,若剪去∠A得到四边形BCDE,则∠1+∠2=.15.(3分)如图,△ABC的中线AD,BE相交于点F.若△ABF的面积是4,则四边形CEFD的面积是.16.(3分)如图,在长方形ABCD中,AD=BC=8,BD=10,点E从点D出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,当t=时,△DEG和△BFG全等.三、解答题:17.(6分)计算:(1)﹣12017+(π﹣3)0+()﹣1(2)(﹣a)3•a2+(2a4)2÷a318.(9分)将下列各式分解因式:(1)6x2﹣9xy+3x(2)18a2﹣50(3)(a2+1)2﹣4a219.(3分)解二元一次方程组:20.(5分)先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.21.(8分)在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)记网格的边长为1,则在平移的过程中线段BC扫过区域的面积为.22.(7分)若关于x,y的二元一次方程组,(1)若x+y=1,求a的值为.(2)若﹣3≤x﹣y≤3,求a的取值范围.(3)在(2)的条件下化简|a|+|a﹣2|.23.(6分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.24.(6分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACB交AB于E,EF⊥AB交CB于F.(1)求证:CD∥EF;(2)若∠A=70°,求∠FEC的度数.25.(8分)为了参加学校举办的“校长杯”足球联赛,某中学八(1)班学生去商场购买了A品牌足球1个、B品牌足球2个,共花费210元,八(2)班学生购买了品牌A足球3个、B品牌足球1个,共花费230元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?(2)为响应习总书记“足球进校园”的号召,学校使用专项经费1500元全部购买A、B两种品牌的足球供学生使用,那么学校有多少种购买足球的方案?请你帮助学校分别设计出来.26.(10分)已知:Rt△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,点P是BC边上的一个动点,(1)如图①,若点P与点D重合,连接AP,则AP与BC的位置关系是;(2)如图②,若点P在线段BD上,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,则CF,BE和EF这三条线段之间的数量关系是;(3)如图③,在(2)的条件下若BE的延长线交直线AD于点M,找出图中与CP相等的线段,并加以证明.(4)如图④,已知BC=4,AD=2,若点P从点B出发沿着BC向点C运动,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,设线段BE的长度为d1,线段CF的长度为d2,试求出点P在运动的过程中d1+d2的最大值.2017-2018学年江苏省苏州市市区学校七年级(下)期末数学试卷参考答案与试题解析一、选择题(每题2分,共16分)1.(2分)若三角形的两条边的长度是4cm和10cm,则第三条边的长度可能是()A.4 cm B.5 cm C.9 cm D.14 cm【分析】据三角形三边关系定理,设第三边长为xcm,则10﹣4<x<10+4,即6<x<14,由此选择符合条件的线段.【解答】解:设第三边长为xcm,由三角形三边关系定理可知,6<x<14,∴x=9cm符合题意.故选:C.【点评】本题考查了三角形三边关系的运用.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.2.(2分)下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a6【分析】A、经过分析发现,a与2a2不是同类项,不能合并,本选项错误;B、利用同底数幂的除法法则,底数不变,指数相减,即可计算出结果;C、根据同底数幂的乘法法则,底数不变,指数相加,即可计算出结果;D、根据积的乘方法则,底数不变,指数相乘,即可计算出结果.【解答】解:A、因为a与2a2不是同类项,所以不能合并,故本选项错误;B、a8÷a2=a6,故本选项错误;C、a3•a2=a5,故本选项错误;D、(a3)2=a6,故本选项正确.故选:D.【点评】此题考查了同底数幂的乘法、除法法则,以及积的乘方法则的运用,是一道基础题.3.(2分)下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣4【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【解答】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、x2﹣9=(x+3)(x﹣3),故C正确.D、是整式的乘法,不是因式分解.故选:C.【点评】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4.(2分)已知是二元一次方程2x+my=1的一个解,则m的值为()A.3B.﹣5C.﹣3D.5【分析】将代入2x+my=1,即可转化为关于m的一元一次方程,解答即可.【解答】解:将代入2x+my=1,得4﹣m=1,解得m=3.故选:A.【点评】此题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.5.(2分)如图,在△ABC和△DEF中,AB=DE,∠B=∠DEF,补充下哪一条件后,能应用“SAS”判定△ABC≌△DEF()A.AC=DF B.BE=CF C.∠A=∠D D.∠ACB=∠DFE【分析】应用(SAS)从∠B的两边是AB、BC,∠E的两边是DE、EF分析,找到需要相等的两边.【解答】解:两边和它们的夹角对应相等的两个三角形全等(SAS).∠B的两边是AB、BC,∠E的两边是DE、EF,而BC=BE+EC、EF=EC+CF,要使BC=EF,则BE=CF.故选:B.【点评】本题考查了三角形全等的条件,判定三角形全等一定要结合图形上的位置关系,从而选择方法.6.(2分)如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°【分析】根据平行线的性质得到∠1=∠B=50°,由三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠B=50°,∵∠C=40°,∴∠E=180°﹣∠B﹣∠1=90°,故选:C.【点评】本题考查了三角形内角和定理,平行线的性质的应用,注意:两直线平行,同旁内角互补,题目比较好,难度适中.7.(2分)下列命题:①同旁内角互补;②若|a|=|b|,则a=b;③同角的余角相等;④三角形的一个外角等于两个内角的和.其中是真命题的个数是()A.4个B.3个C.2个D.1个【分析】根据平行线的性质,绝对值、余角、三角形外角的性质判断即可.【解答】解:①两直线平行,同旁内角互补,是假命题;②若|a|=|b|,则a=b或a=﹣b,是假命题;③同角的余角相等,是真命题;④三角形的一个外角等于与它不相邻的两个内角的和,是假命题;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(2分)在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“”.如记=1+2+3+…+(n﹣1)+n,(x+k)=(x+3)+(x+4)+…+(x+n);已知[(x+k)(x﹣k+1)]=2x2+2x+m,则m的值是()A.﹣40B.﹣8C.24D.8【分析】利用题中的新定义化简已知等式左边,确定出m的值即可.【解答】解:根据题意得:(x+2)(x﹣1)+(x+3)(x﹣2)=2x2+2x﹣8=2x2+2x+m,则m=﹣8,故选:B.【点评】此题考查了整式的加减,弄清题中的新定义是解本题的关键.二、填空题:(每题2题,共16分)9.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为 6.5×10﹣6.【分析】根据科学记数法和负整数指数的意义求解.【解答】解:0.0000065=6.5×10﹣6.故答案为:6.5×10﹣6.【点评】本题考查了科学记数法﹣表示较小的数,关键是用a×10n(1≤a<10,n为负整数)表示较小的数.10.(3分)若x n=4,y n=9,则(xy)n=36.【分析】先根据积的乘方变形,再根据幂的乘方变形,最后代入求出即可.【解答】解:∵x n=4,y n=9,∴(xy)n=x n•y n=4×9=36.故答案为:36.【点评】本题考查了幂的乘方和积的乘方的应用,用了整体代入思想.11.(3分)若关于x的多项式x2+ax+9是完全平方式,则a=±6.【分析】利用完全平方公式的结构特征判断即可确定出a的值.【解答】解:∵关于x的多项式x2+ax+9是完全平方式,∴a=±6,故答案为:±6【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.12.(3分)内角和等于外角和2倍的多边形是六边形.【分析】设多边形有n条边,则内角和为180°(n﹣2),再根据内角和等于外角和2倍可得方程180(n﹣2)=360×2,再解方程即可.【解答】解:设多边形有n条边,由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:六.【点评】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n﹣2).13.(3分)若a+b=7,ab=12,则a2﹣3ab+b2=﹣11.【分析】直接利用完全平方公式将原式变形进而计算得出答案.【解答】解:∵a+b=7,ab=12,∴(a+b)2=49,则a2+2ab+b2=49,故a2+b2=49﹣2×12=25,则a2﹣3ab+b2=25﹣3×12=﹣11.故答案为:﹣11.【点评】此题主要考查了完全平方公式,正确记忆完全平方公式:(a±b)2=a2±2ab+b2是解题关键.14.(3分)如图,在△ABC中,∠A=50°,若剪去∠A得到四边形BCDE,则∠1+∠2=230°.【分析】根据三角形内角和为180度可得∠B+∠C的度数,然后再根据四边形内角和为360°可得∠1+∠2的度数.【解答】解:∵△ABC中,∠A=50°,∴∠B+∠C=180°﹣50°=130°,∵∠B+∠C+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°.故答案为:230°.【点评】此题主要考查了三角形内角和,关键是掌握三角形内角和为180°.15.(3分)如图,△ABC的中线AD,BE相交于点F.若△ABF的面积是4,则四边形CEFD的面积是4.【分析】根据三角形的重心的性质得到BF=2FE,AF=2FD,根据三角形的面积公式计算即可.【解答】解:∵△ABC的中线AD,BE相交于点F,∴点F是△ABC的重心,∴BF=2FE,AF=2FD,∵△ABF的面积是4,∴△AEF的面积是2,△DBF的面积是2,∴△ABD的面积是6,∴△ABC的面积是12,∴四边形CEFD的面积=12﹣4﹣2﹣2=4,故答案为:4.【点评】本题考查的是重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.16.(3分)如图,在长方形ABCD中,AD=BC=8,BD=10,点E从点D出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,当t=或2s时,△DEG和△BFG全等.【分析】分两种情形分别求解即可解决问题;【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC,有两种情形:①DE=BF,BG=DG,∴2t=8﹣t,t=.②当DE=BG,DG=BF时,设DG=y,则有,解得t=2,∴满足条件的t的值为或2s.故答案为或2s.【点评】本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题:17.(6分)计算:(1)﹣12017+(π﹣3)0+()﹣1(2)(﹣a)3•a2+(2a4)2÷a3【分析】(1)原式利用乘方的意义,以及零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用幂的乘方与积的乘方,单项式乘除单项式法则计算即可求出值.【解答】解:(1)原式=﹣1+1+2=2;(2)原式=﹣a5+4a5=3a5.