2017—2018学年下学期期末水平质量检测七年级数学试卷

合集下载

2017-2018学年度下学期期末考试七年级数学试题

2017-2018学年度下学期期末考试七年级数学试题

2017-2018学年度下学期期末考试七年级数学试题一、选择题:(本大题共10个小题,每小题3分,共30分) ( )1. 平面内三条直线的交点个数可能有:A.0,1,2,3个B.1,3个C.2,3个D.1,2,3个( )2. 下列计算正确的是:A.24±=B.3)3(2-=- C.5)5(2=-D.3)3(2-=-( )3. 平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标 相比:A. 横坐标不变,纵坐标加3B. 纵坐标不变,横坐标加3C. 横坐标不变,纵坐标乘以3D. 纵坐标不变,横坐标乘以3( )4. 下列各式是二元一次方程的是:A. y x 21+B.342=+-y yx C. 95-=yx D.02=-y x( )5. 若n m >,则下列各式一定成立的是:A. 33+<+n mB. 33-<-n mC.33n m > D. n m 33->-( )6. 以下调查中适合作抽样调查的有: ①了解全班同学期末考试的成绩情况; ②了解夏季冷饮市场上冰激凌的质量情况; ③了解“神七”飞船各部件的安全情况;④了解《长江作业本》在全省七年级学生中受欢迎的程度.A. 4个B. 3个C. 2个D. 1个 ( )7. 如图,点F,E 分别在线段AB 和CD 上,下列条件能判定AB ∥CD 的是:A. ∠1=∠2B. ∠3=∠4C. ∠2=∠4D. ∠1=∠4( )8. 若y x ,满足018)2(2=-++y x ,则y x +的平方根是:A. 4±B. 2±C. 4D. 2( )9. 日本某地突发地震,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的 帐篷恰好(即不多也不少)能容纳这60名灾民,则不同的搭建方案有:A. 4种B. 6种C. 9种D. 11种 ( )10. 若关于x 的不等式⎩⎨⎧≤-<-1250x m x 的整数解有且只有4个,则m 的取值范围是:A. 65≤≤mB. 65<<mC. 65<≤mD. 65≤<m二、填空题:(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的对应位置的横线上. 11. 已知无理数b a <+<51,并且b a ,是两个连续的整数,则ab 的值为___________. 12. 如图,已知AB ∥ED,∠ACB=90°,则图中与∠CBA 互余的角是___________.13. 课间操时,王超,邓祖男的位置如图所示,陈贝尔对邓祖男说,如果我的位置用)0,0(表示,王超的位置用 )1,2(表示,那么邓祖男的位置可以表示成________.14. 把三个能够重合的长方形如图排列在一个大长方形中,若大长方形的周长为888cm,则一个小长方形的 周长等于_________cm.15. 用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有 36张白铁皮.若用x 张制盒身,y 张制盒底可以使盒身与盒底配套,那么可列方程组为:______________. 16. 若不等式1)32(<-x a 的解集是321->a x ,则a 的取值范围是_____________. 三、解答题:(本大题共8个小题,共72分) 17.(本小题满分10分) 解下列方程组:(1)⎩⎨⎧=-=+33651643y x y x(2)⎪⎩⎪⎨⎧=-++=--+1624)(4)(3y x y x y x y x18.(本小题满分10分)解下列不等式(组),并把它们的解集在数轴上表示出来:(1)1213312≥---x x(2) ⎪⎩⎪⎨⎧≤-+<+321)1(352x x x x20.(本小题满分6分)如图,已知AD 平分∠CAB,DE ∥AC,∠1=30°.求∠2的度数.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱 的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘 制了如图所示的两幅不完整的统计图.(1) 从全体学生的调查表中随机抽取了_______名学生的调查表; (2) 将条形图补充完整;(3) 艺术类读物所在扇形的圆心角是________度. 21.(本小题满分8分)如图,在长方形ABCD 中,放置9个形状,大小都相同的小长方形,相关数据如图所示. 求图中阴影部分的面积.22.(本小题满分8分)先阅读理解下面的例题,再按要求解答:例题:解不等式0)3)(3(>-+x x解:由有理数的乘法法则“两数相乘,同号得正” 有①⎩⎨⎧>->+0303x x 或②⎩⎨⎧<-<+0303x x解不等式组①得3>x ,解不等式组②得3-<x 故原不等式的解集为:3>x 或3-<x 问题: 求不等式01523<-+x x 的解集.某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球 25个,共花费4500元.已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元. (1)求购买一个A 种品牌、一个B 种品牌的足球各需多少元?(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌的足球50个,正好赶上商场对商品价格进行调整,A 种品牌的足球售价比第一次购买时提高4元,B 种品牌的足球 按第一次购买时售价的九折出售,如果学校此次购买A 、B 两种品牌的足球的总费用不超过第一 次花费的70%,且保证这次购买的B 种品牌的足球不少于23个,则这次学校有哪几种购买方案?24.(本小题满分12分)如图,以直角△AOC 的直角顶点O 为原点,以OC,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A ),0(a ,C )0,(b 满足082=-++-b b a .(1) 点A 的坐标为______________;点C 的坐标为_____________.(2) 已知坐标轴上有两动点P,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速 度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点 整个运动随之结束.AC 的中点D 的坐标是)3,4(,设运动时间为t 秒.问:是否存在这样的t ,使得 △ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3) 在(2)的条件下,若∠DOC=∠DCO,点G 是第二象限中一点,并且y 轴平分∠GOD.点E 是线段 OA 上一动点,连接接CE 交OD 于点H,当点E 在线段OA 上运动的过程中,探究∠GOA,∠OHC, ∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180可以直接使用).七年级数学试题参考答案一.选择题题号 12345678910 答案A C ABC CD B BD二.填空题11. 12 12. ∠BAC 与∠ACE 13. )3,4( 14. 296 15. ⎩⎨⎧⨯==+xy y x 2524036 16.23<a(第12题只填一种且正确的给2分,填了两种但有一种错误的不给分;第15题第二个方程用比例式的也对)三.解答题17.(1)⎩⎨⎧=-=+33651643y x y x解:①3⨯,得 48129=+y x ③ ②2⨯,得 661210=-y x ④ ③+④,得 11419=x6=x把6=x 代入①,得 16463=+⨯y 24-=y 21-=y 所以这个方程组的解是⎪⎩⎪⎨⎧-==216y x(每小题3分,请按步骤给分)18.(1)解:去分母,得 6)13(3)12(2≥---x x 去括号,得 63924≥+--x x 移项,得 32694-+≥-x x 合并同类项,得 55≥-x系数化为1,得 1-≤x ………......................………………………2分 数轴表示如图……....…………3分(2)解:解不等式①,得2>x .....................................………………………4分 解不等式②,得3≤x .......................………………………………5分 把不等式①和②的解集在数轴上表示出来:① ② (2)⎪⎩⎪⎨⎧=-++=--+1624)(4)(3y x y x y x y x解:②6⨯,得 6)()(3=-++y x y x ③ ③-①,得 2)(5=-y x 52=-y x ④ 把④代入①,得 1528=+y x ⑤ ④+⑤,得 1517=x ④-⑤,得 1511=y 所以这个方程组的解是⎪⎪⎩⎪⎪⎨⎧==15111517y x①②所以不等式组的解集:32≤<x …….......................................……6分 19.解:(1)300;....................................………………………2分 (2)补全图如下;..................................………………4分 (3)72....................................……...…………………6分20.证明: ∵AB 平分∠CAB…………………….........................………………1分 ∴∠CAB=2∠1=︒=︒⨯60302……………………………………2分 又∵DE ∥AC…………………………................................…………3分 ∴∠2=∠CAB=60°…………………………….....................………5分 21.解:设小长方形的长和宽分别为y x ,则 ⎩⎨⎧=+-=+42394y y x y x …………….........................….............……………1分解得⎩⎨⎧==15y x …………….........................……........................…………2分 ∴AB=713434=⨯+=+y∴6397=⨯=⋅=CD AB S ABCD 长方形…………….......………..……3分 ∴18159639=⨯⨯-=-=小长方形长方形阴S S S ABCD ………..........…4分答:阴影部分的面积是18.……………...........................………………5分22.解:由有理数的乘法法则“两数相除,异号得负”……………………………………1分 有①⎩⎨⎧<->+015023x x 或②⎩⎨⎧>-<+015023x x …………………..............…………………2分解不等式组①,得5132<<-x ………………………....................……………3分 解不等式组②,得不等式组②无解………………………..............……………4分 故原不等式组的解集为:5132<<-x ……………………........………………5分23.解:(1)设购买一个A,B 品牌的足球分别要x 元与y 元,由题意可得:…….........……1分 ⎩⎨⎧+==+3045002550x y y x .........................................................………………………2分解得⎩⎨⎧==8050y x ...................................................................………………………………3分答: 一个A 种品牌和一个B 种品牌的足球分别需要50元与80元..........…………4分 (2)设再次购进A 品牌的足球m 个,购进B 品牌的足球)50(m -辆, 由题意可得: ⎩⎨⎧≥-⨯≤-⨯⨯++2350%704500)50(9.080)450(m m m ………....………6分解得2725≤≤m ………………………................................………7分 ∵m 取自然数∴27,26,25=m ………....................……….....……………………8分 ∴存在以下三种购买方案:①A 种品牌足球25个,B 种品牌足球25个; ②A 种品牌足球26个,B 种品牌足球24个;③A 种品牌足球27个,B 种品牌足球23个…………..……………9分24. (1) )0,8();6,0(….....…................................................…………………2分 (2) ∵t t x OQ S D ODQ 242121=⋅⋅=⋅=∆….....………….......…………3分 t t y OP S D ODP 3123)28(2121-=⋅-⋅=⋅=∆….....……………4分 由t t 3122-=时,4.2=t ….....……………….....................……5分∴存在4.2=t 时,使得△ODP 与△ODQ 的面积相等….........……6分 (3) ∠GOD+∠ACE=∠OHC,理由如下:…................……………………7分 ∵x 轴⊥y 轴∴∠AOC=∠DOC+∠AOD=90° ∴∠OAC+∠ACO=90° 又∵∠DOC=∠DCO ∴∠OAC=∠AOD ∵x 轴平分∠GOD ∴∠GOA=∠AOD ∴∠GOA=∠OAC∴OG ∥AC…................……………......................................………8分 过点H 作HF ∥OG ∴HF ∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD…................……....................………………9分 ∴∠GOD+∠ACE=∠FHC+∠FHO。

