五年级奥数__二进制问题_讲义
小学奥数二进制复习课程
这光狡可头 猾怎强了也,太熊 么大办你呀快点破
解吧
我有办法了,只 要将十进制数化 成二进制数就可
以了
屏幕 显示 25
1、十进制
二进制
方法: (1)用2去整除 (2)取余 (3)从下至上
2 25 2 12 26
23 21
0
…… 1 …… 0 …… 0 …… 1 …… 1
哦,密码 就是11001
了
(25)10 =(11001 )2
了
臭狗熊,怎么 会这么聪明,
气死我了
熊大,你真 是太聪明了!
俺也要学 数学
那都是数学 神奇的效果
熊二,那我来考考 你
练习
(17)10 =(10001)2
2 17 28
4 2 1 0
…… 1
…… 0 …… 0 …… 0 …… 1
(40)10 =(101000)2
2 40 2 20 2 10 25 22 21
俺会了!
熊 熊大偷偷的来到光头强的房间里。
熊大,我们看看 有什么好吃滴
好像是一台智能 密码箱
熊大,那是什么 东东?
那里面一定有好 多好吃滴,熊大, 我们快把它打开
吧
熊二摁了下密码箱开关,机器说话了: 我只识别0和1两个数字,请将下面的
数字转化成我认识的数字输入…
0
…… 0
…… 0 …… 0 …… 1
…… 0 …… 1
(11001)2 = (25 )10 方法:
(100010)2 = ( 34)10
每一位数字乘以其相应的权后再相加就是该数的数值。
1×24 +1 × 23 +0 × 22 +0 × 21 +1 × 20 = 16+8+0+0+1 = 25
奥数:小学奥数.进制的性质及应用(ABC级).学生版 (2)
一、 数的进制(1) 十进制:我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
(2) 二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n ,我们有n 0=1。
(3) k 进制:一般地,对于k 进位制,每个数是由0,1,2, ,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k , .如二进位制的计数单位是02,12,22, ,八进位制的计数单位是08,18,28, .(4) k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a ka k a ---=⨯+⨯++⨯+ () 十进制表示形式:1010101010n n n n N a a a --=+++ ; 二进制表示形式:1010222n n n n N a a a --=+++ ;为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数.(5) k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
二、 进制间的转换:知识结构进制的性质与应用一般地,十进制整数化为k 进制数的方法是:除以k 取余数,一直除到被除数小于k 为止,余数由下到上按从左到右顺序排列即为k 进制数.反过来,k 进制数化为十进制数的一般方法是:首先将k 进制数按k 的次幂形式展开,然后按十进制数相加即可得结果. 如右图所示:1. 几进制就是逢几进一,借一当几。
小学奥数二进制ppt课件
1100
23 22 21 20
权
1×23 + 1×22 + 0× 21 + 0×20 =8 + 4 + 0+ 0
= 12
完整版课件
9
密码就是12 了,太简单
了
臭狗熊,怎么 会这么聪明,
气死我了
完整版课件
10
熊大,你真 是太聪明了!
俺也要学 数学
那都是数学 神奇的效果
完整版课件
11
熊二,那我来考考你
哦,密码 就是11001
了
(25)10 =(11001 )2
完整版课件
5
熊二把密码11001输入后,密码箱打 开了,里面有好多好吃的水果……
熊二和熊大开心的吃了起来
有香蕉、苹果、菠 萝,还有玉米,太
好吃了…
完整版课件
6
这可怎么办 呀,熊大快 点想想办法
吧
臭狗熊, 上当了吧,
哈哈
吃着吃着,突然 门关上了…
熊出没——历险记
完整版课件
1
有一天,光头强出去伐木了,熊二和熊 熊大偷偷的来到光头强的房间里。
熊大,我们看看 有什么好吃滴
完整版课件
2
好像是一台智Hale Waihona Puke 密码箱熊大,那是什么 东东?