【点评】此题考查了整式的除法,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(9分)将下列各式分解因式:(1)6x2﹣9xy+3x(2)18a2﹣50(3)(a2+1)2﹣4a2【分析】(1)通过提取公因式3x进行因式分解;(2)先提公因式2,然后利用平方差公式进行因式分解;(3)利用平方差公式进行因式分解.【解答】解:(1)原式=3x(2x﹣3y+1);(2)原式=2(3a+5)(3a﹣5);(3)原式=(a+1)2(a﹣1)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.19.(3分)解二元一次方程组:【分析】解此题运用的是代入消元法.【解答】解:由方程②得x=4﹣2y,代入到方程①中得:2(4﹣2y)﹣3y=1,解得y=1,x=2,所以方程组的解为.【点评】此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.20.(5分)先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.【分析】原式利用完全平方公式,平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+6x+9+x2﹣4﹣2x2=6x+5,当x=﹣1时,原式=﹣1×6+5=﹣1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.(8分)在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)记网格的边长为1,则在平移的过程中线段BC扫过区域的面积为28.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用中线的定义得出答案;(3)直接利用钝角三角形高线的作法得出答案;(4)利用平移的性质结合平行四边形的面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:线段CD即为所求;(3)如图所示:高线AE即为所求;(4)在平移的过程中线段BC扫过区域的面积为:4×7=28.故答案为:28.【点评】此题主要考查了平移变换以及基本作图,正确得出对应点位置是解题关键.22.(7分)若关于x,y的二元一次方程组,(1)若x+y=1,求a的值为.(2)若﹣3≤x﹣y≤3,求a的取值范围.(3)在(2)的条件下化简|a|+|a﹣2|.【分析】(1)两方程相加、再除以3可得x+y=a+,由x+y=1可得关于a的方程,解之可得;(2)两方程相减可得x﹣y=3a﹣3,根据﹣3≤x﹣y≤3可得关于a的不等式组,解之可得;(3)根据绝对值性质去绝对值符号、合并同类项即可得.【解答】解:(1),①+②,得:3x+3y=3a+1,则x+y=a+,∵x+y=1,∴a+=1,解得:a=,故答案为:;(2)①﹣②,得:x﹣y=3a﹣3,∵﹣3≤x﹣y≤3,∴﹣3≤3a﹣3≤3,解得:0≤a≤2;(3)∵0≤a≤2,∴a﹣2≤0,则原式=a+2﹣a=2.【点评】本题主要考查解二元一次方程组和一元一次不等式组的能力,根据题意得出关于a的不等式是解题的关键.23.(6分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.【分析】(1)根据已知利用HL即可判定△BEC≌△DEA;(2)根据第一问的结论,利用全等三角形的对应角相等可得到∠B=∠D,从而不难求得DF⊥BC.【解答】证明:(1)∵BE⊥CD,∴∠BEC=∠DEA=90°,又∵BE=DE,BC=DA,∴△BEC≌△DEA(HL);(2)∵△BEC≌△DEA,∴∠B=∠D.∵∠D+∠DAE=90°,∠DAE=∠BAF,∴∠BAF+∠B=90°.即DF⊥BC.【点评】此题主要考查学生对全等三角形的判定及性质的理解及运用,做题时要注意思考,认真寻找全等三角形全等的条件是解决本题的关键.24.(6分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACB交AB于E,EF⊥AB交CB于F.(1)求证:CD∥EF;(2)若∠A=70°,求∠FEC的度数.【分析】(1)根据垂直于同一条直线的两直线平行证明;(2)根据直角三角形的性质求出∠ACD,根据角平分线的定义求出∠ACE,结合图形求出∠DCE,根据平行线的性质解答即可.【解答】(1)证明:∵CD⊥AB,EF⊥AB,∴CD∥EF;(2)解:∵CD⊥AB,∴∠ACD=90°﹣70°=20°,∵∠ACB=90°,CE平分∠ACB,∴∠ACE=45°,∴∠DCE=45°﹣20°=25°,∵CD∥EF,∴∠FEC=∠DCE=25°.【点评】本题考查的是平行线的判定和性质、直角三角形的性质,掌握两直线平行、内错角相等、直角三角形的两锐角互余是解题的关键.25.(8分)为了参加学校举办的“校长杯”足球联赛,某中学八(1)班学生去商场购买了A品牌足球1个、B品牌足球2个,共花费210元,八(2)班学生购买了品牌A足球3个、B品牌足球1个,共花费230元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?(2)为响应习总书记“足球进校园”的号召,学校使用专项经费1500元全部购买A、B两种品牌的足球供学生使用,那么学校有多少种购买足球的方案?请你帮助学校分别设计出来.【分析】(1)设购买一个A品牌足球需要x元,一个B品牌足球需要y元,根据“购买A品牌足球1个、B品牌足球2个,共花费210元;购买品牌A足球3个、B品牌足球1个,共花费230元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买A品牌足球m个,购买B品牌足球n个,根据总价=单价×数量,即可得出关于m、n 的二元一次方程,再结合m、n均为非负整数,即可得出各购买方案.【解答】解:(1)设购买一个A品牌足球需要x元,一个B品牌足球需要y元,根据题意得:,解得:.答:购买一个A品牌足球需要50元,一个B品牌足球需要80元.(2)设购买A品牌足球m个,购买B品牌足球n个,根据题意得:50m+80n=1500,∵m、n均为非负整数,∴,,,.答:学校有4种购买足球的方案,方案一:购买A品牌足球30个、B品牌足球0个;方案二:购买A 品牌足球22个、B品牌足球5个;方案三:购买A品牌足球14个、B品牌足球10个;方案四:购买A品牌足球6个、B品牌足球15个.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.26.(10分)已知:Rt△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,点P是BC边上的一个动点,(1)如图①,若点P与点D重合,连接AP,则AP与BC的位置关系是AP⊥BC;(2)如图②,若点P在线段BD上,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,则CF,BE和EF这三条线段之间的数量关系是CF=BE+EF;(3)如图③,在(2)的条件下若BE的延长线交直线AD于点M,找出图中与CP相等的线段,并加以证明.(4)如图④,已知BC=4,AD=2,若点P从点B出发沿着BC向点C运动,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,设线段BE的长度为d1,线段CF的长度为d2,试求出点P在运动的过程中d1+d2的最大值.【分析】(1)根据等腰三角形的三线合一解答;(2)证明△ABE≌△CAF,根据全等三角形的性质得到BE=AF,AE=CF,结合图形证明;(3)证明△CFP≌△AEM,根据全等三角形的性质证明;(4)根据S △ABC =S △APB +S △APC 得到d 1+d 2=,根据垂线段最短计算即可.【解答】解:(1)AP 与BC 的位置关系是AP ⊥BC , 理由如下:∵AB =AC ,点D 是BC 的中点, ∴AD ⊥BC ,当点P 与点D 重合时,AP ⊥BC , 故答案为:AP ⊥BC ; (2)CF =BE +EF ,理由如下:∵BE ⊥AP ,CF ⊥AP ,∴∠BAE +∠CAP =90°,∠ACF +∠CAP =90°, ∴∠BAE =∠ACF , 在△ABE 和△CAF 中,,∴△ABE ≌△CAF , ∴BE =AF ,AE =CF , ∴CF =AE +AF +EF =BE +EF , 故答案为:CF =BE +EF ; (3)CP =AM ,证明:∵∠BAE =∠ACF , ∴∠EAM =∠FCP , 在△CFP 和△AEM 中,,∴△CFP ≌△AEM , ∴CP =AM ;(4)S △ABC =×BC ×AD =4,由图形可知,S △ABC =S △APB +S △APC =×AP ×BE +×AP ×CF =×AP ×(d 1+d 2),∴d 1+d 2=,当AP ⊥BC 时,AP 最小,此时AP =2,∴d1+d2的最大值为=4.【点评】本题考查的是全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定定理和性质定理、等腰三角形的三线合一是解题的关键.。
2017---2018学年度第二学期期末考试七年级数学试卷含答案
2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
2017-2018学年七年级下学期期末考试数学试卷含答案
2017-2018学年七年级下学期期末考试数学试卷(考试时间120分钟,满分120分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下面4个图案,其中不是轴对称图形的是()A. B. C. D.2.下列运算正确的是()A.a3+a2=2a5B.2a(1-a)=2a-2a2C.(-ab2)3=a3b6D.(a+b)2=a2+b23.不等式-3x+2>-4的解集在数轴上表示正确的是() A.B.C. D.4.为了了解某市初一年级11000名学生的视力情况,抽查了1000名学生的视力进行统计分析.下面四种说法正确的是()A.11000名学生是总体B.每名学生是总体的一个个体C.样本容量是11000D.1000名学生的视力是总体的一个样本5.化简:﹣=()A. 0B. 1C. xD.6.下列命题中,正确的是( )A. 三角形的一个外角大于任何一个内角B. 三角形的一条中线将三角形分成两个面积相等的三角形C. 两边和其中一边的对角分别相等的两个三角形全等D. 三角形的三条高都在三角形内部7.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A. CB=CDB. ∠BAC=∠DACC. ∠BCA=∠DCAD. ∠B=∠D=90°8.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°9.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A. B. C. D.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.分解因式:a2b-b3= ____ __ .12.若一个正n边形的每个内角为156°,则这个正n边形的边数是13.如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.则△AEG的周长为 ______ .14.在图中涂黑一个小正方形,使得图中黑色的正方形成为轴对称图形,这样的小正方形可以有 ______ 个15.如果二次三项式x2-mx+9是一个完全平方式,则实数m的值是 ______ .16.关于x 的分式方程= -2解为正数,则m 的取值范围是 ______ .17.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是18.如图,∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记为a 1,第2个等边三角形的边长记为a 2,以此类推.若OA 1=1,则a 2017=三、解答题:本大题共8小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.计算(本题共7分(1)(3分)(-2xy2)2÷xy (2)(4分)(x +2)2+2(x +2)(x -4)-(x +3)(x -3)20. (7分)先化简,再求值:(a+)÷(1+).其中a 是不等式组⎩⎨⎧<-≤-81302a a 的整数解.21.(7分)如图,在平面直角坐标系x O y 中,A (1,2),B (3,1),C (-2,-1).