汽车转向系统设计计算匹配方式

合集下载

转向系统匹配计算与验证-许国卫20131211

转向系统匹配计算与验证-许国卫20131211

液压助力转向系统设计步骤及要点1、根据车型确定载荷分配(前桥载荷比例)。

2、根据车型和前桥结构(单前桥、双前桥、多前桥等)确定转向器、助力油缸或随动器、转向泵、油罐、管路等转向系统的布置。

3、根据前桥载荷计算选择转向器、助力油缸或随动器的型号,选择时务必要求使转向器、助力油缸或随动器的输出力矩之和大于前桥大载荷所产生的阻力矩。

4、根据转向器、助力油缸或随动器及系统压力确定转向泵的型号,根据转向器、助力油缸或随动器计算系统所需要的流量大小,再结合系统压力从而确定转向泵的控制流量及最大工作压力;再以这两主要参数确定转向泵的型号。

5、根据转向泵的控制流量及系统布置选择油罐:油罐的容量 V≥(0.15—0.2)Q;其中:Q为转向泵的每分钟最大输出油量。

当为两油口转向泵时Q可按泵的控制流量的1.2倍取;当为三油口转向泵时Q=n*q(n-转向泵最大转速,q-转向泵排量)。

6、根据转向泵的控制流量及系统布置设计管路,管路设计时特别要注意通径的计算,选择合理的管径,减少系统压力损失及有利于系统的散热。

计算程序概述1、本计算程序是针对液压助力转向系统而设计,目的是为液压助力转向系统提供一种较为有效、准确的设计及校核工具。

2、本计算程序可以作为液压助力转向系统设计时的理论计算依据,也可以为检验系统设计合理3、计算公式中所用的各种参数取值务必与实物相一致;而公式中的系数取值是依据实际经验总结而取定4、设计计算时,建议参照以下几点原则:A、前桥载荷按标准载荷时理论值的1.2-2.0倍(一般客车1.2-1.4倍、公路运输货车1.4-1.6倍、工程自卸与矿用车1.5-2.0倍)输入计算;B、系统总输出扭矩大于系统总阻扭矩;C、选择系统的工作压力≤15MPa,若选择系统工作压力大于此值,则应该加大方向机或助力缸。

D、系统带卸荷阀则转向泵最大压力=系统卸荷阀压力+1.5~2MPa;如不带则按表中计算结果取值。

E、目前国内叶片排量通常在25ml/r以内,故设计时若得出的排量要求大于25ml/r的,建议提高发动机速比以降低对泵的排量需求。

汽车转向系统设计计算

汽车转向系统设计计算

第3章设计计算3.1 汽车转向系主要参数的选择3.1.1 汽车主要尺寸的确定汽车的主要尺寸参数包括轴距、轮距、总长、总宽、总高、前悬、后悬、接近角、离去角、最小离地间隙等,如图3-1所示。

图3-1汽车的主要参数尺寸(1)轴距轴距L的选择要考虑它对整车其他尺寸参数、质量参数和使用性能的影响。

轴距短一些,汽车总长、质量、最小转弯半径和纵向通过半径就小一些。

但轴距过短也会带来一系列问题,例如车厢长度不足或后悬过长;汽车行驶时其纵向角振动过大;汽车加速、制动或上坡时轴荷转移过大而导致其制动性和操纵稳定性变坏;万向节传动的夹角过大等。

因此,在选择轴距时应综合考虑对有关方面的影响。

当然,在满足所设计汽车的车厢尺寸、轴荷分配、主要性能和整体布置等要求的前提下,将轴距设计得短一些为好。

轻型货车、鞍式牵引车和矿用自卸车等车型要求有小的转弯半径,故其轴距比一般货的短,而经常运送大型构件、长尺寸或轻抛货物的货车和集装箱运输车,则轴距可取得长一些。

汽车总质量愈大,轴距一般也愈长。

轴距L对整备质量、汽车总长、最小转弯直径、传动轴长度、纵向通过半径有影响。

当轴距短时,上述各指标减小。

(2)前轮距B1和后轮距B2改变汽车轮距B会影响车厢或驾驶室内宽、汽车总宽、总质量、侧倾刚度、最小转弯直径等因素发生变化、增大轮距则车厢内宽随之增加,并导致汽车的比功率、币转矩指标下降,机动性变坏。

受汽车总宽不得超过2.5m限制,轮距不宜过大。

但在选定的前轮距B1范围内,应能布置下发动机、车架、前悬架和前轮,并保证前轮有足够的转向空间,同时转向杆系与车架、车轮之间有足够的运动间隙。

在确定后轮距B2时,应考虑两纵梁之间的宽度、悬架宽度和轮胎宽度以及它们之间应留有必要的间隙。

(3)外廓尺寸汽车的外廓尺寸包括其总长、总宽、总高。

它应根据汽车的类型、用途、承载量、道路条件、结构选型与布置以及有关标准、法规限制等因素来确定。

GB1589-79 对汽车外廓尺寸界限做了规定,总高不大于4m,总宽(不包括后视镜)不大于2.5m;外开窗,后视镜等突出部分宽250mm。

汽车转向设计与计算

汽车转向设计与计算

转向系统的计算设计:这次设计的电动车用的是麦弗逊式独立悬架,采用分段式转向梯形机构。

对于采用独立悬架的汽车转向车轮,转向梯形中的横拉杆应是分段式的,以避免运动干涉,防止一个车轮的上下跳动影响另一个车轮的跳动。

(图一)这种转向系统的结构大多如图1所示。

转向轴1的末端与转向器的齿轮轴2直接相连或通过万向节轴相连;齿轮图2与同装于一壳体内的齿条3啮合。

外壳则固定于车身或车架上。

齿条通过两端的球铰接头与两根分开的横拉杆4相连,两横拉杆又通过球头销与左右车轮上的梯形臂5、6相连。

这里齿条3既是转向器的传动件又是转向梯形机构中三段式横拉杆的一部分。

齿轮—齿条式转向器具有结构简单紧凑,制造工艺简便等优点,不仅适用于整体式前轴也适用于前轮采用独立悬架的断开式前轴,目前广泛地被采用于轿车、轻型客货车、微型汽车等车辆上。

但与之相配的转向梯形机构与传统的整体式转向梯形机构相比有其特殊之处。

故有必要加以研究和探讨。

绝大多数齿轮一齿条式转向器都布置在前轴后方,这样既可避让发动机的下部,又便于与转向轴下端连接。

安装时齿条中心线应与汽车纵向对称轴垂直;并且当转向器处于中立位置时,齿条两端球铰中心应对称地处于汽车纵向对称轴的两侧。

对于给定的汽车,其轴距L、主销后倾角口以及左右两主销轴线延长线与地面交点间距离K均为已知定值。

对于选定的转向器,其齿条两端中心距M也为已知定值.故在设计中需确定的参数为梯形底角、梯形臂长l以及齿条中心线到梯形底边的安装距1离,而横拉杆长度l可由上述参数确定其表达式为。

2转动转向盘时,齿条便向左或向右移动,使左右两边的杆系产生不同的运动,从而使左右车轮分别获得一个转角。

以汽车左转弯为例,此时右轮为外轮,外轮一侧的杆系运动如图2所示。

设齿条向右移过某一行程S,通过右横拉杆推动右梯形臂,使之转过。

(图二)取梯形右底角顶点O为坐标原点,X、Y轴方向如图2所示,则可导出齿条行程S与外轮转角的关系:另外,有图像可知:而+arctan-(图三)为坐标原点,X、Y轴方向如图3所示,则同样可导出齿条行程取梯形左底角顶点O1S与内轮转角的关系,即:众所周知,在不计轮胎侧偏时,实现转向轮纯滚动、无侧滑转向的条件是内、外轮转角具有如图4所示的理想的关系,即(图四)(6)式中T—计及主销后倾角夕时的计算轴距主销后倾角3°计算得T=2800+693/2tan3=2818L—汽车轴距2800mmr—车轮滚动半径346.5mm由(6)式可将理想的内轮转角民,表示为设计变量:、底角y和安装距对于给定的汽车和选定的转向器,转向梯形机构尚有梯形臂长11离h三个设计变量。