2017-2018学年陕西省西安市新城区七年级(下)期末数学试卷(解析版)

2017-2018学年陕西省西安市新城区七年级(下)期末数学试卷(解析版)

2017-2018学年陕西省西安市新城区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列运算正确的是()A. B.C. D.2.西安市2017年生产总值(GDP)约为7700亿元人民币,用科学记数法表示7700亿为()A. B. C. D.3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD()A. B.C. D.4.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带去B. 带去C. 带去D. 带和去5.如图所示:AB∥CD,MN交CD于点E,交AB于F,BE⊥MN于点E,若∠DEM=55°,则∠ABE=()A.B.C.D.6.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A. B. C. D.7.如图所示,货车匀速通过隧道(隧道长大于货车长)时,货车从进入隧道至离开隧道的时间x与货车在隧道内的长度y之间的关系用图象描述大致是()A. B.C. D.8.下列图形中,不一定是轴对称图形的是()A. 等腰三角形B. 线段C. 钝角D. 直角三角形9.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A. A、C两点之间B. E、G两点之间C. B、F两点之间D. G、H两点之间10.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A. B. C. D.二、填空题(本大题共4小题,共12.0分)11.“早上的太阳从东方升起”是______事件.(填“确定”或“不确定”)12.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据为8时,输出的数据为______.13.则∠BAC的度数=______.14.如图所示,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为______.三、计算题(本大题共1小题,共8.0分)15.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示:根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟19升,求排水时y与x之间的关系式.如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.四、解答题(本大题共9小题,共70.0分)16.计算(1)-32+()-2+(π-2018)0(2)[(a-2b)2-b(a+4b)]÷(-3a)17.先化简再求值:(x+2y)(x-2y)-2y(x-2y),其中x=-1,y=.18.尺规作图,已知线段a、线段c和∠α,用直尺和圆规作△ABC,使BC=a,AB=c,∠ABC=∠α.(要求:作图时,保留作图痕迹,不写作法)19.如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE(1)如果AC=6cm,BC=8cm,试求△ACD的周长;(2)如果∠CAD:∠BAD=1:2,求∠B的度数.20.某种产品的商标如图所示,O是线段AC、BD的交点,并且AO=DO.请你在不作辅助线的情况下添加一个条件,证明△ABO和△DCO全等.添加条件______.证明:21.如图,把矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是______;(2)若∠BFE=65°,求∠EBF的度数.22.某校在汉字听写大赛活动中需要一名主持人小丽和小芳都想当主持人,小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?23.如图,E,F分别是等边△ABC边AB,AC上的点,且AE=CF,CE,BF交于点P.(1)证明:CE=BF;(2)求∠BPC的度数.24.如果一个三角形有两个角相等,那么这个三角形是等腰三角形,这个结论可以简称为“等角对等边”.(1)如图1,在△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F点,则图中共有______个等腰三角形;(2)如图2,若AB≠AC,在其他条件不变的情况下,边EF与BE、CF间的数量关系为______;(3)如图3,若在△ABC中,∠B的平分线BO与三角形外角平分线CO交于O点,过O点作OE∥BC交AB于E点,交AC于F点,则EF与BE、CF之间有怎样的数量关系?并说明理由.答案和解析1.【答案】C【解析】解:A、a2、a3不是同类项,不能合并,此选项错误;B、(a-2)2=a2-4a+4,此选项错误;C、2a2-3a2=-a2,此选项正确;D、(a+2)(a-2)=a2-4,此选项错误;故选:C.根据合并同类项法则、完全平方公式、平方差公式逐一计算即可判断.此题考查了整式的混合运算,熟练掌握合并同类项法则、完全平方公式、平方差公式是解本题的关键.2.【答案】B【解析】解:7700亿=7700 00000000=7.7×1011,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】A【解析】解:A、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;B、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:A.根据平行线的判定分别进行分析可得答案.此题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.4.【答案】C【解析】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA 判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.5.【答案】B【解析】解:如图,∵BE⊥MN,∴∠MEB=90°.∵∠DEM=55°,∴∠DEB=90°-55°=35°.∵AB∥CD,∴∠ABE=∠DEB=35°.故选:B.由平行线的性质和余角的定义解答.本题考查了平行线的性质和垂线,正确观察图形,熟练掌握平行线的性质和垂直的定义.6.【答案】C【解析】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;C、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:C.根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证即可.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.7.【答案】A【解析】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,∴反映到图象上应选A.故选:A.先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.本题主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系,难度适中.8.【答案】D【解析】解:A、是轴对称图形,故选项错误;B、是轴对称图形,故选项错误;C、是轴对称图形,故选项错误;D、不一定是轴对称图形如不是等腰直角三角形,故选项正确.故选:D.根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.【答案】B【解析】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.10.【答案】B【解析】解:所有的情况有:2,4,6;2,4,8;2,4,10;2,6,8;2,6,10;2,8,10;4,6,8;4,6,10;4,8,10;6,8,10,共10种,其中能构成三角形的有:4,6,8;6,8,10;4,8,10,共3种,则P=.故选:B.找出五条线段任取三条的所有等可能的情况数,找出能构成三角形的情况,即可求出所求的概率.此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.11.【答案】确定【解析】解:“早上的太阳从东方升起”是必然事件,属于确定事件,故答案为:确定.根据事件的可能性得到相应事件的类型即可.本题主要考查随机事件,用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.【答案】【解析】解:输出数据的规律为,当输入数据为8时,输出的数据为=.根据图表找出输出数字的规律,直接将输入数据代入即可求解.此题主要考查根据已有输入输出数据找出它们的规律,进而求解.13.【答案】110°【解析】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,则2(∠B+∠C)=140°,解得,∠B+∠C=70°,∴∠BAC=110°,故答案为:110°.根据线段的垂直平分线的性质得到DA=DB,EA=EC,根据等腰三角形的性质得到∠DAB=∠B,∠EAC=∠C,根据三角形内角和定理计算即可.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.【答案】70°【解析】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为:70°.此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.15.【答案】解:(1)依题意得洗衣机的进水时间是4分钟,清洗时洗衣机中的水量是40升;(2)∵洗衣机的排水速度为每分钟19升,从第15分钟开始排水,排水量为40升,∴y=40-19(x-15)=-19x+325,∵排水时间为2分钟,∴y=-19×(15+2)+325=2升.∴排水结束时洗衣机中剩下的水量2升.【解析】(1)根据函数图象可以确定洗衣机的进水时间,清洗时洗衣机中的水量;(2)①由于洗衣机的排水速度为每分钟19升,并且从第15分钟开始排水,排水量为40升,由此即可确定排水时y与x之间的关系式;②根据①中的结论代入已知数值即可求解.此题主要考查了一次函数应用,解题的关键首先正确理解题意,然后利用数形结合的思想和待定系数法即可求解.16.【答案】解:(1)原式=-9+4+1=-4;(2)[(a-2b)2-b(a+4b)]÷(-3a)=[(a2-4ab+4b2)-ab-4b2]÷(-3a)=(a2-5ab)÷(-3a)=-a+b.【解析】(1)直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算,进而得出答案.此题主要考查了整式的混合运算以及实数运算,正确掌握相关运算法则是解题关键.17.【答案】解:(x+2y)(x-2y)-2y(x-2y)=x2-4y2-2xy+4y2=x2-2xy,当x=-1,y=时,原式=(-1)2-2×(-1)×=2.【解析】先算乘法,再合并同类项,最后代入求出即可.本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.【答案】解:如图,作∠MAN=α,在射线BN上截取BC=a,在射线BM上截取BA=c,连接AC,△ABC即为所求.【解析】如图,作∠MAN=α,在射线BN上截取BC=a,在射线BM上截取BA=c,连接AC,△ABC即为所求.本题考查作图-复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.19.【答案】解:(1)由折叠的性质可知,DE垂直平分线段AB,根据垂直平分线的性质可得:DA=DB,∴△ACD的周长=DA+DC+AC=DB+DC+AC=BC+AC=14cm;(2)设∠CAD=x,则∠BAD=2x,∵DA=DB,∴∠B=∠BAD=2x,在Rt△ABC中,∠B+∠BAC=90°,即:2x+2x+x=90°,x=18°,∠B=2x=36°.【解析】(1)折叠时,对称轴为折痕DE,DE垂直平分线段AB,由垂直平分线的性质得DA=DB,再把△ACD的周长进行线段的转化即可;(2)设∠CAD=x,则∠BAD=2x,根据(1)DA=DB,可证∠B=∠BAD=2x,在Rt△ABC中,利用互余关系求x,再求∠B.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.20.【答案】BO=CO【解析】解:添加条件为BO=CO,证明:在△ABO和△DCO中,∵,∴△ABO≌△DCO.故答案为:BO=CO.由AO=DO,结合隐含的条件∠AOB=∠DOC,依据全等三角形的判定添加合适的条件即可得.本题主要考查全等三角形的判定,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题注意:不是所有的条件都可以当作全等的条件.21.【答案】BC'【解析】解:(1)矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上,∴DC的对应线段是BC',故答案为:BC';(2)由翻折的性质得:∠DEF=∠BEF,∵四边形ABCD为矩形,∴AD∥BC.∴∠DEF=∠BFE.∴∠BEF=∠BFE=65°.∴△BEF中,∠EBF=180°-2×65°=50°.(1)依据折叠的性质即可得到DC的对应线段;(2)由翻折的性质得∠DEF=∠BEF,由长方形纸片的上下两边平行,可得∠DEF=∠BFE,所以∠BEF=∠BFE,根据“三角形内角和定理”可知∠EBF的度数.本题主要考查的是翻折的性质、矩形的性质、等腰三角形的判定,解题时注意运用:两直线平行,内错角相等.22.【答案】解:不会同意.因为转盘中有两个3,一个2,这说明小丽去的可能性是=,而小丽去的可能性是,所以游戏不公平.【解析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中只要计算出指针指到2和指针指到3概率是否相等,求出概率比较,即可得出结论.本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.【答案】证明:(1)∵△ABC是等边三角形,∴BC=AB,∠A=∠EBC=60°,∴在△BCE与△ABF中,,∴△BCE≌△ABF(SAS),∴CE=BF;(2)∵由(1)知△BCE≌△ABF,∴∠BCE=∠ABF,∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,∴∠BPC=180°-60°=120°.即:∠BPC=120°【解析】(1)欲证明CE=BF,只需证得△BCE≌△ABF;(2)利用(1)中的全等三角形的性质得到∠BCE=∠ABF,则由图示知∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,所以根据三角形内角和定理求得∠BPC=120°.本题考查了全等三角形的判定与性质、等边三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.【答案】5 EF=BE+CF【解析】解:(1)如图1,图中共有5个等腰三角形,分别是△AEF、△OEB、△OFC、△OBC、△ABC;(1分)理由是:∵AB=AC,∴∠ACB=∠ABC,△ABC是等腰三角形;∵BO、CO分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=,∠OCB=∠ACO=∠ACB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠ABO=∠OBC=∠EOB=∠OCB=∠FOC=∠FCO,∴△EOB、△OBC、△FOC都是等腰三角形,∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∴∠AEF=∠AFE,∴△AEF是等腰三角形,故答案为:5;(2)如图2,EF=BE+FC.(2分)理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB;(5分)∵EF∥BC,∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;即EO=EB,FO=FC;∴EF=EO+OF=BE+CF;(7分)故答案为:EF=BE+FC(3)如图3,EF=BE-CF,(8分)理由是:∵OE∥BC,BO平分∠ABC,∴∠EBO=∠EOB=∠OBC,∴EB=OE,(10分)同理得:OF=CF,∴EF=OE-OF=BE-CF.(11分)(1)根据等腰三角形的判定、平分线的性质及角平分线可得有5个等腰三角形;(2)由△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,则EF=BE+FC.(3)同理得△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,根据图3可得结论.此题主要考查了等腰三角形的判定和性质,平行线、角平分线的性质等知识.运用等角对等边这一性质并进行线段的等量代换是正确解答本题的关键.。