(1)如图中作出△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)写出点A1,B1,C1的坐标(直接写答案).A1 ______ B1 ______ C1 ______ ;(3)求△ABC的面积.22. (7分)在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对七年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的多少人.23. (6分)如图,△ABC中,∠A=40°∠B=76°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE 于点F,求∠CDF的度数.24. (7分)如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.25. (10分)东营市某学校2015年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?26. (11分)在△ABC中,∠ACB=2∠B,如图①,当∠C=900,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠900,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.2017—2018学年第二学期期末考试七年级数学试题参考答案一、1.D 2.B 3.D 4.D 5.C 6.B 7.C 8.B 9.B 10.A二、11.b(a+b)(a-b) 12.15 13.7 14. 3 15.±6 16.m<6且m≠-6 17. (0,3) 18.22016三、19.(1)原式=4x2y4÷xy ………………1分=12xy3;………………3分(2)解:(x+2)2+2(x+2)(x-4)-(x+3)(x-3)=x2+4x+4+2x2-4x-16-x2+9 ………………2分=2x2-3 ………………4分20.解:原式=. ………………3分解不等式组得………………5分∵a=1, a=2分式无意义∴a=0 ………………6分当a=0时,原式=-1.…………………………7分21.(1)图略………………2分(2)(-1,2);(-3,1);(2,-1)………………5分(3)S△ABC=4.5 ………………7分22.(1)样本容量是:30÷20%=150;………………2分(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75.;………………3分(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;………………5分(4)12000×=6000(人).………………7分23.解:∵∠A=40°,∠B=76°,∴∠ACB=180°-40°-76°=64°,………………2分∵CE平分∠ACB,∴∠ACE=∠BCE=32°,∴∠CED=∠A+∠ACE=72°,………………4分∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=72°.………………6分24.(1)证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).………………1分又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.………………3分∴∠DBC=∠DEC.∴DB=DE(等角对等边);………………4分(2)解:∵∠CDE=∠CED=∠BCD=30°,∴∠CDF=30°,∵CF=4,∴DC=8,………………5分∵AD=CD ,∴AC=16,………………6分∴△ABC 的周长=3AC=48.………………7分25.(1)设购买一个甲种足球需x 元,则购买一个乙种足球需(x +20)元,由题意得:x 2000=2×x +201400.………………3分解得:x =50. ………………4分经检验,x =50是原方程的解. ………………5分x +20=70.答:购买一个甲种足球需50元,购买一个乙种足球需70元.………………6分(2)设这所学校再次购买y 个乙种足球,则购买(50-y )个甲种足球,由题意得: 50×(1+10% )×(50-y )+70×(1-70% )y ≤2900. ………………8分解得:y ≤18.75. ………………9分由题意知,最多可购买18个乙种足球.笞:这所学校此次最多可购买18个乙种足球.………………10分26.(1)猜想:AB=AC+CD .------------------2分(2)猜想:AB+AC=CD . ---------------4分证明:在BA 的延长线上截取AE=AC ,连接ED .------------------5分∵AD 平分∠FAC ,∴∠EAD=∠CAD .在△EAD 与△CAD 中,AE=AC ,∠EAD=∠CAD ,AD=AD ,∴△EAD ≌△CAD . ---------------7分 ∴ED=CD ,∠AED=∠ACD .∴∠FED=∠ACB . ----------8分 又∵∠ACB=2 ∠B ,∠FED=∠B+∠EDB ,.∠EDB=∠B .∴EB=ED .∴EA+AB=EB=ED=CD .∴AC十AB=CD. ------------11分。
2017-2018学年沪科版七年级下册期末数学试卷含答案解析
2017-2018学年沪科版七年级下册期末数学试卷含答案解析2017-2018学年七年级(下)期末数学试卷一、选择题1.在实数0.1,0.2,√2,0.中,无理数的个数是()A。
2个 B。
1个 C。
3个 D。
4个2.下列图形中,不能通过其中一个四边形平移得到的是()A。
B。
C。
D。
3.下列运算正确的是()A。
(2a^2)^3=8a^6 B。
-a^2b^2×3ab^3=-3a^3b^5C。
a^2+=-1 D。
a^2•=-14.某种计算机完成一次基本运算的时间约为0.xxxxxxxx3秒,把数据0.xxxxxxxx3用科学记数法表示为()A。
0.3×10^-8 B。
0.3×10^-9 C。
3×10^-8 D。
3×10^-95.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x米,则根据题意可列方程为()A。
20x/12+20(x/5)=1200 B。
20x/12+2(x/5)=1200C。
20x/15+20(x/5)=1200 D。
20x/15+2(x/5)=12006.如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A。
∠1=∠3 B。
∠5=∠4 C。
∠5+∠3=180° D。
∠4+∠2=180°7.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为()A。
26cm B。
52cm C。
78cm D。
104cm8.如图,长方形ABCD的周长为16,以长方形四条边为边长向外作四个正方形,若四个正方形面积之和为68,则长方形ABCD的面积为()A。
12 B。
15 C。
18 D。
209.观察下列等式:a1=n,a2=1-n,a3=1-n,a4=1-n,…根据其蕴含的规律可得()A。
2017-2018学年度新人教版初中数学七年级下册期末教学质量检测及答案解析-精品试卷
2017-2018学年度下学期初中期末教学质量抽查初一年数学试题(满分:150分;时间:120分钟)题号一二 三总分1-78-17 18 19 20 21 22 23 24 25 26 得分一、选择题(单项选择,每小题3分,共21分). 1.若a >b ,则下列结论正确的是( ).A.55-<-b aB.b a +<+22C. b a 33>D. 33ba < 2.下列电视台的台标,是中心对称图形的是( ). A .B .C .D .3.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状不可以...是( ). A .正三角形; B .正四边形; C .正六边形; D .正八边形.4. 把不等式组123x x >-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是( ).A .B .C .D .5. 如图,若∠1=100°,∠C=70°,则∠A 的度数为( ).A .020 B .030 C .070 D .0806. 二元一次方程组⎩⎨⎧=-=+31y x y x 的解为( ).A .21x y ⎧⎨⎩=-=-B .21x y ⎧⎨⎩=-= C .21x y ⎧⎨⎩==-D . 21x y ⎧⎨⎩==7. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ).A .12B .15C .18D .12或15 二、填空题(每小题4分,共40分).8. 不等式3x ﹣2>4的解集是_______________.9. 已知一个多边形的内角和是900°,这个多边形的边数是_______________. 10. 在方程31x y +=中,用含x 的代数式表示y ,则y =_______________.11. 若⎩⎨⎧==23y x 是方程1=-ay x 的解,则a =_______________.12. 如图所示的图案绕其旋转中心旋转后能够与自身重合,那么它的旋转角的度数可能是_______________(填写一个你认为正确的答案) . 13. 根据“a 的3倍与2的差不小于...0”列出的不等式是:_______________.14. 如图,C B A '''∆是由ABC ∆沿射线AC 方向平移得到,若5,'C 2AC cm A cm ==,则所平移的距离为___________cm .15. 如图,AD 是ABC ∆的一条中线,若BD =3,则BC =_______________.16. 如图,ABC ∆≌DEF ∆,请根据图中提供的信息,写出x =_______________. 17. 如图所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别在边AB 、AC 上,将ABC △沿着DE 折叠压平,使点A 与点N 重合. (1)若035=∠B ,060=∠C ,则A ∠的度数为________; (2)若070=∠A ,则21∠+∠的度数为______________.三、解答题(共89分).18. 解不等式(组)(每小题7分,共14分). (1)3(1)64x x +-≤(2)211314x x -≥-⎧⎨+<⎩,并把解集在数轴上表示出来.19.(7分)解方程组:⎩⎨⎧=-=+3273y x y x20.(7分)解方程组:⎪⎩⎪⎨⎧=-=+++=9310y x z y x z y x .21.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的三个顶点都在格点上,请按要求完成下列各题.(1)画出△ABC 向左平移6个单位长度得到的图形△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.22.(9分)如图,在△ABC 中,︒=∠90ACB ,CD ⊥AB , 垂足为D ,︒=∠35BCD . 求:(1)EBC ∠的度数;(2)A ∠的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式). 解:(1)∵AB CD ⊥(已知)∴CDB ∠= ∵EBC ∠是BCD ∆的外角∴BCD CDB EBC ∠+∠=∠( ) ∴=∠EBC +35°= . (等量代换) (2)∵EBC ∠是ABC ∆的外角∴ACB A EBC ∠+∠=∠∴ACB EBC A ∠-∠=∠( ) ∵︒=∠90ACB (已知)∴A ∠= -90°= . (等量代换)23.(9分)小明家新房装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块. (1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过...3200元,那么彩色地砖最多能采购多少块?24.(9分)如图, 正方形ABCD 中, ADE ∆经顺时针...旋转后与ABF ∆重合. (1)旋转中心是点_________,旋转了__________度;(2)如果8,4CF CE ==,求:四边形AFCE 的面积.25.(13分)某商店收银台现有零钱1元、5元、10元三种纸币,共计130张,合计300元,其中10元纸币比5元纸币少10张.假设一元纸币数量为x张,5元纸币数量为y 张.(1)根据题意,填写下表中的空格:1元5元10元合计数量(张)x y130钱数(元)x5y300 (2)求出x、y的值;(3)现有一名顾客拿一张100元纸币要向收银员换取1元或5元的零钱,要求1元的张数不超过5元的张数,求收银员在分配1元、5元的张数时共有哪几种方案?26.(13分)在ABC ∆中,已知A α∠=.(1)如图1,ACB ABC ∠∠、的平分线相交于点P .