某客车转向系统匹配计算报告

某客车转向系统匹配计算报告

XXXXXXX转向系统计算书编制:审核:批准:前言XXXXXXXXXXXXXXXXXX市场的需求而开发的旅游客车。

转向系统设计既要满足整车设计要求,又要遵循以下原则:1.尽可能采用通用件,提高零部件的通用性;2.系统良好的可靠性、操纵性;3.系统及零部件调整及维修的便利性。

1、输入数据前轴负荷:N G 441008.945001=⨯≤。

转向器参数:转向泵参数:发动机参数:2、根据原地转向阻力矩R M 选择转向器根据半经验公式,原地转向阻力矩可由下式计算:PG f M R 313=--------------公式1 式中:R M 车轮转向阻力矩Nm ;f 轮胎与地面的滑动磨擦系数,一般取f =0.7; 1G 前轴负荷(N );P 前轮气压(MPa)(双钱轮胎气压830kPa ); 代入数据得:Nm M R 90.237183.04410037.03==转向器最大输出扭矩K M 选取时,要满足R K M M ≥,一般取Nm M M R K 9.211712.1=≥,这样可以较好发挥转向器的效率,并保持液压系统有一个良好的工况。

2.1原地转向时作用在转向盘上的手力如果忽略摩擦损失,根据能量守恒原理,h R M M 2为:+==sg w h R i d d M M ηβϕ0 -----------------公式2 式中:h M 为作用在转向盘上的力矩;0w i 为转向系角传动比;+sg η为转向器正效率,取0.85。

0w i 又由转向器角传动比w i 和转向传动机构角传动比'w i 所组成,其中27.23=w i 、12'w L L i =。

1L 为垂臂长210mm ,2L 为转向节臂长234mm 。

作用在转向盘上的手力h F 为:swhh D M F 2= -----------------公式3 式中:sw D 为转向盘直径。

将公式2代入公式3后得到: N i L D L M F sg w sw R h 795x 14.0x 0.850.45x 0.23421x 2371.9x 0.2221===+η按上式计算出的作用力超出了人的正常体力范围,但采用动力转向即可解决这一问题。

转向系统匹配

转向系统匹配

本人从事转向系统设计工作,今赋闲在家,偶然发现这个论坛,获益颇丰。

但见很多朋友所求助的问题得到的解答不是特别透彻,遂想从转向系统布置、匹配、零部件8D整改等方面分别做一个全面的总结。

希望对新手有所帮助,不对的地方也希望能得到各位前辈的指正。

言归正传,先介绍转向系统的匹配。

匹配篇:0 ? W6 I! m& P! \( A7 Q1、以循环球整体式转向器为例,首先要确定转向系统的载荷,根据转向系统的载荷确定出相应输出力矩的循环球转向器。

转向系的载荷计算方法多种多样,有公式计算法,也有图表法。

常用公式有原苏联半经验公式、雷雷索夫公式、塔布莱克公式等,各个公式的侧重点各有不同(不同的因素分别为有的考虑主销偏置距,轮胎静力半径,有的分别考虑计算左右轮的最大转向阻力矩然后叠加,有的考虑轮胎接地面积等)。

根据自己对各个方法的对比,载荷计算结果差别不是很大。

本人常用苏联半经验公式:Mr =[f×(G 13÷P)1/2]÷3: @# a# r" y. W; {0 N PMr-----在沥青或混凝土路面上的原地转向阻力矩,N.mm;+ ?/ e1 f7 a& P$ ]' Gf--------轮胎与地面间的滑动摩擦系数,取0.7;+ k3 M+ n' w. Z5 lG1-----转向轴负荷,N;P-------轮胎气压,MPa;9 h+ M9 }: J( Q该公式适用于中轻型汽车,其悬挂为钢板弹簧时,用于计算最大转向阻力矩(即汽车的原地转向阻力矩)。

该公式仅考虑了前桥负荷和轮胎气压的影响。

公式中,转向轴荷G一般按设计轴荷超载30%计算。

在计算载荷确定之后,可根据载荷选取适合的动力转向器。

这里顺便介绍下转向器的选型,现在的动力转向器配套供应商做了大量的研究和实验,提出了适应不同轴荷的其产品系列,你只要按照你计算出的前轴负荷提供给他,他即可推荐给你相匹配的型号的转向器。

20090525_转向系统匹配设计计算_V2_CH_YDX

20090525_转向系统匹配设计计算_V2_CH_YDX

转向系统匹配计算报告项目名称:GA6461E4轻型客车设计开发项目代码:GS-2编制:校对:审核:批准:吉奥汽车研究院年月日目录1. 概述………………………………………………………………..- 2 -1.1 任务来源........................................................................................ - 2 -1.2 转向系统基本介绍 ....................................................................... - 2 -2. 转向系统设计的输入条件………………………………………..- 2 -2.1 整车基本参数................................................................................ - 2 -2.2 转向系统选用件主要参数 ........................................................... - 2 -3. 转向系统的设计计算……………………………………………..- 3 -3.1 静态原地转向阻力矩.................................................................... - 3 -3.2 齿轮齿条式转向系的角传动比.................................................... - 4 -3.3 静态原地转向时作用于转向盘的力............................................ - 4 -3.4 转向油泵油压的计算.................................................................... - 5 -3.5 转向油泵流量的计算.................................................................... - 6 -4.转向系零件部分计算………………………………………………- 7 -4. 结论与分析………………………………………………………..- 9 -参考文献…………………………………………………….- 10 -1.概述1.1 任务来源根据GS-2车型开发计划及设计公司提供的数据及参数,对转向系统进行匹配设计计算,用以验证系统匹配的合理性并作为零部件强度计算的依据。

6.1转向系统匹配计算及设计

6.1转向系统匹配计算及设计

第六章 转向系统匹配计算及设计根据总布置设计提供的满载前轴荷、前轮定位参数(参考同类车型数据库),按照汽车转向系设计的要求,参照其它同类车型,进行汽车转向系设计。

6.1 转向角和传动比6.1.1 理论转向角-左右转角差大于实际汽车应设计值传统的理论转向角为纯滚动理论-阿克曼理论,没有考虑车轮弹性和高速应用,因此有些过时,现代轿车设计为了节省车内空间,一般在该理论算出左右转角差后,可以除以2~3作为设计数值更好。

如果通过所有4个车轮中心的车轮平面垂直线都相交于一点——转向中心M ,汽车在缓慢行驶时的转弯是精确的。

如果后轮不一定转向,则2个前轮的垂线必须与后轮中心连线的延长线相交于M 点(图6.1.1)。

如是在车身内外侧的前轮上出现不同的转向角i δ和Aa δ。

根据较大的内侧车轮转向角i δ可以算出外侧车轮的理论值,即所谓的阿克曼角:l j ctg ctg i Aa /+=δδ (6.1.1)式中:l 为在地面测得的两主销轴线延长线与地面交点交点的距离,即s v r b j ∙-=2 (6.1.2)在负的主销偏移距r S 的情况下,它在式中的运算符号变成加号。

图6.1.1 由阿克曼角确定的车轮转向角Aa δ之间的运动学关系 图6.1.2 r S 是在图示情况下为正的主销偏距 图6.1.1 由阿克曼角确定的车身外侧车轮转向角和内侧车轮转向角Aa δ之间的运动学关系。

图中还标出了转向角差A δ∆和转弯直径D s (亦见图6.1.1)。

图6.1.2 前悬架上的尺寸说明:b v 是前轮轮距,r S 是在图示情况下为正的主销偏距。

图6.1.1中标出的转向角差(也称弯角差)A δ∆在所获得理论值中必须始终为正值。

Aa i A δδδ-=∆ (6.1.3)根据角Aa δ可得出理论转弯直径D s (图6.1.1),即车身外侧前轮平面以最大的转向角转弯时经过的圆弧直径。

汽车的转弯圆应尽可能小,以易于转弯及停车方便。

依图示可推导出公式:)sin 1(2max s Aa S r D +=δ (6.1.4)这个要求是以轴距小和车身外侧车轮转向角大为前提的。

客车转向系统的设计

客车转向系统的设计

大客车转向系统设计方法摘要:简要介绍大客车转向系统零件选型及匹配设计方法关键词:大客车;转向系统;设计方法;前言转向系统作为汽车的重要系统之一,直接决定着车辆的操纵稳定性,安全性。

而大客车作为大型生命载体,对转向系统可靠性要求更高,设计时来不得半点马虎,下面就以WG6120CHAE 型车辆转向系统设计为例从客车装配厂家的角度简要介绍一下大型客车转向系统的设计方法。