17-18第二学期期末测试七年级数学答案

17-18第二学期期末测试七年级数学答案

2017~2018学年度第二学期期末学业水平调研测试七年级数学及答案说明:1、本试卷共4页,共25小题,考试时间为100分钟,满分120分.2、考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的考生号,并用2B 铅笔把对应号码的标号涂黑,在指定位置填写学校,姓名,试室号和座位号.3、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.4、非选择题必须在指定区域内,用黑色字迹的签字笔或钢笔作答,如需改动,先划掉原来答案,然后再写上新答案;不准使用铅笔或涂改液,不按以上要求作答的答案无效.5、考生务必保持答题卡的整洁,不折叠答题卡,考试结束后,只交回答题卡.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑.1、如图,直线a ,b 与直线l 相交,则下列说法错误的是( ) A 、1∠与2∠互为对顶角 B 、1∠与3∠互为邻补角 C 、1∠与4∠是一对同旁内角 D 、2∠与4∠是一对内错角2、计算 4的值,结果是( )A 、2B 、-2C 、±2D 、2±3、在平面直角坐标系中,第二象限的点P 到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标是( )A 、(3,4)B 、(-3,4)C 、(4,3)D 、(-4,3) 4、如图,点O 是直线AB 外的点,点C ,D 在AB 上,且AB OC ⊥,若5=OA ,4=OB ,2=OC ,3=OD ,则点O 到直线AB 的距离是( )A 、5B 、4C 、2D 、35、已知关于x ,y 的二元一次方程53=+y kx 有一组解为⎩⎨⎧==12y x ,则k 的值为( )A 、1B 、2C 、3D 、4lba 3 12 4第1题图OA第4题图BEAD第10题图OBEA CD 第14题图6、已知1-<a ,则下列不等式中,错误的是( ) A 、33-<a B 、33<-a C 、12<+a D 、32>-a7、经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据,则公交车对应的扇形的圆心角的度数是( )A 、︒216B 、︒120C 、︒108D 、︒60 8、下列说法正确的是( )A 、无限小数都是无理数B 、无理数都是无限小数C 、带根号的数都是无理数D 、无理数能写成分数形式 9、下列说法错误的是( )A 、在同一平面内,过一点有且只有一条直线与已知直线垂直B 、连接直线外一点与直线上各点的所有线段中,垂线段最短C 、在同一平面内,不重合的两条直线互相平行D 、经过直线外一点,有且只有一条直线与这条直线平行10、如图,在三角形ABC 中,点D 是AB 上的点,由条件AC DE ⊥于点E ,DE ∥BC 得出的下列结论中,不正确的是( )A 、CDE BCD ∠=∠B 、︒=∠90ACBC 、B ADE ∠=∠D 、DCE BDC ∠=∠二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11、7-的相反数是 . 12、计算:=-+3)32( . 13、不等式1152<+x 的解集是 .14、如图,直线AB 与CD 相交于点O ,OA 平分COE ∠,若︒=∠30AOE ,则DOE ∠的度数是 .15、在直角坐标系中,线段CD 是由线段AB 平移得到,点A (-3,-2)的对应点为C (2,1),则点B (-1,2)的对应点D 的坐标是 .第18题图1PBAB A CD第18题图216、如图,8块相同的长方形地砖拼成一个长方形,则每块长方形地砖的面积是 2cm .答案:一、选择题 C A D C A B C B C D二、填空题 11、7 12、2 13、3<x 14、︒120 15、(4,5) 16、675 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、计算:53325161643-+-+.34533534+=-++=(评分说明:计算364占1分,计算25161-,533-各占2分,答案正确占1分)18、画图题:(1)如图1,已知点P 是直线AB 外一点,用三角尺画图:过点P 作AB PM ⊥,垂足为M ; (2)如图2,已知直线AB 与CD ,请画出直线EF ,使EF 与直线AB 、CD 都相交,在所构成的八个角中,用数字表示其中的一对同位角.解:(1)评分说明:准确画出图形给3分,其中会过点P 作直线、用直角画出垂直线、标注垂足各占1分;(2)共3分.其中画出EF ,用数字表示同位角,写出结果各占1分.19、已知四个点的坐标,A (-3,-2),B (2,-2),C (3,1),D (-2,1). (1)在直角坐标系中描出A ,B ,C ,D 四个点;(2)连结AB 、CD ,写出线段AB ,CD 的位置关系和数量关系.解:(1)略 4分(准确描出一个点1分)(2)AB ∥CD,CD AB =; 6分(每个结论占1分)第16题图四、解答题(二)(本大题3小题,每小题7分,共21分) 20、解方程组:⎩⎨⎧=-=+112312y x y x .解:①+②得,124=x , 2分3=x , 3分把3=x 代入①得,123=+y ,1-=y , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分或由①得,y x 21-=③, 1分 代入②得,112)21(3=--y y , 3分 解得1-=y , 4分 把1-=y 代入③得,3)1(21=-⨯-=x , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分21、解不等式组:⎪⎩⎪⎨⎧-<--≥+-x x x x 6)1(31324,并求该不等式组的正整数解.解:不等式x x ≥+-324的解是2≤x , 2分 不等式x x -<--6)1(31的解是1->x , 4分 ∴不等式组的解是21≤<-x , 6分 ∴不等式组的正整数解是1,2. 7分22、某校为了解该校七年级同学对排球、篮球和足球三种球类运动项目的喜爱情况(每位同学必须且只须选择最喜爱的一种运动项目),进行了随机抽样调查,并将调查结果统计后,绘制成如下表和不完整的统计图表.(1)填空:=m ,=n ,=p ; (2)补全条形统计图;(3)若七年级学生总人数为900人,请你估计七年级学生喜爱足球运动项目的人数.解:(1)50=m ,14=n ,%20=p ; 3分 (2)略 5分 (3)900×20%=180(人) 7分五、解答题(三)(本大题3小题,每小题9分,共27分)23、某养牛场每天可用的饲料不超过1000kg ,原有30头大牛和15头小牛,1天要用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天要用饲料940kg .(1)求每头大牛和每头小牛1天各用饲料多少kg ?(2)一段时间后,大牛已全部上市出售,原来的小牛也长成大牛,需要再购进大牛和小牛若干头继续饲养.经测算,养牛场养牛数刚好80头,且尽量多养大牛将获得最大效益,问养牛场应购进多少头大牛和小牛才获得最大效益?解:(1)设每头大牛1天用饲料x kg ,每头小牛1天用饲料y kg , 1分依题意得,⎩⎨⎧=+=+94020426751530y x y x , 3分解得,⎩⎨⎧==520y x , 5分 答:每头大牛1天用饲料20kg ,每头小牛1天用饲料5kg ; 6分 (2)设最多购进m 头大牛,第24题图BA CD123依题意得,1000)60(5)20(20≤-++m m , 7分 解得,20≤m , 8分答:最多购进20头大牛,此时需购进40头小牛,使养牛数刚好80头牛并获得最大效益, 9分24、(1)在下面括号内,填上推理的根据,并完成下面的证明:如图,在四边形ABCD 中,BD 平分ABC ∠,31∠=∠.求证:AD ∥BC . 证明:∵BD 平分ABC ∠,∴21∠=∠( ), 又∵31∠=∠(已知),∴∠ ∠= ( ), ∴AD ∥BC ( );(2)请根据本题给出的图形举出反例,判定命题“相等的角是对顶角”是假命题;(3)命题“在四边形ABCD 中,AB ∥CD ,AD ∥BC ,那么C A ∠=∠”是真命题吗?如果是,写出推理过程(要求写出每一步的推理依据),如果不是,请举出反例.解:(1)分别填写:角平分线的定义、32∠=∠、等量代换、内错角相等,两直线平行 每个1分,共4分(2)BD 平分ABC ∠,21∠=∠,但它们不是对顶角, 5分 ∴命题“相等的角是对顶角”是假命题; 6分 (3)命题是真命题,证明如下: ∵AB ∥CD ,∴︒=∠+∠180C ABC (两直线平行,同旁内角互补), 7分 ∵AD ∥BC ,∴︒=∠+∠180A ABC (两直线平行,同旁内角互补), 8分 ∴C A ∠=∠(等角的补角相等). 9分 若证明过程正确给2分,但推理根据没有写或有写错的,全部扣1分25、如图,在直角坐标系中,点O 为坐标原点,直线AB 与两条坐标轴交于点A 、B ,OB OA <,过OB 的中点C 作直线CD 交AB 于点D ,使1∠=∠CDB ,过点D 作AB DE ⊥交x 轴于点E ,交y 轴于点F .已知直线AB 上的点的坐标是二元一次方程2443=+y x 的解.(1)写出点A 、B 、C 的坐标;(2)证明:OB CD ⊥(要求写出每一步的推理依据);(3)若点D 、E 的坐标都是方程734=-y x 的解,求四边形OADE 的面积. 解:(1)A (0,6),B (8,0),C (4,0); 3分 (2)∵OAB ∠=∠1(对顶角相等), 4分 又1∠=∠CDB (已知),∴CDB OAB ∠=∠(等量代换), ∴CD ∥y 轴(同位角相等,两直线平行), 5分 ∴︒=∠=∠90AOB DCB (两直线平行,同位角相等), ∴OB DC ⊥(垂直的定义); 6分 (3)由OB DC ⊥,得点D 的横坐标为4, 7分 ∴D (4,3),E (47,0), ∴425478=-=EB , 8分 ∴四边形OADE 的面积81173425216821=⨯⨯-⨯⨯=S . 9分。