那里面一定有好 多好吃滴,熊大, 我们快把它打开
吧
完整版课件
3
熊二摁了下密码箱开关,机器说话了: 我只识别0和1两个数字,请将下面的
练习
(17)10 =(10001)2
(40)10 =(101000)2
2 17 28
4 2 1 0
…… 1
…… 0 …… 0 …… 0 …… 1
五年级数学奥数讲义-位值原理与数的进制(学生版)
“位值原理与数的进制”学生姓名授课日期教师姓名授课时长本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握的知识要点。
通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。
并学会在其它进制中位值原理的应用。
从而使一些与数论相关的问题简单化。
一、位值原理位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
二、数的进制我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,=1二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则是“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n,我们有n0=1。
n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
【试题来源】【题目】某三位数abc和它的反序数cba的差被99除,商等于与的差;ab与ba 的差被9除,商等于与的差;ab与ba的和被11除,商等于与的和。
【试题来源】【题目】如果ab×7= ,那么ab等于多少?【试题来源】【题目】从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数。
二进制ppt课件
小数点前的第K位的位权Nk-1 小数点后的第m位的位权N-m
N进制的某位的值:某位的数码乘以该位的位权。
例:(236.05)7中:=2
小数点前第三位的值是:2x72=98; 小数点后第二位的值是:5x7-2=5/72=5/49=0.102
例:(D91.B4)16中:=3473.703125
N进制的某位数码的十进制大小的值:
某位的数码乘以该位的位权
某个N进制数转换成十进制数
把该N进制数每位数码换成十进制值后相加。 例:(236.05)7
小数点前第三位的值是:2x72=98 小数点后第二位的值是:5x7-2=5/72=5/49=0.102 (236.05)7 =2x72+3x71+6x70+5x7-2=125.102 例:(D91.B4)16 小数点前第三位的值是: Dx162=13x162=3328 小数点后第二位的值是:4x16-2=0.015625
十进制换N进制的通用方法
整数部分:除N取余; 小数部分:乘N取整。
2、二进制和十六进制的转换
二进制整数→十六进制整数
从二进制数的小数点开始向两端以每四位一组 分组,到端点不足四位添零补足四位;
每四位一组的二进制数用一位十六进制数表示; (最多可缩短3/4的代码长度)
要回熟练运用8421码,和熟记十六进制的六个 字母符号对应的十进制的大小值;
二进制数有:只有“0”和“1”两个数码;对计算 机而言,形象鲜明,易于区别,识别可靠性高; 运算规则简单……等特点。
二进制数也有缺点:二进制数书写冗长,不易 识别,不易发现错误,对编制程序十分不利。
克服这一缺点,使人们阅读方便,计算机里经 常在做数制的转换,如二进制数与十进制数的 相互转换等。
五年级奥数专题 数的进制(学生版)
学科培优 数学 “数的进制” 学生姓名授课日期 教师姓名授课时长 知识定位 所谓二进制,就是只用0与1两个数字,在计数与计算时必须是“满二进一”。
即每两个相同的单位组成一个和它相邻的较高的单位(所以任意一个二进制只需要“0”与“1”表示就够了)。
例如:2在二进制中是10;3写成二进制数是11;4写成二进制数便是100,那么5呢?应该是101随着科学计数的发展,数字电子计算机的使用日益普遍,计算器内部进行的运算就使用的是二进制数。
我们经常和计算器打交道,应该懂一些二进制方面的知识。
知识梳理一、二进制按照“逢二进一”的法则,很容易得到一下两种进制的数字的对照表: 十进制 二进制 十进制 二进制 1 2 3 4 5 6 7 8 1 10 11 100 101 110 111 1000 9 10 11 12 13 14 15 16 100110101011110011011110111110000二进制的最大优点是:每个数的各个数位上只有两种状态——0或1。
这样,我们便可以通过简单的方法,例如白与黑、虚与实、负与正、点与划、小与大、暗与亮等等手段加以表示。
当然,二进制也有不足,同一个数在二进制中要比在十进制中位数多得多。
二、十进制与二进制的互相转化当我们写上一个数目1997时,实际上意味着我们使用了“十进制”数,即也就是说:1997中含有一个1000,九个100,九个10与七个1.199111000910091071=⨯+⨯+⨯+⨯在上表中可以看到,二进制数10表示十进制2;二进制数100表示十进制数4;二进制数1000表示十进制数8;二进制数10000表示十进制数16;……可以看出规律:二进制数100000应该表示十进制数32,……。
那么我们写下一个二进制数10110,则应表示它含有一个16,一个4与一个2,也就是明白了上面所说的两点,则二进制与十进制之间的转化的道理就容易懂了。
为了叙述的方便,我们约定:用表示括号内写的是二进制数,如;用表示括号中写的数是十进制数,如。
《小学奥数二进制》课件
