第01章习题分析与解答
电子技术第1章课后答案
第1章半导体存器件1。
1 在如图1.4所示的各个电路中,已知直流电压V,电阻kΩ,二极管的正向压降为0.7V,求U o。
图1.4 习题1.1的图分析U o的值与二极管的工作状态有关,所以必须先判断二极管是导通还是截止。
若二极管两端电压为正向偏置则导通,可将其等效为一个0.7V的恒压源;若二极管两端电压为反向偏置则截止,则可将其视为开路。
解对图1。
4(a)所示电路,由于V,二极管VD承受正向电压,处于导通状态,故:(V)对图1.4(b)所示电路,由于V,二极管VD承受反向电压截止,故:(V)对图1.4(c)所示电路,由于V,二极管VD承受正向电压导通,故:(V)1.2 在如图1.5所示的各个电路中,已知输入电压V,二极管的正向压降可忽略不计,试分别画出各电路的输入电压u i和输出电压u o的波形.分析在u i和5V电源作用下,分析出在哪个时间段内二极管正向导通,哪个时间段内二极管反向截止。
在忽略正向压降的情况下,正向导通时可视为短路,截止时可视为开路,由此可画出各电路的输入、输出电压的波形。
图1。
5 习题1.2的图解对图1。
5(a)所示电路,输出电压u o为:u i≥5V时二极管VD承受正向电压导通,U D=0,u o=5V;u i〈5V时二极管VD承受反向电压截止,电阻R中无电流,u R=0,u o=u i。
输入电压u i和输出电压u o的波形如图1.6(a)所示。
图1。
6 习题1.2解答用图对图1。
5(b)所示电路,输出电压u o为:u i≥5V时二极管VD承受正向电压导通,U D=0,u o= u i;u i〈5V时二极管VD承受反向电压截止,电阻R中无电流,u R=0,u o=5V。
输入电压u i和输出电压u o的波形如图1。
6(b)所示。
对图1。
5(c)所示电路,输出电压u o为:u i≥5V时二极管VD承受反向电压截止,电阻R中无电流,u R=0,u o= u i;u i〈5V时二极管VD承受正向电压导通,U D=0,u o=5V。
第1章 电路及其分析方法习题与解答
题 1-23 图 B.12V C.2.25V B 基本题 1-24 电路如题 1-24a 和 b 图所示,试计算 a、b 两端的电阻 A.6
0V
(a) 题 1-24 图
(b)
解:图( a ) Rab = 2 + 16 //(12 // 12 + 10) = 10Ω,图(b) Rab = 6 // 6 + 6 // 6 + 12 // 0 = 6Ω 1-25 求题 1-25a 和 b 图所示电路中的电压 U、电流 I。
题 1-38 图
解: (a)原图标 a,b (b) 求 U0 的图 (c)求 R0 的图 (d)等效回路 由图(b):∵I2=I1+2,(4+4)I1+(3+6)I2=0∴I1=-18/13(A), I2=8/13(A) U0 =4 I1+3I2=4×(-8/13)+3×8/13=-8/13(V) 由图(c):R0 =(4+6)//(4+3)=70/17(Ω) 由图(d):I=(4+U0)/( R0 +4)=(4-8/13)/( 70/17 +4)=374/897(A)
叠加原理:
代值,有
⎧ I1 + I 2 + I 3 = 0 ⎪ ⎨5I 2 + 110 = 10 I1 + 110 ⎪10 I = 15 I + 110 3 ⎩ 1
第1章
电路及其分析方法习题解答
7
原电路
()E1 单独作用
' 1
(b) E2 单独作用
' ⎧ KCL对上面结点,有:I + I 2 + I 3' = 0 ⎪ ' ' 对(a)图: ⎨ KVL对左边回路,有:I 2 R2 + E1 = I1 R1 ⎪ ' ' ⎩ KVL对右边回路,有:I1 R1 = I 3 R3 + E1 ' ' = −6( A),I 3 = −2( A) ∴ I1' = 8( A),I 2
《电子电路基础》习题解答第1章
第一章习题解答题1.1 电路如题图1.1所示,试判断图中二极管是导通还是截止,并求出AO两端的电压UAO。
设二极管是理想的。
解:分析:二极管在外加正偏电压时是导通,外加反偏电压时截止。
正偏时硅管的导通压降为0.6~0.8V 。
锗管的导通压降为0.2~0.3V 。
理想情况分析时正向导通压降为零,相当于短路;反偏时由于反向电流很小,理想情况下认为截止电阻无穷大,相当于开路。
分析二极管在电路中的工作状态的基本方法为“开路法”,即:先假设二极管所在支路断开,然后计算二极管的阳极(P 端)与阴极(N 端)的电位差。
若该电位差大于二极管的导通压降,该二极管处于正偏而导通,其二端的电压为二极管的导通压降;如果该电位差小于导通压降,该二极管处于反偏而截止。
如果电路中存在两个以上的二极管,由于每个二极管的开路时的电位差不等,以正向电压较大者优先导通,其二端电压为二极管导通压降,然后再用上述“开路法”法判断其余二极管的工作状态。
一般情况下,对于电路中有多个二极管的工作状态判断为:对于阴极(N 端)连在一起的电路,只有阳极(P 端)电位最高的处于导通状态;对于阳极(P 端)连在一起的二极管,只有阴极(N 端)电位最低的可能导通。
图(a )中,当假设二极管的VD 开路时,其阳极(P 端)电位P U 为-6V ,阴极(N 端)电位N U 为-12V 。
VD 处于正偏而导通,实际压降为二极管的导通压降。
理想情况为零,相当于短路。
所以V U AO 6-=;图(b )中,断开VD 时,阳极电位V U P 15-=,阴极的电位V U N 12-=, ∵ N PUU < ∴ VD 处于反偏而截止∴ VU AO 12-=; 图(c ),断开VD1,VD2时∵ V U P 01= V U N 121-= 11N P U U > V U P 152-= V U N 122-= 22N P U U<∴ VD1处于正偏导通,VD2处于反偏而截止V U AO 0=;或,∵ VD1,VD2的阴极连在一起∴ 阳极电位高的VD1就先导通,则A 点的电位V U AO 0=,而 A N P U UV U =<-=2215∴ VD2处于反偏而截止 图(d ),断开VD1、VD2,∵ V U P 121-= V U N 01= 11N P U U < V U P 122-= VU N 62-= 22N P U U <;∴ VD1、VD2均处于反偏而截止。