人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案

人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案

2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。

2017-2018学年浙教版数学七年级(下册)期末考试试题及答案

2017-2018学年浙教版数学七年级(下册)期末考试试题及答案

2017-2018学年七年级(下)期末数学试卷一、选择题(每小题2分,共20分)1 •如图的图案是由下列四个选项中的哪个图案平移得到的( )2•已知:如图,直线a , b 被直线c 所截,且a // b ,若/仁70°则/2的度数 是()D.D. 调查一架隐形战机的各零部件的质量情况8. 甲、乙两班学生植树造林,已知甲班每天比乙班多植所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树 x 棵,则根据题意列出方程是() A 孔叫 B _ 'C 詆 ⑴D 山:U I5 9.已知x - =2,则代数式5X 2+ - 3的值为( ) 宣 xA . 27 B. 7C. 17 D . 2 10 .用如图①中的长方形和正方形纸板作侧面和底面, 做成如图②的竖式和横式 的两种无盖纸盒.现在仓库里有 m 张正方形纸板和n 张长方形纸板,如果做两 种纸盒若干个,恰好使库存的纸板用完,则m+n 的值可能是()A . 2013B . 2014 C. 2015 D . 2016二、填空题(每小题3分,共30分)11 .用科学记数法表示:0.00000706=—.12 .当x=—时,分式的值为0 .13 .如图所示,在不添加辅助线及字母的前提下,请写出一个能判定AD// BC 的条件:—(一个即可). 7. A . 一儿一[i=2 1次方程组:「的解是() 5棵树,甲班植80棵树B .C - •&314 .某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5〜95.5这一分数段的频率是16•若多项式x2- kx+9是一个完全平方式,则常数k的值是_ .r“3&+2b a17 •计算: _ _ - -r~二=_____ •a a -b18. 若多项式x2- mx+n (m、n是常数)分解因式后,有一个因式是x- 2,则2m - n的值为___ •19. 已知:如图放置的长方形ABCD和等腰直角三角形EFG中,/ F=90°FE=FG=4cm AB=2cm, AD=4cm,且点F、G、D、C 在同一直线上,点G 和点D重合,现将△ EFG沿射线FC向右平移,当点F和点D重合时停止移动,若△ EFG与长方形重叠部分的面积是4cm2,则△ EFG向右平移了②若a=3,则b+c=9;③若C M0,则(1 - a) (1 - b) = +—a④若c=5,则a2+b2=15.其中正确的是____ (把所有正确结论的序号都填上)___ cm.,c满足a+b=ab=c,有下列结论:a^3ab+b =①若、解答题(共50 分)21 •计算下列各题(1)(-3) 1 2+ ( n+ 了)—2(2)(2x- 1) 2-(x- 1) (4x+3)(1)22 •解方程(组)3x+y=-2(2) ^― - : =2.' 72x-l l-2x23. 分解因式(1)2X2- 8(2)3灼-6xy2+3y3.24. 如图,已知/ A=Z C, AD丄BE, BC丄BE,点E, D, C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若/ ABC=120,求/ BEC的度数.1 本次接收随机抽样调查的男生人数为人,扇形统计图中良好”所对应的圆心角的度数为____________ ;2 补全条形统计图中优秀”的空缺部分;25. 某学校为了解七年级男生体质健康情况, 随机抽取若干名男生进行测试,测 试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图 1、图2两幅不完整的统计图,请根据图中信息回答下列问题:合格 20% 不合格优秀30%(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到良好的人数.26. 为了创建国家卫生城市,需要购买甲、乙(如图)两种类型的分类垃圾桶替换原来的垃圾桶,A, B, C三个小区所购买的数量和总价如表所示.甲型垃圾桶数量(套) 乙型垃圾桶数量(套)总价(元)A1083320B592860C a b2580(1) 问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元?(2) 求a, b的值.四、附加题(每小题10分,共20分)27. 已知:直线a// b,点A, B分别是a, b上的点,APB是a, b之间的一条折备用图备用图(1) ______________________________ 若/ 仁33°, / APB=74,则/2= 度.(2)若/ Q的一边与PA平行,另一边与PB平行,请探究/ Q,Z 1, 2间满足的数量关系并说明理由.(3)若/ Q的一边与PA垂直,另一边与PB平行,请直接写出/ Q,Z 1 , 2之间满足的数量关系.28•教科书中这样写道:我们把多项式a2+2ab+b2及a2- 2ab+b2叫做完全平方式”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式X2+2X— 3= (X2+2X+1)— 4= (x+1) 2- 4= (x+1+2) (x+1 - 2)= (X+3) (X- 1);例如求代数式2X2+4X- 6 的最小值.2X2+4X- 6=2 (X2+2X- 3) =2 (X+1) 2 - 8.可知当X=- 1时,2X2+4X- 6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2- 4m - 5= ___ .(2)当a,b为何值时,多项式a2+b2- 4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2- 2ab+2b2- 2a- 4b+27有最小值,并求出这个最小值.参考答案与试题解析一、选择题(每小题2分,共20分)1 •如图的图案是由下列四个选项中的哪个图案平移得到的()【考点】利用平移设计图案.【分析】根据平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等可得答案.【解答】解:根据平移可得B是平移可得到图形中的图案,故选:B.2•已知:如图,直线a,b被直线c所截,且a// b,若/仁70°则/2的度数是()A. 130°B. 110°C. 80°D. 70°【考点】平行线的性质.【分析】由a/b,根据两直线平行,同位角相等,即可求得/ 3的度数,又由邻补角的定义即可求得/ 2的度数.【解答】解:I a/ b,.•./ 3=Z 仁70°,vZ 2+Z 3=180°,•••/ 2=110°.3•分式打一有意义,则x的取值范围是()A. X M 1B. X M- 1C. x=1D. x=- 1【考点】分式有意义的条件.【分析】分母不为零,分式有意义,依此求解.【解答】解:由题意得X-1M0,解得X M 1.故选A.4. 下列计算结果正确的是()3 4 12 5.5 2 6 3 2 6A. a x a =aB. a —a=aC. (ab )=abD. (a )=a【考点】同底数幕的除法;同底数幕的乘法;幕的乘方与积的乘方.【分析】根据同底数幕的乘法、除法,积的乘方,幕的乘方,即可解答.【解答】解:A、a3x a4=a7,故本选项错误;B、a5* a=a\故本选项错误;C (ab2)3=a3b6,故本选项错误;D、正确;故选:D.5. 下列各式由左到右的变形中,属于因式分解的是()2 2A. a (x+y) =ax+ayB. x - 4x+4= (x- 2)C. 2a- 4b+2=2 (a-2b)D. x2- 16+3x= (x-4) (x+4) +3x【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据定义即可判断.【解答】解:A、结果不是整式的乘积的形式,不是因式分解,选项错误;B、是因式分解,选项正确;C 2a-4b+2=2 (a-2b+1),选项错误;D、结果不是整式的乘积的形式,不是因式分解,选项错误.故选B.6. 下列调查中,适合采用全面调查方式的是()A. 了解一批炮弹的杀伤半径B. 了解全国中学生的身高情况C. 对市场上某种饮料质量情况的调查D. 调查一架隐形战机的各零部件的质量情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批炮弹的杀伤半径,适合抽查,选项错误;B、了解全国中学生的身高情况,适合抽查,选项错误;C、对市场上某种饮料质量情况的调查,适合抽查,选项错误;D、调查一架隐形战机的各零部件的质量情况,适合全面调查,选项正确. 故选D.