对小学奥数中二进制应用的总结
回顾二进制的基本概念和运算规则 总结二进制在数学中的应用实例 探讨二进制与其他数学知识的联系与区别 展望二进制在数学教育中的未来发展
对未来小学奥数中二进制应用的展望
二进制在计算机科学中的 重要性
二进制在数学和逻辑中的 广泛应用
二进制在人工智能和机器 学习中的应用前景
二进制在物联网和大数据 时代的应用潜力
小学奥数中的二进制经典例题 解析
简单的二进制数问题解析
二进制数的定义与表示方法
简单的二进制数乘法与除法
添加标题
添加标题
简单的二进制数加法与减法
添加标题
添加标题
经典例题解析:如何解决简单的二 进制数问题
复杂的二进制数问题解析
复杂二进制数的表示方法
复杂二进制数的运算规则
经典例题的解析过程
解题思路与技巧总结
添加标题
减法运算:0-0=0,0-1=1(借 位),1-0=1,1-1=0
添加标题添加标题来自除法运算:除数和被除数都为0时结 果为0;除数为0时无意义;被除数 为0且除数为1时结果为0;其他情 况下结果为被除数。
小学奥数中的二进制应用
小学奥数中的二进制数问题
二进制数的定义与表示 二进制数的运算规则 二进制数在数学中的应用 二进制数与其他数制的关系
二进制数的表示方法
二进制数的基数为2 二进制数只有0和1两个数字 二进制数的运算规则是逢二进一 二进制数的表示形式有二进制数、十进制数、十六进制数等
二进制数的运算规则
加法运算:0+0=0,0+1=1, 1+0=1,1+1=0(进位)
乘法运算:0*0=0,0*1=0, 1*0=0,1*1=1
《小学奥数二进制》课件
在算法设计中,二进制数的特性常常被用来优化算法效率和降低计算复 杂度。
03
数学逻辑
在数理逻辑中,二进制数常常被用来表示逻辑值和进行逻辑运算。
在日常生活中的应用
开/关状态
在日常生活中,许多设备或系 统的状态可以用二进制数来表 示,如开关的状态(开/关)、 音量调节(高/低)等。
加密通信
在通信中,二进制数可以用来 表示加密信息,因为二进制数 的简单运算规则和易于处理的 特性使得加密和解密过程变得 相对简单。
例如,在解决一些关于二进制数的组合问题时,我们可以通 过归纳法总结出不同组合方式的规律,从而快速得出答案。
演绎法
演绎法是一种从一般到特殊的推理方 法,在解决奥数二进制问题时,演绎 法可以帮助我们从已知的一般规律推 导出特殊情况下的结论。
例如,在解决一些关于二进制数的逻 辑推理问题时,我们可以通过演绎法 推导出符合逻辑的结论,从而快速得 出答案。
05
奥数二进制问题实例解析
实例一:二进制数的规律问题
总结词
通过观察二进制数的变化规律,找出数 列中隐藏的数学关系。
VS
详细描述
这类问题通常会给出一些二进制数列,如 1010, 1101, 1110等,要求找出数列中数 字变化的规律,并预测下一个数字。解决 这类问题需要细心观察数列中数字的变化 ,找出隐藏的数学关系。
总结词
将二进制数的知识应用于实际问题中,解决 实际问题。
详细描述
这类问题通常会以实际生活场景为背景,如 “一个密码锁的密码由三个二进制数字组成 ,请问有多少种可能的组合方式?”解决这 类问题需要将二进制数的知识应用于实际问 题中,通过数学运算和逻辑推理,找出符合
实际情况的答案。
(完整版)五年级奥数__二进制问题_讲义
专题二二进制问题知识要点用0,1,2,3,4,5,6,7,8,9这10个数字表示所有整数的方法被叫做十进制,十进制是最常见的进制,世界上绝大数国家和地区都用这种方法来计数,它的特点是满十进一,退一当十。
除了十进制外,有其它一些进位制,如时间是60进制的,即60秒是一分,60分时1小时。
还有三进制、五进制、八进制、十六进制等。
它们和十进制计数法的道理实质是一样的。
现代计算机上大多用二进制,即满二进一,退一当二,这种进位制只用两个数字0和1,如“1”在二进制中记作1,“2”就要满二进一,记作10,“3”记作11,“4”又一次满二进一,记作100,……。
为了区别十进制和二进制,只要在这个数的右下角标上2或10即可。
任何一个十进制正整数N都可以写成各数位上的数字与10的次方数的=9×103+7×102+5×101+8×100(注:100=1)。
乘积的和的形式,如9758(10)任何一个二进制数也像十进制数一样,也可以写成各个数位上的数字与=1×25+1×24+0×23+1×22+0×21+1 2的次方数的乘积的和的形式,如110101(2)×20典例评析化成二进制例1 将139(10)【分析】要将十进制数化为二进制数,只要连续除以2.因为139=69×2+1,即有69个“2”及1个“1”,故应向第二位上进“69”,个位则有1个1;而69=34×2+1,即第二位69又要向第三位进“34”,而本位数字为“1”。
但34=17×2,即第三位上的34还应向第四位进“17”,且本位数字为“0”;接下去17=8×2+1,即第四位为1;8=4×2,即第五位为0;4=2×2,即第六位为0;2=2×1,即第七位为0,第八位为1;所以139(10)=10001011(2)。
(完整版)五年级奥数__二进制问题_讲义.doc
专题二二进制问题知要点用0,1, 2,3,4, 5, 6,7,8,9 10 个数字表示所有整数的方法被叫做十制,十制是最常的制,世界上大数国家和地区都用种方法来数,它的特点是十一,退一当十。
除了十制外,有其它一些位制,如是60 制的,即 60 秒是一分,60 分 1 小。
有三制、五制、八制、十六制等。
它和十制数法的道理是一的。
代算机上大多用二制,即二一,退一当二,种位制只用两个数字0 和 1,如“ 1”在二制中作1,“2”就要二一,作 10,“3” 作 11,“ 4”又一次二一,作 100,⋯⋯。
了区十制和二制,只要在个数的右下角上 2 或 10 即可。