①当70α=时,∠BPC 的度数=_____________°(直接写出结果); ②BPC ∠的度数为 (用含α的代数式表示);(2)如图2,ACB ABC ∠∠、的平分线相交于点P ,作ABC ∆外角NCB ∠∠、MBC的角平分线交于点Q .求BQC ∠的度数(用含α的代数式表示).(3)拓展:如图3,点M N 、分别为AB AC 、延长线上的一点, 点P 、Q 分别在ABC ∆内部、外部,且满足ABC n PBC ∠=∠,n ACB PCB ∠=∠,MBC n QBC ∠=∠, QCB n NCB ∠=∠.求:BPC ∠、BQC ∠的度数(用含n α、的代数式表示)._ P_ A_ B_ C(图1)_ A_ B_ C _ P_ Q_ M_ N(图3)_ Q_ P_ A_ B_ C _ M_ N(图2)南安市2014—2015学年度下学期期末教学质量抽查初一数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一步没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确作完该步应得的累计分数. (四)评分最小单位是1分,得分或扣分都不出现小数. 一、选择题(每小题3分,共21分)1.C ; 2.B ; 3.D ; 4.A ; 5.B ; 6.C ; 7.B ; 二、填空题(每小题4分,共40分)8、x >2 9、7 10、x 31- 11、1 12、答案不唯一,如072 等 13、023≥-a 14、3 15、6 16、20 17、(1)085 (2)0140 三、解答题(9题,共89分) 18.(1)(本小题7分)(1)解:3364x x +-≤……………………………………………………………(2分)3643-≤-x x ……………………………………………………………(4分)3x -≤……………………………………………………………(5分) 3x ≥-……………………………………………………………(7分)(2)(本小题7分)解:解不等式①,得x ≥0;……………………………………………(2分) 解不等式②得,x<1,……………………………………………(4分) 在数轴上表示为:……………………………………(5分)故此不等式的解集为:0≤x ≤1.……………………………………………(7分) 19、(本小题7分) 解:,①+②得:5x =10,∴ x =2,…………………………………………………………(3分) 将x =2代入①得:y =1,…………………………………………………………(6分)∴方程组的解为.…………………………………………………………(7分)20、(本小题7分)⎪⎩⎪⎨⎧=-=+++=9310y x z y x z y x 解法1:把①分别代入②、③得,⎩⎨⎧=+=+9321022z y z y ……………………………………………(2分) 解得,⎩⎨⎧-==16z y ……………………………………………(4分) 把⎩⎨⎧-==16z y 代入①得 5=x ……………………………………………(6分)∴方程组的解为⎪⎩⎪⎨⎧-===165z y x .……………………………………………(7分)解法2:把①代入②得,102=x ……………………………………………(2分) 解得,5=x…………………① …………………②…………………③把5=x 代入③得 915=-y ……………………………………………(4分) 解得,6=y把5=x ,6=y 代入①得,1-=z ……………………………………………(6分)∴方程组的解为⎪⎩⎪⎨⎧-===165z y x .……………………………………………(7分)21、解:(1)如图所示:△A 1B 1C 1,即为所求; (2)如图所示:△A 2B 2C 2,即为所求.22、解:(1)∵AB CD ⊥∴CDB ∠=90° ………………………………………(2分) ∵BCD CDB EBC ∠+∠=∠ (三角形的外角等于与它不相邻两个内角的和)…(4分) ∴=∠EBC 90°+35°=125°. …………………………(6分) (2)∵ACB A EBC +∠=∠∴ACB EBC A ∠-∠=∠.(等式的性质)……(7分 )∵︒=∠90ACB (已知)∴A ∠=125°-90°=35°. (等式的性质) ..............................(9分) 23、解:(1)设彩色地砖采购x 块,单色地砖采购y 块,由题意,得 (1)),……………………………………………(3分)解得:.……………………………………………(5分)答:彩色地砖采购40块,单色地砖采购60块;(2)设购进彩色地砖a 块,则单色地砖购进(60﹣a )块,由题意得………………(6分)80a +40(60﹣a )≤3200,……………………………………………(8分)解得:a ≤20.∴彩色地砖最多能采购20块.……………………………………………(9分)24、解:(1)A ,90………………………………………………………………………(4分)(2)解法1:ADE ∆经顺时针...旋转后与ABF ∆重合 ADE ABF ∆≅∆∴,ADE ABF S S ∆∆=……………………………………………(5分) 设DE x =,y CD =,则BF DE x ==,y CD BC ==,又8,4CF CE ==∴⎩⎨⎧=-=+48x y x y ……………………………………………(6分) ∴⎩⎨⎧==26x y …………………………………………………(7分) .3662A BCD A BCE A BCE A FCE ===+=+=∴∆∆正方形四边形四边形四边形S S S S S S AD E ABF (9分)解法2:ADE ∆经顺时针...旋转后与ABF ∆重合 ADE ABF ∆≅∆∴,ADE ABF S S ∆∆=………………………………………………………(5分)设DE x =,则BF DE x ==又8,4CF CE ==8,4BC x CD x ∴=-=+………………………………………………………(6分) 四边形ABCD 为正方形BC CD ∴=,即84x x -=+…………………………………………………………(7分) 解得2x =……………………………………………………………………………(8分) .3662A BCD A BCE A BCE A FCE ===+=+=∴∆∆正方形四边形四边形四边形S S S S S S AD E ABF 9分25. 解:(1)1元 5元 10元 总和 张数x y 10y - 130 钱数 x5y 10(10)y - 300………………(2分)(2)由(1)可列出方程组 10130510(10)300x y y x y y ++-=⎧⎨++-=⎩ ………………………(4分) 即214015400x y x y +=⎧⎨+=⎩解得10020x y =⎧⎨=⎩…………………(6分) (3)设分配1元纸币a 张,5元纸币b 张,由题意得5100a b +=,………………(7分) 所以1005a b =-,………………………………………………………………………(8分)又因为a b ≤,所以1005b b -≤,解得503b ≥………………………………………(9分) 由(2)知5元纸币数量最多为20张,所以取17181920b =、、、……………………(10分) 对应的151050a =、、、 答:收银员在分配1元、5元的张数时共有四种方案:1元15张,5元17张;1元10张,5元18张; 1元5张,5元19张;1元0张, 5元20张. ………………………(13分)26.解:(1)① 125;……………………………………………………………………(2分)②1902BPC α∠=+. ……………………………………………………(4分)(2)由(1)得1902BPC α∠=+; 四边形 BPCQ 中 ,1180902PBQ PCQ ∠=∠=⨯=………………(6分) 360Q PBQ PCQ P ∴∠=-∠-∠-∠………………………………………(7分)11180180(90)9022P αα=-∠=-+=-………………………(8分) (3)①BPC ∠的度数为180180n nα-+,理由如下: ABC ∆中,180A ABC ACB ∠+∠+∠=,A α∠= 180ABC ACB α∴∠+∠=- …………………………………………………(9分) ,ABC n PBC ACB n PCB ∠=∠∠=∠,180n PBC n PCB α∴∠+∠=- 180PBC PCB n nα∴∠+∠=-……………………………………………………(10分) 180180()180BPC PBC PCB n n α∴∠=-∠+∠=-+…………………………(11分)②BQC ∠的度数为180180n nα--,理由如下: 由①得180180BPC n nα∠=-+ ,ABC n PBC MBC n CBQ ∠=∠∠=∠180ABC MBC n PBC n CBQ ∴∠+∠=∠+∠= 180PBC CBQn∴∠+∠=,即180PBQ n ∠= 同理可得180PCQn∠=………………………………………………………(12分)四边形 BPCQ 中,180PBQ PCQ n ∠=∠=,180180BPC n n α∠=-+ 360Q PBQ PCQ P ∴∠=-∠-∠-∠180180180360(180)n n n nα=----+ 180180180360180n n n nα=---+- 180180n n α=--………………………………………………………(13分)。
七年级下学期数学期末试卷(含答案)
七年级下学期数学期末试卷(含答案)2017-2018学年度下学期期末学业水平检测七年级数学试题一、单项选择题(每小题2分,共12分)1.在数2,π,3-8,0.3333.中,其中无理数有()A。
1个B。
2个C。
3个D。
4个2.已知:点P(x,y)且xy=0,则点P的位置在()A。
原点B。
x轴上C。
y轴上D。
x轴上或y轴上3.不等式组2x-1>1。
4-2x≤的解集在数轴上表示为()4.下列说法中,正确的是()A。
图形的平移是指把图形沿水平方向移动B。
“相等的角是对顶角”是一个真命题C。
平移前后图形的形状和大小都没有发生改变D。
“直角都相等”是一个假命题5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A。
1500B。
1000C。
150D。
5006.如图,点E在AC的延长线上,下列条件能判断AB∥CD的是()①∠1=∠2②∠3=∠4③∠A=∠XXX④∠D+∠ABD=180°A。
①③④B。
①②③C。
①②④D。
②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标。
8.-364的绝对值等于______。
9.不等式组{x-2≤x-1>的整数解是______。
10.如图,a∥b,∠1=55°,∠2=40°,则∠3的度数是______。
11.五女峰森林公园门票价格:成人票每张50元,学生票每张10元。
某旅游团买30张门票花了1250元,设其中有x 张成人票,y张学生票,根据题意列方程组是______。
12.数学活动中,XXX和XXX向老师说明他们的位置(单位:m): XXX:我这里的坐标是(-200,300);XXX:我这里的坐标是(300,300)。
则老师知道XXX与XXX之间的距离是______。
13.比较大小: 5-1/2______1(填“<”或“>”或“=”)。
2017-2018学年第二学期七年级数学期末试题(含答案)
2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。
2017-2018学年度第二学期期末质量监测七年级数学试卷