1、转向器的选型1.1根据前轴的轴荷选定方向机类型一般转向轴轴荷超过3.5吨,推荐使用动力转向器,动力转向器液压缸的缸径要求大于m 5.42(m 为前轴轴荷),对比厂家转向器的参数选择即可。

转向轴轴荷小于3.5吨的车辆,原则上可以不使用动力转向器,但应特别注意转向垂臂长度,车桥转向节上臂的回转半径,注意力矩计算,使转向盘不至沉重。

1.2国内转向器厂家一般根据转向轴轴来对应相关转向器产品,例如东风转向器厂IPS45的转向器对应的前轴是4.5吨,IPS55的转向器对应的前轴是5.5吨,IPS65的转向器对应的前轴是6.5吨,所以选型时可以直接对应选择就是了。

对于我司生产的WG6120CHAE 型车,因前轴载荷为6.5吨,所以选用了东风的IPS65型转向器,并根据布置形式选定了左旋左输出旋向,传动比为21.48:1,摇臂轴转角为±47.5°,方向盘总圏数为5.67圏。

IPS65型转向器2、转向系统匹配设计2.1确定内外轮转角,转向梯形及最大转弯直径选定转向器之后,我们首先要根据车辆的转弯直径的要求计算实际所需转向轮转角。

老标准以外轮中心画出来的轨迹为车辆的最大转弯直径,不太准确,新标准以通道圆直径不大于25m ,通道宽度不大于6.7米来定义转弯直径则更合理。

WG6120CHAE 型车相关参数首先找出车轮的旋转中心,转向轮的旋转中心是主销延长线与地面的交点。

现求出左右转向轮旋转中心联线的距离:中L =销B +2×r ×tg ɑ=1974.4 ①式考虑了主销后倾角的轴距:轴L =L+ r ×sin β=6312.9 ②式计算车辆的外轮转角外β=ctg 内β+B/L ③式车辆最内点的最小转弯半径 内r =轴L / tg 外β-[B-( B-中L )/2] ④式车辆最外点的最小转弯半径 外r =22)()B r L L +++内前( ⑤式计算出车辆最外点的最小转弯半径后直接乘以2倍,便计算出了车辆的最大转弯直径,而通道宽度见下式:通道B =外r -[B L L r r -+-⨯2)(前外外] ⑥式对于WG6120CHAE 型车,我们设定前内轮转角为47°,那么依据①式和③式,我们可以算出前外轮转角为38.8° ,这可做为给车桥厂签订协议时转向梯形的依据。

转向系统校核计算与设计指南

转向系统校核计算与设计指南

怠速(r/min)
600 ~
7.转向拉杆规格
φ42X8钢拔管
球头一总成型号 33R13-01066
球头一球销直径(mm)
球销沿其中心摆角(°)
球头二总成型号 3303E-059/060
球头二球销直径(mm)
球销沿其中心摆角(°)
8.方向盘半径(mm)
9.悬架型式
纽威ASB-140气簧
300
21 14 16 3600 500 1
转向系统校核计算与设计指南
注:不同颜色背景说明
计算数据,需输入 标题,不建议修改 常用经验值,可以修改
计算结果,不能修改
整车型号
XXXXXXX系列旅游车
车型说明
在XXXXXXXXXXX系列旅游车基础上,进行底盘转向系统的优化设计
设计原则
产品零部件标准化和互换性
1.前桥型号
方盛JY30N
附表一、前悬架系统与转向拉杆系统的运动协调的校核:这
268
3.动力转向器型号
ZF8095 955 227
附表三、转向拉杆系统和方向盘圈数的校核:以转向拉杆的
角传动比 15.7 ~
18.5
三维空间尺寸不变原理,按照轮胎的内、外转向角算出转向
总圈数
4.4
垂臂的摆角参数
输出轴摆角(°)
94
1.转向拉杆位于中间位置状态
机械效率(%)
90
XZ二维坐标系长度(mm) 903.9
转向节臂计算力臂(mm) 259.6
转向垂臂计算力臂(mm)
211
原地阻力矩换算到当量杆上的阻力(N) 12990.07
动力转向器输出到当量杆的拉力(N) 21233.17 符合
转向助力泵作用,方向盘的转动力(N) 31.09952

重型卡车双前桥转向系统开发计算说明书

重型卡车双前桥转向系统开发计算说明书

编号北奔威驰8×4宽体矿用车1950轴距转向系统开发计算说明书编制审查审定标准化审查批准包头北奔重型汽车有限公司研发中心2010年7月22日1 计算目的双前桥四轴车在转向过程中,理论上要求所有车轮都处于纯滚动,或只有极小滑动,为达到这一目的,要求所有车轮绕一瞬时转动中心作圆周运动。

每个转向桥的梯形角匹配设计,是为满足车轮的理论内外转角特性曲线与实际内外转角特性曲线尽可能的接近;第一、二转向前桥转向摇臂机构设计是为了让第一、二转向前桥最大内转角与轴距之间的理论关系与实际关系尽可能的相匹配。

本次计算是为新开发的8×4宽体车XC3700KZ 匹配北奔高位宽体前桥的转向系统中转向传动机构和转向动力机构中各元件的选型及尺寸提供理论依据。

2 采用的计算方法、公式来源和公式符号说明符号定义及赋值如下:1α为第一转向前桥外转角,1β为第一转向前桥内转角 2α为第二转向前桥外转角,2β为第二转向前桥内转角1L 为第一转向前桥主销中心线与地面的交点到第三桥轴线的距离 2L 为第二转向前桥主销中心线与地面的交点到第三桥轴线的距离3 计算过程及结果 3.1 转向动力系统参数计算3.1.1 原地转向阻力矩计算① 状态一:第一、二转向桥载荷按标准载荷13T 计算 已知参数如下:第一转向桥、第二转向桥的轴荷为1G =2G =13000×9.8=127400 N 轮胎气压1P =0.77Mpa滑动摩擦系数μ=0.6(干燥土路)滚动摩擦系数f =0.035(干燥压紧土路推荐0.025-0.035) 轮胎自由半径0r =685mm 轮胎静力半径1r =670mm 侧偏距a =204mm内轮最大转角max α=35.74°[借用现有一桥拉杆及垂臂W3400112AE 极限内转角](新设计垂臂936 463 00 01使转角能达到车轮极限转角38度)轮胎宽度1B =375mm轮胎接地面积8212BK ==175782mm ,K=132.6mm主销内倾角Φ=6°对于单桥的原地转向阻力矩,有如下计算方式: A.按半经验公式计算131P G 3μ=半M =77.012740036.03 =10364271 N.mm =10364 N.mB.按采用雷索夫公式()2s 201r r 0.5a f G -+⋅⨯μ=雷M=127400×(0.035×204+0.5 ×0.6×22670685-)=6358499 N.mm =6358 N.mC.采用经验公式max11sin sin a G a G αφμ=经⋅⋅⋅+⋅⋅M=127400×204×0.6+127400×204×sin6°×sin35.74° =17181 N.mD.算术平均求阻力矩为了使计算更趋合理,避免上述四种公式单独使用时与实际工造成的误差,故用以上三种方式求得的阻力矩的算术平均值作为静态原地转向阻力矩0s M 。