第一章 误差分析与误差的传播习题及解答
四、解答题 1. 设 x>0,x*的相对误差为 δ,求 f(x)=ln x 的误差限。
解:求 lnx 的误差极限就是求 f(x)=lnx 的误差限,由公式有
已知 x*的相对误差 满足
,而
,故
即
2. 下列各数
都是经过四舍五入得到的近似值,试指出它们有几
位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得
第一章 误差分析与误差的传播
一、判断题: 1.舍入误差是模型准确值与用数值方法求得的准确值产生的误差。 ( )
x2 2. 用 1- 2 近似表示 cosx 产生舍入误差。
( )
3. 任给实数 a 及向量 x ,则 || ax || a || x ||。
()
二、填空题:
1.设
x*
2.40315 是真值
5. 计算下列矩阵的范数:
1)
,求
2)
,求
3)
,求
解:1)
2)
3)
1 0 1
6.
求矩阵
A
0
1
0
的谱半径.
2 0 2
1 0 1
解 I A 0 1 0 1 3
4分
2 0 2
矩阵 A 的特征值为 1 0, 2 1, 3 3
8分
所以谱半径 A max0,1,3 3
7. 证明向量 X 的范数满足不等式
和
。( 2.7183 和 8.0000)
12. 、
,则 A 的谱半径
=
,A 的
=
( 11.计算
)
取
,利用( )式计算误差最小。
四个选项:
解:
三、选择题
固体物理第一二章习题解答讲解学习
第一章习题1.画出下列晶体的惯用原胞和布拉菲格子,指明各晶体的结构以及惯用原胞、初基原胞中的原子个数和配位数。
(1)氯化钾;(2)氯化钛;(3)硅;(4)砷化镓;(5)碳化硅(6)钽酸锂;(7)铍;(8)钼;(9)铂。
解:名称分子式结构惯用元胞布拉菲格子初基元胞中原子数惯用元胞中原子数配位数氯化钾KCl NaCl结构fcc 2 8 6 氯化钛TiCl CsCl结构sc 2 2 8 硅Si 金刚石fcc 2 8 4 砷化镓GaAs 闪锌矿fcc 2 8 4 碳化硅SiC 闪锌矿fcc 2 8 4钽酸锂LiTaO 3钙钛矿sc552、6、12O 、Ta 、Li铍Behcp简单六角2612钼 Mo bccbcc 1 2 8铂 Pt fccfcc 1 4 122. 试证明:理想六角密堆积结构的128 1.6333c a ⎛⎫== ⎪⎝⎭。
如果实际的ca值比这个数值大得多,可以把晶体视为由原子密排平面所组成,这些面是疏松堆垛的。
证明:如右图所示,六角层内最近邻原子间距为a ,而相邻两层的最近邻原子间距为:212243⎪⎪⎭⎫ ⎝⎛+=c a d 。
当d =a 时构成理想密堆积结构,此时有:212243⎪⎪⎭⎫ ⎝⎛+=c a a ,由此解出:633.13821=⎪⎭⎫⎝⎛=a c 。
若633.1>ac时,则表示原子平面的层间距较理想结构的层间距大, 因此层间堆积不够紧密。
3. 画出立方晶系中的下列晶向和晶面:[101]、[110]、[112]、[121]、(110)、(211)、(111)、(112)。
解:4. 考虑指数为(100)和(001)的面,其晶格属于面心立方,且指数指的是立方惯用原胞。
若采用初基原胞基矢坐标系为轴,这些面的指数是多少?解:如右图所示:在立方惯用原胞中的(100)晶面,在初基原胞基矢坐标系中,在1a 、2a 、3a 三个基矢坐标上的截距为()2,,2∞,则晶面指数为(101)。
电子科技大学-数值分析答案-钟尔杰
| x n +1 − 7 |=
而xn具有n位有效数,故
所以
| x n +1 − 7 |≤
由此得xn+1的误差限
1 2 7
| x n − 7 |2 ≤
1 × × 10 2− 2 n 2 7 4
1
| x n +1 − 7 |≤
1 × 10 1− 2 n 2
故,xn+1是 7 的具有 2n位有效数字的近似值。 三、问题 1.假定 a0,b0是非负实数且a0≠b0,按如下递推公式
∑ [ai ∑ b j ]
i =1 j =1
n,仍为( n + 2 ) ( n – 1) / 2。 ,算法输出 11 试构造一个算法,对输入的数据 x0,x1,x2,……,xn,以及x(均为实数) 为 ( x –x0) ( x –x1) ( x –x2)……( x –xn) 的计算结果。 解 算法如下: 第一步:输入x;x0,x1,x2,……,xn,M Å (x – x0 );k Å 0; 第二步:M Å M×(x – x0 );k Å k+1; 第三步:判断,若 k ≤ n,则转第二步;否则输出 M,结束。 12 利用级数公式
4
π 1 dx = arctan 1 = 可以计算出无理数π 的值。将定积分表示为积分和 2 4 1+ x
R
H
∫
1
0
xn dx ( n = 1,2,…,20) 的递推 5+ x
关系,并研究递推算法的数值稳定性。 6.计算两个多项式Pn(x)和Qm(x)的乘积多项式Tn+m(x)的方法称为向量的卷积方法。设
第一章 习题解答与问题