任何一个十制正整数N 都可以写成各数位上的数字与10 的次方数的乘的和的形式,如9758(10)=9×103+7×102 +5×101+8× 100(注: 100=1)。
任何一个二制数也像十制数一,也可以写成各个数位上的数字与2 的次方数的乘的和的形式,如 110101(2)=1×25+1× 24+0×23+1×22+0×21+1 ×20典例析例1 将 139(10)化成二制【分析】要将十制数化二制数,只要除以2. 因 139=69×2+1,即有 69 个“ 2”及 1 个“ 1”,故向第二位上“ 69”,个位有 1 个1;而 69=34× 2+1,即第二位 69 又要向第三位“ 34”,而本位数字“ 1”。
但34=17×2,即第三位上的 34 向第四位“ 17”,且本位数字“ 0”;接下去17=8×2+1,即第四位 1;8=4×2,即第五位 0;4=2×2,即第六位 0;2=2× 1,即第七位 0,第八位 1;所以 139(10)=10001011( 2)。
个程也可以算以“短除法”求得。
小学数学五年级思维奥数寒假讲义-第7讲 进制(教师版)
第7讲 进制【知识梳理】 一、数的进制1.十进制:我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
2.二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n ,我们有n 0=1。
3.k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位是08,18,28,.4.k 进位制数可以写成不同计数单位的数之和的形式 1110110n n n n k n n a a a a a k a ka k a ---=⨯+⨯++⨯+()十进制表示形式:1010101010n n n n N a a a --=+++; 二进制表示形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数. 5.k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
二、进制间的转换:一般地,十进制整数化为k 进制数的方法是:除以k 取余数,一直除到被除数小于k 为止,余数由下到上按从左到右顺序排列即为k 进制数.反过来,k 进制数化为十进制数的一般方法是:首先将k 进制数按k 的次幂形式展开,然后按十进制数相加即可得结果.【典例精讲】把9865转化成二进制、五进制、八进制,看看谁是最细心的。
五年级数学奥数讲义-位值原理与数的进制(讲师版)
注意:对于任意自然数 n,我们有 n0=1。 n 进制:n 进制的运算法则是“逢 n 进一,借一当 n”,n 进制的四则混合运 算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号
内的。
【试题来源】 【题目】从 1~9 九个数字中取出三个,用这三个数可组成六个不同的三位数。若这六个三 位数之和是 3330,则这六个三位数中最小的可能是几?最大的可能是几?
【答案】951
【解析】设这三个数字分别为 a、b、c。由于每个数字都分别有两次作百位、十位、个位,
所以六个不同的三位数之和为 222×(a+b+c)=3330,推知 a+b+c=15。所以,当 a、 b、c 取 1、5、9 时,它们组成的三位数最小为 159,最大为 951。
学生姓名 教师姓名
学科培优 数学
“位值原理与数的进制”
授课日期 授课时长
知识定位
本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握 的知识要点。通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式, 掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。并 学会在其它进制中位值原理的应用。从而使一些与数论相关的问题简单化。
99=[(100a+10b+c)-(100c
+10b+a)]÷99=(99a-99c)÷99=a-c;②( ab - ba )÷9=[(10a+b)-(10b+a)]÷9=(9a-9b)÷ 9=a-b;③( ab + ba )÷11=[(10a+b)+(10b+a)]÷11=(11a+11b)÷11=a+b。
二进制ppt教学讲解课件
1 6 EF 所以 10110 1110.1111B=16E.FH
从根本上来说,计算机内部进行的运算,实际上是二进制 运算。但是,把十进制数转换为二进制数,并使用二进数计 算的结果,转换为十进制数,在许多小型计算机中所花费的 时间是很长的。在计算的工作量不大时,数制转换所用时间 会远远超过计算所需的时间。在这种情况下,常常采用二-十 进制数。
当然,在不需要考虑数的正、负时,是不需要用一位来表
示符号的。这种没有符号位的数,称为无符号数。由于符号
位要占用一位,所以用同样字长,无符号数的最大值比有符
号数要大一倍。如字长为4位时,能表示的无符号数的最大值 为1111,即15,而表示的无符号数的最大值为111,即7。
直接用一位用0 ,1码表示正、负,而数值部分不变,在运 算时带来一些新的问题:
解:
3 5 79 ↓ ↓ ↓↓ 0011 0101 0111 1001 所以 3579D = 0011 0101 0111 1001 BCD
4. 机器数
在计算机中不仅要用0 ,1编码的形式表示一个数
的数值部分,正、负号也要用0 ,1编码来表示。一般
用数的最高位(最左边一位)(
MSB
,
Significant Bit) 表示数的正负,如:
八进制记数符: 0,1,2,3,4,5,6,7 十六进制记数符: 0,1,2,3,4,5,6,7,8,9,A(a), B(b) ,C(c) ,D(d) ,E(e) ,F(f) 将二进制数由小数点起,向两侧分别以每3位划一组(最高 位与最低位不足3位以0补)。每一组便为一个八进制数。同 理以4位为一组,每一组便为一个十六进制数。 例1.1.9 10110 1110.1111B= ?H 解: 补零
小学奥数教程:进制的应用_全国通用(含答案)
⼩学奥数教程:进制的应⽤_全国通⽤(含答案)1. 了解进制;2. 会对进制进⾏相应的转换;3. 能够运⽤进制进⾏解题⼀、数的进制1.⼗进制:我们常⽤的进制为⼗进制,特点是“逢⼗进⼀”。
在实际⽣活中,除了⼗进制计数法外,还有其他的⼤于1的⾃然数进位制。
⽐如⼆进制,⼋进制,⼗六进制等。
2.⼆进制:在计算机中,所采⽤的计数法是⼆进制,即“逢⼆进⼀”。
因此,⼆进制中只⽤两个数字0和1。
⼆进制的计数单位分别是1、21、22、23、……,⼆进制数也可以写做展开式的形式,例如100110在⼆进制中表⽰为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
⼆进制的运算法则:“满⼆进⼀”、“借⼀当⼆”,乘法⼝诀是:零零得零,⼀零得零,零⼀得零,⼀⼀得⼀。
注意:对于任意⾃然数n ,我们有n 0=1。
3.k 进制:⼀般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进⼀”.1k k >()进位制计数单位是0k ,1k ,2k ,.如⼆进位制的计数单位是02,12,22,,⼋进位制的计数单位是08,18,28,.4.k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a ka k a ---=?+?++?+()⼗进制表⽰形式:1010101010n n n n N a a a --=+++;⼆进制表⽰形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下⽅写上k ,表⽰是k 进位制的数如:8352(),21010(),123145(),分别表⽰⼋进位制,⼆进位制,⼗⼆进位制中的数.5.k 进制的四则混合运算和⼗进制⼀样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
⼆、进制间的转换:⼀般地,⼗进制整数化为k 进制数的⽅法是:除以k 取余数,⼀直除到被除数⼩于k 为⽌,余数由下到上按从左到右顺序排列即为k 进制数.反过来,k 进制数化为⼗进制数的⼀般⽅法是:⾸先将k 进制数按k的次幂形式展开,然后按⼗进制数相加即可得结果.如右图所⽰:知识点拨教学⽬标5-8-2.进制的应⽤模块⼀、进制在⽣活中的运⽤【例 1】有个吝啬的⽼财主,总是不想付钱给长⼯。
2018最新五年级奥数.数论.进制的性质及应用(ABC级).学生版
知识结构一、数的进制(1)十进制:我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
(2)二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n ,我们有n 0=1。
(3)k 进制:一般地,对于k 进位制,每个数是由0,1,2, ,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k , .如二进位制的计数单位是02,12,22, ,八进位制的计数单位是08,18,28, .(4)k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a ka k a ---=⨯+⨯++⨯+ ()十进制表示形式:1010101010n n n n N a a a --=+++ ;二进制表示形式:1010222n n n n N a a a --=+++ ;为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数.(5)k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
二、进制间的转换:进制的性质与应用一般地,十进制整数化为k 进制数的方法是:除以k 取余数,一直除到被除数小于k 为止,余数由下到上按从左到右顺序排列即为k 进制数.反过来,k 进制数化为十进制数的一般方法是:首先将k 进制数按k 的次幂形式展开,然后按十进制数相加即可得结果.如右图所示:欢迎关注:“奥数轻松学”十进制二进制十六进制八进制重难点1.几进制就是逢几进一,借一当几。
小学数学竞赛第五讲 二进制初步
第五讲二进制初步古时候的原始记数方法是以形示数,如用绳子打结,打结个数表示事物的个数,就是“结绳记数”;在竹片、骨片;瓷片上刻划,就是“刻划记数”。
直到有了文字,才开始用字母符号表示数。
如罗马数码,Ⅰ、Ⅱ、Ⅲ表示现在我们熟悉的阿拉伯数码1、2、3,5记作V,10记作X,100记作C,采用“左减右加”原则,Ⅳ表示4(5减1),而Ⅵ表示6(5加1),Ⅸ表示9,Ⅺ表示11,XX表示20,CCⅢC表示203,罗马数码表示数的特点是不管一个数码写在什么位置表示的数是固定的。
现在看来这种记数方法很不好,一方面符号太多,另一方面很难作乘除运算。
后来产生了“进位制记数法”,用少数几个数码,同一个数码写在一个数的不同数位表示不同的数值,就是“位值制”。
十进位制只用十个数码:0,1,2,3,4,5,6,7,8,9。
如1993,千位上的1表示1000,百位上的9表示900,十位上的9表示90,个位上的3就是3。