汽车转向系统设计计算匹配方式

汽车转向系统设计计算匹配方式

1 汽车转背系统的功能之阳早格格创做1.1 驾驶者通过目标盘统制转背轮绕主销的转角而真止统制汽车疏通目标.对付目标盘的输进有二种办法:对付目标盘的角度输进战对付目标盘的力输进.拆有能源转背系统的汽车矮速止驶时,收配目标盘的力很沉,却要爆收很大的目标盘转角输进,汽车的疏通目标杂粹是由转背系统各杆件的几许关系所决定.那时,基础上是角输进.而正在下速止驶时,大概出现目标盘转角很小,汽车上仍效用有一定的侧背惯性力,那时,主假如通过力输进去把持汽车.1.2 将整车及轮胎的疏通、受力情景反馈给驾驶者.那种反馈,常常称为路感.驾驶者不妨通过脚—---感知目标盘的振动及运止情况、眼睛—---瞅察汽车疏通、身体—---启受到的惯性、耳朵—---听到轮胎正在大天滑动的声音去感觉、检测汽车的疏通状态,然而最要害的的疑息去自目标盘反馈给驾驶者的路感,果此良佳的路感是劣良的操稳性中不可缺少的部分.反馈分为力反馈战角反馈从转背系统的功能不妨得知:人、车通过转背系统组成了人车关环系统,是驾驶者对付汽车把持统制的一个关键系统.2转背系统安排的基础央供转背系是用去脆持大概者改变汽车止驶目标的机构,正在汽车转背止驶时,包管各转背轮之间有协做的转角关系.转背系的基础央供如下:2.1 汽车转直时,局部车轮应绕瞬时回转核心(瞬心)转化,所有车轮不该有侧滑.不谦脚那项央供会加剧轮胎磨益,并降矮汽车的收配宁静性.本量上,不哪一款汽车能真足谦脚那项央供,只可对付转背梯形杆系举止劣化,普遍正在时常使用转背角内(内轮15°~25°范畴)使转背内中轮疏通关系迫近上述央供.2.2 良佳的回正本能汽车转背动做完毕后,正在驾驶者紧启目标盘的条件下,转背轮能自动返回到直线止驶位子,并宁静止驶 .转背轮的回正力矩的大小主要由悬架系统所决断的前轮定位参数决定,普遍去道,效用汽车回正的果素有:轮胎侧偏偏个性、主销内倾角、主销后倾角、前轮中倾、转背节上下球节的摩揩益坏、转背节臂少、转背系统的顺效用等.2.3汽车正在所有止驶状态下,转背轮不得爆收自振,目标盘不晃动.2.4转背机构与悬架机构的疏通不协做所制成的疏通搞涉应尽大概小,由于疏通搞涉使转背轮爆收的晃动应最小.汽车转直止驶时,效用正在汽车量心处的离心力的效用,内轮载荷减小,中轮载荷减少,使悬架上的载荷爆收相映变更.若转背桥采与非独力悬架、钢板弹簧机构时,则内侧板簧果载荷减小而少度收缩,中侧板簧果载荷减少而少度减少,引导车轴正在火仄里内相对付车身转过一个角度,爆收轴转背效力.转背直推杆战纵推杆的疏通关系必须与之切合,使轴转背效力趋于缺累转背.当转背桥为独力悬架、螺旋弹簧机构时,内侧弹簧果载荷减小而少度减少,车轮相对付车身下跳,中侧弹簧果载荷减少而少度减小,车轮相对付车身上跳,果转背横推杆中球头从疏通教上去道,是转背轮的一部分,内球头属于车身的一部分,中球头随车轮上下跳动所产死的轨迹必须与内球头天圆核心面相切合.那便是保守转背表里中所道的断启面校核.本量上,新颖汽车安排中,合理利用那个疏通轨迹的搞涉,使得疏通搞涉制成的车轮偏偏转目标(侧倾转背)与转背目标好同,有帮于真止缺累转背.2.5良佳的机动性为了使汽车具备良佳的机动本能,必须使转背轮有尽大概大的转角,并要达到按前中轮轨迹估计,使其最小转直半径能达到汽车轴距的2~2.5倍.最小转蜿蜒径是汽车机动性的评介指标.效用最小转蜿蜒径的果素有:汽车轮距、轴距、轮胎侧偏偏刚刚度、灵验转背节臂少,转背器路程(齿轮齿条式转背器)、转背摇臂晃角(循环球式转背器)、转背摇臂少(循环球式转背器)、转背梯形的安插形式等.2.6 转背把持沉巧性转背把持沉巧性的评介指标常常有二项:驾驶者效用正在目标盘上的切背力大小战目标盘总圈数.板滞转背系统的轿车,止家驶中转背时的切背力应为50~100N.有帮力转背系统的轿车,此力为20~50N.K1哈弗为27N±3N.轿车目标盘总圈数不得大于4圈,货车不得大于6圈.M11板滞转背系统目标盘总圈数3.825,液压帮力转背系统目标盘总圈数3.083.对付于无帮力系统,目标盘上的切背力大小由转背系力传动比决断,目标盘总圈数等于转背器总圈数.目标盘总圈数多战切背力越多数简单使驾驶者疲倦.根据板滞本理,目标盘总圈数越多,切背力便越小,二者成反比.惟有合理对付目标盘总圈数战切背力与值,才搞有一个佳的转背把持沉巧性.对付于有帮力转背系统,不妨真止少的目标盘总圈数战小的目标盘切背力.然而需要注意帮力个性,虽然真止了佳的转背把持沉巧性,却简单出现转背下速收飘、转背收贼局里,益害把持宁静性. 2.7直线止驶宁静性转背系统战悬架系统稀切相关,必须使转背系统与悬架系统合理匹配,使汽车具备良佳的直线止驶宁静性,良佳路里不得出现的止驶跑偏偏.止驶跑偏偏与车辆的制制拆置有很大关系.当转背轮逢到一个小的障碍物时,车轮爆收偏偏转,那时汽车应具备赶快回到直线止驶位子的本领.循环球式转背器安排成变传动比,摇臂轴扇齿的中间齿(转背器的中位)齿薄比二边的大,与螺母齿条啮适时,转背器中间位子有相称于锁紧的功能.以达到保护直线止驶宁静的脚法.齿轮齿条式转背器将齿条中间时常使用几齿的齿间安排得比较小,与小齿轮啮适时,转背器中间位子有相称于锁紧的功能.以达到保护直线止驶宁静的脚法,共时也达到间隙补偿的脚法.2.8 转背轮逢到障碍物后,传播给目标盘的反冲力要尽大概小.转背轮逢到障碍物后,传播给目标盘的反冲力要尽大概小,可则会出现“挨脚”局里.预防“挨脚”局里的灵验步伐有:正在转背把持机构中减少挠性万背节,加拆转背阻僧器(减振器),普及转背系统顺效用等脚法.2.9 应当有汽车碰碰时对付驾驶者的防伤机构当爆收车福时,一圆里,车辆前端被压溃,使得转背管柱战转背轴进与背后移动(也便是背窜背驾驶者头胸部).另一圆里,驾驶者慢迫制动大概则被碰时汽车骤然停止,驾驶者正在强盛惯性力效用下,上半身冲背目标盘,伤害驾驶者.为预防那种妨害,便央供转背管柱正在轴背不克不迭是刚刚性的,正在转背管柱二个目标应具备溃缩战吸能功能,缓冲车身前部的冲打战驾驶者的冲打.顺便提一下,系仄安戴利害常灵验的一个步伐. 2.10 转背轮与目标盘偏偏转目标普遍转背系统必须搞疏通分解,最起码要包管的是:汽车正在前进时,往左转化目标盘时,汽车应背左转,左挨左转.2.11相宜的缺累转背度(相识)汽车等速止驶时,赶快给目标盘一个角度输进,使转背轮赶快爆收偏偏转,汽车加进一个稳态赞同---等速圆周止驶.那时,汽车爆收一个绕Z轴线的横晃角速度,横晃角速度与转背轮转角的(大概者目标盘的转角)的比值称为转背敏捷度.横晃角速度删益---横晃加速度与车速成线性关系时,即它们函数关系为背去线,斜率为定值,称汽车具备中性转背个性.表示为:脆持相共的目标盘转角,普及车速,汽车的转直半径保护正在一个恒定值.横晃加速度与车速成非线性关系,其斜率呈减小趋势,称汽车具备缺累转背个性.表示为:脆持相共的目标盘转角,普及车速,汽车的转直半径越去越大.横晃加速度与车速成非线性关系,其斜率呈减少趋势,当车速度超出临界车速时,横晃角速度趋于无贫大,称汽车具备过多转背个性.表示为:脆持相共的目标盘转角,普及车速,汽车的转直半径越去越小.中性转背很简单转移为过多转背,过多转背汽车达到临界车速时将得去宁静性,由于其转直半径越去越小,横晃加速度越去越大,汽车将爆收激转而侧滑摔尾大概者翻车,果此汽车皆应具备相宜的缺累转背个性.转背敏捷度战转背个性主要效用果素:悬挂系统、转背系统以及整车的量心位子、轴距、轮距等参数.3 转背轮定位参数主销的观念:转背节绕车身(大概车架)转化的轴线.对付于大普遍货车客车的非独力悬挂,其主销是转背节与转背桥拳部对接的真真正在正在的主销.对付于独力悬挂的轿车,单晃臂结构的主销是下晃臂中球心与上晃臂球心的连线.麦弗逊悬挂的主销是下晃臂中球心与前滑柱与车身铰接面的连线.3.1 主销后倾角当汽车火仄停搁时,正在汽车的纵背垂里内,主销上部背后倾斜一个角度r,称为主销后倾角.当主销具备后倾角时,主销轴线与路里接面A 将位于车轮与路里交战面的前里.当汽车直线止驶时,若转背轮奇然受到中力效用而稍有偏偏转(比目标左偏偏转,如图中箭头所示),能爆收回正效用.也便是道,果为主销后倾角,汽车具备了保护直线止驶的本领.轮胎接天面B背主销做垂线,B面与垂脚面的距离L是车轮爆收回正力矩的力臂,果主销后倾角普遍不大,如K1为3°±30’°±30’,正在三维模拟技能尚不老练的保守安排表里中,便于估计,普遍以主销脱天面A与B面距离动做评介回正力矩的主参数.那个距离喊搞后倾拖距ξ.回正力矩M=ξ* F y附加转角δ= F y/C sF y----汽车受到的侧背力,与汽车品量、侧背加速度成正比.C s----转背系统刚刚度,包罗转背节、转背器、转背管柱的刚刚度.回正力矩M,附加转角δ便是转背系统的力反馈战角反馈.ξ越大回正力矩越大,共时,车辆转背时,那个力矩便成了转背需要克服的阻力矩,转背也变得艰易.回正力矩与后倾拖距ξ战车速v的仄圆皆成正比率关系.汽车中下速的回正力矩主要去自于后倾拖距ξ.3.2 主销内倾角当汽车火仄停搁时,正在汽车的横背垂里内,主销轴线与大天垂线的夹角为主销内倾角.主销内倾角的效用是使车轮自动回正.常常车轮轴线不正在火仄里,为了便当证明,那里假设直线止驶时车轮轴线正在火仄里上.对付于车轮轴线不正在火仄里的情况,只消把下图的火仄里改为锥里.如下图所示,思量该火仄里上战主销有接面的直线,主销与那些直线的夹角有一个最大值.而汽车直线止驶时,车轮轴线与主销的接角恰为那个最大值.车轮轴线与主销夹角正在转背历程中是稳定的,当车轮转过一个角度,车轮轴线便离启火仄里往下倾斜,以致车身上抬,势能减少.那样汽车自己的沉力便有使转背轮恢复到本去中间位子的效验.