一、习题解答 1 设 x>0,x 的相对误差限为 δ,求 ln x 的误差。 解:设 x的准确值为x*,则有 ( | x – x* | /|x*| ) ≤ δ 所以 e(ln x)=| ln x – ln x* | =| x – x* | ×| (ln x)’|x=ξ·≈ ( | x – x* | / | x*| ) ≤ δ 另解: e(ln x)=| ln x – ln x* | =| ln (x / x*) | = | ln (( x – x* + x*)/ x*) | = | ln (( x – x* )/ x* + 1) |≤( | x – x* | /|x*| ) ≤ δ 2 设 x = – 2.18 和 y = 2.1200 都是由准确值经四舍五入而得到的近似值。求绝对误差限 ε( x ) 和 ε( y ) 。 解:| e(x) | = |e(– 2.18)|≤ 0.005,| e(y) | = |e( 2.1200)|≤ 0.00005,所以 ε( x )=0.005, ε( y ) = 0.00005。 3 下近似值的绝对误差限都是 0.005,问各近似值有几位有效数字 x1=1.38,x2= –0.0312,x3= 0.00086 解:根据有效数字定义,绝对误差限不超过末位数半个单位。由题设知,x1,x2, x3有效 数末位数均为小数点后第二位。故x1具有三位有效数字,x2具有一位有效数字,x3具有零位 有效数字。 4 已知近似数 x 有两位有效数字,试求其相对误差限。 解:| er(x) | ≤ 5 × 10– 2 。 5 设 y0 = 28,按递推公式 yn = yn-1 –
心里统计课后习题1-6章习题解答
统计学参考答案第01章习题解答1. 随机变量:某一变量在实验、调查和观测之前,不能预知其数值的变量。
随机变量的特点是:离散性、变异性、规律性。
总体(population)又叫“母体”,是指具有某一种特征的一类事物的全体。
个体亦称“单位”、“样品”,统计学术语,统计学术语指总体中的每一个单位、样品或成员。
是统计调查、试验或观测的最基本对象,是构成样本、总体的最小单元。
在心理学研究中,个体根据研究目的的不同,可以是人,也可以是人在某种实验条件下的某个反应,或每个实验结果、每个数据。
在总体中按照一定的规则抽取的部分个体,称为总体的一个样本(sample)。
根据样本容量(通常以30为界线)的大小,可区分为大样本和小样本。
根据两样本来自的两总体是相关还是独立,可分为相关样本和独立样本。
次数:某一随机事件在某一类别中出现的数据多少,亦称频数(frequency)。
频率:某一事件发生的次数与总事件的比率。
概率(probability):某随机事件在某一总体中出现的比率。
表示样本的数字特征的量叫统计量。
如描述数据集中趋势的一些统计指标称为平均数;描述一组数据离散程度的统计指标称为标准差。
表示总体的数字特征的量叫参数。
如反应总体集中情况的统计指标称为总体平均数;反应总体离散程度的统计指标称为标准差。
观测值(observation):实验、调查和观测某些个体在某一变量上的具体的数值,即为观测值。
2. 何谓心理与教育统计学?学习它有何意义?心理与教育统计学是专门研究如何搜集、整理、分析在心理教育方面由实验和调查所获得的数据资料,并如何根据这些数字所传递的信息,进行科学推论找出客观规律的一门学科。
它是应用数理统计学的一个分支,是心理与教育研究中的科学工具。
意义:(1)研究心理与教育现象变化的统计规律;(2)为心理与教育研究提供科学的依据;(3)促进量化研究的发展……3.选用统计方法有哪几个步骤?(1)实验或调查设计是否合理,即所获得的数据是否适合用统计方法去处理,正确将其数量化是应用统计方法的起步,如果对数量化的过程及其意义没有了解,将一些不着边际的数据加以统计处理是毫无意义的;(2)要分析实验或调查数据的类型,不同数据类型所使用的统计方法有很大差别,针对不同的数据类型选用与之相应的统计方法至关重要;(3)要分析数据的分布规律,看数据是正态分布还是非正态分布,方差是否已知,以及是大样本数据还是小样本数据。
数值分析第四版课后习题答案
第一章习题解答1、 在下列各对数中,x 是精确值 a 的近似值。
3.14,7/100)4(143.0,7/1)2(0031.0,1000/)3(1.3,)1(========x a x a x a x a ππ试估计x 的绝对误差和相对误差。
解:(1)0132.00416.01.3≈=≈−=−=aee x a e r π (2)0011.00143.0143.07/1≈=≈−=−=a ee x a e r (3)0127.000004.00031.01000/≈=≈−=−=aee x a e r π (4)001.00143.03.147/100≈=≈−=−=aee x a e r2、已知四个数:001.0,25.134,0250.0,3.264321====x x x x 。
试估计各近似数的有效位数和误差限,并估计运算3211x x x =μ和1431/x x x =μ的相对误差限。
解:21111121101901.0,1021,3,10263.06.23−−⨯≈=⨯==⨯==x x x x n x r δδδ22214212102.0,1021,3,10250.00250.0−−−⨯≈=⨯==⨯==x x x x n x r δδδ 43332333103724.0,1021,5,1013425.025.134−−⨯≈=⨯==⨯==x x x x n x r δδδ 5.0,1021,1,101.0001.04443424==⨯==⨯==−−x x x x n x r δδδ 由相对误差限公式:i r ini n in ni i ir x x fx x f x x x f x x f u δδδ∂∂=∂∂=∑∑==1111),,(),,()(所以有:232123113211103938.0)(1)(−⨯≈++=x x x x x x x x x r δδδμμδ4971.0)(1)(4133141214311≈++−=x x x x x x x x x x r δδδμμδ 3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。
第1章流体流动习题解答分析解析
第一章 流体流动1-1某敞口容器内盛有水与油。
如图所示。
已知水及油的密度分别为1000和860kg/m 3,解:h 1=600mm ,h 2=800mm ,问H 为多少mm ?习题1-1附图mH H H m kg m kg mm h mm h 32.181.91080.081.91060.081.9860?,/860/10,800,6003333321=∴⨯=⨯⨯+⨯⨯===== 油水,解:ρρ1-2有一幢102层的高楼,每层高度为4m 。