27548=20000+7000+500+40+8=2×104+7×103+5×102+4×10+8=a n×10n+a n-1×10n-1+…+a1×10+a0。
除十进制外还有二进制,三进制,八进制等。
这里介绍一下二进制。
一、什么是二进制在现实生活和记数器中,如果表示数的“器件”只有两种状态,如电灯的“亮”与“灭”,开关的“开”与“关”。
一种状态表示数码0,另一种状态表示数码1,1加1应该等于2,因为没有数码2,只能向上一个数位进一,就是采用“满二进一”的原则,这和十进制是采用“满十进一”原则完全相同。
1+1=10,10+1=11,11+1=100,100+1=101,101+1=110,110+1=111,111+1+=1000,……,可见二进制的10表示二,100表示四,1000表示八,10000表示十六,……。
二进制同样是“位值制”。
小学奥数数论必知二进制及其应用知识点讲解
小学奥数数论必知二进制及其应用知识点讲
解
二进制及其应用
十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。
所以234=200+30+4=2×102+3×10+4。
=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100
注意:N0=1;N1=N(其中N是任意自然数)
二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。
(2)=An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7
+……+A3×22+A2×21+A1×20
注意:An不是0就是1。
十进制化成二进制:
①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。
②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点
即可写出。
分类精心精选精品文档,欢迎下载,所有文档经过整理后分类挑选加工,下载后可重新编辑,正文所有带XX或是空格类下载后可自行代入字词。
20北京版小五奥数教材课程二十、二进制的应用
课程二十二进制的应用1.二进制的特性2.二进制的运算3. 二进制与十进制的关系进位制的基本原理(1)十进制 我们通过对通常用的“十进制”的进一步认识,推广到 其它非十进制,概括出进位制原理。
(2)十进制计数法,只用十个数码;0,1,2,3,4,5,6,7,8,9。
它是“位值制”计数法。
(即同一个数码,在不同位置上表示不同的数值),如246的百位上的 2表示200,十位上的数码4表示40,个位上的数码6表示6,即 246=200+40+6=2×102+4×10+6一般来说,任何一个十进制数,都可以用各位数码(共十个数码)与 10的方幂乘积的和来表示,其中幂指数比相应数码所在的位数(从右往左 数)少1。
如356842(10)=300000+50000+6000+800+40+2=3×105+5×104+6×103+8×102+4×101+2×100学习目标重 点 1直接写成与10的方幂的乘积的和的形式。
(3)十位制值数,要“满十进一”.二进制数也可以表示成“以2为底的方幂的乘积的和的形式,例如:10(2)=1×2,11(2)=1×2+1×20=2+1,100(2)=1×22+0×2+0×20=22,101(2)=1×22 +0×2+1×20=22+1一般来说,任何一个二进制数,就是各位数码与2的方幂的乘积的和。
其中幂指数等于相应数码所在位数(从右往左数)减1。
101101(2)=25+23+22+1状态表示数码1,1加1应该等于2,因为没有数码2,只能向上一个数位进一,就是采用“满二进一”的原则。
二进制的特性什么是二进制只有数码0,1,采用“满二进一”原则的进位制记数法叫做二进制。
如:0,0+1=1,1+1=10,10+1=11,11+1=100,…可见二进制的10表示二,100表示四,1000表示八,10000表示十六,…。
小学奥数 进制的应用 精选练习例题 含答案解析(附知识点拨及考点)
1. 了解进制;2. 会对进制进行相应的转换;3. 能够运用进制进行解题一、数的进制1.十进制:我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
2.二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n ,我们有n 0=1。
3.k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位是08,18,28,.4.k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a ka k a ---=⨯+⨯++⨯+()十进制表示形式:1010101010n n n n N a a a --=+++; 二进制表示形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数.5.k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
二、进制间的转换:一般地,十进制整数化为k 进制数的方法是:除以k 取余数,一直除到被除数小于k 为止,余数由下到上知识点拨教学目标5-8-2.进制的应用按从左到右顺序排列即为k 进制数.反过来,k 进制数化为十进制数的一般方法是:首先将k 进制数按k 的次幂形式展开,然后按十进制数相加即可得结果. 如右图所示:模块一、进制在生活中的运用【例 1】 有个吝啬的老财主,总是不想付钱给长工。