【考点】解二元一次方程组.【分析】方程组利用代入消元法求出解即可.7.A .fx+2y=10,尸2葢的解是(D. *y=2['、尸2\ 7=4 C.把②代入①得:x+4x=10,即x=2, 把x=2代入②得:y=4, 则方程组的解为: 故选A .8.甲、乙两班学生植树造林,已知甲班每天比乙班多植 5棵树,甲班植80棵树 所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树 x 棵,则根据 题意列出方程是( )A 80B 80 _ 70C 80 JOD 80^ 70.乂:.二 二 1 .工 ” £ 工.工 乙 1【考点】由实际问题抽象出分式方程.【分析】设甲班每天植树x 棵,则乙班每天植树(x -5)棵,根据甲班植80棵 树所用的天数与乙班植70棵树所用的天数相等,列方程即可.【解答】解:设甲班每天植树x 棵,则乙班每天植树(x - 5)棵, +日石亠何 80 70由题意得, = .x 故选D .1 o 59.已知x - =2,则代数式5x 2+ - 3的值为( )A . 27 B. 7C. 17 D . 2【考点】完全平方公式.【分析】原式前两项提取5,利用完全平方公式变形,将已知等式代入计算即可 求出值.【解答】解:I x-—=2,•••原式=5 (只+丁)- 3=5[ (x - ) 2+2] - 3=30-3=27,故选A【解答】解:{囂笄10 .用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒•现在仓库里有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m+n的值可能是()A. 2013B. 2014C. 2015D. 2016【考点】二元一次方程组的应用.【分析】设做竖式和横式的两种无盖纸盒分别为x个、y个,然后根据所需长方形纸板和正方形纸板的张数列出方程组,再根据x、y的系数表示出m+n并判断m+n为5的倍数,然后选择答案即可.【解答】解:设做竖式和横式的两种无盖纸盒分别为x个、y个,根据题意得丄+〉:一I x+2y=in,两式相加得,m+n=5 (x+y),••• x、y都是正整数,••• m+n是5的倍数,••• 2013、2014、2015、2016四个数中只有2015是5的倍数,• m+n的值可能是2015.故选C.、填空题(每小题3分,共30 分)11.用科学记数法表示:0.00000706= 7.06X 10「6【考点】科学记数法一表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a x 10「n,与较大数的科学记数法不同的是其所使用的是负指数幕,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000706=7.06X 10「6,故答案为:7.06X 10「6.12•当x=】时,分式1的值为0.—3—x+2【考点】分式的值为零的条件.【分析】根据分式值为零的条件是分子等于零且分母不等于零进行判断.【解答】解:•••分式」一的值为0,x+z••• 3x-仁0,且x+2工0,解得 , X M- 2,即x=.故答案为:—13. 如图所示,在不添加辅助线及字母的前提下,请写出一个能判定AD// BC的【考点】平行线的判定.【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【解答】解:T AD和BC被BE所截,•当/ EADN B 时,AD / BC.故答案为:/ EADN B.14. 某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5〜95.5这一分数段的频率是0.4 .【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率二频数宁数据总和计算出成绩在90.5〜95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20) =50人,其中在90.5〜95.5这一分数段有20人,则成绩在90.5〜95.5这一分数段的频率是.=0.4.50故本题答案为:0.4.15. 计算:(6a2- 10ab+4a)*( 2a) = 3a-5b+2 .【考点】整式的除法.【分析】根据多项式除以单项式的运算方法求解即可.【解答】解:(6a2- 10ab+4a)-( 2a)=(6a2)*( 2a)-( 10ab)*( 2a) + (4a)*( 2a)=3a- 5b+2故答案为:3a- 5b+2.16. 若多项式x2- kx+9是一个完全平方式,则常数k的值是土6 .【考点】完全平方式.【分析】先根据两平方项项确定出这两个数是x和3,再根据完全平方公式求解即可. 【解答】解:••• x2- kx+9=W- kx+32,解得k=± 6. 故答案为:土 6.17.计算:3a+2b a 2【考点】分式的加减法.【分析】根据同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减,求解即可.2(a+b) (a+b) (a-b) =2 a-b .故答案为:18. 若多项式x 2- mx+n (m 、n 是常数)分解因式后,有一个因式是 x - 2,则 2m - n 的值为 4.【考点】因式分解的意义.【分析】设另一个因式为x -a ,因为整式乘法是因式分解的逆运算,所以将两 个因式相乘后结果得x 2- mx+ n ,根据各项系数相等列式,计算可得 2m - n=4 .【解答】解:设另一个因式为x -a ,由①得:a=m - 2③,把③代入②得:n=2 ( m - 2), 2m - n=4, 故答案为:4 .19.已知:如图放置的长方形 A BCD 和等腰直角三角形EFG 中,/ F=90°FE=FG=4cm AB=2cm, AD=4cm,且点 F 、G 、D 、C 在同一直线上,点 G 和点 D【解答】 解:贝卩 x 2- mx+n= (x - 2) (x - a )=« - ax - 2x+2a=x^ -(a+2) x+2a , 了且+21>-且重合,现将△ EFG 沿射线FC 向右平移,当点F 和点D 重合时停止移动,若△ EFG 与长方形重叠部分的面积是4cm 2,则厶EFG 向右平移了 3 cm .【分析】首先判断出平移厶EFG 经过长方形ABCD 对角线的交点时,重叠面积是 长方形的面积的一半即面积为 4cm 2,然后求出平移的距离. 【解答】解:•••长方形AB=2cm, AD=4cm, •••长方形的面积为8cm 2,•••△ EFG 与长方形重叠部分的面积是 4cm 2,• △ EFG 边DE 经过长方形ABCD 对角线的交点, ••• FG=4 CD=2 •;( FG+CD ) =3,• △ EFG 向右平移了 3cm , 故答案为3.20. 已知实数a ,b ,c 满足a+b=ab=c,有下列结论:② 若 a=3,则 b+c=9;③ 若 C M 0,贝U( 1-a ) (1 - b ) = + ; ④ 若 c=5,则 a 2+b 2=15. 其中正确的是 ①③④(把所有正确结论的序号都填上).【考点】分式的混合运算;实数的运算.【分析】①由题意可知:a+b=ab=cM 0,将原式变形后将a+b 整体代入即可求出 答案.②由题意可知:a+b=ab=3,联立方程后,可得出一个一元二次方程,由于△< 0,所以a 、b 无解,①若0,2a+7 ab+2b 2; ■; 等腰直角三角形.③分别计算(1 - a)(1 - b)和一+a E>④由于a+b=ab=5,联立方程可知△> 0,所以由完全平方公式即可求出a2+b2的值.【解答】解:①T甘0,--ab M 0•'a+b_3比 _此£ 乩__2rb 2a+b=ab,•原式=—円性—= 士?5!= 三巳匕=—上朋2(a+b)+7ab 2ab+7ab 9ab 9 故①正确;②••• c=3,二ab=3,••• a+b=3,化简可得:b2- 3b+3=0,•/△< 0,•该方程无解,c=3时,a、b无解,故②错误;③••• C M 0,--ab M 0,a+b=ab•( 1 - a) (1 - b) =1 - b- a+ab=1,一==1二卜吕. ,•( 1 - a) (1 - b) = +| ,故③正确;④••• c=5,• a+b=ab=5,化简可得:b2- 5b+5=0,a2+b2= (a+b) 2- 2ab=15,故④正确故答案为:①③④三、解答题(共50分)21 •计算下列各题(1)(—3) 2+ ( n+ 匚)°—(—=) 2(2)(2x—1) 2—(X—1) (4x+3)【考点】多项式乘多项式;实数的运算;完全平方公式;零指数幕;负整数指数幕. 【分析】(1)原式利用乘方的意义,零指数幕、负整数指数幕法则计算即可得到结果;(2)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=9+1 —4=6;(2)原式=4x2—4x+1 —4x2—3x+4x+3= —3x+4.22 •解方程(组)f2x+7y=5(1)I -(2)" —「严・【考点】解分式方程;解二兀一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1) ②X 7 —①得:19x=— 19, 即卩x=- 1,把x=—1代入①得:y=1,则方程组的解为;y=l(2)去分母得:x+2=4x—2,解得:x=.,经检验X=f是分式方程的解.23•分解因式(1)2X2- 8(2)3灼-6xy2+3y3.