2017-2018学年度第二学期期末质量监测七年级数学试卷一、选择题(每题2分,共20分)1.下图是四个物理实验工具的简图,从左到右依次是小车、弹簧、钩码、三极管,其中是轴对称图形的是()A.小车B.弹簧C.钩码D.三极管2.如图,AD,AE分别是△ABC的高和角平分线,∠B = 40°,∠C=60°,那么∠DAE的度数是()A.25°B.20°C.15°D、10°3.空气的密度是0.001293g/cm3,这个数用科学记数法可表示为()A.1.293×10-3B.-1.293x103C.-12.93×10-2D.0.1293×10-44.下列计算正确的是()A.a5+a5 = a10B.a6·a4 = a24C.a4 ÷a3 = aD.a4 –a4 =a05.下列事件中,是随机事件的是()A.同位角相等,两条直线平行B.三角形的三条高相交于一点C.平行于同一条直线的两条直线平行D.三角形三条角平分线交于一点6.已知:如下图,AB∥CD,∠AEF=80°,则∠DCF的度数为()A.120°B.110 °C.100°D.80°7.如图,已知∠1=∠2,则不一定保证△ABD≌△ACD的条件是()A.AB=ACB.∠B=∠CC.BD=CDD.∠BDA=∠CDA8.如图,向高为H的圆柱形水杯中注水,已知水杯底面圆半径为1,那么能够刻画注水量y与水深x关系的图象是()9.如图,为估计蒲河公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点0,测得0A=15m,OB=10m,则A、B间的距离可能是()A.5mB.15mC.25mD.30m10.如图,AD是△ABC中∠BAC的角平分线,DE⊥LAB于点E,DE = 2,AC=3,则△ADC的面积是A.3B.4C.5D.6二、填空圈(每题3分共30分)1.计第:(-2x3y n z)·(-4x n+1y n+3)=_______________.12.如图,兰兰用铅笔可以支起一张质地均匀的三角形卡片,则她支起的这个点应是三角形的_____________.13.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是____________.14.1-6个月的婴儿生长发育得非常快,他们的体重y(克)和月龄x(月)间的关系可以用y=a+700x,其中a是婴儿出生时体重,请在空格处填上适当的数值:15.三角形三个内角的度数比为1:2:3,则该三角形按角分应为_________________ 三角形。
2017-2018学年四川省成都市青羊区七年级(下)期末数学试卷(解析版)
2017-2018学年四川省成都市青羊区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列运算正确的是()A. a2⋅a3=a6B. 3a−a=3C. (b3)2=b9D. x6÷x2=x42.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A. 1,2,1B. 1,2,2C. 1,2,3D. 1,2,43.低炭环保的理念深入人心,共享单车已成为人们出行的重要工具.下列共享单车图标(不考虑颜色)中,是轴对称图形的有()个.A. 1B. 2C. 3D. 44.下列事件为必然事件的是()A. 任意买一张机票,座位靠窗B. 打开电视机,正在播放新闻联播C. 13个同学中少有两个同学的生日在同一个月D. 某彩票中奖机率1%,小东买100张此彩票会中奖5.如图,在下列条件中,能判断AB∥CD的是()A. ∠DAC=∠ACBB. ∠DCB+∠ADC=180∘C. ∠ABD=∠BDCD. ∠BAC=∠ADC6.已知(x-2)•(x+3)=x2+mx-6,则m的值是()A. −1B. 1C. 5D. −57.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,再将剩下的阴影部分剪开,拼成右边的长方形.根据图形的变化过程可以验证下列哪一个等式成立()A. (a−b)2=a2−2ab+b2B. a(a+b)=a2+abC. (a+b)2=a2+2ab+b2D. (a−b)(a+b)=a2−b28.a x=2,a y=3,则a x+y=()A. 5B. 6C. 3D. 29.如图,△ABC中AC的垂直平分线交AB于点D,交AC于点E,若AC比AD的2倍少4,△ADC的周长是16,则DC=()A. 4B. 5C. 6D. 4.510.小亮从家出发步行到公交站台后,等公交车去学校,如图,折线表示这个过程中行程s(千米)与所花时间t(分)标之间的关系.下列说法错误的是()A. 他家到公交车站台需行1千米B. 他等公交车的时间为4分钟C. 公交车的速度是500米/分D. 他步行与乘公交车行驶的平均速度是300米/分二、填空题(本大题共9小题,共36.0分)11.(-3a3b)2=______.12.化简:-1x2(6x2-2x+1)=______.313.如图,要测量河两岸相对两点A、B间的距离,在河岸BM上截取BC=CD,作DE⊥BD交AC的延长线于点E,垂足为点D,测得ED=3,CD=4,则A、B两点间的距离等于______.14.如图,AD是△ABC中BC边上的高,AE是∠BAC的平分线,若∠B=44°,∠C=76°,则∠DAE=______.15.如果9x2-mx+4是完全平方式,则m=______.16.已知2a÷4b=16,则代数式2b-a+1的值是______.17.新定义运算“◎”,对于任意有理数a、b,都有a◎b=a2-ab+b-1,例如:3◎5=32-3×5+5-1=-2,若任意投掷一枚印有数字1~6的质地均匀的骰子,将朝上的点数作为x的值,则代数式(x-3)◎(3+x)的值为非负数的概率是______.18.图1为五边形纸片ABCDE;如图2,将∠A以BE为折痕往下折,A点恰好落在CD上;如图3再分别以AB,AE为折痕,将∠C与∠D往上折,使得A、B、C、D、E 五点均在同一平面上,若图3中∠CAD=54°,则图1中∠A的度数为______.19.如图,△ABC与△ADE中,DE=BC,EA=CA,CB的延长线交DE于点G,∠CAE=∠EGC,过A作AF⊥DE于点F,连接AG,若AF=8,DF:FG:GE=2:3:5,BC=15,则四边形DGBA的面积是______.三、计算题(本大题共1小题,共12.0分)20.(1)计算:(-1)2018÷2-3-(π-3.14)0(2)先化简,再求值:[(x-5y)(x+5y)-(x-2y)2+y2]÷2y,其中x=-1,y=1.2四、解答题(本大题共8小题,共72.0分)21.如图,已知△ABC中,AD⊥BC于点D,E为AB边上任意一点,EF⊥BC于点F,∠1=∠2.求证:DG∥AB.请把证明的过程填写完整.证明:∵AD⊥BC,EF⊥BC(______),∴∠EFB=∠ADB=90°(垂直的定义)∴EF∥______(______)∴∠1=______(______)又∵∠1=∠2(已知)∴______(______)∴DG∥AB(______)22.如图,方格纸中每个小方格都是边长为1的正方形,四边形ABCD的顶点与点E都是格点.(1)作出四边形ABCD关于直线AC对称的四边形AB′CD′;(2)求四边形ABCD的面积;(3)若在直线AC上有一点P,使得P到D、E的距离之和最小,请作出点P(请保留作图痕迹),且求出PC=______.23.为了了解某种车的耗油量,实验人员对这种车进行了试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(单位:0123……小时)油箱中剩余油量Q(单50443832……位:升)(1)根据上表的数据,试验前油箱中共有油______升,当汽车行驶5小时后,油箱中的剩余油量是______升;(2)剩余油量Q(单位:升)与汽车行驶时间t(单位:小时)的关系式是______;(3)当剩余油量为4升时汽车将自动报警提醒加油,请问该试验行驶几小时汽车将会报警?24.水果种植大户小芳组织了“草莓采摘游”活动,为了吸引更多的顾客,每一位来采摘草莓的顾客都有一次抽奖机会.现有一只不透明的盒子,盒子里有三个外形与质地完全相同的球,分别印有A(草莓),B(枇杷),C(葡萄).(1)抽奖活动1:若顾客从盒子中任意摸一个球,摸到草莓就获得一张50元的优惠券,请问顾客获得50元的优惠券的概率;(2)抽奖活动2:若顾客从盒子中任意摸一个球后放回盒子,摇匀后再摸一个,两次摸到的球都是草莓就可获得一张100元的优惠券,请列出顾客摸到球的所有可能情况,并求出获得100元的优惠券的概率是多少?25.已知点C为直线AB上一点,D为AB外一点,分别以CA、CB为边在AB的同侧作△ACD和△CEB,且CA=CD,CB=CE,∠ACD=∠BCE=α,直线AE与直线BD交于点F.(1)如图1,若α=90°,且点E在CD上,求证AE=DB,并求∠AFB的度数:(2)如图2,若α>90°,求∠AFB的度数(用含α的式子表示).26.(1)若代数式(m-2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2-2x-5=0,求2x3-8x2-2x+2018的值.27.为加强公民的节水意识,某城市制定了新的“阶梯”水费收费标准,如图所示,y1与y2分别表示该城市居民的生活用水水费(单位:元)、商业用水水费(单位:元)与一年的用水量x(单位:m3)之间的关系.如某家庭一年的生活用水量是300m3,所交的居民生活用水水费=第一阶梯水量200m3的水费+第二阶梯水量100m3(即超过200的部分)的水费=1000元.(1)李东结合如图将该城市居民的两种用水标准制成了表格,如表,请帮助李东完善表格,并写出当居民生活用水量超过200m3且不超过300m3时,y1与x的关系式______;(2)若李东家某年所缴纳的居民生活用水水费平均每m3的费用为3.2元,求李东家该年的居民生活用水量;(3)当居民的生活用水和商业用水量分别为500m3时,请比较此时生活用水与商业用水的水费哪种更少,少多少?类别类型收费标准(元/m3)居民生活用水第一阶梯水量:不超过200m33第二阶梯水量:超过200不超过300m3的部分______ 第三阶梯水量:超过300m3的部分 6.5商业用水除居民生活用水、特种行业用水以水外的其他用水______28.如图:在△ABC中,∠BAC=110°,AC=AB,射线AD、AE的夹角为55°,过点B作BF⊥AD于点F,直线BF交AE于点G,连结CG.(1)如图1,若射线AD、AE都在∠BAC的内部,且点B与点B′关于AD对称,求证:CG=B'G;(2)如图2,若射线AD在∠BAC的内部,射线AE在∠BAC的外部,其他条件不变,求证:CG=BG-2GF;(3)如图3,若射线AD、AE都在∠BAC的外部,其他条件不变,若CG=145GF,AF=3,S△ABG=7.5,求BF的长.答案和解析1.【答案】D【解析】解:A、a2•a3=a5,故此选项错误;B、3a-a=2a,故此选项错误;C、(b3)2=b6,故此选项错误;D、x6÷x2=x4,正确.故选:D.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则和合并同类项法则分别化简得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算和合并同类项,正确掌握相关运算法则是解题关键.2.【答案】B【解析】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2>2,能组成三角形,故B选项正确;C、1+2=3,不能组成三角形,故C选项错误;D、1+2<4,不能组成三角形,故D选项错误;故选:B.根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.3.【答案】A【解析】解:第一个是轴对称图形.故选项正确;第二个不是轴对称图形.故选项错误;第三个不是轴对称图形.故选项错误;第四个不是轴对称图形.故选项错误.故选:A.根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.4.【答案】C【解析】解:A、任意买一张机票,座位靠窗可能靠窗户,也可能不靠窗户,故A错误;B、打开电视机,正在播放新闻联播是随机事件,故B错误;C、13个同学中少有两个同学的生日在同一个月是必然事件,故C正确;D、某彩票中奖机率1%,小东买100张此彩票会中奖是随机事件,故D错误;故选:C.根据事件发生的可能性大小判断相应事件的类型即可.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.【答案】C【解析】解:A、∵∠DAC=∠ACB,∴AD∥BC,故本选项错误;B、∵∠DCB+∠ADC=180°,∴AD∥BC,故本选项错误;C、∵∠ABD=∠BDC,∴AB∥CD,故本选项正确;D、∠BAC=∠ADC不能判定任何一组直线平行,故本选项错误.故选:C.根据平行线的判定定理对各选项进行逐一判断即可本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.6.【答案】B【解析】解:(x-2)•(x+3)=x2+3x-2x-6=x2+x-6,∵(x-2)•(x+3)=x2+mx-6,∴m=1,故选:B.先根据多项式乘以多项式法则展开,合并后即可得出答案.本题考查了多项式乘以多项式,能够灵活运用法则进行计算是解此题的关键.7.【答案】D【解析】解:由题意这两个图形的面积相等,∴a2-b2=(a+b)(a-b),故选:D.根据面积相等,列出关系式即可.本题主要考查对平方差公式的知识点的理解和掌握,能根据根据在边长为a的大正方形中剪去一个边长为b的小正方形是解此题的关键.8.【答案】B【解析】解:a x+y=a x•a y,∵a x=2,a y=3,∴a x+y=a x•a y=2×3=6,故选:B.根据同底数幂的乘法法则计算,先把a x+y写成a x•a y的形式,再求解就容易了.本题考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.a m•a n=a m+n(m,n是正整数),解题时牢记定义是关键.9.