第10章集成运算放大器资料
集成运算放大器相关知识
集成运算放大器相关知识集成运算放大器(Operational Amplifier,简称Op Amp)是一种电子设备,可以放大输入信号并输出放大后的信号。
它在电子电路中广泛应用,是现代电子技术的重要组成部分。
本文将介绍集成运算放大器的基本原理、特性和应用。
一、基本原理集成运算放大器是由多个晶体管和其他电子元件组成的集成电路芯片。
它的核心部分是差分放大器,由输入级、中间级和输出级组成。
差分放大器能够将输入信号放大并进行相位反转,使得放大后的信号与输入信号之间具有特定的幅度和相位关系。
集成运算放大器具有两个输入端和一个输出端。
其中,一个输入端称为非反相输入端(+),另一个输入端称为反相输入端(-)。
通过调节输入端的电压,可以控制输出端的电压。
当输入端的电压差为零时,输出端的电压为零;当输入端的电压差增大时,输出端的电压也相应增大。
二、特性1. 增益:集成运算放大器具有很高的增益。
通常情况下,它的增益可达几万甚至几十万倍。
这使得它能够将微弱的输入信号放大到足够大的幅度,以便进行后续处理或驱动其他设备。
2. 输入阻抗:集成运算放大器的输入阻抗很大,通常为几兆欧姆。
这意味着它可以接受来自外部电路的信号而对其产生很小的影响,从而保持信号的稳定性。
3. 输出阻抗:集成运算放大器的输出阻抗很小,通常为几十欧姆。
这意味着它能够提供足够大的输出电流,以驱动其他负载电路。
4. 带宽:集成运算放大器的带宽是指它能够放大的频率范围。
一般来说,带宽越大,放大器能够处理的高频信号越多。
常见的集成运算放大器的带宽在几百千赫至几百兆赫之间。
5. 偏置电压:集成运算放大器的输入端存在一个偏置电压。
当输入信号为零时,输出信号也不为零,而是存在一个偏置电压。
这是由于集成运算放大器内部元件的不匹配造成的。
三、应用1. 模拟电路:集成运算放大器常用于模拟电路中,如滤波器、放大器、振荡器等。
它可以对信号进行放大、滤波、调制等处理,使得信号能够适应不同的应用场景。
集成运算放大器(3)
= 8.3 k
2. 因 Auf = – RF / R1 = – RF 10 = –10
故得 RF = –Auf R1 = –(–10) 10 =100 k
R2 = 10 100 (10 +100) = 9. 1 k
2021/4/8
章目录 上一页 下一页 返回18 退出
集成电路特点:体积小、重量轻、功耗低、可 靠性高、价格低。
按集成度 小、中、大和超大规模 集成电路分类 按导电类型 双、单极性和两种兼容
按功能 数字和模拟
2021/4/8
章目录 上一页 下一页 返回 3 退出
10.1.1 集成运算放大器的特点 1. 元器件参数的一致性和对称性好; 2. 电阻的阻值受到限制,大电阻常用三极管恒流
R1
//
RF
(2) 电压放大倍数
因虚断,i+= i– = 0 ,
所以 i1 if
i1
ui
u R1
if
u uo RF
因虚短, 所以u–=u+= 0,
称反相输入端“虚
地”— 反相输入的重要
特点
章目录 上一页 下一页 返回16 退出
结论:
(1) Auf为负值,即 uo与 ui 极性相反。因为 ui 加 在反相输入端。
源代替,电位器需外接; 3. 电容的容量受到限制,电感不能集成,故大电
容、电感 和变压器均需外接; 4. 二极管多用三极管的发射结代替。
2021/4/8
各类型号集成芯片 章目录 上一页 下一页 返回 4 退出
10.1.2 电路的简单说明
输入级 中间级 输出级
偏置 电路
运算放大器方框图
输入级:输入电阻高,能减小零点漂移和抑制干
模拟电子技术 第十章 集成运算放大电路
I I 0
虚断
对于工作在非线性区的应用电路,上述两个特点是分析其 输入信号和输出信号关系的基本出发点。
19
什么情况下放工作于非线性区?