由于主销内倾,前轮转背时将使车身有抬下的倾背,那种系统位能的普及爆收回正力矩M'.假设Q为轮荷,δ为前轮转角,犹如下关系:M'=(Q*C*sin(2β)*sinδ)/2不妨瞅出,M'与侧背力F y无关,有:M比M'正在下速时大得多,矮速时,M'比M大得多.所以道:汽车矮速时回正主要由主销内倾角决断.共样主销内倾角β越大,转背越艰易.3.3 车轮中倾角当汽车火仄停搁时,正在汽车的横背垂里内,车轮仄里与大天垂线的夹角为前轮中倾角.如果空车时车轮的拆置正佳笔直于路里,则谦载时车桥果拆载变形而大概出现车轮内倾,那样将加速车轮胎的磨益.其余,路里对付车轮的笔直反力沿轮毂的轴背分力将使轮毂压背中端的小轴启,加沉了中端小轴启及轮毂紧固螺母的背荷,降矮它们的寿命.果此,为了前轮有一其中倾角.然而是中倾角也不宜过大,可则也会使轮胎爆收偏偏磨益.新颖汽车安排中也有将车轮中倾角α与为背值,比圆M11的车轮中倾角α为-1°±30’,其脚法是使转背轮正在转背时,车轮上下跳动引起的车轮偏偏转目标与车身正在离心力效用下的偏偏转目标普遍,普及收配宁静性.3.4 车轮前束车轮有了中倾角后,正在滑动时便类似于滚锥,进而引导二侧车轮背中滚启.由于转背横推杆战车桥的拘束车轮不致背中滚启,车轮将正在大天上出现边滚边背内滑的局里,进而减少了轮胎的磨益.为了预防那种由于圆锥滑动效力戴去的不良成果,将二前轮适合背内偏偏转,即产死前轮前束.前束的度量办法有二种:正在火仄里内,安排车轮中间仄里正在前后二侧的间距好,既A-R,如M11为0~2mm.另一种是车轮核心仄里与纵背仄里的夹角.启动轮的前束产死推力线,推力线必须与车辆纵背对付称仄里沉合,可则出现止驶跑偏偏.4 板滞转背系统结构底下是板滞转背系统主要部件介绍4.1 板滞转背器—转背真止机构4.1.1齿轮齿条式转背器齿轮齿条式转背器有四种形式:正里输进,二端输出.那是普遍采与的形式.M11也是那种.中间输进二端输出,其最大的佳处是:一个汽车共时启垦安排舵时,转背器不妨共用,不必沉新启垦.其缺面是:思量共用,齿轮轴战齿条轴线必须笔直,齿轮战齿条的螺旋角不克不迭与的较大.那样,齿轮齿条沉叠系数矮,拆载本领也矮,齿轮齿条仄顺性也好.正里输进,中间输出,那样转背横推杆不妨搞得较少,主假如谦脚与悬挂匹配战安插的需要.正里输进,一端输出.很少采与.少安奥托采与那种结构齿轮齿条式转背器的基础参数:正在整车坐标系下,内中球头核心坐标、输进轴与齿条沿压块核心线的投影面、输进轴与齿条夹角(即拆置角),那需要正在整车安插阶段决定.特天是内中球头核心必须与悬挂所决断的转背节的疏通轨迹充分协做.转背器基赋本能参数:力个性、线角传动比、齿条路程、输进轴总圈数(普遍去道便是目标盘总圈数)、转背器顺效用、转背器正效用、齿轮齿条啮合间隙个性、静扭刚刚度.线角传动比i=m n*z*π/cosαi 输进轴转化一圈,齿条的路程m n齿轮、齿条法里模数z小齿轮齿数α齿条倾角必须的真验:力个性真验、正启动疲倦真验、顺启动疲倦真验、冲打强度真验、静扭益害真验、耐腐蚀性真验.齿轮齿条式转背器的便宜:A 结构紧稀简朴,沉量沉,安插简单,不需要象循环球式转背器所必须的转背摇臂、直推杆、纵推杆;B 传动效用下,可达90%以上;C 有自动补偿间隙拆置,还不妨改变转背系统刚刚度,预防处事时爆收的冲打战噪音;D 果其顺效用下,对付车轮的回正力矩传播到目标盘的阻滞力小,转背系统简单回正.齿轮齿条式转背器的缺面:A 果其顺效用下,易出现挨脚局里;B 果齿轮齿条模数普遍与的较矮,拆载本领矮,普遍只可用于轿车战小型客车.4.1.2其余典型转背器介绍4.1.2.1 循环球式转背器循环球式转背器循环球式转背器是暂时海内中应用最广大的结构型式之一,普遍有二级传动副,第一级是螺杆螺母传动副,第二级是齿条齿扇传动副.为了缩小转背螺杆转背螺母之间的摩揩,二者的螺纹本去不间接交战,其间拆有多个钢球,以真止滑动摩揩.转背螺杆战螺母上皆加工出断里表面为二段大概三段分歧心圆弧组成的近似半圆的螺旋槽.二者的螺旋槽能协共产死近似圆形断里的螺旋管状通讲.螺母正里有二对付通孔,可将钢球今后孔塞进螺旋形通讲内.转背螺母中有二根钢球导管,每根导管的二端分别拔出螺母正里的一对付通孔中.导管内也拆谦了钢球.那样,二根导管战螺母内的螺旋管状通讲推拢成二条各自独力的启关的钢球"流讲".转背螺杆转化时,通过钢球将力传给转背螺母,螺母即沿轴背移动.共时,正在螺杆及螺母与钢球间的摩揩力奇效用下,所有钢球便正在螺旋管状通讲内滑动,产死"球流".正在转背器处事时,二列钢球不过正在各自的启关流讲内循环,不会脱出.循环球式转背器的便宜:A 由于正在螺杆螺母间有不妨循环的钢球,将滑动摩揩形成滑动摩揩,果而传动效用下,可达85%以上;B 不妨包管脚够的耐磨本能,果而有脚够的使用寿命;C 间隙安排简单(很易真止自动安排),处事稳固稳当;D 很简单真止变传动比功能.循环球式转背器的缺面:A顺效用下,易出现挨脚局里;B 结构搀杂,制制粗度央供下;C 安插艰易,普遍用于安插空间大的货车战客车(也果为其拆载本领下).4.1.2.2 蜗杆直柄指销式转背器蜗杆直柄指销式转背器蜗杆直柄指销式转背器的传动副(以转背蜗杆为主动件,其从动件是拆正在摇臂轴直柄端部的指销.转背蜗杆转化时,与之啮合的指销即绕摇臂轴轴线沿圆弧疏通,并戴动摇臂轴转化.蜗杆直柄指销式转背器的便宜:A 简单真止变传动比;B 间隙安排简单,制制较循环球简朴.缺面太多:销子不克不迭自转,磨益快;正顺效用皆矮等待,基础已经淘汰.4.2 转背管柱及万背节、目标盘—转背把持机构4.2.2转背管柱及万背节M11转背管柱结构转背管柱及万背节的基础功能:1 将驾驶者给目标盘的操舵力矩战角度位移传播给转背器;2 传播转背器赢得的路里以及汽车止驶的情景等疑息;3 驾驶者免伤害功能.对付下档轿车还应具备的恬静性功能:目标盘角度可调;目标盘下度可调等,对付拆有阻僧器(如挠性万背节)还具备衰减路里冲打的效用.其余还应具备:推拢启关拆置、面火启关、化妆罩等拆置性的收援功能.安排央供:除需谦脚上述功能央供中,还应谦脚如下央供:根据板滞本理可知,单十字轴万背节的等速二个需要条件为:三相接轴轴线正在共一仄里内战二轴间夹角的千万于值相等.然而由于整车安插去由,基础不克不迭谦脚等速条件,且目标盘的转化速度很矮,对付等速要不下.然而也央供二轴间空间夹角α、β不得大于35°,最佳矮于30°,可则十字轴轴启工况顺转,寿命降矮,且转背系统效用降矮,回正本能好.转背管柱及万背节的基础真验:驱能源矩真验、火仄固态刚刚度、笔直固态刚刚度、扭转耐暂考查、扭转耐暂强度、转背柱抗扭强度、目标锁套抗扭力矩、轴启推着力、滚针轴启的拔着力、滑动阻力、静扭强度、耐腐蚀性真验. 4.2.2 目标盘目标盘普遍为二辐条、三辐条大概四辐条形状.目标盘属于中瞅件,对付其制型战表面品量有较下央供.其结构是采与内骨架,中包PV收泡资料,也有再中包真皮.骨架由焊接钢管大概者镁合金制制,出于碰碰央供,骨架应具备背下蜿蜒变形的本领,以达到吸能的脚法.对付于目标盘的台架真验有多项央供,如:身体碰打考查、静扭强度考查、骨架总成扭转蜿蜒考查、耐汗真验等.5 能源转背系统结构能源转背系统兼用驾驶员体力战收效果的能源为转背能源的转背系统,它是正在板滞转背系统的前提上加设一套转背加力拆置而产死的.其中属于转背加力拆置的部件是:转背油泵、转背油管、转背油罐以及位于真足式转背器里里的转背统制阀及转背能源缸等.当驾驶员转化转背盘时,转背横推杆推(推)动转背节,使转背轮偏偏转,进而改变汽车的止驶目标.5.1 对付能源转背机构的央供1)疏通教上应脆持转背轮转角战驾驶员转化转背盘的转角之间脆持一定的比率关系.2)随着转背轮阻力的删大(大概减小),效用正在转背盘上的脚力必须删大(大概减小),称之为“路感”.3)当效用正在转背盘上的切背力Fh≥0.025-0.190kN 时(果汽车形式分歧而同),能源转背器便应启初处事.4)转背后,转背盘应自动回正,并使汽车脆持正在宁静的直线止驶状态.5)处事敏捷,即转背盘转化后,系统内压力能很快删少到最大值.6)能源转背得灵时,仍能用板滞系统收配车轮转背. 7)稀启本能佳,内、中揭收少.5.2能源转背器能源转背器是正在板滞转背器减少了转背统制阀战能源油缸组成,底下主要介绍统制阀战能源油缸的工做本理.5.2.1处事本理汽车直线止驶时,阀芯与阀套的位子关系如图中所示.自泵去的液压油经阀芯与阀套间的间隙,流背能源缸二端,能源缸二端油压相等.驾驶员转化目标盘时,阀芯与阀套的相对付位子爆收改变,使得大部分大概局部去自泵的液压油流进能源缸某一端,而另一端与回油管路接通,能源缸促进汽车左传大概左转.5.2.2能源转背器的力个性能源转背器的统制阀(以转阀为例)本量上是一个液压伺服阀,使用流体力教中的薄壁小孔本理,正在活塞缸的二端修坐压力好,那个压力好遵循伯努利圆程,根据阀芯阀套的过流里积战系统流量举止估计.施加正在输进轴(目标盘)上的力矩的变更引起阀芯阀套的过流里积的变更,过流里积的变更决断压力好的大小,以真止分歧转背状态下的力输出.那个压力好与输进轴的输进力矩的关系便是转背器的力个性.下图是M11转背器力个性直线.A区,是直线止驶位子附近小角度转背区,称为不敏捷区.不敏捷区不克不迭博得过宽,可则会出现操舵力偏偏大.如果过窄,汽车下速止驶时,沉微一动目标盘,转背器赶快帮力,易出现“收飘”,止驶得去宁静性,另一圆里,转背动做中断后,车轮回正力矩启动阀芯,弹性元件(扭杆)的变形不克不迭克服转背管柱战目标盘的转化惯量,将挨启统制阀,爆收压力,仄稳回正力矩,汽车将不克不迭回正.C区时常使用赶快转背止驶区,称为修压区.央供帮力效用明隐,油压直线的斜率减少教大,直线由仄缓变陡.。