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式2,进而利用平方差公式分解因式得出答案;(2)首先提取公因式3y,进而利用完全平方公式分解因式得出答案.【解答】解:(1) 2x2- 8=2 (x2- 4)=2 (x+2) (x- 2);(2) 3灼-6xy2+3y3=3y (x2- 2xy+y2)=3y (x-y) 2.24. 如图,已知/ A=Z C, AD丄BE, BC丄BE,点E, D, C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若/ ABC=120,求/ BEC的度数.【考点】平行线的判定与性质;垂线.【分析】(1)先根据AD丄BE, BC丄BE得出AD// BC,故可得出/ ADE=Z C,再由/ A=Z C得出/ADE=Z A,故可得出结论;(2)由AB//CD得出/C的度数,再由直角三角形的性质可得出结论.【解答】解:(1) AB// CD.理由:••• AD丄BE, BC丄BE,••• AD// BC,•••/ ADEN C.vZ A=Z C,•••/ ADE=Z A ,••• AB// CD;(2)v AB// CD,Z ABC=120,•••Z C=180 - 120°60°,•••Z BEC=90- 60°=30o .25. 某学校为了解七年级男生体质健康情况, 随机抽取若干名男生进行测试,测 试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图 1、图 2两幅不完整的统计图,请根据图中信息回答下列问题: (1) 本次接收随机抽样调查的男生人数为 40人,扇形统计图中 良好”所对 应的圆心角的度数为 162° ;(2) 补全条形统计图中 优秀”的空缺部分;(3) 若该校七年级共有男生480人,请估计全年级男生体质健康状况达到 良好” 的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)合格人数除以所占的百分比即可得出所调查的男生总人数, 用良好 的人数除以总人数再乘以360°即可得出 良好”所对应的圆心角的度数;合格 20% 不吕格优秀 30%(2)用40 - 2 -8 - 18 即可;(3)用480乘以良好所占的百分比即可.【解答】解:(1)8- 20%=40(人),18-40X 360°=162°(2)优秀”的人数=40- 2-8 - 18=12, 如图,(3)良好”的男生人数:話X480=216 (人),答:全年级男生体质健康状况达到良好”的人数为216人.26.为了创建国家卫生城市,需要购买甲、乙(如图)两种类型的分类垃圾桶替换原来的垃圾桶,A,B,C三个小区所购买的数量和总价如表所示.甲型垃圾桶数量(套)乙型垃圾桶数量(套)总价(元)A1083320B592860C a b2580(1)问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元? (2)求a,b的值.【考点】二元一次方程组的应用.【分析】(1 )设甲型垃圾桶的单价是x元/套,乙型垃圾桶的单价是y元/套.根据图表中的甲型、乙型垃圾桶的数量和它们的总价列出方程组并解答.(2)根据图表中的数据列出关于 a b 的二元一次方程,结合 a b 的取值范围 来求它们的值即可.【解答】解:(1 )设甲型垃圾桶的单价是x 元/套,乙型垃圾桶的单价是y 元/套. |y=240 答:甲型垃圾桶的单价是140元/套,乙型垃圾桶的单价是240元/套. (2)由题意得:140a+240b=2580, 整理,得 7a+12b=129, 因为a 、b 都是正整数, 所以或(a=15 . b=9 b~2 四、附加题(每小题10分,共20分) 27.已知:直线a // b ,点A ,B 分别是a ,b 上的点,APB 是a ,b 之间的一条折 弦,且/ APN<90° Q 是a ,b 之间且在折线APB 左侧的一点,如图.(1) 若/ 仁33°, / APB=74,则/2= 41 度.(2) 若/ Q 的一边与PA 平行,另一边与PB 平行,请探究/ Q ,Z 1, 2间满足 的数量关系并说明理由.(3) 若/ Q 的一边与PA 垂直,另一边与PB 平行,请直接写出/ Q ,Z 1 , 2之 间满足的数量关系.【考点】平行线的性质.【分析】(1)图1,过P 作PC//直线a ,根据平行线的性质得到/ 仁/APC, / 2=Z BPC 于是得到结论;依题意得:10x+8y=33205x+9y=2860 x=140 解得* 备用图 葺■甲图(2)如图2,由已知条件得到四边形MQNP是平行四边形,根据平行四边形的性质得到/ MQN=Z P=Z 1 + Z2,根据平角的定义即可得到结论;(3)由垂直的定义得到/ QEP=90,由平行线的性质得到/ QFE=/ P,根据平角的定义得到结论.【解答】解:(1)图1,过P作PC//直线a,••• PC// b,•••/ 1=/ APC / 2=/BPC•••/ 2=/ APB- / 1=41°故答案为:41;(2)如图2,v QM // PB, QN// PA•••四边形MQNP是平行四边形,•••/ MQN=/ P=/ 1 + /2,•••/ EQN=180-/ MQM=180 -/ 1 -/ 2;即/ Q=/ 1 + / 2=180°-/ 1 -/ 2;(3):QE丄AP,•••/ QEP=90,••• QF// PB,•••/ QFE=/ P,•••/ EQF=90-/ QFE=90-/ 1 -/ 2,•••/ EQG=18°—/ EQF=90+/ 1+/2 .A7 a28 .教科书中这样写道:我们把多项式a2+2ab+b2及a2- 2ab+b2叫做完全平方式”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式X2+2X— 3= (X2+2X+1)— 4= (x+1) 2- 4= (x+1+2) (x+1 - 2)= (X+3) (X- 1);例如求代数式2X2+4X- 6 的最小值.2X2+4X- 6=2 (X2+2X- 3) =2 (X+1) 2 - 8.可知当X=- 1时,2X2+4X- 6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2- 4m - 5= (m+1) (m - 5) .(2)当a,b为何值时,多项式a2+b2- 4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2- 2ab+2b2- 2a- 4b+27有最小值,并求出这个最小值.【考点】因式分解的应用;非负数的性质:偶次方.【分析】(1)根据阅读材料,先将m2- 4m-5变形为m2- 4m+4- 9,再根据完全平方公式写成(m- 2) 2-9,然后利用平方差公式分解即可;(2)利用配方法将多项式a2+b2- 4a+6b+18转化为(a- 2) 2+ (b+3) 2+5,然后利用非负数的性质进行解答;(3)利用配方法将多项式a2- 2ab+2b2- 2a-4b+27转化为(a- b- 1) 2+(b-3)2+17,然后利用非负数的性质进行解答.【解答】解:(1)m2- 4m - 52=m - 4m+4- 9=(m- 2)2- 9=(m- 2+3)(m- 2- 3)=(m+1)(m- 5).故答案为(m+1)(m- 5);(2)v a F+b2- 4a+6b+18= (a-2) 2+ (b+3) 2+5,•••当a=2, b=- 3 时,多项式a2+b2- 4a+6b+18 有最小值5;(3)v a2- 2ab+2b2-2a- 4b+27=a2- 2a(b+1) +(b+1) 2+(b- 3) 2+17=( a- b- 1 ) 2+( b- 3) 2+17,•••当a=4, b=3 时,多项式a2- 2ab+2b2- 2a- 4b+27 有最小值17.2017年4月18日A. 130°B. 110°C. 80°D. 70°33. 分式——有意义,则x的取值范围是()A. X M 1B. X M- 1C. x=1D. x=- 14. 下列计算结果正确的是()3 4 12 5.5 2 6 3 2 6A. a x a =aB. a —a=aC. (ab )=abD. (a )=a5. 下列各式由左到右的变形中,属于因式分解的是()2 2A. a (x+y)=ax+ayB. X - 4X+4=(x- 2)C. 2a- 4b+2=2 (a- 2b)D. X*2-16+3X=(X- 4)(X+4)+3X6. 下列调查中,适合采用全面调查方式的是()A. 了解一批炮弹的杀伤半径B. 了解全国中学生的身高情况C. 对市场上某种饮料质量情况的调查。