运放在非线性区的条件:
电路开环工作或引入正反馈! iF
ui
UO RF UOPP U+-U-
iI
R1
i+ + i- -
Auo
uO
R
-UOPP
20
实际运放 Auo ≠∞ ,当 u+ 与 u-差值比较小时, 仍有 Auo (u+ u- ),运放工作在线性区。
在运算电路中,无论输入电压,还是输出电压, 均是对“地”而言的。
23
一、比例运算电路
作用:将信号按比例放大。 类型:反相比例放大、同相比例放大。 方法:引入深度电压并联负反馈或电压串联 负反馈。这样输出电压与运放的开环放大倍
数无关,与输入电压和外围网络有关。
24
一、比例运算电路
1.反相比例运算电路
虚短 虚断
2. 理想运放的输入电流等于零。
对于工作在线性区的应用电路,“虚短”和“虚断”是 分析其输入信号和输出信号关系的基本出发点。
17
如何使运放工作在线性区?
理想运放的线性区趋近于0,为了扩大运放的线性区 或使其具有线性区,需给运放电路引入负反馈: 运放工作在线性区的条件: 电路中有负反馈!
但线性区范围很小。
uO
例如:F007 的 UoM = ± 14 V,Auo 2 × 105 , 线性区内输入电压范围
实际特性
0 u+u
U OM u u Auo 14 V 2 105 70 μV
非线性区
集成运算放大器全篇
习题判16
七、 微分器
iF R
i1 C ui
R2
– +
+
u–= u+= 0
uo
若输入: ui sin t
ui
则:uo RC cost RC sin(t 90 ) 0 uo
0
iF
uo R
i1
C
dui dt
i1 iF
uo
RC
dui dt
t t 习题判19
微分是积分的逆运算。因此,只要将积分运算电路 中R和C的位置互换,就能形成微分器基本电路。如果 说,积分电路能够延缓信号的传输,那么微分电路则能 加快信号的传输过程,微分器又称D调节器。
(2)无调零引出端的运放调零。有些运放是不设调零引出端 的,特别是四运放或双运放等因引脚有限,一般都省掉调零端。 用作电压比较器的运放,无需调零;用作弱信号处理的线性电 路,需要通过一个附加电路,引入一个补偿电压,抵消失调参 数的影响,几种附加的调零电路如图1-14所示。 调零电路的接人对信号的传输关系应无影响,故图l-14a和图l14b加入了限流电阻R3,R3的阻值要求比R1大数十倍,若R1 =10 kΩ, R3可取200 kΩ。图l-14c和图l-14d为不用调零电源 (+U和-U)的调零电路,通过调节电位器RP,可以改变输入偏置 电流的大小,以调整电消振措施 1)区分内外补偿。从产品手册或产品说明书上可查到补偿方法, 如F007型运放往往把消振用的RC元件制作在运放内部。大部分 没有外接相位补偿(校正)端子的运放,均列出补偿用RC元件 的参考数值,按厂家提供的参数,一般均能消除自激。 2)补偿电容与带宽的关系。有时按厂家提供的RC参数不能完全 消除自激。此时若加大补偿电容的容量,可以消除自激。对于 交流放大器,则必须注意补偿元件对频带的影响,不应取过大 的电容值,要选取适当的电容值,使之既能消除振荡,又能保 持一定的频带宽度。此外,对应不同的闭环增益,所需的补偿 电容和补偿电阻也不同。在选取补偿元件时,可以按以下原则 掌握:在消除自激的前提下,尽可能使用容量小的补偿电容和 阻值大的补偿电阻。
电工学II——集成运放电路(10章)
结论:
(1) Auf为负值,即 uo与 ui 极性相反。因为 ui 加在反相输入 端。
(2) Auf 只与外部电阻 R1、RF 有关, 与运算放大器本身参数 无关。 (3) | Auf | 可大于 1,也可等于 1 或小于 1 。
(4) 因u–= u+= 0 , 所以反相输入端“虚地”。 (5) 输入电阻 ri = R1;输出电阻ro=0.