汽车转向系统设计计算匹配方式

汽车转向系统设计计算匹配方式

汽车转向系统设计计算匹配方式1 汽车转向系统的功能1.1 驾驶者通过方向盘控制转向轮绕主销的转角而实现控制汽车运动方向。

对方向盘的输入有两种方式:对方向盘的角度输入和对方向盘的力输入。

装有动力转向系统的汽车低速行驶时,操作方向盘的力很轻,却要产生很大的方向盘转角输入,汽车的运动方向纯粹是由转向系统各杆件的几何关系所确定。

这时,基本上是角输入。

而在高速行驶时,可能出现方向盘转角很小,汽车上仍作用有一定的侧向惯性力,这时,主要是通过力输入来操纵汽车。

1.2 将整车及轮胎的运动、受力状况反馈给驾驶者。

这种反馈,通常称为路感。

驾驶者可以通过手—---感知方向盘的震动及运转情况、眼睛—---观察汽车运动、身体—---承受到的惯性、耳朵—---听到轮胎在地面滚动的声音来感觉、检测汽车的运动状态,但最重要的的信息来自方向盘反馈给驾驶者的路感,因此良好的路感是优良的操稳性中不可缺少的部分。

反馈分为力反馈和角反馈从转向系统的功能可以得知:人、车通过转向系统组成了人车闭环系统,是驾驶者对汽车操纵控制的一个关键系统。

2 转向系统设计的基本要求转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。

转向系的基本要求如下:2.1 汽车转弯时,全部车轮应绕瞬时回转中心(瞬心)旋转,任何车轮不应有侧滑。

不满足这项要求会加剧轮胎磨损,并降低汽车的操作稳定性。

实际上,没有哪一款汽车能完全满足这项要求,只能对转向梯形杆系进行优化,一般在常用转向角内(内轮15°~25°范围)使转向内外轮运动关系逼近上述要求。

2.2 良好的回正性能汽车转向动作完成后,在驾驶者松开方向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。

转向轮的回正力矩的大小主要由悬架系统所决定的前轮定位参数确定,一般来说,影响汽车回正的因素有:轮胎侧偏特性、主销内倾角、主销后倾角、前轮外倾、转向节上下球节的摩擦损失、转向节臂长、转向系统的逆效率等。