五年级暑假奥数 第二单元 二进制
• • • •
6836=6000+800+30+6 =6×1000+8×100+3×10+6×1 而1000=10×10×10 100=10×10 我们规定 n个a相乘 这样6836就可以写成
a a a a a
n
6836=6×103+8×102+3×10+6
二进制数的计数单位
(a5 a4 a3a2 a1a0 ) 2
5
。。。 。。。
4 3 2
a5 2 a4 2 a3 2 a2 2 a1 2 a0
二进制数化成十进制数的方法 ——展开计算法
把二进制数化成十进制数,可以先把二进制数写成 它的展开式,即写成数码与计数单位积的和的形式,再 进行计算就行了。如下图
同样的道理,二进制数的计数单位应该是1、 21、22、23、24。。。 。。。 例如:二进制数个位上的1是表示十进制数的1、
二进制数十位上的1表示十进制数的2、 二进制数百位上的1表示十进制数的22、即4; 二进制数千位上的1表示十进制数的23、即8;
二进制数万位上的1表示十进制数的24 、即16;
右起第一位数字 右起第二位数字
右起第三位数字
右起第四位数字
右起第五位数字
(二)二进制数化成十进制数的方 法——展开计算法
• • • • • 例2、化( 111011)2为十进制数 知识准备: 解: (111011)2 =1×25+1×24+1×23+0×22+1×2+1 =32+16+8+0+2+1 • = ( 59)10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二二进制问题知识要点用0,1,2,3,4,5,6,7,8,9这10个数字表示所有整数的方法被叫做十进制,十进制是最常见的进制,世界上绝大数国家和地区都用这种方法来计数,它的特点是满十进一,退一当十。
除了十进制外,有其它一些进位制,如时间是60进制的,即60秒是一分,60分时1小时。
还有三进制、五进制、八进制、十六进制等。
它们和十进制计数法的道理实质是一样的。
现代计算机上大多用二进制,即满二进一,退一当二,这种进位制只用两个数字0和1,如“1”在二进制中记作1,“2”就要满二进一,记作10,“3”记作11,“4”又一次满二进一,记作100,……。
为了区别十进制和二进制,只要在这个数的右下角标上2或10即可。
任何一个十进制正整数N都可以写成各数位上的数字与10的次方数的=9×103+7×102+5×101+8×100(注:100=1)。
乘积的和的形式,如9758(10)任何一个二进制数也像十进制数一样,也可以写成各个数位上的数字与=1×25+1×24+0×23+1×22+0×21+1 2的次方数的乘积的和的形式,如110101(2)×20典例评析化成二进制例1 将139(10)【分析】要将十进制数化为二进制数,只要连续除以2.因为139=69×2+1,即有69个“2”及1个“1”,故应向第二位上进“69”,个位则有1个1;而69=34×2+1,即第二位69又要向第三位进“34”,而本位数字为“1”。
但34=17×2,即第三位上的34还应向第四位进“17”,且本位数字为“0”;接下去17=8×2+1,即第四位为1;8=4×2,即第五位为0;4=2×2,即第六位为0;2=2×1,即第七位为0,第八位为1;所以139(10)=10001011(2)。
这个过程也可以简算以“短除法”求得。
解因为的下标10,是为了与其它进位制区别开来,同理说明十进制数139(10)10001011(2)的下标2是表示的二进制,有时十进制的下标可以省略,但其余的进制,则下标不可省。
特别提出的是,在用“短除法”求得数时,要将每次除以2所得的余数写在被除数的后面,一直得到商是1为止。
例2 将101101(2)改成十进制数。
【分析】我们可以思考一下二进制数101101(2)上各个数位上的1是怎么进上来的,从右往左数第6位是1,是从第5位上满2才进上去是,这个数可以看做21101,第5位上是2,是因为第4位上满2个2才进过来的,可以看作5101,同理第4位上5,是因为第3位上满5个2才进过来的,应是(11,01),同理得出(22,1),(22,1)得45。
对于一个十进制数,如果是7385,可以写成7385=7×103+3×102+8×101+5×100。
同理二进制也可以写成这种形式,只不过要将上述形式中的数字换成2的次方数与0或1的乘积,就没必要像上述改写那样麻烦了。
解 101101(2)=1×25+0×24+1×23+1×22+0×21+1=25+23+22+1=32+8+4+1=45说明对于任意一个二进制数am am-1am-2…a2a1(2)改写成十进制数,都有如下的方法:am am-1am-2…a2a1(2)=am×2m-1+a m-1×2m-2+…a2×21+a1×20。
例3 计算:10110(2)+1010(2)。
【分析】二进制数的加减可以用竖式来计算解 10110(2)+ 1010(2)100000(2)10110(2)+1010(2)=100000(2)说明在将相同数位上的数相加时,与十进制加法有所不同,十进制加法中满十进一,而二进制加法中是满二进一,本题中从右往左第2位开始,便连续出现了4次“满二进一”。
例4 计算1101101(2)-1011110(2),并要求验算。
【分析】二进制的减法也可以用竖式来计算,并且可以用加法来检验结果是否正确。
解 1101101(2) 1011110(2)-1011110(2)验算 + 1111(2)1111(2) 1101101(2)说明在计算二进制数的减法时,与十进制的减法也是有所区别的,十进制减法计算中,本位不够减时,是向前一位借一当十,而在二进制数减法当中,出现不够减时时借一当二。