例:电路如下图所示,已知 R1= 10 k ,RF = 50 k 。
求:1. Auf 、R2 ;
2. 若 R1不变,要求Auf为 – 10,则RF 、 R2 应为 多少?
RF
+ ui – R1 R2 – +
D
解:1. Auf = – RF R1
+
+ uo –
= –50 10 = –5 R2 = R1 RF
uo=(VC1+DVC1)-(VC2+DVC2)=0 注意:单端输出,无法抑制零点漂移
动态分析 1.共模信号 u11=u12 大小相等、极性相同 输出电压恒为零(不具备放 大能力)
u11 + 差分放大原理电路 R2
+UCC
R1 RC + T1 RC uo T2 R1 + R2 u 12 -
2.差模信号
输出端与运放电路 反相输入端的关系
平衡电阻 R2 = R1 // RF
输入电压加在了同相输入端,输出 电压对地为正
输出电压作用到该连接地的电路上, 在R1右端产生电压u-, 构成电压串联负反馈
uo RF Auf =1+ ui R1
uo RF 同相比例运算放大系数 Auf =1+ ui R1
集成运算放大器讲课版
多功能与智能化
集成运算放大器正朝着多功能 和智能化方向发展,以满足复 杂系统的需求。
集成多种功能如滤波、比较、 转换等,实现单片集成多功能 电路。
智能化功能如自适应增益控制、 自校准等,提高集成运算放大 器的使用便利性和性能稳定性。
感谢您的观看
THANKS
温度测试
在不同温度下测试放大器的性能,以确保其 在工作温度范围内性能稳定。
环境测试
对放大器进行抗干扰、防静电等环境测试, 以确保其在实际应用中的可靠性。
06
集成运算放大器的发展趋势 与展望
低功耗与高效率
随着节能减排需求的日益增长,低功耗集成运算放大器已成 为研究热点。通过优化电路结构和采用低功耗工艺,降低集 成运算放大器的功耗,提高其能效。
稳定性问题
合理选择反馈电阻和电容,调整电路参数可 以提高稳定性。
噪声问题
优化电路设计、选择低噪声的集成运算放大 器和加强电源滤波可以减小噪声。
输出饱和
适当减小输入信号或调整放大倍数可以避免 输出饱和。
05
集成运算放大器的设计与制 作
设计流程
确定应用需求
选择合适的工艺和芯片结构
根据电路需求,确定放大器的性能参数, 如带宽、增益、输入/输出阻抗等。
度等参数的集成运算放大器。
电源电压
考虑电源电压的范围,确保集 成运算放大器能够正常工作。
封装形式
根据应用需求选择合适的封装 形式,如DIP、SOP、SOIC等 。
成本
在满足性能要求的前提下,选 择性价比高的集成运算放大器
。
使用注意事项
电源滤波
在电源接入集成运算放大器前,应加 装滤波电容,以减小电源噪声对电路 的影响。
件,并确保元件的精度和可靠性。
集成运算放大器
量精度的影响
在集成电路的输入与输出接入不同的反馈网络,可实现不同用途的电路,例如利用集成运算放大器可
4 非常方便的完成信号放大、信号运算(加、减、乘、除、对数、反对数、平方、开方等)、信号的处理
(滤波、调制)以及波形的产生和变换
集成运算放大器
01.
集成运算放大器的种类非常多,可适用于不同的场合.运算放大器在电路中发挥重要的 作用,其应用已经延伸到汽车电子、通信、消费等各个领域,并将在支持未来技术方面 扮演重要角色
02.