【答案】B【解析】解:∵AC比AD的2倍少4,∴AC=2AD-4,∵△ABC中AC的垂直平分线交AB于点D,交AC于点E,∴AD=DC,∵△ADC的周长是16,∴AD+DC+AC=16,∴AD+AD+2AD-4=16,∴AD=5,∴DC=AD=5,故选:B.根据线段垂直平分线性质得出AD=DC,求出AD+DC+AC=16,AC=2AD-4,代入求出即可.本题考查了线段垂直平分线性质,能根据线段垂直平分线性质求出AD=DC 是解此题的关键.10.【答案】D【解析】解:由函数图象可知他家到公交车站台需行1千米,他等公交车的时间=14-10=4分钟,故A、B正确,与要求不符;公交车的速度=(5-1)×1000÷(22-14)=4000÷8=500米/分,故C正确,与要求不符;他步行与乘公交车行驶的平均速度=5×1000÷(22-4)=米/分,故D错误,与要求相符.故选:D.观察函数图象可对A、B直接作出判断,依据函数图象确定出乘公交车的时间和路程可求得公交车的速度,故此可对C作出判断,依据函数图象确定出步行和乘公交车的总时间,然后依据速度=路程÷时间可求得他步行与乘公交车行驶的平均速度.本题主要考查的是一次函数的应用,能够从函数图象中获取有效信息是解题的关键.11.【答案】9a6b2【解析】解:(-3a 3b )2=9a 6b 2.故答案为9a 6b 2.利用积的乘方运算法则计算即可.本题考查了积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.即(ab )n =a n b n (n 是正整数).12.【答案】-2x 4+23x 3-13x 2【解析】 解:原式=-2x 4+x 3-x 2,故答案为:-2x 4+x 3-x 2.根据单项式乘多项式法则计算可得.本题主要考查单项式乘多项式,解题的关键是掌握单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.13.【答案】3【解析】解:在△ABC 和△EDC 中,,∴△ABC ≌△EDC (ASA ),∴AB=DE=3.故答案为:3.利用“角边角”证明△ABC 和△EDC 全等,根据全等三角形对应边相等可得AB=DE .本题考查了全等三角形的应用,是基础题,熟练掌握全等三角形的判定方法并确定出全等三角形是解题的关键.14.【答案】16°【解析】解:∵∠B=44°,∠C=76°,∴∠BA=180°-∠B-∠C=60°, ∵AE 平分∠BAC ,∴∠CAE=BAC=30°,∵AD是BC边上的高,∴∠ADC=90°,∵∠C=76°,∴∠CAD=180°-∠ADC-∠C=14°,∴∠DAE=∠CAE-∠CAD=30°-14°=16°,故答案为:16°.根据三角形内角和定理求出∠BAC和∠DAC,根据角平分线定义求出∠CAE,即可求出答案.本题考了三角形内角和定理、三角形的高、三角形的角平分线定义等知识点,能求出∠CAE和∠CAD的度数是解此题的关键.15.【答案】±12【解析】解:∵9x2-mx+4是完全平方式,∴9x2-mx+4=(3x±2)2=9x2±12x+4,∴m=±12,故答案为:±12.这里首末两项是3x和2这两个数的平方,那么中间一项为加上或减去3x和2积的2倍.此题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.16.【答案】-3【解析】解:∵2a÷4b=16,∴2a÷22b=24,2a-2b=24,∴a-2b=4,则2b-a+1=-(a-2b)+1=-4+1=-3,故答案为:-3.由2a÷4b=16得2a-2b=24,即a-2b=4,代入计算可得.本题主要考查同底数幂的除法,解题的关键是掌握同底数幂的除法与幂的乘方的运算法则及代数式的求值.17.【答案】23【解析】解:∵对于任意有理数a、b,都有a◎b=a2-ab+b-1,∴(x-3)◎(3+x)=(x-3)2-(x-3)(3+x)+3+x-1=-5x+20,当x=1时,-5x+20=15;当x=2时,-5x+20=10;当x=3时,-5x+20=5;当x=4时,-5x+20=0;当x=5时,-5x+20=-5;当x=6时,-5x+20=-10;∴代数式(x-3)◎(3+x)的值为非负数的概率==,故答案为:.对于任意有理数a、b,都有a◎b=a2-ab+b-1,即可得到(x-3)◎(3+x)=(x-3)2-(x-3)(3+x)+3+x-1=-5x+20,进而得出代数式(x-3)◎(3+x)的值为非负数的概率.本题主要考查了概率公式,随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.【答案】117°【解析】解:根据折叠可知:∠MAB=∠CAB,∠NAE=∠DAE,∵∠MAB+∠CAB+∠CAD+∠NAE+∠DAE=180°,∠CAD=54°,∴2∠CAB+2∠DAE=180°-54°=126°,∴∠CAB+∠DAE=63°,∴原来的∠A的度数是54°+63°=117°,故答案为:117°.根据折叠得出∠MAB=∠CAB,∠NAE=∠DAE,根据∠MAB+∠CAB+∠CAD+∠NAE+∠DAE=180°和∠CAD=54°求出∠CAB+∠DAE=63°,即可求出答案.本题考查了多边形的内角、折叠的性质、平角的定义等知识点,能正确求出∠BAC+∠DAE的度数是解此题的关键.19.【答案】36【解析】解:如图,过点A作AH⊥BC于H,∵∠CAE=∠CGE,∴∠C=∠E,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ABC=∠D,DE=BC=15,AB=AD,设DF=2x,FG=3x,GE=5x,∴DE=2x+3x+5x=15,∴x=,∴DF=3,FG=,∴DG=DF+FG=,∵△ABC≌△ADE,∴AH=AF=8,∵AF⊥DE,∴∠AFD=90°=∠AHB,在△ADF和△ABH中,,∴△ADF≌△ABH(AAS),∴BH=DF=3,在Rt△AHG和Rt△AFG中,,∴Rt△AHG≌Rt△AFG(HL),∴HG=FG=,∴BG=GH-BH=,∴S四边形ADGB=S△ADG+S△ABG=DG×AF+BG×AH=××8+××8=36,故答案为:36.先判断出△ABC≌△ADE,进而得出∠ABC=∠D,DE=BC=15,AB=AD,进而求出DF=3,FG=,DG=,再判断出△ADF≌△ABH,得出BH=DF=3,再判断出Rt△AHG≌Rt△AFG,得出HG=FG=,进而BG=GH-BH=,最后用面积的和即可得出结论.此题主要考查了全等三角形的判定和性质,三角形的面积公式,作出辅助线求出BG是解本题的关键.20.【答案】解:(1)原式=1×8-1=8-1=7;(2)原式=(x2-25y2-x2+4xy-4y2+y2)÷2y=(-28y2+4xy)÷2y=-14y+2x,当x=-1,y=1时,原式=-7-2=-9.2【解析】(1)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可求出值;(2)原式利用平方差公式,以及完全平方公式化简,再利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.21.【答案】已知AD同位角相等,两直线平行∠3 两直线平行,同位角相等∠2=∠3 等量代换内错角相等,两直线平行【解析】解:证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(垂直的定义)∴EF∥AD(同位角相等,两直线平行)∴∠1=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠2=∠3(等量代换)∴DG∥AB(内错角相等,两直线平行)故答案为:已知;AD;同位角相等,两直线平行;∠3;两直线平行,同位角相等;∠2=∠3;等量代换;内错角相等,两直线平行;根据三角形内角和定理以及平行线的性质即可求出答案.本题考查三角形的综合问题,解题的关键是熟练运用三角形内角和定理以及平行线的性质与判定,本题属于基础题型.22.【答案】5【解析】解:(1)四边形AB′CD′如图所示;(2)S四边形ABCD=×6×3=9.(3)作点E关于直线AC的对称点E′,连接DE′交直线AC于P,点P即为所求,此时PC=5.故答案为5.(1)根据要求画出图形即可;(2)对角线垂直的四边形的面积=对角线乘积的一半;(3)作点E关于直线AC的对称点E′,连接DE′交直线AC于P,点P即为所求,此时PC=5.本题考查作图-轴对称变换、勾股定理、轴对称-最短问题等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.23.【答案】50 20 Q=50-6t【解析】解:(1)根据上表的数据,试验前油箱中共有油50升,当汽车行驶5小时后,油箱中的剩余油量是:50-5×6=20(升);故答案为:50,20;(2)剩余油量Q(单位:升)与汽车行驶时间t(单位:小时)的关系式是:Q=50-6t;故答案为:Q=50-6t;(3)当Q=5时,则50-6t=4,解得:t=,则该试验行驶小时汽车将会报警.(1)利用表格中数据变化规律可得出答案;(2)利用数据变化规律得出每小时的耗油量进而得出答案;(3)利用Q=4代入进而得出答案.此题主要考查了函数关系式,正确得出每小时的耗油量是解题关键.24.【答案】解:(1)∵盒子里有三个外形与质地完全相同的球,分别印有A(草莓),B(枇杷),C(葡萄),∴顾客从盒子中任意摸一个球,摸到草莓就获得一张50元的优惠券的概率=1;3(2)所有可能出现的结果列表如下:(A,A)(A,B)(A,C)(B,A)(B,B)(B,C)(C,A)(C,B)(C,C)由列表可知所有可能的结果共9种,其中两次摸到的球都是草莓的情况数是1种,∴求出获得100元的优惠券的概率=19.【解析】(1)直接利用概率公式计算即可;(2)首先列表,再根据列表求得的两张卡片是草莓的可能性,再求比值即可求得.此题考查的是用列表法或者用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25.【答案】解:(1)在△ACE和△DCB中,{CA=CD∠ACD=∠BCE CE=CB,∴△ACE≌△DCB(SAS),∴AE=DB,∠AEC=∠DBC∵∠AEC+∠EAC=90°,∴∠DBC+∠EAC=90°,∴∠AFB=90°.(2)∵∠ACD=∠BCE,∴∠ACE=∠BCD,∵AC=CD,CE=CB,∴△ACE≌△DCB(SAS),∴∠AEC=∠B,∵∠AEC+∠FEC=180°,∴∠B+∠FEC=180°,∴∠F+∠BCE=180°,∴∠AFB=180°-α.【解析】(1)只要证明△ACE≌△DCB(SAS),即可解决问题;(2)只要证明△ACE≌△DCB(SAS),即可解决问题;本题考查全等三角形的判定和性质,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.26.【答案】解:(1)(m-2y+1)(n+3y)+ny2=mn+3my-2ny-6y2+n+3y+ny2=mn+n+(3m-2n+3)y+(n-6)y2∵代数式的值与y无关,n−6=0∴{3m−2n+3=0n=6∴{m=3①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2-2x-5=0∴x2=2x+5∴2x3-8x2-2x+2018=2x(2x+5)-8x2-2x+2018=4x2+10x-8x2-2x+2018=-4x2+8x+2018=-4(2x+5)+8x+2018=-8x-20+8x+2018=1998【解析】根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入.本题主要考查了利用因式分解简化计算问题.用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.27.【答案】y=4x-200(200<x≤300) 4 5.7【解析】解:(1)如表,当用水量超过200不超过300m3的部分用水水费是1000-600=400(元)则用水收费标准为:=4(元/m3).如表,商业用水用水收费标准为:=5.7(元/m3).设y1与x的关系式为y=kx+b(k≠0),把(200,600)、(300,1000)分别代入,得解得,所以y1与x的关系式为y=4x-200(200<x≤300).故答案是:4;5.7;y=4x-200(200<x≤300).(2)∵当年用水量为300m3时,平均水量为:元/m3).3<3.2∴设李东家该年的居民生活用水量为am3,由此可得:4a-200=3.2a解得:a=250.∴李东家该年的居民生活用水量为250m3;(3)当x=500时,y1=1000+6.5×(500-300)=2300y2=5.7×500=2850∵2300<2850∴y2>y1,即当居民的生活用水和商业用水量分别为500m3时,生活用水的水费少,少550元.