若在高楼范围内气温维持20℃不变。
设大气静止,气体压强为变量。
地平面处大气压强为760mmHg 。
试计算楼顶的大气压强,以mmHg 为单位。
⎰⎰=∴-=⨯⨯⨯-=⨯⨯-=⎩⎨⎧---⨯=⨯⨯=----=---127.724,04763.040810190.181.9)760/(10190.181.910190.1)2.2938314/(29151408055P P p m mHgp p Ln dz pdp p p gdz d ②代入①,得②①解:ρρ1-3某水池,水深4米,水面通大气,水池侧壁是铅垂向的。
问:水池侧壁平面每3米宽度承受水的压力是多少N ?外界大气压为1atm 。
解:N dz gz P F 64023501045.12/481.9103410013.13)(3⨯=⨯⨯⨯+⨯⨯⨯=+=⎰水ρ1-4外界大气压为1atm ,试按理想气体定律计算0.20at (表压)、20℃干空气的密度。
空气分子量按29计。
543(1.013100.209.8110)291.439/8314293.2PM kg m RT ρ⨯+⨯⨯⨯===⨯解:1-5有个外径为R 2、内径为R 1为的空心球,由密度为ρ’的材料制成。
若将该球完全淹没在某密度为ρ的液体中,若球能在任意位置停留,试求该球的外径与内径之比。
设球内空气重量可略。
3/1'1232'3132)/1(/)3/4())3/4(--=∴=-ρρρπρπR R gR g R R (解:1-6为放大以U 形压差计测气体压强的读数,采用倾斜式U 形压差计。
物理学第一章习题解答
l 1 2 1 at g (sin cos )t 2 cos 2 2
t
2l g cos (sin cos )
dt 令: 0 d
sin (sin cos ) cos (cos sin ) 0
tan 2
dv d 2 at t 1 ( vx2 v y ) 3.58 m s 2 dt dt
an a a 1.79 m s
2 2 t
2
(4)
t 1.0s 时质点的速度大小为
2 2 v v x v y 4.47 m s 1
则
v 11 .17 m an
*1-17质点在Oxy平面内运动,其运动方程为 2 r 2.0t i (19.0 2.0t ) j 式中 r 的单位为m, t 的单位为s。 求(1)质点的轨迹方程; (2)在 t1 1.0s 到 t2 2.0s 内的平均速度; (3) t1 1.0s 的速度及切向和法向加速度; (4)t1 1.0s 质点所在处轨道的曲率半径 。
2
a (R ) 2 ( 2 R ) 2 1.01m s 2
2.0s 内所转过的角度
2 32 0 dt 2t dt t 0 5.33rad 3 0 0
2 2 2
1-24 一质点在半径为0.10m 的圆周上运动, 2 4t 3 ,式中 的单位为 其角位置为 rad , t的单位为s。求: (1)在 t=2.0s时质点的法向加速度和切向 加速度。 (2)当切向加速度的大小恰等于总加速度大 小的一半时, 值为多少? (3)t为多少时,法向加速度和切向加速度 相等? d 2 3 得: 12t 解 (1)由 2 4t dt
上海工程技术大学电工技术第01章习题解答
第一章 习题参考题解答练习与思考1.1.1 举出一个生活中的电路,并分析它完成的是何种作用,它的负载将电能转化为何种能源或者处理的是什么信号?【解】显示器电路有两部分功能,一部分是接受电脑主机显示卡传送来的图像信号,另一部分是将电能转化为光能形成人眼能够看到的图像。
IbaUIba UIba U IbaU(a)P=UI (b)P=-UI (c)P=-UI(d)P=UI图1.2.4 不同参考方向下功率的计算1.2.1 在图方框中的电气元件,其电压从b 到a 降低20V ,电流为4A 从b 流入,请分析: (1)图(a )-(d )所示参考方向下,电压U 和电流I 的数值;(2)计算此元件的电功率,并判断其是电源还是负载。
【解】(1)图(a )中,U=-20V ,I=-4A ; 图(b )中,U=-20V ,I=4A ; 图(c )中,U=20V ,I=-4A ; 图(d )中,U=-20V ,I=-4A ;(2)虽然图(a )-(d )所示参考方向不同,但是此元件的实际电压和电流是不变的,因此无论以哪个图所示方向选择功率的计算式,结果都是一样的。
以图(a )所示参考方向为例,U=-20V ,I=-4A ,电压和电流参考方向一致,故P=UI=(-20)*(-4)=80W >0,为负载;1.2.2 如图所示,湖北三峡地区有一条直流高压输电线路连接至上海南桥变电站,其电压为500kV ,电流为1800A ,请计算三峡端的功率,并分析电能输送的方向。
三峡湖北南桥上海1.8kA500kV+-图1.2.5 思考题的电路图【解】对三峡端而言,电流的方向与电压降低的方向相反,即为非关联参考方向(方向不一致)故应在功率计算公式加上负号,则 P=-UI=-500*1000*1800=-900MW由于P <0,故三峡端输出电能,电能从三峡传输至南桥。
1.3.1在图所示的电路中,判断电路中哪个电源产生电能,哪个吸收电能。
固体物理-第一章习题解答参考ppt课件
d 2 r
a
G h h 1 h 2 h 3 2 h 1 h 2 h 3 2 h 1 h 2 h 3 2
上式中等效晶面指数{1,0,0}晶面族、(1,1,1)、(-1,-1,-1)晶面 对应的面间距最大,面间距,
d a 3
格点体密度,
1 4
a3
最大面密度,
d.a 43
a 3
4 3a2
1/2属于该等边三角形
2a
(111)
a
2a
(111)
1/6属于该等边三角形
等边三角形面积,
S12a2asin600 3a2
2
2格点面密度,2 4S 3a.21.5 求立方晶系晶面族 h的k l面 间距;
cb
a
晶胞基矢 a a i ,b a j,c a k
倒格子基矢 a r2 ir,b r2 r j,c r2 k r