在运算放大器的实际应用中,设计工程师经常遇到诸如选型、供电 电路设计、偏置电路设计、PCB设计等方面的问题
-TLeabharlann ANKS载的电源为可变电压电源,R1负载的电流也是保持固定不变,达到恒流的效果
2 1.9 热电阻测量电路
电路是典型的热电阻 / 电偶的测量电路,其测量思路为:将 1-10mA 的恒流源加于负载,将会在负载
3
上产生一定的电压,将该电压进行有源滤波处理,处理后在进行信号的调整(信号放大或衰减),最后 将信号送入 ADC 接口。该电路应用时,要注意在输入端施加保护,可以并 TVS,但要注意节电容对测
1.6 滤波器
集成运算放大器
由集成运放可以组成一阶滤波器和二阶滤波器,其中一阶滤波器有20dB每倍频的幅频特 性,而二阶滤波器有40dB每倍频的幅频 特性。为了阻挡由于虚地引起的直流电平,在运放的输入端 串入了输入电容Cin,为了不影响电路的幅频特性,要求这个电容是 C1的100倍以上,如果滤波器还 具有放大作用,则这个电容应是C1的1000倍以上,同时,滤波器的输出都包含了Vcc/2的直流偏 置,如果电路是最后一级,那么就必须串入输出电容
1.3 数字信号处理
集成运算放大电路全篇
Y0 Y1 Y2 Y3 B
注:式中Aod为差模开环放大倍数。
二、 集成运放中的电流源电 路
4.2.1 基本电流源电路
一、镜像电流源
+VCC
IR
B IC0
T0
R 2IB
A
IB0
IB1
IC1 T1
UBE0= UBE1, β0=β1=β, IC0=IC1=IC= βIB , IC1为输出电流, IR为基准电流。
基准电流表达式:
IR
用
uP
集成运放组成方框图:
输入级
uN
中间级
输出级 uO
偏置电路
1) 输入级 又称前置级,常为双输入高性能差分放大电路(高Ri 、大Ad、 大KCMR、静态电流小)。输入级的好坏直接影响着集成运放的大多数性能 参数。
2) 中间级 主放大器,使集成运放具有较强的放大能力,多采用共射 (或共源)放大电路。放大管经常采用复合管,以恒流源做集电极负载。
R`3
C`1 R`3
2.1k
2.1k
R`5 240k
C`1
R`4 25k
R`5 240k
- +
R7 100k
-∞ A3
(以下电路同上,仅C1、C2 值不同,电路从略)
图5.6 十五段优质均衡器
(2) 当R4的滑动触头移到最左边时,其电路如图8.7(a)所示。
C1
R3
R3
C2 R5
R4 R5
-∞
R6
B点的电流方程为:
IR
IB2
IC
IC2
1 2
IC2
2
2
2 2
2
I
C
2
IC2
(1
集成运算放大器的基础知识图解课件
选择合适的集成运算放大器
01
02
03
04
根据应用需求选择合适的类型 和规格。
考虑集成运算放大器的性能参 数,如带宽增益积、精度、噪
声等。
考虑集成运算放大器的功耗和 散热性能。
考虑集成运算放大器的封装形 式和引脚排列,以便于电路设
计和连接。
05 集成运算放大器的常见应 用电路
反相比例运算电路
总结词
02 集成运算放大器的基本结 构与工作原理
差分输入级
差分输入级是集成运算放大器 的核心部分,负责将差分输入 信号转换为单端输出信号。
它通常由两个对称的晶体管组 成,能够有效地抑制温漂和减 小噪声干扰。
差分输入级的作用是提高放大 器的输入电阻和共模抑制比, 从而提高信号的信噪比。
电压放大级