(1)结合用水水费与用水量间的关系填空;利用待定系数法求函数关系式;(2)与当年用水量为300m3时水的单价进行比较,确定李东家用水单价属于哪一阶段,然后确定用水量;(3)利用函数关系式解答.本题考查了一次函的应用,首先读懂题意,然后根据题意列出函数关系式,再利用函数解析式即可解决实际问题.28.【答案】(1)证明:如图1,连接AB',∵B,B'关于AD对称,∴BB'被AD垂直平分,∴AB'=AB,∵AC=AB,∴AC=AB',∵AF⊥BG,∴∠BAF=∠B'AF,∵∠GAF=55°,∴∠B'AF+GAB'=55°,∵∠CAB=110°,∴∠CAG+∠FAB=55°,∴∠B'AF+∠GAB'=∠CAG+∠FAB,∵∠BAF=∠B'AF,∴∠GAB'=∠CAG,∵AG=AG,∴△CGA≌△B'GA,∴CG=B'G,(2)证明:如图2,在FB上截取FG'=GF,连接AG',∵BF⊥AD,∴AG=AG',∴∠GAF=∠G'AF,∴∠GAG'=2∠GAF=110°,∵∠CAB=110°,∴∠GAG'=∠CAB,∴∠GAG'-∠CAG'=∠CAB-∠CAG',∴∠GAC=∠G'AB,∵AC=AB,∴△GAC≌△G'AB,∴CG=G'B,∵FG'=GF,∴CG'=2GF,∵GB=GG'+G'B,∴GB=2GF+CG,∴CG=GB-2GF,(3)解:延长BF至点G',使G'F=GF,连接AG',∵BF⊥AD,∴AG=AG',∴∠GAF=∠G'AF,∴∠GAG'=2∠GAF=110°,∵∠CAB=110°,∴∠GAG'=∠CAB,∴∠GAG'-∠CAG'=∠CAB-∠CAG',∴∠GAC=∠G'AB,∵AC=AB,∴△GAC≌△G'AB,∴CG=G'B,∵CG=14GF,5∴设GF=5k,CG=14k,∴G'F=5k,BG'=14k,∴BG=4k,∵S△ABG=7.5,AF=3,∴1BG•AF=7.5,2∴1×4k×3=7.5,2∴k=5,4∴BF=9k=45.4【解析】(1)先判断出AC=AB',再用等式的性质判断出∠BAF=∠B'AF,进而判断出△CGA≌△B'GA,即可得出结论;(2)先判断出∠GAF=∠G'AF,再判断出∠GAC=∠G'AB,进而得出△GAC≌△G'AB,即CG=G'B,即可得出结论;(3)同(2)的方法判断出CG=G'B,最后用面积建立方程求出k的值,即可得出结论.此题是几何变换综合题,主要考查了全等三角形的判定和性质,对称的性质,垂直平分线的性质,判断出CG=GB'是解本题的关键.。
2017-2018七年级数学下册期末试卷(有答案) (17)
2017-2018学年七年级(下)期末数学试题一、选择题(将正确答案填写在下列表格中,每题3分,共36分)1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤32.下列各式中①;②;③;④(x≥1);⑤;⑥一定是二次根式的有()个.A.3 B.4 C.5 D.63.用科学记数法表示﹣0.0000027记为()A.﹣27×10﹣7B.﹣0.27×10﹣4C.﹣2.7×10﹣6D.﹣270×10﹣84.分式的值为0,则()A.x=2 B.x=﹣2 C.x=±2 D.x=05.下列二次根式中,最简二次根式是()A. B.C.D.6.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.2 C.D.7.下列计算正确的是()A.2a5+a5=2a10B.C.[(﹣a)3]2=(﹣a)6=a6D.a5÷a5=a5﹣5=a0=08.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤b≤13 B.12≤b≤15 C.13≤b≤16 D.15≤b≤169.下列计算正确的是()A.B.C.D.10.把根式﹣a化成最简二次根式为()A. B.C.D.﹣11.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是()A.B.C.D.12.如图,一只昆虫在棱长为20cm的正方体的表面上爬行,则它从图中的顶点A爬到顶点B 的最短距离为()A.40cm B.60cm C. D.二、填空题(每题3分,共24分)13.下列分式﹣,的最简公分母为.14.若y=2++2,则x﹣y=.15.若直角三角形的两边长为6和8,则第三边长为.16.分解因式:﹣3x2y+6xy2﹣3y3=.17.若5x=2,5y=3,则53x﹣2y的值为.18.已知关于x的方程=3的解是正数,则m的取值范围是.19.如图所示,所有四边形都是正方形,所有的三角形都是直角三角形,其中正方形D,C,A,B的面积分别为1,2,3,4,则正方形G的面积为.20.计算+++…+的值为:.三、解答题(共60分)21.计算(1)5x2y2•(﹣xy3)﹣x2y•(﹣xy4)(2)﹣6+2x.22.解方程:(1)=1(2)=﹣1.23.已知x=,y=,求x2+xy+y2的值.24.已知a2+b2+4a﹣6b+13=0,分解因式:x2+ax﹣b.25.先化简,再求值:(1)6a2﹣(2a﹣1)(3a+2)+(a+2)(a﹣2),其中a=﹣(2)÷(﹣x﹣2),其中x=﹣3.26.如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.折叠时顶点D落在BC边上的点F处(折痕为AE),求此时EC的长度?27.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.(1)两批进货的单价各是多少元?(2)在这两笔生意中,商家共盈利多少元?参考答案与试题解析一、选择题(将正确答案填写在下列表格中,每题3分,共36分)1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤3【考点】62:分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵x﹣3≠0,∴x≠3.故选C.2.下列各式中①;②;③;④(x≥1);⑤;⑥一定是二次根式的有()个.A.3 B.4 C.5 D.6【考点】71:二次根式的定义.【分析】二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.【解答】解:①符合二次根式的定义,故正确.②无意义,故错误.③中的a2≥0,符合二次根式的定义,故正确.④(x≥1)中的x﹣1≥0,符合二次根式的定义,故正确.⑤是开3次方,故错误.⑥中的x2+2x+1=(x+1)2≥0,符合二次根式的定义,故正确.故选:B.3.用科学记数法表示﹣0.0000027记为()A.﹣27×10﹣7B.﹣0.27×10﹣4C.﹣2.7×10﹣6D.﹣270×10﹣8【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:﹣0.0000027=﹣2.7×10﹣6,故选:C.4.分式的值为0,则()A.x=2 B.x=﹣2 C.x=±2 D.x=0【考点】63:分式的值为零的条件.【分析】根据分式的值为零的条件得到x2﹣4=0且x+2≠0,然后分别解方程与不等式易得x=2.【解答】解:∵分式的值为0,∴x2﹣4=0且x+2≠0,解x2﹣4=0得x=±2,而x≠﹣2,∴x=2.故选A.5.下列二次根式中,最简二次根式是()A. B.C.D.【考点】74:最简二次根式.【分析】D选项的被开方数中,含有能开得尽方的因数2;B、C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式;A它的因式的指数都是1,所以D选项符合最简二次根式的要求.【解答】解:∵B、=,C、=,D、=2x,∴这三个选项都可化简,不是最简二次根式.故选A.6.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.2 C.D.【考点】29:实数与数轴.【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.【解答】解:由勾股定理可知,∵OB=,∴这个点表示的实数是.故选D.7.下列计算正确的是()A.2a5+a5=2a10B.C.[(﹣a)3]2=(﹣a)6=a6D.a5÷a5=a5﹣5=a0=0【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=3a5,故A错误;(B)原式=,故B错误;(D)原式=1,故D错误;故选(C)8.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤b≤13 B.12≤b≤15 C.13≤b≤16 D.15≤b≤16【考点】KU:勾股定理的应用.【分析】如图,当吸管底部在O点时吸管在罐内部分a最短,此时a就是圆柱形的高;当吸管底部在A点时吸管在罐内部分a最长,此时a可以利用勾股定理在Rt△ABO中即可求出,进而得出答案.【解答】解:如图,连接BO,AO,当吸管底部在O点时吸管在罐内部分a最短,此时a就是圆柱形的高,即a=12;当吸管底部在A点时吸管在罐内部分a最长,即线段AB的长,在Rt△ABO中,AB===13,故此时a=13,所以12≤a≤13,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是:15≤b≤16.故选:D.9.下列计算正确的是()A.B.C.D.【考点】79:二次根式的混合运算.【分析】根据二次根式的加减运算,乘除运算,二次根式的化简,逐一检验.【解答】解:A、与不能合并,本选项错误;B 、=÷=,本选项正确;C、5与不能合并,本选项错误;D、==,本选项错误;故选B.10.把根式﹣a 化成最简二次根式为( ) A.B .C .D .﹣【考点】74:最简二次根式.【分析】根据二次根式的性质,可得答案.【解答】解:﹣a 化成最简二次根式为,故选A .11.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米/时,根据题意,下列方程正确的是( )A .B .C .D .【考点】B6:由实际问题抽象出分式方程.【分析】设该长途汽车在原来国道上行驶的速度为x 千米/时,根据“甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半”,可列出方程. 【解答】解:设该长途汽车在原来国道上行驶的速度为x 千米/时,根据题意得=•.故选:D .12.如图,一只昆虫在棱长为20cm 的正方体的表面上爬行,则它从图中的顶点A 爬到顶点B 的最短距离为( )A .40cmB .60cmC .D .【考点】KV :平面展开﹣最短路径问题.【分析】把此正方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.【解答】解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB即为最短路线.展开后由勾股定理得:AB2=202+(20+20)2=5×202,故AB==20cm.故选:C.二、填空题(每题3分,共24分)13.下列分式﹣,的最简公分母为a(a+b)(a﹣b).【考点】69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式﹣,的分母分别是a2﹣ab=a(a﹣b),a2+ab=a(a+b),故最简公分母是a(a+b)(a﹣b).故答案是:a(a+b)(a﹣b).14.若y=2++2,则x﹣y=.【考点】72:二次根式有意义的条件.【分析】根据被开方数大于等于0列式求出x的值,再求出y的值,然后相加即可得解.【解答】解:由题意得,x﹣5≥0,且5﹣x≥0,解得x≥5且x≤5,∴x=5,y=2,∴x﹣y=5﹣2=.故答案为:.15.若直角三角形的两边长为6和8,则第三边长为10或2.【考点】KU:勾股定理的应用.【分析】分情况考虑:当较大的数8是直角边时,根据勾股定理求得第三边长是10;当较大的数8是斜边时,根据勾股定理求得第三边的长是=2.【解答】解:①当6和8为直角边时,第三边长为=10;②当8为斜边,6为直角边时,第三边长为=2.故答案为:10或2.16.分解因式:﹣3x2y+6xy2﹣3y3=﹣3y(x﹣y)2.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3y(x2﹣2xy+y2)=﹣3y(x﹣y)2,故答案为:﹣3y(x﹣y)217.若5x=2,5y=3,则53x﹣2y的值为.【考点】48:同底数幂的除法;47:幂的乘方与积的乘方.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解:53x=23=8,52y=32=9,53x﹣2y=53x÷52y=8÷9=,故答案为:.18.已知关于x的方程=3的解是正数,则m的取值范围是m>﹣6且m≠﹣4.