界面方程:
kx
ky
2 a
kx
ky
2 a
2 kx ky a
kx
ky
2 a
与第1布里渊区界面围成的区域为第2布里渊区
.
第3布里渊区:
离原点再次远有4个倒格点 (h12,h20)(,h12,h20), (h10,h22)(,h10,h22)
界面方程:
kx
2
a
,kx
2
a
,
ky
2
a
,ky
2
a
与第1、2布里渊区界面围成区域为第3布里渊区
b
1 2
(b3
b1 )
c
1 2
(b1
b2)
与晶面族(hlk垂)直的倒格矢:
G hkl
h a
第章习题分析与解答(终审稿)
第章习题分析与解答公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]第二章质点动力学习题解答2-1如题图2-1中(a)图所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( D )(A) g sin θ(B) g cos θ(C) g tan θ(D) g cot θ2-2用水平力F N把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N逐渐增大时,物体所受的静摩擦力F f的大小( A )(A) 不为零,但保持不变(B) 随F N成正比地增大(C) 开始随F N增大,达到某一最大值后,就保持不变(D) 无法确定2-3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( C )(A) 不得小于gRμμ(B) 必须等于gR(C) 不得大于gRμ (D) 还应由汽车的质量m决定2-4如习题2-4图所示,一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( B )(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加习题2-4(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加2-5习题2-5图所示,系统置于以a =1/4 g的加速度上升的升降机内,A、B 两物体质量相同均为m,A所在的桌面是水平的,量均不计,若忽略滑轮轴上和桌面上的摩擦,力为( A )(A) 5/8mg(B) 1/2mg(C) mg (D) 2mg2-6对质点组有以下几种说法:习题2-5(1) 质点组总动量的改变与内力无关;(2) 质点组总动能的改变与内力无关;(3) 质点组机械能的改变与保守内力无关.下列对上述说法判断正确的是( C )(A) 只有(1)是正确的(B) (1)、(2)是正确的(C) (1)、(3)是正确的 (D) (2)、(3)是正确的2-7有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则( D )(A) 物块到达斜面底端时的动量相等(B) 物块到达斜面底端时动能相等(C) 物块和斜面(以及地球)组成的系统,机械能不守恒(D) 物块和斜面组成的系统水平方向上动量守恒2-8对功的概念有以下几种说法:(1) 保守力作正功时,系统内相应的势能增加;(2) 质点运动经一闭合路径,保守力对质点作的功为零;(3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.下列上述说法中判断正确的是( C )(A) (1)、(2)是正确的 (B) (2)、(3)是正确的 (C) 只有(2)是正确的(D) 只有(3)是正确的 2-9 如图所示,质量分别为m 1和m 2的物体A 和B ,置于光滑桌面上,A 和B 之间连有一轻弹簧。
数学分析课本-习题及答案01
第一章 实数集与函数习题§1实数1、 设a 为有理数,x 为无理数。
证明:(1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。
2、 试在数轴上表示出下列不等式的解:(1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。
3、 设a 、b ∈R 。
证明:若对任何正数ε有|a-b|<ε,则a = b 。
4、 设x ≠0,证明|x+x1|≥2,并说明其中等号何时成立。
5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。
6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。
证明 |22b a +-22c a +|≤|b-c|。
你能说明此不等式的几何意义吗7、 设x>0,b>0,a ≠b 。
证明x b x a ++介于1与ba 之间。
8、 设p 为正整数。
证明:若p 不是完全平方数,则p 是无理数。
9、 设a 、b 为给定实数。
试用不等式符号(不用绝对值符号)表示下列不等式的解:(1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|<b 。
§2数集、确界原理1、 用区间表示下列不等式的解:(1)|1-x|-x ≥0;(2)| x+x1|≤6; (3)(x-a )(x-b )(x-c )>0(a ,b ,c 为常数,且a<b<c );(4)sinx ≥22。
2、 设S 为非空数集。
试对下列概念给出定义:(1)S 无上界;(2)S 无界。
3、 试证明由(3)式所确定的数集S 有上界而无下界。
4、 求下列数集的上、下确界,并依定义加以验证:(1)S={x|2x <2};(2)S={x|x=n !,n ∈+N };(3)S={x|x 为(0,1)内的无理数};(4)S={x|x=1-n21,n ∈+N }。
电路分析基础第四版课后习题第一章第二章第三章第四章答案
+ 42V
−
i1
18Ω
i2 3Ω
i3
gu
2−5
解
设网孔电流为 i1, i2 , i3 ,则 i3 = −guA = −0.1uA ,所以只要列出两个网孔方程