电压放大级是集成运算放大器中 用于放大输入信号的级,通常由
微分电路
总结词
微分电路是一种将输入信号进行微分运算的 电路,通常用于测量变化快速的物理量。
详细描述
在微分电路中,输入信号通过电阻R1和电 容C加到集成运算放大器的反相输入端,输 出信号通过反馈电阻RF反馈到反相输入端 。由于电容C的充电和放电过程,输出信号 与输入信号的时间导数成正比,从而实现微 分运算。微分电路常用于测量流量、振动等 变化快速的物理量。
06 集成运算放大器的使用注 意事项与故障排除
使用注意事项
避免电源电压过高或过低
集成运算放大器的正常工作电压范围 有限,过高或过低的电压可能导致器 件损坏。
输入信号幅度控制
输入信号幅度过大可能导致集成运算 放大器过载,影响性能甚至损坏器件 。
避免直流偏置
直流偏置可能导致集成运算放大器性 能下降,甚至无法正常工作。
电子技术基础—集成运算放大器
电子技术基础一集成运算放大器一、集成运算放大器简介集成运算放大器是具有高的开环放大倍数和深度负反馈的直接耦合放大器,运算放大器可以完成加减、微积分、乘除等运算,所以称为运算放大器。
二、集成运算放大器的基本电路集成运算放大器内部的多极基本放大电路由四部分组成(图1-2-9):输入极、中间极、输出极和偏置电路。
其中:输入极:是决定集成运算放大器性能关键的一级,要求它的零点漂移少,输入电阻高,所以都采用差分放大电路。
中间极:是将输入极输出的信号电压加以放大,一般是由共发射极放大电路构成。
输出极:输出级直接与负载相连,所以这一级要求有足够的电压放大幅度和输出功率,满足负载的需要。
同时要求输出电阻小,带负载能力强。
一般由互补对称电路或射极输出器组成。
偏置电路的作用是为上述三个级电路提供稳定和合适的偏置电流,确定各级的静态工作点。
作为集成电路,虽然其内部结构相当复杂,但其外部电路并不复杂,学习时,要重点掌握它的引脚定义性能参数和应用方法。
三、运算放大器的基本特性和符号C1741集成运算放大器外形如图1-2-10所示。
图1-2∙10a)是金属圆形封装;图1-2∙10b)是塑料双列直插式封装。
这种运算放大器通过7个管脚与外电路相接。
图中各管脚的定义和作用如下:相输入端,由此端接输入信号,则输出信号与输入信号是反相的;管脚3为同相输入端,由此端接输入信号,则输出信号与输入信号是同相的;管脚4为负电源端,接负IOV稳压电源;管脚5为正电源端,接正IOV稳压电源;管脚6为输出端:管脚1和管脚5为外接调零电位器(通常为IokQ)的两个端子;管脚8为空脚。
在分析运算放大器时,为便于分析和计算,将它视作理想运算放大器,理想运算放大器的特点如下:(1)差模放大倍数AU极高,可视为无穷大(Aud∙÷g)°(2)共模放大倍数非常低,可视为0,因而共模抑制比Kow可视为无穷大(KcMR÷00)θ(3)输入电阻n相当大,可视为无穷大,因而不取输入信号的电流亿,1,玲8)。
集成运算放大器的组成及各组分功能叙述
集成运算放大器的组成及各组分功能叙述集成运算放大器(Integrated Operational Amplifier,简称OP-AMP)是一种高增益、差分输入、单端输出的电子放大器。
它由多个晶体管、电阻、电容等元件组成,通过集成电路技术将这些元件集成在一块芯片上。
集成运算放大器广泛应用于模拟电路中,具有放大、滤波、积分、微分等功能。
集成运算放大器的组成主要包括差分输入级、差动放大级、输出级和电源级等组分。