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。

2017-2018学年度人教版七年级下数学期末测评试卷有答案

2017-2018学年度人教版七年级下数学期末测评试卷有答案

期末测评( 时间120分钟满分120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 ),0,其中是无理数的为( )4.下列各数1.414,√2,-13A.1.414B.√2D.0C.-135.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论甲ax>ay;乙a2-x>a2-y;丙a2+x≤a2+y;丁a2x≥a2y.其中正确的是( )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49. ( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11. ( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作.13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有人.14.若实数x满足等式( x+4 )3=-27,则x= .15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为.三、解答题( 共66分 )17. ( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组{0.3x -1.5x 0.3+3x -2x4=6,x 2+x -13=24.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x -5≤32( 3x -2 )②的整数解.20. ( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表学生最喜爱的节目人数统计表根据以上提供的信息,解答下列问题( 1 )a= ,b= ;( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图22. ( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B 的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求( 1 )O1,B1的坐标.( 2 )三角形AOB的面积.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?24. ( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A,B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7 800万元,改扩建3所A类学校和1所B类学校共需资金5 400万元.( 1 )改扩建1所A类学校和1所B类学校所需资金分别是多少万元?( 2 )该县计划改扩建A,B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A,B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?期末测评答案解析( 时间120分钟满分120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( A )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( D )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( D )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 ),0,其中是无理数的为( B )4.导学号14154138下列各数1.414,√2,-13A.1.414B.√2C.-1D.035.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( C )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( A )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论甲ax>ay;乙a2-x>a2-y;丙a2+x≤a2+y;丁a2x≥a2y.其中正确的是( D )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( D ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49.导学号14154139( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( A )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( B )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11.导学号14154140( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为150°.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作( 21,-3 ).13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有400人.14.若实数x满足等式( x+4 )3=-27,则x=-7.15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是14.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为( 505,-504 ).三、解答题( 共66分 )17.导学号14154141( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.2a+1的平方根是±3,3a+2b-4的立方根是-2,∴2a+1=9,3a+2b-4=-8,解得a=4,b=-8,∴4a-5b+8=4×4-5×( -8 )+8=64,∴4a-5b+8的立方根是4.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组{0.3x-1.5x0.3+3x-2x4=6, x2+x-13=24.{2x-17x=24,①3x+2x=146,②②×2-①×3,得55y=220,解得y=4.把y=4代入①,得2x-68=24,解得x=46,原方程组的解为{x =46,x =4.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x -5≤32( 3x -2 )②的整数解.①,得x ≤135,解不等式②,得x ≥-47,∴不等式组的解集为-47≤x ≤135. ∴不等式组的整数解是0,1,2.20.导学号14154142( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.AB ∥DF ,∴∠D+∠BHD=180°, ∵∠D+∠B=180°, ∴∠B=∠DHB , ∴DE ∥BC.DE ∥BC ,∠AMD=75°,∴∠AGB=∠AMD=75°, ∴∠AGC=180°-∠AGB =180°-75° =105°.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表学生最喜爱的节目人数统计表节目人数百分根据以上提供的信息,解答下列问题( 1 )a= ,b= ;( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图解( 1 )2030( 2 )中国诗词大会的人数为20,补全条形统计图,如图所示学生最喜欢的节目人数条形统计图( 3 )根据题意,得1000×40%=400( 名 ),则估计该校最喜爱《中国诗词大会》节目的学生有400名.22.导学号14154143( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求( 1 )O 1,B 1的坐标.( 2 )三角形AOB 的面积.点O 1的横坐标为0+( 3-2 )=1;纵坐标为0+[-1-( -2 )]=1;点B 1的横坐标为-4+( 3-2 )=-3;纵坐标为2+[-1-( -2 )]=3;所以点O 1的坐标为( 1,1 ),点B 1的坐标为( -3,3 );( 1 )三角形AOB 的面积为12×1×2+12×1×2=2.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x 米,乙队每天铺设y 米. ( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?根据题意,得{x -x =100,5x =6x .( 2 ){x -x =100,5x =6x ,解得{x =600,x =500.答甲队每天铺设600米,乙队每天铺设500米.24.导学号14154144( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A ,B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7 800万元,改扩建3所A 类学校和1所B 类学校共需资金5 400万元. ( 1 )改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?( 2 )该县计划改扩建A ,B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A ,B 两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?设改扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意,得{2x +3x =7800,3x +x =5400,解得{x =1200,x =1800.答改扩建一所A 类学校和一所B 类学校所需资金分别为1200万元和1800万元.( 2 )设今年改扩建A 类学校a 所,则改扩建B 类学校( 10-a )所,由题意,得{( 1200-300 )x +( 1800−500 )( 10−x )≤11800,300x +500( 10−x )≥4000,解得3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案方案一改扩建A类学校3所,B类学校7所;方案二改扩建A类学校4所,B类学校6所;方案三改扩建A类学校5所,B类学校5所.。