如在本题中,从右往左第2位不够减时向前一位借一当二,得2-1=1,其余数位上则依次类推。
为了计算的正确,用减法的逆运算作适当检验。
例5 计算:11101(2)×11(2)【分析】二进制数的乘法计算,同整数乘法一样,也可以列竖式计算,在计算过程当中要注意两点:(1)1乘任何数仍得原数;(2)0乘任何数都得零。
解 11101(2)×11(2)=1010111(2)11101(2)× 11(2)11101(2)11101(2)1010111(2)说明通过两次乘法得出乘积后,用加法求出结果时,要按照二进制数加法的方法计算出结果。
例6 计算:1001011(2)÷1111(2)。
【分析】二进制数的除法同十进制数的除法一样,也可以用竖式计算,但在除的过程当中,要综合运用二进制数的加、减、乘法的计算方法辅助除法计算。
解 1001011(2)÷1111(2)=101(2)巩固练习1.将下列二进制数化成十进制的数(1)1101101(2)解:原式=1×26+1×25+1×23+1×22+1=64+32+8+4+1=109(2)111101101(2)解:原式=1×28+1×27+1×26+1×25+1×23+1×22+1=256+128+64+32+8+4+1=4932.将下列十进制数化成二进制数。
(1)28解:短除法可得:11100(2)(2)63解:短除法可得:111111(2)3.计算(1)1100110(2)+10011(2)1100110(2) + 10011(2) 1111001(2)(2)1010011(2)-11011(2)(要求验算)解: 1010011(2) - 11011(2)111000(2)(3) 101101(2)×1101(2) 解: 101101(2) × 1101(2) 101101 101101 1011011001001001(2)(4) 11011101(2)÷1011(2) 解: 10100(2) 1011(2))11011101(2) 1011 1011 1011 14. 150粒糖果需至少装在几个盒子,就能保证150以内所有糖果都可以几只盒子凑齐,而不必打开盒子?此时每只盒子里面多少粒糖果?分析与解:先用1+21+22+23+…+2n ≤150,找出n 最大是多少,然后计算出1+21+22+23+…+2n 的结果。
把每一个加数作为一个盒子的糖果数,最后一盒用150减去前面所有盒子中糖果数的和。
1+21+22+23+…+26=127<150(粒)150-127=23(粒)150=1+21+22+23+…+26+23答:这8个盒子,每个盒子中分别是1,2,4,8,16,32,64,23粒即可。
5. 一位老大爷带上了1000元钱上街买东西。
东西的价格都是整元数,为了保证至少1000元的东西都能立即付钱,他把钱包分成若干包。
付钱时只要拿出几包而无需折散也无需找零便行。
他应如何包这些钱?解:应分别包成1元、2元、4元、8元、16元、32元、64元、128元、256元及489元功10包。
支付不超过511元时,把钱化为二进制数,易知取前九包中的若干包可按要求支付;超过511元,可支付489元,再把余钱转化为二进制数再选取若干包支付。
6.有1、2、4、8克的砝码各1个,每次从中取3个称重,如果天平的两边都可以放砝码,能称出多少种重量?解:由于每次取3个砝码和天平两边可以同时放,可知:用1、2、4三种砝码,可称出4±2±1克,即1、3、5、7克; 用1、2、8三种砝码,可称出8±2±1克,即5、7、9、11克; 用1、4、8三种砝码,可称出8±4±1克,即3、5、11、13克; 用2、4、8三种砝码,可称出8±4±2克,即2、6、10、14克; 答:可称出1、2、3、5、6、7、9、10、11、13、14共11种重量。
7. 欢欢、迎迎各有4张卡片,每张卡片上各写有一个正整数,两人各出一张卡片,计算两张卡片上所写数的和,结果发现一共能得到16个不同的和,那么,两人卡片上所写数中最大最小是多少?(全国第二届两岸四地“华罗庚金杯”少年数学精英邀请赛总决赛试题)分析与解:因为涉及的4和16是2的次方数,所以想到二进制。
两张卡片的和至少是2,16个不同的和中的最大的至少是17。
这样考虑不方便,所以假设两张卡片上是非负整数,可以包含0,和是0到15,也就是二进制的0000到1111。
那么,显然了,每个人控制其中两位的开关,两个人就能控制全部四位的开关了。
为了使得最大的数最小,控制最高位的那个人再控制最低位就行了。
一个人控制最高位和最低位:0000,0001,1000,1001;另一个人控制中间两位:0000,0010,0100,0110。
最大数最小是1001也就是9,容易发现8不行。
原题要求正整数,所以每个数再加1,答案是10 8.市中心的建设大厦高26.5米,先将一张足够大的厚度均匀且为0.01厘米的纸,进行“对折→裁开→叠放整齐”算作一次操作,至少要进行多少次这样的操作后,所有纸片叠放的总高度比建设大厦还高?解;26.5米=2650厘米2650÷0.01=265000(层)210×28=26214426144<265000218<26500018+1=19(次)答:所有纸片叠放的总高度要比建设大厦高,必需超过18次,即至少19次。
9. 有一批规格相同的圆棒,每根划分为长度相同的五节,每节用红黄蓝三种颜色来涂,问可以得到多少种着色不同的圆棒。
分析与解:用2表示“红”、1表示“黄”、0表示“蓝”,于是一种涂色对应着一个五位数,如“红红黄蓝黄”对应“22101”。
由于这种五位数只用=2×34+2三个数码,即为三进制数。
这种五位数中最大是22222,而22222(3)×33+2×32+2×3+2=242,再加上“00000”共计243种。