差分输入级是集成运算放大器的第一级,它由两个晶体管组成。
其中一个晶体管的基极接收输入信号,另一个晶体管的基极接收反向输入信号。
差分输入级的主要功能是将输入信号转换为差分信号,以便后续的差动放大。
差动放大级是集成运算放大器的核心部分,它由多个晶体管组成。
差动放大级的输入端接收差分信号,经过放大后输出到输出级。
差动放大级的主要功能是放大差分信号,同时具有高增益、高输入阻抗和低输出阻抗的特点。
输出级是集成运算放大器的最后一级,它由一个晶体管和一个负反馈电阻组成。
输出级的输入端接收差动放大级的输出信号,经过放大后输出到外部负载。
输出级的主要功能是将差动放大级的输出信号放大到足够的幅度,以驱动外部负载。
电源级是集成运算放大器的电源部分,它由多个晶体管和电阻组成。
电源级的主要功能是为差动放大级和输出级提供稳定的工作电压,以保证集成运算放大器的正常工作。
除了以上主要组分外,集成运算放大器还包括偏置电流源、偏置电压源、补偿电容等辅助组分。
偏置电流源用于提供差动放大级的偏置电流,以保证差动放大级的工作点稳定。
偏置电压源用于提供差动放大级的偏置电压,以保证差动放大级的工作在线性区。
补偿电容用于提供频率补偿,以保证集成运算放大器在高频时具有稳定的增益。
集成运算放大器的各组分功能可以总结如下:1. 差分输入级:将输入信号转换为差分信号。
2. 差动放大级:放大差分信号,并具有高增益、高输入阻抗和低输出阻抗的特点。
3. 输出级:将差动放大级的输出信号放大到足够的幅度,以驱动外部负载。
集成运算放大器的主要知识点
-
THANKS!
大学生活即将结束,在此,我要感谢所有老师和一起成长的同学,是你们 大学生涯给予了极大的帮助。本论文能够顺利完成,要特别感谢我的导师
感谢您的耐心指导,您辛苦了!
建立时间:这是指运放达到稳定输出所需的时间。建立时间对于需要快
集成运算放大器的主要知识点
压摆率:这是指运放在大信号输入时的最大 输出电压变化率。压摆率决定了运放在大信 号应用中的性能
输入阻抗:这是指运放在输入端的电阻抗。 输入阻抗通常很高,可以与传感器等低阻抗 电路直接连接
电源抑制比:这是指运放在电源电压变化时 保持稳定性能的能力。电源抑制比越高,电 源电压变化对运放性能的影响越小
放大级:这一级通常包含一个或多个放大器,用于将差分输入级的微小 。放大级的输出是整个运放的输出信号
集成运算放器的主要知识点
以上就是集成运算放大器的主要知识点。理解和掌握这些知识点有助于深 电子元件的性能和应用 除了上述提到的知识点,集成运算放大器还有一些重要的特性需要理解
频率响应:这是指运放在不同频率下的增益和相位响应。运放的频率响 部电路的RC时间常数决定
集成运算放大器的主要知识点
目录
集成运算放大器的主要知识点
集成运算放大器(通常简称为运放)是一种集成电路,它包含三个基本组成 级、放大级和输出级。以下是对这些组成部分的详细解释
差分输入级:这是运放的两个输入端,通常称为"非反向输入端"(同 反向输入端"(反相输入端)。这两个输入端之间的电压差异是运放的
失调电压漂移:这是指运放在温度变化时失
最大功耗:这是指运放 功耗。超过这个功耗可 降
共模抑制比:这是指运 的共模干扰抑制能力。 放在存在共模干扰时性
集成运算放大器及应用—集成运算放大器(电子技术课件)
(a)新国标符号
(b)以往用过的符号