27i1 −18i2 = 42 −18i1 + 21i2 − 3(−0.1uA ) = 20
因 uA = 9i1 ,代入上式整理得
−15.3i1 + 21i2 = 20
⎪⎩i3 = 4A
第二章部分习题及解答
2-1 试用网孔电流法求图题所示电路中的电流 i 和电压 uab 。
4Ω
1Ω
i2
+
7V
−
i1
2Ω
i3 i
+ 3V
−
解
设网孔电流为 i1, i2 ,i3 ,列网孔方程
⎪⎨⎧3−ii11
− i2 − 2i3 = 7 + 8i2 − 3i3 = 9
⎪⎩−2i1 − 3i2 + 5i3 = −12
解得
i1 = 4.26A uA = (9× 4.26)V = 38.34V i3 = −0.1uA = −3.83A
2-8 含 CCVS 电路如图题 2-6 所示,试求受控源功率。
1Ω i3
5Ω
+
i 4Ω
+
50V i1 −
20Ω i2
15i −
2−6
解
标出网孔电流及方向,
⎧⎪⎨2−52i01i−1 +202i42i−2 −5i43 i=3
50 = −15i
⎪⎩−5i1 − 4i2 +10i3 = 0
又受控源控制量 i 与网孔电流的关系为 i = i1 − i2
信号与系统课后习题与解答第一章
1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。
解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。
1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。
解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。
由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。
(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。
Java语言程序设计(一) (04747) 课后思考题与练习题分析与解答 第一章
Java语言程序设计(一) (04747) 课后思考题与练习题分析与解答第一章Java概述一、单项选择题1.若Java程序中公有类的名字是OneApp,则保存该程序的文件名是【 C 】A.Oneapp.javaB. Oneapp.classC. OneApp.javaD. OneApp.class【分析:在Java程序中,公有类的名字即是该文件的名字,Java程序文件的扩展名是.java,Java编译后生成的字节码文件的扩展名是.class,需要由JVM载入并解释执行。
因此正确答案应该选C】2.Java程序OneApp.java编译后的类文件名是【 D 】A.Oneapp.javaB. Oneapp.classC. OneApp.javaD. OneApp.class【分析:java编译后的文件扩展名是.class,是二进制格式的字节码文件,主文件名与Java程序名相同。
因此正确答案应该选C】3.Java语言的解释器是【 C 】A. JVM B. Javac.exe C. java.exe D. JDK【分析:A:JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM只负责执行.class文件。
B:javac.exe是java语言编译器。
javac读取由java语言编写的类和接口的定义,并将它们编译成字节代码的class文件。
C:JDK是Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。
JDK是整个java开发的核心,它包含了JAVA的运行环境,JAVA工具和JAVA基础的类库。
D:java.exe是Java解释器,直接从类文件执行Java应用程序代码。
因此正确答案应该选C】4.下列选项中不属于Java语言特点的是【A】A. 类型定义 B. 解释执行 C. 与平台无关 D. 多线程【分析:java语言最初版本是解释执行的,现在的版本增加了编译执行。
电路分析基础第四版 课后习题答案
+
−
120V
Ro
a
+
U OC −
20kΩ
b
w. Ra = 60k // 30k = 20kΩ
khd 故
i3
=
udc 4
= −2.5A, i4
= is
− i3
= (−3.5 + 2.5)A =
− 1A
. 由此判定
R = 0Ω
www 试用支路电流法求解图题所示电路中的支路电流 i1,i2,i3 。
a
1Ω
网 i1
i2 3Ω
案 2Ω
答5A
d+ 8V
c
i3
+ 6V
−
−
后
b
解
课 求解三个未知量需要三个独立方程。由 KCL 可得其中之一,即
(2)当 N 内含电源 iS = 1A 能产生 ux 为 c ,则根据叠加定理列出方程,
⎧⎪⎨8−a8a++124bb++iiSScc==800 ⎪⎩iSc = −40
⇒
⎧8a +12b = 120 ⎩⎨−8a + 4b = 40
⇒
⎧a ⎨⎩b
= =
0 10
⇒ ux = (20× 0 + 20×10 − 40)V = 160V
i1 + i2 + i3 = 5
对不含电流源的两个网孔,列写 KVL 方程,得
网孔badb 2i1 − 3i2 + 8 = 0 网孔bdacb − 8 + 3i2 − i3 + 6 = 0
整理得:
⎧⎪⎨i−1 2+i1i2++3ii32
概率论第一章习题解答
概率论第一章习题解答一、填空题:1.设,()0.1,()0.5,A B P A P B ⊂==则()P AB = ,()P A B = , ()P A B = 。
分析:()(,)0.1;A P B P AB A ==⊂()()0.5;P A B P B ==()()()1()0.9P A B P A B P AB P AB ===-=2.设在全部产品中有2%是废品,而合格品中有85%是一级品,则任抽出一个产品是一级品的概率为 。