【考点】B2:分式方程的解.【分析】首先求出关于x的方程=3的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程=3得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.19.如图所示,所有四边形都是正方形,所有的三角形都是直角三角形,其中正方形D,C,A,B的面积分别为1,2,3,4,则正方形G的面积为10.【考点】KQ:勾股定理.【分析】根据勾股定理可知正方形A、B的面积之和等于正方形E的面积,同法可求正方形F、G的面积.【解答】解:记正方形的面积分别为A、B、C、D、E、F、G.根据勾股定理可知:E=A+B=7,F=C+D=3,G=E+F=10,故答案为10.20.计算+++…+的值为:﹣1.【考点】79:二次根式的混合运算.【分析】先分母有理化,然后合并即可.【解答】解:原式=﹣1+﹣+﹣+…+﹣=﹣1.故答案为﹣1.三、解答题(共60分)21.计算(1)5x2y2•(﹣xy3)﹣x2y•(﹣xy4)(2)﹣6+2x.【考点】78:二次根式的加减法;49:单项式乘单项式.【分析】(1)利用单项式乘以单项式及单项式除以单项式法则计算,即可得到结果;(2)根据二次根式的加减运算法则进行解答即可.【解答】解:(1)原式=5×(﹣)x2+1y2+3﹣×(﹣)x2+1y1+4=﹣x3y5+x3y5=;(2)原式=×3﹣+2=(2﹣3+2)=.22.解方程:(1)=1(2)=﹣1.【考点】B3:解分式方程.【分析】(1)分式方程两边同乘(x﹣3)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.(2)分式方程两边同乘(x2﹣4)去分母转化为整式方程,求出整式方程的解得到x的值,检验即可.【解答】(1)解:两边同时乘以(x﹣3)得:(1﹣x)﹣1=x﹣3,整理得,2x=3,解得:x=,经检验x=是原方程的解;(2)解:方程两边同时乘以(x2﹣4)得,﹣(x+2)2+16=﹣x2+4,整理得,4x=8,解得:x=2,经检验x=2是原方程的增根,故原方程无解.23.已知x=,y=,求x2+xy+y2的值.【考点】7A:二次根式的化简求值.【分析】根据题意求出x+y和xy的值,根据完全平方公式把原式变形,代入计算即可.【解答】解:∵x=,y=,∴x+y=,xy=×=1,则x2+xy+y2=x2+2xy+y2﹣xy=(x+y)2﹣xy=5﹣1=424.已知a2+b2+4a﹣6b+13=0,分解因式:x2+ax﹣b.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】先将已知等式配方,根据非负性求a、b的值,代入要分解因式的多项式中,利用十字相乘法分解因式即可.【解答】解:a2+b2+4a﹣6b+13=0,(a2+4a+4)+(b2﹣6b+9)=0,(a+2)2+(b﹣3)2=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3,∴x2+ax﹣b=x2﹣2x﹣3=(x+1)(x﹣3).25.先化简,再求值:(1)6a2﹣(2a﹣1)(3a+2)+(a+2)(a﹣2),其中a=﹣(2)÷(﹣x﹣2),其中x=﹣3.【考点】6D:分式的化简求值;4J:整式的混合运算—化简求值.【分析】(1)先去括号,再合并同类项,代入a的值计算即可;(2)先算括号里面的,再约分,代入x的值计算即可.【解答】接:(1)原式=6a2﹣6a2﹣4a+3a+2+a2﹣2a+2a﹣4,=a2﹣a﹣2,当a=﹣时,原式=;(2)原式=÷(﹣),=÷=•=,当x=﹣3时,原式=.26.如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.折叠时顶点D落在BC边上的点F处(折痕为AE),求此时EC的长度?【考点】PB:翻折变换(折叠问题).【分析】由折叠的性质得AF=AD=10cm,DE=EF,先在Rt△ABF中运用勾股定理求BF,再求CF,设EC=xcm,用含x的式子表示EF,在Rt△CEF中运用勾股定理列方程求x即可.【解答】解:∵四边形ABCD是矩形,∴AB=CD=8cm,AD=CB=10cm,由折叠方法可知:AD=AF=10cm,DE=EF,设EC=xcm,则EF=ED=(8﹣x)cm,AF=AD=10cm,在Rt△ABF中,BF===6(cm),则CF=BC﹣BF=10﹣6=4(cm),在Rt△CEF中,CF2+CE2=EF2,即42+x2=(8﹣x)2,解得x=3,即EC=3cm.27.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.(1)两批进货的单价各是多少元?(2)在这两笔生意中,商家共盈利多少元?【考点】B7:分式方程的应用.【分析】(1)设第一批进货的单价为x元/件,根据第二批这种衬衫所购数量是第一批购进数量的2倍,列出方程即可解决问题.(2)根据题意分别求出两次的利润即可解决问题;【解答】解:(1)设第一批进货的单价为x元/件,由题意2×=,解得x=80,经检验,x=80是原分式方程的解,且符合题意,答:第一次进货单价为80(元/件),第二次进货单价为88(元/件),(2)第一次进货=100(件),第二次进货量=200(件).总的盈利为:×100+×+10=4200(元)答:商家总盈利为4200元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.15°B.20°C.25°D.30°
13. 观察一串数:0,2,4,6,….第n个数应为( )
A.2(n-1)B.2n-1C.2(n+1)D.2n+1
14.下列关系式中,正确的是( )
A. B.
C. D.
15.如图表示某加工厂今年前5个月每月生产某种产品的产量c(件)与时间t(月)之间的关系,则对这种产品来说,该厂()
小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?
六、生活中的数学(8分),
24.某种产品的商标如图所示,O是线段AC、BD的交点,并且AC=BD,AB=CD.小明认为图中的两个三角形全等,他的思考过程是:
在△ABO和△DCO中
你认为小明的思考过程正确吗?如果正确,他用的是判定三
7.AC=AE(或BC=DE,∠E=∠C,∠B=∠D)8.-209. 45 10.B6395
二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)
题号
11
12
13
14
15
16
17
18
19
20
选项
D
C
C
D
D
A
B
B
D
C
三、精心算一算(21题3分,22题5分,共计8分)
21.解:= = ……3分
A.1月至3月每月产量逐月增加,4、5两月产量逐月
减小
B.1月至3月每月产量逐月增加,4、5两月产量与3月
持平
C.1月至3月每月产量逐月增加,4、5两月产量均停止
生产
D. 1月至3月每月产量不变,4、5两月均停止生产
16.下列图形中,不一定是轴对称图形的是( )
A.等腰三角形B.线段C.钝角D.直角三角形
22.解:= = …3分
当x=0时,原式=2 …5分
四、认真画一画(23题4分,24题4分,共计8分)
23.解:
理由是:垂线段最短. ……2分
作图……2分
24.解
每作对一个给1分
五、请你做裁判!(第25题小4分,第26小题6分,共计10分)
25.解:不会同意. ……2分
因为转盘中有两个3,一个2,这说明小丽去的可能性是 ,而小丽去的可能性是 ,所以游戏不公平. ……2分
小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.
游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?
23.一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;
(3)近似数.
(4)比条形统计图更形象、生动.(能符合即可) ………(每小题1分)
28.解:小明的思考过程不正确. …1分
添加的条件为:∠B=∠C(或∠A=∠D、或符合即可)…3分
在△ABO和△DCO中
……5分(答案不唯一)
七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)
29. (1)∠EAB=∠C;同位角相等,两直线平行.(2)∠BAD=∠D;内错角相等,两直线平行
2017—2018学年下学期期末水平质量检测七年级数学试卷
(全卷满分:120分钟考试时间:120分钟)
注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.
一、细心填一填(每小题3分,共计24分)
1.计算: =; =.
2.如果 是一个完全平方式,那么 的值是.
17.长度分别为3cm,5cm,7cm,9cm的四根木棒,能搭成(首尾连结)三角形的个数为( )
A.1B.2C.3D.4
三、精心算一算(18题5分,19题6分,共计11分)
18.
19.先化简 ,再选取一个你喜欢的数代替x,并求原代数式的值.
四、认真画一画(20题5分,21题5分,共计10分)
20.如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)
理由是:
21.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)
五、请你做裁判(第22题小5分,第23小题5分,共计10分)
22.在“五·四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额.
3.温家宝总理在十届全国人大四次会议上谈到解决“三农”问题
时说,2006年中央财政用于“三农”的支出将达到33970000
万元,这个数据用科学记数法可表示为万元.
4.等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是.
5.如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是.
所示,则该汽车的号码是.
二、相信你的选择(每小题只有一个正确的选项,每小题3分,共27分)
9.下列图形中不是正方体的展开图的是( )
ABC D
10.下列运算正确的是()
A. B. C. D.
11.下列结论中,正确的是()
A.若 B.若
C.若 D.若
12.如图,在△ABC中,D、E分别是AC、BC上的点,若
角形全等的哪个条件?如果不正确,请你增加一个条件,并
说明你的思考过程.(请将答案写在右侧答题区)
七.探究拓展与应用满分30分,
25.几何探究题(30分)请将题答在右侧区域。
七年级数学试卷参考答案及评分标准
一、细心填一填(每题2分,共计20)
1. ;2a.2.±2. 3.平行. 4.3.397×1075. 6.26或22㎝
(3)∠BAC+∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分.
30.(1) .(2) , , . (3) = .
(4):
评分标准:每空1分,(4)小题各1分
八、信息阅读题(6分)
31.(1)解:由图象可以看出农民自带的零钱为5元;
(2)
(3) …各2分
答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第(1)问和答各1分,(2)、(3)各2分.
因此小王设计的长为x+2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米). ……2分
六、生活中的数学(第27小题4分,第28小题5分,共计9分)
27.解:(1)2001年该养鸡场养了2万只鸡.(答案不唯一)
(2)2001年养了2万只;2002年养了3万只;2003年养了4万只;2004年养了3万只;2005年养了4万只;2006年养了6万只.
26.解:根据小王的设计可以设宽为x米,长为(x+5)米,
根据题意得2x+(x+5)=35
解得x=10.
因此小王设计的长为x+5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的.
……2分
根据小赵的设计可以设宽为x米,长为(x+2)米,
根据题意得2x+(x+2)=35
解得x=11.
6.现在规定两种新的运算“﹡”和“◎”:a﹡b= ;a◎b=2ab,如(2﹡3)(2◎3)=
(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]=.
7.某物体运动的路程s(千米)与运动的时间t(小时)关系如图所示,则当t=3小时时,物体运动所经过的路程为千米.
8.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图