动力转向系统设计计算书

动力转向系统设计计算书

动力转向系统的匹配与计算一、动力转向器与转向油泵的匹配选择一、已知如下条件满载前轴负荷:G1= 7500³9.8 = 73500 N(载货25000 kg)轮胎气压:p = 0.91 Mpa(标准规定)(轮胎10.00-20-18PR)p = 1.1 Mpa(实际常用)(轮胎10.00-20-18PR)轮胎与路面间的滑动摩擦系数:f = 0.7转向摇臂长:l1= 280 mm转向节臂长l2= 298 mm转向盘半径Rsw= 225 mm转向油泵最高油压:P = 10 Mpa转向油泵控制流量:q = 16 L/min转向器最大输出扭矩:Mmax = 3450 N²m转向器角传动比:iw= 20.5转向系统效率:η= 75%转向器的齿扇分度圆半径:r = 44 mm转向器的摇臂轴摆角:α = ±40.83°转向轮的转角为:β= 32.49°转向器油缸直径:D = 100 mm转向螺杆螺距:t = 13.5 mm二、系统油压1、汽车的原地转向阻力距MrM r =f3G13p=0.73³7350030.91≈ 4874018 N²mm2、验算最小转向摇臂长l1β²l2α²l1 =32.49³29840.83³235=237.1235≈ 1.009,在0.85~1.1之间,满足要求。

3、不加方向助力时原地转向的方向盘转向力F h =l1Mrl2Rswiwη=4874018³235298³225³20.5³0.75≈ 1111 N4、转向直拉杆受力大小F = Mrl2=4874018298≈ 16356 N5、转向摇臂轴受到的力矩M = F³l1= 16356³235 ≈ 3843660 N²mm < 4450000 N²mm 6、转向器油缸实际工作面积S = π(D2-d2)4=π²10024≈ 7853.98 mm27、系统所需油压p =MS²r=38436607853.98³44≈ 11.12 N²mm2 = 11.12 MPa > 10 MPa三、系统工作流量1、取转向盘转速为1.25r/s,根据汽车工程手册所述方法计算油泵理论工作流量为:Q= 60ntS = 60³1.25³13.5³7853.98 = 7952154.75 mm3≈ 8.0 L实际需要流量为:Q 1 =(1.5~2)Q+Q2=(1.5~2)8.0+8.0³15% = 13.2~17.2 L2、取转向盘转速为1.5r/s,根据汽车设计手册所述方法计算油泵理论控制流量为:Q = S²V = S²n²t = 7853.98³90³13.5 = 9542585.7 mm3≈ 9.54 L实际控制流量为:Q’= Q/0.85 = 9.54/0.85 = 11.2 L二、转向油管的选择1、吸油管:v = 0.5 m/s时:d = 216³10-360²π²0.5≈ 0.0261 m = 26.1 mmv = 1.5 m/s时:d = 216³10-360²π²1.5≈ 0.0151 m = 15.1 mm2、回油管:v = 1.5 m/s时:d = 216³10-360²π²1.5≈ 0.0151 m = 15.1 mmv = 2 m/s时:d = 216³10-360²π²2≈ 0.0130 m = 13.0 mm3、高压油管:v = 2.5 m/s时:d = 216³10-360²π²2.5≈ 0.0117 m = 11.7 mmv = 5 m/s时:d = 216³10-360²π²5≈ 0.0082 m = 8.2 mm(橡胶软管:v < 4 m/s时:d > 216³10-360²π²4≈ 0.0092 m = 9.2 mm)根据实际使用时修整得下表:三、转向油罐的选择1、转向器容积:V 1 =1002²π4³(13.5³5.5) = 582862.5 mm2≈ 0.58 L2、转向液压管路容积:V 2 =192²π4³490+162²π4³2130+12.52²π4³1920 ≈ 138929+428262+235619= 802810 mm2≈ 0.80 L3、转向油罐容积:油罐必须有足够的空间容积,可按空气/油约为1:1确定,即:V3> 2³(0.58+0.80) = 2.76 L因此取:V3= 1.5 L4、总加油量约为:V = V1+V2+V3= 0.58+0.80+1.5 = 2.88 L。

转向系统校核计算与设计指南

转向系统校核计算与设计指南

转向节臂计算力臂(mm) 转向垂臂计算力臂(mm) 原地阻力矩换算到当量杆上的阻力(N) 动力转向器输出到当量杆的拉力(N) 转向助力泵作用,方向盘的转动力(N) 转向助力泵失效,方向盘的转动力(N) 5.转向拉杆位于左极限位置状态 转向节臂计算力臂(mm) 转向垂臂计算力臂(mm) 原地阻力矩换算到当量杆上的阻力(N) 动力转向器输出到当量杆的拉力(N) 转向助力泵作用,方向盘的转动力(N) 转向助力泵失效,方向盘的转动力(N) 6.转向拉杆位于右极限位置状态 转向节臂计算力臂(mm) 转向垂臂计算力臂(mm) 原地阻力矩换算到当量杆上的阻力(N) 动力转向器输出到当量杆的拉力(N) 转向助力泵作用,方向盘的转动力(N) 转向助力泵失效,方向盘的转动力(N)
厦门金龙 技术中心 应青峰 2005.10.10 常用经验值,可以修改 计算结果,不能修改
转向垂臂长度(mm) 4.转向助力泵型号 工作流量(L/min) 最大工作压力(MPa) 公称排量n) 转向助力泵与发动机速比 5.贮油罐型号 总容积(L) 最大贮油量(L) 最大通过油量(L/min) 安全开启压力(MPa) 6.发动机型号 最高转速(r/min) 怠速(r/min) 7.转向拉杆规格 球头一总成型号 球头一球销直径(mm) 球销沿其中心摆角(°) 球头二总成型号 球头二球销直径(mm) 球销沿其中心摆角(°) 8.方向盘半径(mm) 9.悬架型式
设计结论:此K01旅游车型的动力转向系统匹配是比较成功 的,直接鉴借了原东风杭汽R13底盘的转向系统,并做了拉杆 加粗提高安全性能改进,优化了转向系统。由此表的右方数 据结果可得出:前悬架系统与转向拉杆系统的运动协调基本 上符合此车型的设计要求;动力转向系统的各总成件基本参 数是相互匹配的,并能比较优良的完成协调运动。

转向泵与系统匹配计算公式

转向泵与系统匹配计算公式

附录Ⅱ: 液压动力转向系统性能参数计算和设计方法1.力矩Mr 的计算:转向器的扭矩取决于汽车整体转向桥承重载荷、轮胎气压、路面情况及转向桥设计参数,计算公式:Mr =3/)/(131P G f --------------------------公式1式中: • Mr-----在沥青或混凝土路面上的原地转向阻力矩,N.mm ;• f-------轮胎与地面间的滑动摩擦系数,取0.7;• G 1-----转向前桥负荷,N ;• P-------轮胎气压,MPa ;2.转向所需最小工作压力Pmin 及理论流量Qo 计算:根据公式1计算的力矩Mr 和所选转向器的缸径,Pmin =)]([10S S R M F r -*÷ ------------------公式2式中: • Pmin-------转向的最小工作压力,MPa ;• Mr------在沥青或混凝土路面上的原地转向阻力矩, N.m ;• S 0------油缸工作面积,㎡;• S 1------螺杆外径所占面积,㎡ ;• R F ------扇形齿分度圆半径,m 。

理论流量(Qo)是根据转向盘最大瞬时转速计算:Q 0=60ntS ----------------------------------公式3式中: • n —汽车方向盘最大瞬时转速(转/秒),轿车取 1.5r/S, 其它车辆取1.25r/S ;• t---助力方向机丝杆螺距;• S---助力方向机油缸实际工作面积;3.转向油泵的最大压力Pmax 设计:公式2计算出的转向压力是转向所需要的最小工作压力,由于转向油泵具有安全保护作用,必须保证转向压力不得大于转向油泵设计的安全压力,建议设计的转向压力为安全QC/T ×××-20××压力的85%,例如:转向压力为8MPa ,那么油泵的安全压力则设计为10MPa 。

同时该工作2 压力也是对转向器的安全保护压力。

汽车电动助力转向系统匹配设计计算及验证

汽车电动助力转向系统匹配设计计算及验证
摘 要:转 向系统是汽车重要的组成部分,本文根据实际工作情况,介绍了汽车电动助力转向系统计算匹配,并验证 了该方法的实用可行性。
关键词:电动助力转向系统匹配;齿条力;电机匹配
1 引言 转向系统影响着汽车行驶中的操纵稳定
性以及行车安全,是汽车重要的系统之一。电 动助力转向系统(Electric Power Steering, 简称 EPS)具有节能、环保、高效等诸多优势, 成为目前转向系统发展的主流趋势。
机满足工作运行及安全考虑,考虑高温下的
磁场衰退,一般会要求电机有 10% 扭矩余量,
综合有以下公式:
F 推 >Fmax
(3-5)
Td