分析:设A 为抽正品事件,B 为抽一级品事件,则条件知()1()0.98P A P A =-=,()0.85P B A =,所求为()()()0.980.850.833P B P A P B A ==⨯=;3.设A ,B ,C 为三事件且P(A)=P(B)=P(C)=41,81)(,0)()(===AC P BC P AB P ,则A,B,C 中至少有一个发生的概率为 .分析:,()()0,()0ABC AB P ABC P AB P ABC ⊆≤=∴= 所求即为5()()()()()()()()8P A B C P A P B P C P AB P BC P AC P ABC =++---+=; 4.一批产品共有10个正品和2个次品,不放回的抽取两次,则第二次取到次品的概率 为 .分析:第二次取到次品的概率为112111211C C ⨯或者为111110*********C C C C +=⨯ 5. 设A ,B 为两事件, ()0.4,()0.7,P A P A B == 当A ,B 不相容时, ()P B = 当A ,B 相互独立时, ()P B = 。
分析: (1)当A ,B 不相容时, ()0P AB =;()()()()P A B P A P B P AB =+- 由;则()()()()0.3P B P A B P A P AB =⋃-+=;(2)当A ,B 相互独立时, ()()()()()()()P AB P A P B P A B P A P B P AB =⎧⎨=+-⎩ ;则()(()(()))P A B P A P P P B B A =+- 由,代入求得()0.5P B =二.、选择题2.每次试验成功的概率为p (0< p <1),进行重复试验,直到第10次试验才取得4次成功的概率为( )。
质点运动学 习题分析与解答
第1章 质点运动学 习题解答(一). 选择题1.一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为A. t r d dB. d d t rC. d d t rD.22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ ] 【分析与解答】t r d d 表示质点到坐标原点的距离随时间的变化率,d d t r表示速度矢量,d d t r 与t rd d 意义相同,在直角坐标系中,速度大小即速率可由2222d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x v v v yx求解,在自然坐标系中,速率可用公式t s v d d =计算。
正确答案是D 。
2. 一质点在平面上运动,已知质点位置矢量的表示式为22at bt =+r i j (其中a 、b 为常量), 则该质点作 A. 匀速直线运动. B. 变速直线运动. C. 抛物线运动. D.一般曲线运动. [ ] 【分析与解答】22at bt =+v i j 是变速运动,22,,ax at y bt x yb ===为直线方程正确答案是B 。
3. 某质点的速度为,已知,时它过点(3,-7),则该质点的运动方程为:A. B.C. D.不能确定 [ ]【分析与解答】22d 24(23)(47)t t t t t ==-+=+-+⎰r v i j c i j正确答案是B 。
4. 以初速将一物体斜向上抛,抛射角为,不计空气阻力,则物体在轨道最高点处的曲率半径为:A. B. C. D.不能确定。
[ ] 【分析与解答】v 0θv 0sin θg g v 02v 02cos 2θg v =2i -8t j t =02t i -4t 2j (2t +3)i -(4t 2+7)j -8j轨道最高点22220,(cos ),x xn v v v v v a g θρ=====v i ,故曲率半径2v g ρ=正确答案是C 。
5. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为..[ ] 【分析与解答】平均速度为位移除以时间间隔,平均速率为路程除以时间, 质点沿半径为R 的圆周转动一周,位移为零,路程等于。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章质点运动学习题解答1-1质点作曲线运动,在时刻质点的位矢为,速度为,速率为,在至时间内的位移为, 路程为, 位矢大小的变化量为( 或称),平均速度为,平均速率为.(1) 根据上述情况,则必有( B )习题1-1图(A)(B) ,当时有(C) ,当时有(D) ,当时有(2) 根据上述情况,则必有( C )(A) ,(B) ,(C) ,(D) ,1-2一运动质点在某瞬时位于位矢的端点处,对其速度的大小有四种意见,即(1);(2);(3);(4).下述判断正确的是( D )(A) 只有(1)(2)正确(B) 只有(2)正确(C) 只有(2)(3)正确(D) 只有(3)(4)正确1-3质点作曲线运动,表示位置矢量,表示速度,表示加速度,表示路程,表示切向加速度.对下列表达式,即(1);(2) ;(3) ;(4) 。
下述判断正确的是( D )(A) 只有(1)、(2)是对的(B) 只有(3)、(4)是对的(C) 只有(2)是对的(D) 只有(3)是对的1-4一个质点在做圆周运动时,则有( B )(A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变 1-5 一质点沿轴运动,其坐标与时间的关系为,则该质点速度方向沿轴正向的时间区间为( A )。
(A) (B) (C) (D)1-6 质点的运动方程为,则质点在秒时到原点的距离为m ,速度矢量为m/s 。
1-7 一质点做半径为、周期为的匀速率圆周运动,试问经过四分之一周期的时间间隔内,质点所发生的位移的大小是( ),走过的路程是( )。
1-8 已知质点以初速度、加速度作直线运动(),则速度与时间的关系式为()。