人教版2017-2018学年七年级下册期末数学质量检测卷及答案

人教版2017-2018学年七年级下册期末数学质量检测卷及答案

2017—2018学年度第二学期期末调研测试七年级数学试题(全卷共五个大题满分150分考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.方程20x=的解是A.2x=-B.0x=C.12x=-D.12x=2.以下四个标志中,是轴对称图形的是A.B.C.D.3.解方程组⎩⎨⎧=+=-②①,.102232yxyx时,由②-①得A.28y=B.48y=C.28y-=D.48y-=4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为A.2B.3C.7D.165.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是A.x>3 B.x≥3 C.x>1 D.x≥6.将方程31221+=--xx去分母,得到的整式方程是A.()()12231+=--xx B.()()13226+=--xxC.()()12236+=--xx D.22636+=--xx7.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC的形状是A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形8.已知x m=是关于x的方程26x m+=的解,则m的值是A.-3 B.3 C.-2 D.29.下列四组数中,是方程组20,21,32x y zx y zx y z++=⎧⎪--=⎨⎪--=⎩的解是5题图432-1 118题图P A .1,2,3.x y z =⎧⎪=-⎨⎪=⎩ B .1,0,1.x y z =⎧⎪=⎨⎪=⎩ C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩ D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的度数为A .30°B .50°C .80°D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.在方程21x y -=中,当1x =-时,y = . 14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 . 17.若不等式组0,x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点P以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.解方程组:,.202321x y x y -=⎧⎨+=⎩20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩…ABECDF10题图12题图C′15题图DEABC四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数. ADBCE23题图21题图24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±. 例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.(1)方程|x +3|=4的解为 ; -21-1342-20 1226.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB ∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.CABDMP26题图1BDMNAC PQ26题图2泉州市第八中学2017-2018学年度二学期期末调研测试七年级数学试题参考答案及评分意见一、选择题:13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩………………………………………………………7分 20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 (1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分 解得 6a ≥.答:该水果每千克售价至少为6元. ························································ 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ········································· 8分 (3)在数轴上找出|x -3|+|x +4|=9的解.A M PCM BMCP A ABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ··························· 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ····················································································· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ··················································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··········································· 10分由(2)知:A M ∠=∠21,又由轴对称性质知:∠M =∠N ,………………………………………8分………………………………………6分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
△ADB≌△EDB≌△EDC,则∠C的度数是()
A.15°B.20°C.25°D.30°
13. 观察一串数:0,2,4,6,….第n个数应为( )
A.2(n-1)B.2n-1C.2(n+1)D.2n+1
14.下列关系式中,正确的是( )
A. B.
C. D.
15.如图表示某加工厂今年前5个月每月生产某种产品的产量c(件)与时间t(月)之间的关系,则对这种产品来说,该厂()
小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?
六、生活中的数学(8分),
24.某种产品的商标如图所示,O是线段AC、BD的交点,并且AC=BD,AB=CD.小明认为图中的两个三角形全等,他的思考过程是:
在△ABO和△DCO中
你认为小明的思考过程正确吗?如果正确,他用的是判定三
7.AC=AE(或BC=DE,∠E=∠C,∠B=∠D)8.-209. 45 10.B6395
二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)
题号
11
12
13
14
15
16
17
18
19
20
选项
D
C
C
D
D
A
B
B
D
C
三、精心算一算(21题3分,22题5分,共计8分)
21.解:= = ……3分
A.1月至3月每月产量逐月增加,4、5两月产量逐月
减小
B.1月至3月每月产量逐月增加,4、5两月产量与3月
持平
C.1月至3月每月产量逐月增加,4、5两月产量均停止
生产
D. 1月至3月每月产量不变,4、5两月均停止生产
16.下列图形中,不一定是轴对称图形的是( )
A.等腰三角形B.线段C.钝角D.直角三角形
22.解:= = …3分
当x=0时,原式=2 …5分
四、认真画一画(23题4分,24题4分,共计8分)
23.解:
理由是:垂线段最短. ……2分
作图……2分
24.解
每作对一个给1分
五、请你做裁判!(第25题小4分,第26小题6分,共计10分)
25.解:不会同意. ……2分
因为转盘中有两个3,一个2,这说明小丽去的可能性是 ,而小丽去的可能性是 ,所以游戏不公平. ……2分
小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.
游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?
23.一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;
(3)近似数.
(4)比条形统计图更形象、生动.(能符合即可) ………(每小题1分)
28.解:小明的思考过程不正确. …1分
添加的条件为:∠B=∠C(或∠A=∠D、或符合即可)…3分
在△ABO和△DCO中
……5分(答案不唯一)
七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)
29. (1)∠EAB=∠C;同位角相等,两直线平行.(2)∠BAD=∠D;内错角相等,两直线平行
2017—2018学年下学期期末水平质量检测七年级数学试卷
(全卷满分:120分钟考试时间:120分钟)
注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.
一、细心填一填(每小题3分,共计24分)
1.计算: =; =.
2.如果 是一个完全平方式,那么 的值是.
17.长度分别为3cm,5cm,7cm,9cm的四根木棒,能搭成(首尾连结)三角形的个数为( )
A.1B.2C.3D.4
三、精心算一算(18题5分,19题6分,共计11分)
18.
19.先化简 ,再选取一个你喜欢的数代替x,并求原代数式的值.
四、认真画一画(20题5分,21题5分,共计10分)
20.如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)
理由是:
21.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)
五、请你做裁判(第22题小5分,第23小题5分,共计10分)
22.在“五·四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额.
3.温家宝总理在十届全国人大四次会议上谈到解决“三农”问题
时说,2006年中央财政用于“三农”的支出将达到33970000
万元,这个数据用科学记数法可表示为万元.
4.等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是.
5.如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是.
所示,则该汽车的号码是.
二、相信你的选择(每小题只有一个正确的选项,每小题3分,共27分)
9.下列图形中不是正方体的展开图的是( )
ABC D
10.下列运算正确的是()
A. B. C. D.
11.下列结论中,正确的是()
A.若 B.若
C.若 D.若
12.如图,在△ABC中,D、E分别是AC、BC上的点,若
角形全等的哪个条件?如果不正确,请你增加一个条件,并
说明你的思考过程.(请将答案写在右侧答题区)
七.探究拓展与应用满分30分,
25.几何探究题(30分)请将题答在右侧区域。
七年级数学试卷参考答案及评分标准
一、细心填一填(每题2分,共计20)
1. ;2a.2.±2. 3.平行. 4.3.397×1075. 6.26或22㎝
(3)∠BAC+∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分.
30.(1) .(2) , , . (3) = .
(4):
评分标准:每空1分,(4)小题各1分
八、信息阅读题(6分)
31.(1)解:由图象可以看出农民自带的零钱为5元;
(2)
(3) …各2分
答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第(1)问和答各1分,(2)、(3)各2分.
因此小王设计的长为x+2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米). ……2分
六、生活中的数学(第27小题4分,第28小题5分,共计9分)
27.解:(1)2001年该养鸡场养了2万只鸡.(答案不唯一)
(2)2001年养了2万只;2002年养了3万只;2003年养了4万只;2004年养了3万只;2005年养了4万只;2006年养了6万只.
26.解:根据小王的设计可以设宽为x米,长为(x+5)米,
根据题意得2x+(x+5)=35
解得x=10.
因此小王设计的长为x+5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的.
……2分
根据小赵的设计可以设宽为x米,长为(x+2)米,
根据题意得2x+(x+2)=35
解得x=11.
6.现在规定两种新的运算“﹡”和“◎”:a﹡b= ;a◎b=2ab,如(2﹡3)(2◎3)=
(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]=.
7.某物体运动的路程s(千米)与运动的时间t(小时)关系如图所示,则当t=3小时时,物体运动所经过的路程为千米.
8.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图
相关文档
最新文档