图3.1.2 集成运放的符号
4.集成运放实物 (1)封装形式、引脚排列
金属壳封装
双列直插式 塑料封装
图3.1.3 集成运放封装与引脚图
图3.1.4 LM324引脚图
(2)运算放大器外形图
图3.1.5 集成运放实物图
三、理想集成运放的主要参数 1.理想集成运放
4.共模抑制比 KCMR 反映了集成运放对共模信号的抑制能力。
5.输入失调电压、电流 U IO 0 I IO 0 它是指集成运放输出电压为零时,两个输入端所加补偿电压的大小、两个输
入端的静态电流之差均为零。 6.上限截止频率 f H
反映集成运放的频率特性。
集成运放的线性应用(一)
3.2.1 集成运放的线性应用(一)
差模信号是指 ui1 = – ui2,即两个输入信号大小相同,极性相反。 共模信号是指 ui1 = ui2 ,即两个输入信号大小相同,极性相同。
2.输入电阻 rid
它是指集成运放在开环状态下,输入差模信号时两输入端之间的动态电阻, 反映差模输入时,集成运放向信号源索取电流的大小。
3.输出电阻 ro 0
二、集成运放的组成及符号 1.集成运放的组成框图
uid +
输入级
中间电压 放大级
输出级 uo
偏置电路
图3.1.1 集成运放的组成框图
2.各组成部分的特点
采用差分放大电路。要求输入电阻 高,输入端耐压高,抑制温度漂移 能力强,静态电流小。
采用共发射极放大 电路。要求有足够 的放大能力。
采用互补对称输出电 路。要求输出电压范 围宽,输出电阻小, 非线性失真小。
一、线性区的集成运放
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
87
u- u+
100dB 2
6
uo
3
1 54
-UEE
F007的外部接线和管脚图
返 回 下一节
上一页
下一页
二、 运算放大器的电压传输特性
uo= f ( ui ) , 其中 ui = u+ – u– ui
uO
uO
UOM
UOM
+
– + uo
–Uim 0 Uim
ui
–UOM
实际运放
0
ui
–UOM 理想运放
2. 负反馈的类型 1) 根据反馈所采样的信号不同,可以分为电压反馈
和电流反馈。 如果反馈信号取自输出电压,叫电压反馈。 如果反馈信号取自输出电流,叫电流反馈。
电压负反馈具有稳定输出电压、 减小输出电阻的作用。
电流负反馈具有稳定输出电流、 增大输出电阻的作用。
2) 根据反馈信号在输入端与输入信号比较形式的 不同,可以分为串联反馈和并联反馈。
RC 振荡电路的工作原理。
10. 1 集成运算放大器概述
10.1.1 集成运放组成
输入级 中间级 输出级
偏置电路
输入级 — 差动放大器 中间级 — 电压放大器 输出级 — 射极输出器或互补对称功率放大器 偏置电路 — 由镜像恒流源等电路组成
集成运算放大器的符号
信号传 输方向
理实想际运放开环 电压放大倍数
反馈信号与输入信号串联,即反馈信号与输入 信号以电压形式作比较,称为串联反馈。
反馈信号与输入信号并联,即反馈信号与输入 信号以电流形式作比较,称为并联反馈。
串联反馈使电路的输入电阻增大, 并联反馈使电路的输入电阻减小。
负反馈的类型
电压串联负反馈
交流反馈 负 反 馈
电压并联负反馈 电流串联负反馈 电流并联负反馈
rid
, ii 0
相当于两输入端之间 断路
ii
ui
rid + uO
+
注意: u+ = u– 不一定成立!