1.1·(
Fmax·C 2000π·iw·η1·η2·η3
-
Th iw·η1

(3-6)
其中:
TC— 转 向 管 柱 输 出 扭 矩,N.m;T d— 电 机输出最大转矩,N·m;Th—最大方向盘转矩, N·m,取 5N·m;η1—电机及减速机构传 动效率,取 0.9;η2—转向中间轴传动效率, 取 1;η3—转向器传动效率;
系统内部摩擦阻力,此时最大齿条力计算如
下公式:
TL Fmax= max
+F f=
M r+M G
L
+F f
(2-4)
其中:Fmax—最大齿条力,N;
Ff— 转 向 系 统 内 部 摩 擦 阻 力, 取
Ff=200N;
L—转向节臂有效长度(图 3),mm。
图 2 主销的内倾角和主销偏移距(以左 轮为例)
定转速为:
n=nv·iw 电机额定输出功率计算:
(3-7)
P N=
Td·n 9.549

汽车转向系统设计计算匹配方式

汽车转向系统设计计算匹配方式

1 汽车转向系统的功能1.1 驾驶者通过方向盘控制转向轮绕主销的转角而实现控制汽车运动方向。

对方向盘的输入有两种方式:对方向盘的角度输入和对方向盘的力输入。

装有动力转向系统的汽车低速行驶时,操作方向盘的力很轻,却要产生很大的方向盘转角输入,汽车的运动方向纯粹是由转向系统各杆件的几何关系所确定。

这时,基本上是角输入。

而在高速行驶时,可能出现方向盘转角很小,汽车上仍作用有一定的侧向惯性力,这时,主要是通过力输入来操纵汽车。

1.2 将整车及轮胎的运动、受力状况反馈给驾驶者。

这种反馈,通常称为路感。

驾驶者可以通过手—---感知方向盘的震动及运转情况、眼睛—---观察汽车运动、身体—---承受到的惯性、耳朵—---听到轮胎在地面滚动的声音来感觉、检测汽车的运动状态,但最重要的的信息来自方向盘反馈给驾驶者的路感,因此良好的路感是优良的操稳性中不可缺少的部分。

反馈分为力反馈和角反馈从转向系统的功能可以得知:人、车通过转向系统组成了人车闭环系统,是驾驶者对汽车操纵控制的一个关键系统。

2 转向系统设计的基本要求转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。

转向系的基本要求如下:2.1 汽车转弯时,全部车轮应绕瞬时回转中心(瞬心)旋转,任何车轮不应有侧滑。

不满足这项要求会加剧轮胎磨损,并降低汽车的操作稳定性。

实际上,没有哪一款汽车能完全满足这项要求,只能对转向梯形杆系进行优化,一般在常用转向角内(内轮15°~25°范围)使转向内外轮运动关系逼近上述要求。

2.2 良好的回正性能汽车转向动作完成后,在驾驶者松开方向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。

转向轮的回正力矩的大小主要由悬架系统所决定的前轮定位参数确定,一般来说,影响汽车回正的因素有:轮胎侧偏特性、主销内倾角、主销后倾角、前轮外倾、转向节上下球节的摩擦损失、转向节臂长、转向系统的逆效率等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车转向系统设计计算匹配方式
1 汽车转向系统的功能
1.1 驾驶者经过方向盘控制转向轮绕主销的转角而实现控制汽车运动方向。

对方向盘的输入有两种方式:对方向盘的角度输入和
对方向盘的力输入。

装有动力转向系统的汽车低速行驶
时,操作方向盘的力很轻,却要产生很大的方向盘转角
输入,汽车的运动方向纯粹是由转向系统各杆件的几何
关系所确定。

这时,基本上是角输入。

而在高速行驶
时,可能出现方向盘转角很小,汽车上仍作用有一定的
侧向惯性力,这时,主要是经过力输入来操纵汽车。

1.2 将整车及轮胎的运动、受力状况反馈给驾驶者。

这种反馈,一般称为路感。

驾驶者能够经过手—---感知方向盘的震动及运转情况、眼
睛—---观察汽车运动、身体—---承受到的惯性、耳朵—---
听到轮胎在地面滚动的声音来感觉、检测汽车的运动状
态,但最重要的的信息来自方向盘反馈给驾驶者的路
感,因此良好的路感是优良的操稳性中不可缺少的部
分。

反馈分为力反馈和角反馈
从转向系统的功能能够得知:人、车经过转向系统组成
了人车闭环系统,是驾驶者对汽车操纵控制的一个关键
系统。

2 转向系统设计的基本要求
转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关
系。

转向系的基本要求如下:
2.1 汽车转弯时,全部车轮应绕瞬时回转中心(瞬心)旋转,任何车轮不应有侧滑。

不满足这项要求会加剧轮胎磨损,并降低汽车的操作
稳定性。

实际上,没有哪一款汽车能完全满足这项要
求,只能对转向梯形杆系进行优化,一般在常见转向角
内(内轮15°~25°范围)使转向内外轮运动关系逼近
上述要求。

2.2 良好的回正性能
汽车转向动作完成后,在驾驶者松开方向盘的条件下,转
向轮能自动返回到直线行驶位置,并稳定行驶。

转向轮
的回正力矩的大小主要由悬架系统所决定的前轮定位参
数确定,一般来说,影响汽车回正的因素有:轮胎侧偏
特性、主销内倾角、主销后倾角、前轮外倾、转向节上
下球节的摩擦损失、转向节臂长、转向系统的逆效率
等。

2.3汽车在任何行驶状态下,转向轮不得产生自振,方向盘没有摆动。

2.4 转向机构与悬架机构的运动不协调所造成的运动干涉应尽可能小,由于运动干涉使转向轮产生的摆动应最
小。

汽车转弯行驶时,作用在汽车质心处的离心力的作用,内轮载荷减小,外轮载荷增加,使悬架上的载荷发生相应变化。

若转向桥采用非独立悬架、钢板弹簧机构时,则内侧板簧因载荷减小而长度缩短,外侧板簧因载荷增加而长度增加,导致车轴在水平面内相对车身转过一个角度,产生轴转向效应。

转向直拉杆和纵拉杆的运动关系必须与之适应,使轴转向效应趋于不足转向。

当转向桥为独立悬架、螺旋弹簧机构时,内侧弹簧因载荷减小而长度增加,车轮相对车身下跳,外侧弹簧因载荷增加而长度减小,车轮相对车身上跳,因转向横拉杆外球头从运动学上来说,是转向轮的一部分,内球头属于车身的一部分,外球头随车轮上下跳动所形成的轨迹必须与内球头所在中心点相适应。

这就是传统转向理论中所说的断开点校核。

实际上,现代汽车设计中,合理利用这个运动轨迹的干涉,使得运动干涉造成的车轮偏转方向(侧倾转向)与转向方向相反,有助于实现不足转向。

2.5 良好的机动性
为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要达到按前外轮轨迹计算,使其最小转弯半径能达到汽车轴距的2~2.5倍。

最小转弯直径是汽车机动性的评价指标。

影响最小转弯直径的因素有:汽车轮距、轴距、轮胎侧偏刚度、有
效转向节臂长,转向器行程(齿轮齿条式转向器)、转向摇臂摆角(循环球式转向器)、转向摇臂长(循环球式转向器)、转向梯形的布置形式等。

2.6 转向操纵轻便性
转向操纵轻便性的评价指标一般有两项:驾驶者作用在方向盘上的切向力大小和方向盘总圈数。

机械转向系统的轿车,在行驶中转向时的切向力应为50~100N.有助力转向系统的轿车,此力为20~50N。

K1哈弗为27N ±3N。

轿车方向盘总圈数不得大于4圈,货车不得大于6圈。

M11机械转向系统方向盘总圈数3.825,液压助力转向系统方向盘总圈数3.083。

对于无助力系统,方向盘上的切向力大小由转向系力传动比决定,方向盘总圈数等于转向器总圈数。

方向盘总圈数多和切向力越大都容易使驾驶者疲劳。

根据机械原理,方向盘总圈数越多,切向力就越小,两者成反比。

只有合理对方向盘总圈数和切向力取值,才能有一个好的转向操纵轻便性。

对于有助力转向系统,能够实现少的方向盘总圈数和小的方向盘切向力。

但需要注意助力特性,虽然实现了好的转向操纵轻便性,却容易出现转向高速发飘、转向发贼现象,破坏操纵稳定性。

2.7直线行驶稳定性
转向系统和悬架系统密切相关,必须使转向系统与悬架。

相关文档
最新文档