1-9 一质点沿半径米的圆周运动,其所走路程与时间的关系为,则在秒时速率为(),切向加速度的值为()。
1-10 飞机驾驶员想往正北方向航行,而风以的速度由东向西刮来,如果飞机的航速(在静止空气中的速率),试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明。
解:设下标A 指飞机,F 指空气,E 指地面。
由题可知:v FE =60 km/h 正西方向。
v AF =180 km/h 方向未知v AE 大小未知, 正北方向 由相对速度关系有:FE AF AE υυυϖϖϖ+=AE υϖ、AF υϖ、FE υϖ构成直角三角形,可得:习题1-11图00410 20 2 6()()h km FE AF AE /17022=-=υυυϖϖϖ;()014.19==-AE FE tg υυθ1-11 如图,一人用绳拉一辆位于高出地面的平台上的小车在水平地面上奔跑,已知人的速度u 为恒量,绳端与小车的高度差为h 。
设人在滑轮正下方时开始计时,求t 时刻小车的速度和加速度。
分析:根据图可知绳的变化与人运动的时间有关。
在任何时刻t,绳、人距离墙的距离和高度h 满足:2222l t u h =+由于绳长对时间一阶导数就是小车的速率,因此可对上式进行求导得到速度(速率),速度求导得到加速度。
解:由2222l t u h =+可求出()22ut h l +=。
上式对时间求一阶导数:()222ut h t u dtdl+==υ上式再求导:1-12 一质点沿轴方向作直线运动,其速度与时间的关系如习题图1-12所示.设时,.试根据已知的图,画出图以及图。
分析 根据加速度的定义可知,在直线运动中v -t 曲线的斜率为加速度的大小(图中AB 、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a -t 图上是平行于t 轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为20 4 1 10 10 202 6AB CD 习题1-12图2s m 20-⋅=--=AB AB AB t t a v v (匀加速直线运动)0=BC a (匀速直线运动) 2s m 10-⋅-=--=CD CD CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1-13 一质点P 沿半径R =3.0m 的圆周作匀速率运动,运动一周所需时间为20.0s ,设t =0时,质点位于O 点。
按习题1-13(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5 s 时的速度和加速度。
分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t )和y′=y′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为 t T R x π2sin =', t TR y π2cos -='坐标变换后,在O x y 坐标系中有t T R x x π2sin='=, R t TR y y y +-=+'=π2cos 0 则质点P 的位矢方程为习题1-13图j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sinj i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v 1-14 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ。
(1)试证位置A 和B 之间的平均加速度为;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少?并对结果加以讨论。
分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为td d v=a 和tΔΔv=a .在匀速率圆周运动中,它们的大小分别为R a n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以θR θt a Δ)cos Δ1(2ΔΔ2v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式, 得R a 219003.0v ≈,R a 229886.0v ≈R a 239987.0v ≈,Ra 24000.1v ≈以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法(a )(b )习题1-14图向加速度R2v .1-15 一质点在半径为0.10m 的圆周上运动,其角位置为,式中θ的单位为rad ,t的单位为s 。
(1) 求在t =2.0s 时质点的法向加速度和切向加速度。
(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ值为多少? (3) t 为多少时,法向加速度和切向加速度的值相等?解:(1) 由题意,得则质点的切向加速度和法向加速度分别为则 t =2.0s 时,切向加速度和法向加速度分别为(2) 由题意知 由 ,可得将式(1)、(2) 代入上式得此时角位置为(3) 要使 ,且 ;可得到414424Rt Rt =,最后 2d 12d t t θω==d 24d t t ωα==(1)RtR a t 24==α(2)42144Rt R a n ==ω2240.1 2.0 4.8m s α-==⨯⨯=⋅t a R 22220.1(12 2.0)230.4m s ω-==⨯⨯=⋅n a R 222n t ta a a a +==22nt a a =3324 3.15rad t θ=+=3213=t Rt R a t 24==αn t a a =42144Rt R a n ==ω0.55st =。