10.2 反馈基本概念
反馈:将放大器输出信 号的一部分或全部经反
净输入信号
X i +
X d
输入信号 X– f
馈网络送回输入端。
基本放大 X o 输出信号
电路A
反馈信号
反馈 电路F
反馈系数
反馈放大电路的三个环节:
并联反馈
特点:输入电阻低、输出电阻低
2 串联电压负反馈
RF
+
ui
–
– uf +
R1
u–d +
– +
R2
+ +
RL
uo –
设输入电压 ui 为正, 各电压的实际方向如图
差值电压 ud =ui – uf uf 削弱了净输入电压 (差值电压) ——负反馈
反馈电压
uf
R1 R1 RF
uo 取自输出电压——电压反馈
反馈信号与输入信号在输入端以电压的形式比较
——串联反馈
特点:输入电阻高、输出电阻低
3 串联电流负反馈
+ ui –
u+–d R2
– +
+
io
uo
RL
+
R –uf
设输入电压 ui 为正, 各电压的实际方向如图
差值电压 ud =ui – uf uf 削弱了净输入电压 (差值电压) ——负反馈
反馈电压 uf =Rio 取自输出电流 ——电流反馈
10.4 理想运算放大器
一、理想运放的条件
(1)开环电压放大倍数:
Auo
, ui 0
(2)开环输入电阻:
ri
,
(3)开环输出电阻:
ro
,
(4)共模抑制比KCMRR:
KCMRR
,
二、理想运算放大器的特性
1 “虚断路”原则
ii = ruidi
对于理想运放
rid
, ii 0
相当于两输入端之间断路
ii
第10章 集成运算放大器
10.1 集成运算放大器概述 10.2 反馈的基本概念 10.3 负反馈对放大电路性能的改善* 10.4 理想运算放大器 10.5 基本运算电路 10.6 电压比较器* 10.7 RC正弦波振荡电路*
教学基本要求
1. 了解集成运算放大器的基本组成和电压传输特性; 2. 理解反馈的概念,了解负反馈对放大电路性能的影响; 3. 理解理想运算放大器并掌握其基本分析方法; 4. 理解基本运算电路的工作原理和分析方法; 5. 理解基本电压比较器的组成和电压传输特性; *6. 了解迟滞电压比较器的组成和电压传输特性; *7. 理解自励振荡的条件,了解用集成运算放大器组成的
1. 反馈的分类
引入直流 引入交流
直流反馈:反馈只对直流 分量起作用,反馈元件只 能传递直流信号。
交流反馈:反馈只对交流 分量起作用,反馈元件只
负反馈的 目的:稳 定静态工 作点
负反馈的 目的:改 善放大电 路的性能
能传递交流信号。
负反馈:反馈削弱净输入信号,使放大倍数降低。
正反馈:反馈增强净输入信号, 使放大倍数提高。
ui
+ rid + uO
–
2 “虚短路”原则
ui =
u+
–
u– =
uo
Auo
ui
对于理想运放 Auo
, ui 0
+ –
u+
u –
相当于两输入端之间短路
+ uO
运放工作在线性工作状态的必要条件:
必须引入深度负反馈。
2. 理想运放工作在非线性区的分析依据
“虚断路”原则
ii = ruidi
对于理想运放
反相
u 输入端 – ui
u 同相
输入端 +
AO
输出端
uo
集成运算放大器是一种具有很高放大倍数的多 级直接耦合放大电路。
特点:高增益、高可靠性、低成本、小尺寸
u-反相输入-端 -
u+
u+d
同相输入端
+
AO +
输出端
uo
输入方式:
• 反相输入 • 同相输入 • 差分输入
集成运放的图形符号
+UCC
781 6 F007 2
基本放大电路
A
X o X d
反馈电路
F
X f X o
放大倍数 比较环节X d X i X f
X i + X– f
X d 基本放大 X o
电路A
反馈 电路F
净输入信号 X d X i X f
若三者同相,则
Xd = Xi – Xf 可见 Xd < Xi ,即反馈信号起了削弱净输入信号的 作用(负反馈)。
反馈信号与输入信号在输入端以电压的形式比较
——串联反馈
io
uf R
ui R
特点:输出电流 io 与负载电阻RL无关
——同相输入恒流源电路或电压-电流变换电路
4 并联电流负反馈
if RF
i1
+
R1
ui
R2
id – +
+
io -
RL
–
R
设输入电压 ui 为正, 各电流的实际方向如图
差值电流 id = i1 – if if 削弱了净输入电流 (差值电流) ——负反馈
直流反馈 稳定静态工作点
3. 反馈的判别
1 并联电压负反馈
if RF
设输入电压 ui 为正,
反反馈u+–i馈信i电1号RR流与12 输iifd入+– 信+Ru号RofL-在取u–+输o自入输端各差i值出f以电值削电电电流电弱流压流的流了)—的实—净—i形d际—输电=式方负入压i1比向反–电反较i如馈f流馈—图(差—